WorldWideScience

Sample records for ammonia-oxidizing bacterium nitrosomonas

  1. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters.

    Science.gov (United States)

    Rice, Marlen C; Norton, Jeanette M; Stein, Lisa Y; Kozlowski, Jessica; Bollmann, Annette; Klotz, Martin G; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T B K; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-03-16

    Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

  2. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production o

  3. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  4. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    Science.gov (United States)

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity.

  5. Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Vannelli, T; Hooper, A B

    1993-01-01

    Suspensions of Nitrosomonas europaea catalyzed the reductive dehalogenation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-trichloromethylpyridine). The product of the reaction was identified as 2-chloro-6-dichloromethylpyridine by its mass fragmentation and nuclear magnetic resonance spectra. A small amount of 2-chloro-6-dichloromethylpyridine accumulated during the conversion of nitrapyrin to 6-chloropicolinic acid in an aerated solution in the presence of ammonia (T. Vannelli and A.B. Hooper, Appl. Environ. Microbiol. 58:2321-2325, 1992). Nearly stoichiometric conversion of nitrapyrin to 2-chloro-6-dichloromethylpyridine occurred at very low oxygen concentrations and in the presence of hydrazine as a source of electrons. Under these conditions the turnover rate was 0.37 nmol of nitrapyrin per min per mg of protein. Two specific inhibitors of ammonia oxidation, acetylene and allylthiourea, inhibited the rate of the dehalogenation reaction by 80 and 84%, respectively. In the presence of D2O, all 2-chloro-6-dichloromethylpyridine produced in the reaction was deuterated at the methyl position. In an oxygenated solution and in the presence of ammonia or hydrazine, cells did not catalyze the oxidation of exogenously added 2-chloro-6-dichloromethylpyridine to 6-chloropicolinic acid. Thus, 2-chloro-6-dichloromethylpyridine is apparently not an intermediate in the aerobic production of 6-chloropicolinic acid from nitrapyrin. PMID:8285668

  6. Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha

    Science.gov (United States)

    Nitrifying biofilters degrading the four regulated trihalomethanes (THMs) trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) -were analyzed for the presence and activity of ammonia-oxidizing bacteria (AOB). Biofilter perfor...

  7. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    NARCIS (Netherlands)

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J.; Klotz, Martin G.; Laanbroek, Hendrikus J.; Suwa, Yuichi; Stein, Lisa Y.; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosom

  8. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm.

    Science.gov (United States)

    Foesel, Bärbel U; Gieseke, Armin; Schwermer, Carsten; Stief, Peter; Koch, Liat; Cytryn, Eddie; de la Torré, José R; van Rijn, Jaap; Minz, Dror; Drake, Harold L; Schramm, Andreas

    2008-02-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible.

  9. Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR

    Science.gov (United States)

    Dionisi, Hebe M.; Layton, Alice C.; Harms, Gerda; Gregory, Igrid R.; Robinson, Kevin G.; Sayler, Gary S.

    2002-01-01

    Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs. PMID:11772633

  10. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

    Science.gov (United States)

    Rice, Marlen C; Norton, Jeanette M; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J; Klotz, Martin G; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.

  11. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2 compared with 20% O2 (203 μM dissolved O2. At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth

  12. Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

    Energy Technology Data Exchange (ETDEWEB)

    Klots, Martin G. [University of Louisville, Louisville; Arp, D J [Oregon State University; Chain, Patrick S [ORNL; El-Sheikh, Amal F. [University of Louisville, Louisville; Hauser, Loren John [ORNL; Hommes, Norman G. [Oregon State University; Larimer, Frank W [ORNL; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Norton, Jeanette M. [Utah State University (USU); Poret-Peterson, Amisha T. [University of Louisville, Louisville; Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Ward, Bess B. [Princeton University

    2006-01-01

    The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).

  13. The Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC19707

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, M G; Arp, D J; Chain, P S; El-Sheikh, A F; Hauser, L J; Hommes, N G; Larimer, F W; Malfatti, S A; Norton, J M; Poret-Peterson, A T; Vergez, L M; Ward, B B

    2006-08-03

    The Gammaproteobacterium, Nitrosococcus oceani (ATCC 19707), is a Gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; 50.4% G+C) and a plasmid (40,420 bp) that contain 3052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. In contrast to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacterium's energy metabolism, stress tolerance and the ability to assimilate carbon via gluconeogenesis. One set of genes for type I RuBisCO was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H{sup +}-dependent F{sub 0}F{sub 1}-type, one Na{sup +}-dependent V-type).

  14. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten;

    2008-01-01

    with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amo......Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated...

  15. The effect of bacterial community members on the proteome of the ammonia-oxidizing bacterium Nitrosomonas sp. Is79

    NARCIS (Netherlands)

    Sedlacek, Christopher J.; Nielsen, Susanne; Greis, Kenneth D.; Haffey, Wendy D.; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J.; Bollmann, Annette

    2016-01-01

    Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study we inve

  16. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    Science.gov (United States)

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant. PMID:15691975

  17. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  18. Stable isotope probing and dynamic loading experiments provide insight into the ecophysiology of novel ammonia oxidizers in rapid gravity sand filters

    OpenAIRE

    Fowler, Jane; Palomo, Alejandro; Gülay, Arda; Tatari, Karolina; Thamdrup, Bo; Albrechtsen, Hans-Jørgen; Sørensen, Søren; Barth F. Smets

    2016-01-01

    Nitrification is often the dominant microbial process in rapid gravity sand filters (RSF), used to treat aerated groundwater to produce drinking water. RSFs harbor diverse microbial communities including a range of ammonia oxidizing clades; Betaproteobacteria (Nitrosomonas, Nitrosospira), Archaea, diverse potentially ammonia oxidizing heterotrophs and abundant Nitrospira spp., recently shown to comprise both canonical nitrite oxidizing as well as complete ammonium oxidizing (comammox) types. ...

  19. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  20. A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

    Directory of Open Access Journals (Sweden)

    Qianyu Zhang

    2013-05-01

    Full Text Available A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation‒allylthiourea and thioacetamide‒have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.

  1. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    Science.gov (United States)

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  2. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    Science.gov (United States)

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-12-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m‑3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]‑1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.

  3. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes.

    Science.gov (United States)

    Wei, Bo; Yu, Xin; Zhang, Shuting; Gu, Li

    2011-09-20

    Some common floating aquatic macrophytes could remove nutrients, such as nitrogen, from eutrophic water. However, the relationship between these macrophytes and the ammonia-oxidizing microorganisms on their rhizoplanes is still unknown. In this study, we examined communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the rhizoplanes of common floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Ipomoea aquatic) in a eutrophic reservoir.The results show that AOB were the predominant ammonia-oxidizer on the three rhizoplanes. The principal AOB were Nitrosomonas europaea and Nitrosomonas ureae clades. The principal group of AOA was most similar to the clone from activated sludge. The ratio of AOB amoA gene copies to AOA varied from 1.36 (on E. crassipes) to 41.90 (on P. stratiotes). Diversity of AOA was much lower than that of AOB in most samples, with the exception of P. stratiotes.

  4. Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA Fragments and FISH

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dan; ZHANG De-min; LIU Yao-ping; CAO Wen-wei; CHEN Guan-xiong

    2004-01-01

    OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by Fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ( 0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.

  5. Stable isotope probing and dynamic loading experiments provide insight into the ecophysiology of novel ammonia oxidizers in rapid gravity sand filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Gülay, Arda

    to elucidate the differences in ecophysiology between the ammonia oxidizing clades that enable them to co-exist in this unique environment. Experiments were conducted using sand columns designed and operated to mimic the conditions in the full-scale parent RSF. RNA and DNA stable isotope probing based on 13C......Nitrification is often the dominant microbial process in rapid gravity sand filters (RSF), used to treat aerated groundwater to produce drinking water. RSFs harbor diverse microbial communities including a range of ammonia oxidizing clades; Betaproteobacteria (Nitrosomonas, Nitrosospira), Archaea......, diverse potentially ammonia oxidizing heterotrophs and abundant Nitrospira spp., recently shown to comprise both canonical nitrite oxidizing as well as complete ammonium oxidizing (comammox) types. We examined the contributions of the different ammonia oxidizers to in situ ammonia oxidation, and aimed...

  6. Effects of copper on the abundance and diversity of ammonia oxidizers during dairy cattle manure composting.

    Science.gov (United States)

    Yin, Yanan; Song, Wen; Gu, Jie; Zhang, Kaiyu; Qian, Xun; Zhang, Xin; Zhang, Yajun; Li, Yang; Wang, Xiaojuan

    2016-12-01

    This study investigated the effects of adding Cu(II) at two exposure levels (50 and 500mgkg(-1), i.e., Cu50 and Cu500 treatments, respectively) on the activity of ammonia-oxidizing microorganisms during dairy cattle manure composting. The results showed that the pH, NH4(+)-N, NO3(-)-N, and potential ammonia oxidation values were inhibited significantly by the addition of Cu(II). Furthermore, the abundances of the ammonia-oxidizing archaea (AOA) amoA gene and ammonia-oxidizing bacteria (AOB) amoA gene were determined by quantitative PCR, and their compositions were evaluated by denaturing gradient gel electrophoresis (DGGE). AOA was the dominant ammonia oxidizing microorganism, of which the abundance was much higher than AOB during composting. Cu50 and Cu500 had significant inhibitory effects on the abundance of the amoA gene. The DGGE profile and statistical analysis showed that Cu(II) changed the AOA and AOB community structure and diversity, where Nitrosomonas and Crenarchaeota dominated throughout the composting process.

  7. Community structure of β-Proteobacterial ammonia-oxidizing bacteria in prawn farm sediment

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Lin Wang; Lumin Qian

    2008-01-01

    To examine the community structure of β-Proteobacterial ammonia-oxidizing bacteria (AOB) in prawn farm sediment, the 16S rRNA gene library was constructed with β-Proteobacterial AOB-specific primers. The library was screened by PCR-restriction fragment length polymorphism (RFLP) analysis and clones with unique RFLP patterns were sequenced. Two groups of β-Proteobacterial AOB, the Nitrosomonas and the Nitrosospira, were detected. The Nitrosomonas occupied an absolute dominant position, accounting for more than 90% of total clones in the clone library, while the Nitrosospira accounting for 5.48%. Nitrosomonas-affiliated clones were grouped into the Nitrosomonas marina and the Nitrosomonas sp. Nm 143 clusters, and Nitrosospira-affiliated clones were grouped into the Nitrosospira cluster 1. No other clusters of β-Proteobacterial AOB were found. The results enriched our knowledge of AOB diversity in the prawn farm sediment and provided important foundational data for further functional studies of these microbes in mariculture environments.

  8. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Watanabe, A. [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba (Japan); Kudo, N.; Shinozaki, H. [Materials Science Engineering, Tokyo Denki University, Tokyo (Japan); Uemoto, H.

    2007-12-15

    Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol-degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. Diversity of ammonia-oxidizing bacteria in relation to soil environment in Ebinur Lake Wetland

    Directory of Open Access Journals (Sweden)

    Wenge Hu

    2016-03-01

    Full Text Available Ammonia oxidation is the first and rate-limiting step of nitrification and is carried out by ammonia-oxidizing bacteria (AOB. Ebinur Lake Wetland, the most representative temperate arid zone wetland ecosystem in China, is the centre of oasis and desertification of the northern slope of Tianshan conjugate. Soil samples were collected from three sites (Tamarix ramosissima, Halocnemum strobilaceum and Phragmites australis and different soil layers (0–5, 5–15, 15–25 and 25–35 cm in this wetland in spring, summer and autumn and were used to characterize the diversity of AOB based on the ammonia monooxygenase (amoA gene. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE and bivariate correlation analysis were used to analyse the relationship between the diversity of AOB and soil environment factors. The PCR-DGGE indicated that the diversity of AOB was high in the entire sample and the Shannon diversity index varied from 1.369 to 2.471. The phylogenetic analysis showed that the amoA fragments were grouped into Nitrosospira sp. and Nitrosomonas sp. Most amoA gene sequences fell within the Nitrosospira sp. cluster, and only a few sequences were clustered with Nitrosomonas sp., indicating that Nitrosospira sp. may be more adaptable than Nitrosomonas sp. in this area. Bivariate correlation analysis showed that the diversity of AOB was significantly correlated with soil organic matter, conductivity, total phosphorus and nitrate in the Ebinur Lake Wetland in Xinjiang.

  10. THE BIOENERGETICS OF AMMONIA AND HYDROXYLAMINE OXIDATION IN NITROSOMONAS-EUROPAEA AT ACID AND ALKALINE PH

    NARCIS (Netherlands)

    FRIJLINK, MJ; ABEE, T; LAANBROEK, HJ; DEBOER, W; KONINGS, WN

    1992-01-01

    Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of

  11. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    Directory of Open Access Journals (Sweden)

    Shimin eLu

    2016-01-01

    Full Text Available Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in sediment samples (0–50 cm depth collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5–39.9-fold in surface sediments (0–10 cm depth, which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths were grouped into the Nitrosopumilus cluster.

  12. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    Science.gov (United States)

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge.

  13. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    Science.gov (United States)

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pHnitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  14. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran LI; Yi-ping XIAO; Wen-wei REN; Zeng-fu LIU; Jin-huan SHI; Zhe-xue QUAN

    2012-01-01

    Tidal fiats are soil resources of great significance.Nitrification plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments.We determined the abundance as well as composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in different soils during land reclamation process.The abundance of AOA was higher than that of AOB in farm land and wild land while AOA was not detected in tidal flats using real-time polymerase chain reaction (PCR).The different abundances of AOB and AOA were negatively correlated with the salinity.The diversities of AOB and AOA were also investigated using clone libraries by amplification of amoA gene.Among AOB,nearly all sequences belonged to the Nitrosomonas lineage in the initial land reclamation process,i.e.,tidal flats,while both Nitrosomonas and Nitrosospira lineages were detected in later and transition phases of land reclamation process,farm land and wild land.The ratio of the numbers of sequences of Nitrosomonas and Nitrosospira lineages was positively correlated with the salinity and the net nitrification rate.As for AOA,there was no obvious correlation with the changes in the physicochemical properties of the soil.This study suggests that AOB may be more import than AOA with respect to influencing the different land reclamation process stages.

  15. Diversity and abundance of ammonia-oxidizing

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van Bleijswijk, J.D.L.; Witte, H.; van Duyl, F.C.

    2013-01-01

    We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was analysed using catalyzed reporter depositi

  16. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

    Science.gov (United States)

    Wang, Yanan; Ke, Xiubin; Wu, Liqin; Lu, Yahai

    2009-02-01

    Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.

  17. Effect of Metasystox-R on marine Nitrosomonas sp. as a nitrification inhibitor.

    Science.gov (United States)

    Safaeian, Shila; Amirsharifi, Maryam; Esmaeili, Akbar; Salimi, Lida

    2008-02-15

    Metasystox-R is a systemic soluble liquid insecticide for the control of aphids on brassica vegetable crops, cotton and lupins and it is possible enter to the marine environment and may be have a hazard effects for the marine organisms and nitrification processes. Effect of Metasystox-R on ammonia oxidizing activity by marine Nitrosomonas sp. was investigated by determining nitrification inhibitor assay in the cell suspension. Results showed that 8 microg mL(-1) of Metasystox-R with PI50 = 4.48 significantly inhibited nitrite production by marine Nitrosomonas sp. These results suggested marine Nitrosomonas sp. may be one of the target bacteria which was inhibitor and decreasing nitrification in the marine environment.

  18. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  19. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system.

    Science.gov (United States)

    Brown, Monisha N; Briones, Aurelio; Diana, James; Raskin, Lutgarde

    2013-01-01

    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB.

  20. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment.

    Science.gov (United States)

    Qin, Ying-Ying; Zhang, Xiao-Wen; Ren, Hong-Qiang; Li, Dao-Tang; Yang, Hong

    2008-05-01

    Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 x 10(5) to 2.67 x 10(9) cells per gram of dry biofilm and corresponded to 0.23-1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).

  1. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    OpenAIRE

    SoeMyat Thandar; Norisuke Ushiki; Hirotsugu Fujitani; Yuji Sekiguchi; Satoshi Tsuneda

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. m...

  2. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    Science.gov (United States)

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while

  3. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  4. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    Science.gov (United States)

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  5. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea.

    Science.gov (United States)

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2012-04-01

    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area.

  6. Human settlement as driver of bacterial, but not of archaeal, ammonia oxidizers abundance and community structure in tropical stream sediments

    Directory of Open Access Journals (Sweden)

    Mariana De Paula Reis

    2015-08-01

    Full Text Available Ammonia-oxidizing archaea (AOA and bacteria (AOB are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.

  7. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  8. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Science.gov (United States)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  9. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2014-03-01

    Full Text Available Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in

  10. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater.

    Science.gov (United States)

    Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan

    2016-08-01

    The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia.

  11. Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters.

    Science.gov (United States)

    Jun, Yin; Wenfeng, Xu

    2009-09-01

    Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20-100 mg m(-3). Removal efficiencies of BFC and BFS were in the range of 97-99% and 95-99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH(3) in the resultant acidity. Nitrate was the dominant product of NH(3) transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.

  12. Influence of soil moisture on linear alkylbenzene sulfonate-induced toxicity in ammonia-oxidizing bacteria.

    Science.gov (United States)

    Nielsen, Klaus B; Brandt, Kristian K; Jacobsen, Anne-Marie; Mortensen, Gerda K; Sørensen, Jan

    2004-02-01

    Moisture affects bioavailability and fate of pollutants in soil, but very little is known about moisture-induced effects on pollutant toxicity. We here report on a modifying effect of moisture on degradation of linear alkylbenzene sulfonates (LASs) and on their toxicity towards ammonia-oxidizing bacteria (AOB) in agricultural soil. In soil spiked with two LAS levels (250 or 1,000 mg/kg) and incubated at four different moisture levels (9-100% of water-holding capacity), degradation was strongly affected by both soil moisture and initial LAS concentration, resulting in degradation half-lives ranging from 13 to more than 160 d. Toxicity towards AOB assessed by a novel Nitrosomonas europaea luxAB-reporter assay was correlated to total LAS concentration, indicating that LAS remained bioavailable over time without accumulation of toxic intermediates. Toxicity towards indigenous AOB increased with increasing soil moisture. The results indicate that dry soil conditions inhibit LAS degradation and provide protection against toxicity within the indigenous AOB, thus allowing for a rapid recovery of this population when LAS degradation is resumed and completed after rewetting. We propose that the protection of microbial populations against toxicity in dry soil may be a general phenomenon caused primarily by limited diffusion and thus a low bioavailability of the toxicant.

  13. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  14. Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers.

    Directory of Open Access Journals (Sweden)

    Antoni Fernàndez-Guerra

    Full Text Available Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene. In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic for most of the habitats indicated γ(AOA > γ(AOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing

  15. Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes.

    Science.gov (United States)

    Sorokin, D; Tourova, T; Schmid, M C; Wagner, M; Koops, H P; Kuenen, J G; Jetten, M

    2001-09-01

    Five mixed samples prepared from the surface sediments of 20 north-east Mongolian soda lakes with total salt contents from 5 to 360 g/l and pH values from 9.7 to 10.5 were used to enrich for alkaliphilic ammonia-oxidizing bacteria. Successful enrichments at pH 10 were achieved on carbonate mineral medium containing 0.6 M total Na(+) and < or =4 mM NH(4)Cl. Five isolates (ANs1-ANs5) of ammonia-oxidizing bacteria capable of growth at pH 10 were obtained from the colonies developed on bilayered gradient plates. The cells were motile and coccoid, with well-developed intracytoplasmic membranes (ICPM) and carboxysomes. At pH 10.0, ammonia was toxic for growth at concentrations higher than 5 mM NH(4)Cl. The bacteria were able to grow within the salinity range of 0.1-1.0 M of total Na+ (optimum 0.3 M). In media containing 0.3-0.6 M total Na(+), optimal growth in batch cultures occurred in the presence of a bicarbonate/carbonate buffer system within the pH range 8.5-9.5, with the highest pH limit at pH 10.5. At pH lower than 8.0, growth was slower, most probably due to decreasing free ammonia. The pH profile of the respiratory activity was broader, with limits at 6.5-7.0 and 11.0 and an optimum at 9.5-10.0. In pH-controlled, NH(3)-limited continuous culture, isolate ANs5 grew up to pH 11.3, which is the highest pH limit known for ammonia-oxidizing bacteria so far. This showed the existence of extremely alkali-tolerant ammonia-oxidizing bacteria in the soda lakes. Comparative 16S rDNA sequence analysis of the five isolates demonstrated that they possess identical 16S rDNA genes and that they are closely related to Nitrosomonas halophila (sequence similarity 99.3%), a member of the beta-subclass of the Proteobacteria. This affiliation was confirmed by comparative sequence analysis of the amoA gene, encoding the active-site subunit of the ammonia-monoxygenase, of one of the isolates. DNA-DNA hybridization data further supported that the soda lake isolates are very similar to

  16. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean

    NARCIS (Netherlands)

    Sintes, E.; Ouillon, N.; Herndl, G.J.

    2015-01-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms.Macroecological and biogeographic distribution patterns in marine Archaea, however,have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution(i.e. similar communities in the northernmost

  17. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “

    NARCIS (Netherlands)

    Lehtovirta-Morley, L.E.; Sayavedra-Soto, L.A.; Gallois, N.; Schouten, S.; Stein, L.Y.; Prosser, J.I.; Nicol, G.W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganismsin soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOBand dominate activity in acid soils. The mechanism of amm

  18. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris; Hyman, Michael R.; Löffler, F. E.

    2016-01-29

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and

  19. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea

    OpenAIRE

    Hatzenpichler, Roland

    2012-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding o...

  20. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh.

    Science.gov (United States)

    Peng, Xuefeng; Yando, Erik; Hildebrand, Erica; Dwyer, Courtney; Kearney, Anne; Waciega, Alex; Valiela, Ivan; Bernhard, Anne E

    2012-01-01

    Since the discovery of ammonia-oxidizing archaea (AOA), new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing bacteria (AOB). We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF), high (HF), and extra high (XF) levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C). Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs) predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

  1. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-01-01

    Full Text Available Since the discovery of ammonia-oxidizing archaea (AOA, new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing Bacteria (AOB. We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF, high (HF, and extra high (XF levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C. Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

  2. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

    Science.gov (United States)

    Offre, Pierre; Prosser, James I; Nicol, Graeme W

    2009-10-01

    Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.

  3. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies.

    Science.gov (United States)

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member's ecophysiology in a variety of habitats.

  4. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  5. Oxygen availability and distance to surface environments determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone aquifers in the Hainich region, Germany.

    Science.gov (United States)

    Opitz, Sebastian; Küsel, Kirsten; Spott, Oliver; Totsche, Kai Uwe; Herrmann, Martina

    2014-10-01

    We followed the abundance and compared the diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the groundwater of two superimposed pristine limestone aquifers located in the Hainich region (Thuringia, Germany) over 22 months. Groundwater obtained from the upper aquifer (12 m depth) was characterized by low oxygen saturation (0-20%) and low nitrate concentrations (0-20 μM), contrasting with 50-80% oxygen saturation and 40-200 μM nitrate in the lower aquifer (48 m and 88 m depth). Quantitative PCR targeting bacterial and archaeal amoA and 16S rRNA genes suggested a much higher ammonia oxidizer fraction in the lower aquifer (0.4-7.8%) compared with the upper aquifer (0.01-0.29%). In both aquifers, AOB communities were dominated by one phylotype related to Nitrosomonas ureae, while AOA communities were more diverse. Multivariate analysis of amoA DGGE profiles revealed a stronger temporal variation of AOA and AOB community composition in the upper aquifer, pointing to a stronger influence of surface environments. Parallel fluctuations of AOA, AOB, and total microbial abundance suggested that hydrological factors (heavy rain falls, snow melt) rather than specific physicochemical parameters were responsible for the observed community dynamics.

  6. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study.

    Science.gov (United States)

    Brandt, Kristian Koefoed; Krogh, Paul Henning; Sørensen, Jan

    2003-04-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH4+ availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea bioluminescence toxicity assay, however, LAS or other sludge components never accumulated to toxic levels in the soil compartments and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. LAS effects on the investigated microbial populations largely occurred during the first two months and were confined to soil closer than 30 mm from LAS-spiked sludge. Our results strongly suggest that disposal of LAS-contaminated sludge does not pose a major risk to the function of the soil microbial community under field conditions.

  7. A review of ammonia-oxidizing bacteria and archaea in Chinese soils

    OpenAIRE

    Ji-Zheng eHe; Ju-Pei eShen; Li-Mei eZhang; Hong J eDi

    2012-01-01

    Ammonia (NH3) oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N) cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved in ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Chi...

  8. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  9. Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples.

    Science.gov (United States)

    Junier, Pilar; Kim, Ok-Sun; Hadas, Ora; Imhoff, Johannes F; Witzel, Karl-Paul

    2008-08-01

    The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (betaAOB) was evaluated. betaAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the betaAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations betaAMOf/betaAMOr, betaAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on betaAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.

  10. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  11. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher

    2012-02-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  12. Communities of sediment ammonia-oxidizing bacteria along a coastal pollution gradient in the East China Sea.

    Science.gov (United States)

    Hou, Manhua; Xiong, Jinbo; Wang, Kai; Ye, Xiansen; Ye, Ran; Wang, Qiong; Hu, Changju; Zhang, Demin

    2014-09-15

    Anthropogenic nitrogen (N) discharges has caused eutrophication in coastal zones. Ammonia-oxidizing bacteria (AOB) convert ammonia to nitrite and play important roles in N transformation. Here, we used pyrosequencing based on the amoA gene to investigate the response of the sediment AOB community to an N pollution gradient in the East China Sea. The results showed that AOB assemblages were primarily affiliated with Nitrosospira-like lineages, and only 0.4% of those belonged to Nitrosomonas-like lineage. The Nitrosospira-like lineage was separated into four clusters that were most similar to the sediment AOB communities detected in adjacent marine regions. Additionally, one clade was out grouped from the AOB lineages, which shared the high similarities with pmoA gene. The AOB community structures substantially changed along the pollution gradient, which were primarily shaped by NH4(+)-N, NO3(-)-N, SO4(2)(-)-S, TP and Eh. These results demonstrated that coastal pollution could dramatically influence AOB communities, which, in turn, may change ecosystem function.

  13. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea.

    Science.gov (United States)

    Hatzenpichler, Roland

    2012-11-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research.

  14. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor.

    Science.gov (United States)

    Thandar, Soe Myat; Ushiki, Norisuke; Fujitani, Hirotsugu; Sekiguchi, Yuji; Tsuneda, Satoshi

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L(-1) (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05-0.07 h(-1), which corresponded to a generation time of 10-14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4(+) and 0.01 ± 0.002 pmol NH4(+) cells(-1) h(-1), respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells(-1) h(-1). Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current

  15. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    Directory of Open Access Journals (Sweden)

    SoeMyat Thandar

    2016-11-01

    Full Text Available Ammonia-oxidizing bacteria (AOB, which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70±0.51 μM NH4+ and 0.01±0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were K_(m(O_2= 21.74±4.01 μM O2 and V_(max⁡(O_2= 0.06±0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 mM and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The

  16. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture.

    Science.gov (United States)

    Vadivelu, Vel M; Keller, Jurg; Yuan, Zhiguo

    2006-12-05

    The effects of free ammonia (FA; NH(3)) and free nitrous acid (FNA; HNO(2)) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO(2), HCO(3) (-), and CO(3) (2-)). It was revealed that FA of up to 16.0 mgNH(3)-N . L(-1), which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-N . L(-1), and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N . L(-1). The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N . L(-1). The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH(3)-N . L(-1), independent of the presence or absence of inorganic carbon.

  17. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  18. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.

    Science.gov (United States)

    Wolfe, R L; Lieu, N I; Izaguirre, G; Means, E G

    1990-02-01

    Nitrification in chloraminated drinking water can have a number of adverse effects on water quality, including a loss of total chlorine and ammonia-N and an increase in the concentration of heterotrophic plate count bacteria and nitrite. To understand how nitrification develops, a study was conducted to examine the factors that influence the occurrence of ammonia-oxidizing bacteria (AOB) in a chloraminated distribution system. Samples were collected over an 18-month period from a raw-water source, a conventional treatment plant effluent, and two covered, finished-water reservoirs that previously experienced nitrification episodes. Sediment and biofilm samples were collected from the interior wall surfaces of two finished-water pipelines and one of the covered reservoirs. The AOB were enumerated by a most-probable-number technique, and isolates were isolated and identified. The resistance of naturally occurring AOB to chloramines and free chlorine was also examined. The results of the monitoring program indicated that the levels of AOB, identified as members of the genus Nitrosomonas, were seasonally dependent in both source and finished waters, with the highest levels observed in the warm summer months. The concentrations of AOB in the two reservoirs, both of which have floating covers made of synthetic rubber (Hypalon; E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.), had most probable numbers that ranged from less than 0.2 to greater than 300/ml and correlated significantly with temperature and levels of heterotrophic plate count bacteria. No AOB were detected in the chloraminated reservoirs when the water temperature was below 16 to 18 degrees C. The study indicated that nitrifiers occur throughout the chloraminated distribution system. Higher concentrations of AOB were found in the reservoir and pipe sediment materials than in the pipe biofilm samples. The AOB were approximately 13 times more resistant to monochloramine than to free chlorine. After 33 min

  19. Drivers of archaeal ammonia-oxidizing communities in soil

    Directory of Open Access Journals (Sweden)

    Kateryna eZhalnina

    2012-06-01

    Full Text Available Soil ammonia-oxidizing archaea (AOA are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. AOA may cause nitrogen loss from soils, and the nitrate produced by AOA can lead to ground and surface water contamination, water eutrophication, and soil subsidence. The ammonia-oxidizing archaea discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  20. Ammonia-oxidizing bacterial community composition in the nitrifying biofilter of Recirculating Aquaculture System%循环海水养殖系统硝化滤器中氨氧化微生物分析

    Institute of Scientific and Technical Information of China (English)

    刘长发; 姚敬元; 袁瑗; 刘卫东

    2012-01-01

    研究循环水养殖硝化滤器裁体上附着生物膜的微生物群落结构可以为提高其处理速率和数率,并为特异性工程菌构建提供依据.采用改良的AFLP方法分析了循环水养殖硝化滤器载体上附着的氨氧化细菌16S rRNA基因和氨单加氧酶amoA基因片段及其系统发育情况.结果表明:分析16S rRNA基因得到的序列片段比分析amoA基因片段得到了更多信息,准确度较高,可作为分析循环水养殖硝化滤器氨氧化茵群组成的有效方法.克隆测序所得序列与网上公布数据比对,可见存在于循环水养殖硝化滤器载体上的氨氧化细菌与Nitrosomonas cryotolerans、Nitrosomonas oligotropha、Nitrosospira tenuis、Nitrosomonasmarina相似度达100%,与Nitrosomornas aestuarii相似度为87%.大部分属于亚硝化单胞茵属(Nitrosomonns),仅少数序列属于亚硝化螺茵属(Nitrosospira).采用16S rRNA基因和amoA片段分析方法得到的附着于封闭循环海水养殖硝化滤器载体上的氨氧化细菌主要为变形茵(Proteobacteria)的β-亚类的亚硝化单胞茵属(Nitrosomonas)和少量的亚硝化螺茵属(Nitrosospira)氨氧化细菌,以及一定数量的y-亚类氨氧化细菌.%Ammonia-oxidizing bacteria (AOB) play an important role in transformation from ammonia nitrogen to nitrite nitrogen in the nitrifying biofilter.Studying community structure of nitrifying organisms adhered on the media of nitrification biofilter in the recirculating aquaculture system (RAS) could provide a basis of improving removal rate and performance of biofilter,and construction of nitrifying engineering bacteria for removal of ammonia from RAS.The PCR-based gene cloning and mapping of 16S rRNA gene and betaproteobacteria ammonia monooxygenase subunit A (amoA) gene of ammonia-oxidizing bacteria isolated from nitrification biofilter were surveyed by using the method of improved amplified fragment length polymorphism (AFLP) analysis.The results showed that

  1. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    Autotrophic ammonia oxidizing microorganisms,which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon...

  2. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment.

    Science.gov (United States)

    Junier, Pilar; Molina, Verónica; Dorador, Cristina; Hadas, Ora; Kim, Ok-Sun; Junier, Thomas; Witzel, Jean-Paul; Imhoff, Johannes F

    2010-01-01

    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.

  3. Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Gao, T. P.

    2014-04-01

    Nitrogen is the major limiting nutrient in cold environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in alpine meadow soils in northwestern China, namely those catalyzing the rate-limiting step of ammonia oxidation. In this study, ammonia-oxidizing communities in alpine meadow soils were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. The results demonstrated that ammonia-oxidizing archaea (AOA) outnumbered ammonia-oxidizing bacteria (AOB) in the alpine meadow soils. Most of the AOA phylotypes detected in the study region fell within typical Group I.1b of Thaumarchaeota. Interestingly, a new ammonia-oxidizing archaeal group named "Kobresia meadow soil group" was found. Phylogenetic analysis of AOB communities exhibited a dominance of Nitrosospira-like sequences affiliated to beta-Proteobacteria. Compared with other alpine environments, Qilian Mountains had a great phylogenetic diversity of ammonia oxidizers. Principal Component Analysis (PCA) analysis showed that distinct AOA/AOB phylotype groups were attributed to different meadow types, reflecting an overall distribution of ammonia-oxidizing communities associated with meadow types. Redundancy Analysis (RDA) analysis showed that Axis 1 (90.9%) together with Axis 2 (9.1%) explained all the variables while Axis 1 exhibited a significant explanatory power. So that vegetation coverage mostly correlated to Axis 1 was the most powerful environmental factor in the study region. Characteristics of ammonia-oxidizing communities showed a close association with vegetation coverage.

  4. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    OpenAIRE

    Nakagawa, Tatsunori; Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopu...

  5. The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil.

    Science.gov (United States)

    Mahmood, Shahid; Prosser, James I

    2006-06-01

    In grazed, grassland soils, sheep urine generates heterogeneity in ammonia concentrations, with potential impact on ammonia oxidizer community structure and soil N cycling. The influence of different levels of synthetic sheep urine on ammonia oxidizers was studied in grassland soil microcosms. 'Total' and active ammonia oxidizers were distinguished by comparing denaturing gradient gel electrophoresis (DGGE) profiles following PCR and RT-PCR amplification of 16S rRNA gene fragments, targeting DNA and RNA, respectively. The RNA-based approach indicated earlier, more reproducible and finer scale qualitative shifts in ammonia oxidizing communities than DNA-based analysis, but led to amplification of a small number of nonammonia oxidizer sequences. Qualitative changes in RNA-derived DGGE profiles were related to changes in nitrate accumulation. Sequence analysis of excised DGGE bands revealed that ammonia oxidizing communities in synthetic sheep urine-treated soils consisted mainly of Nitrosospira clusters 2, 3 and 4. Nitrosospira cluster 2 increased in relative abundance in microcosms treated with all levels of synthetic sheep urine. Low levels additionally led to increased relative abundance of Nitrosospira cluster 4 and medium and high levels increased relative abundance of cluster 3. Synthetic sheep urine is therefore likely to influence the spatial distribution and composition of ammonia oxidizer communities, with consequent effects on nitrate accumulation.

  6. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    Science.gov (United States)

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  7. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    Science.gov (United States)

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils.

  8. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.

  9. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification.

    Science.gov (United States)

    Laverock, B; Kitidis, V; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2013-01-01

    Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.

  10. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    Science.gov (United States)

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  11. Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations.

    Science.gov (United States)

    Nakagawa, Tatsunori; Stahl, David A

    2013-11-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.

  12. 水稻土氨氧化细菌多样性的RFLP分析%RFLP Analysis of Ammonia Oxidizing Bacteria Diversity in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    李惠民; 程林; 王保莉; 曲东

    2011-01-01

    Ammonia-oxidizing microbes play an important role in the biogeochemical cycle of N element and limit the rate of nitrification.The diversity and composition of the rhizosphere paddy soil and bulk paddy soil ammonia-oxidizing bacteria were analyzed through constructing its 16S rDNA gene clone library and by PCR-based Restriction Fragment Length Polymorphism analysis (RFLP).Total genome DNA of soil microorganism was extracted from the rhizosphere paddy soil(G) and bulk paddy soil(F).16S rDNAs of the extracted DNA were amplified using ammona oxidizing bacteria special primers (Eub338, Nso1225) and relevant clone libraries were constructed.110 and 105 restriction endonuclease types of these samples were detected based on restriction endonuclease Hha Ⅰ and Rsa Ⅰ using PCR-RFLP.The data were analyzed by diversity index and clustering of the dominated bacteria.The results showed that the ammonia-oxidizing bacteria community structure index H', Dg and Jgi of bulk paddy soil were slightly higher than rhizosphere paddy soil, which indicated that the population of ammonia-oxidizing bacteria in bulk paddy soil was slightly more than that in rhizosphere paddy soil; the index Hmax and dMax of rhizosphere paddy soil were higher than bulk paddy soil, which meant that the quantity of ammonia- oxidizing bacteria in rhizosphere paddy soil was more than in bulk paddy soil;Sequencing the dominate ammonia-oxidizing bacteria community in rhizosphere paddy soil showed that they mainly belong to Nitrosospira sp., Uncultured Nitrosomonadaceae bacterium, Uncultured Beta proteobacterium , and UncuLtured Alcaligenaceae bacterium.%提取苗期水稻根际土和非根际土土样微生物总DNA,采用氨氧化细菌特异性引物(Eub338,Nso1225)扩增16S rDNA基因片段,分别建立水稻根际土(G)和非根际土(F)氨氧化细菌克隆文库.用限制性内切酶HhaⅠ/RsaⅠ进行PCR-RFLP分型,分别得到110和105个酶切类型.多样性指数和优势细菌聚类比对

  13. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains.

    Science.gov (United States)

    Brandt, K K; Hesselsøe, M; Roslev, P; Henriksen, K; Sørensen, J

    2001-06-01

    Strong inhibitory effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) on four strains of autotrophic ammonia-oxidizing bacteria (AOB) are reported. Two Nitrosospira strains were considerably more sensitive to LAS than two Nitrosomonas strains were. Interestingly, the two Nitrosospira strains showed a weak capacity to remove LAS from the medium. This could not be attributed to adsorption or any other known physical or chemical process, suggesting that biodegradation of LAS took place. In each strain, the metabolic activity (50% effective concentration [EC(50)], 6 to 38 mg liter(-1)) was affected much less by LAS than the growth rate and viability (EC(50), 3 to 14 mg liter(-1)) were. However, at LAS levels that inhibited growth, metabolic activity took place only for 1 to 5 days, after which metabolic activity also ceased. The potential for adaptation to LAS exposure was investigated with Nitrosomonas europaea grown at a sublethal LAS level (10 mg liter(-1)); compared to control cells, preexposed cells showed severely affected cell functions (cessation of growth, loss of viability, and reduced NH(4)(+) oxidation activity), demonstrating that long-term incubation at sublethal LAS levels was also detrimental. Our data strongly suggest that AOB are more sensitive to LAS than most heterotrophic bacteria are, and we hypothesize that thermodynamic constraints make AOB more susceptible to surfactant-induced stress than heterotrophic bacteria are. We further suggest that AOB may comprise a sensitive indicator group which can be used to determine the impact of LAS on microbial communities.

  14. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  15. Benthic Ammonia Oxidizers Differ in Community Structure and Biogeochemical Potential Across a Riverine Delta

    Directory of Open Access Journals (Sweden)

    Julian eDamashek

    2015-01-01

    Full Text Available Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California’s Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the massive discharge of ammonium into the Sacramento River has altered this ecosystem by increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (encoding the α-subunit of ammonia monooxygenase. There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB outnumbering ammonia-oxidizing archaea (AOA only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The community structure and biogeochemical function of benthic ammonia oxidizers appears related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.

  16. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    Directory of Open Access Journals (Sweden)

    J. Michael eBeman

    2012-07-01

    Full Text Available Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation-reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation are active and actively coupled to one another—yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, NO3- profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock and within Catalina Harbor, oxygen penetration (0.24-0.5 cm depth and the abundance of amoA genes (up to 9.30 x 107 genes g-1 varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in Bird Rock cores, and Catalina Harbor cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated Catalina Harbor sediments, where it may be carried out by either or both ammonia-oxidizing Archaea and Bacteria.

  17. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California.

    Science.gov (United States)

    Beman, J M; Bertics, Victoria J; Braunschweiler, Thomas; Wilson, Jesse M

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation-reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another - yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O(2), [Formula: see text], and [Formula: see text]) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24-0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 10(7) genes g(-) (1)) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria.

  18. Community structure of ammonia-oxidizing prokaryotes at the dry-up lake in Huitengxile grassland%辉腾锡勒草原干涸湖泊中氨氧化微生物群落结构分析

    Institute of Scientific and Technical Information of China (English)

    惠丽华; 赵吉; 武琳慧; 邵玉琴; 李靖宇; 朱兵

    2012-01-01

    [目的]以内蒙古辉腾锡勒草原九十九泉湿地为对象,研究湖泊干涸过程中氨氧化微生物的群落结构及其变化.[方法]通过MPN-PCR定量测定氨氧化古菌(AOA)和氨氧化细菌(AOB)的数量;构建amoA基因克隆文库,进行系统发育分析;结合土壤环境因子,探讨湿地退化过程中影响氨氧化微生物的潜在因素.[结果]依湖泊湿地退水梯度的不同样点中,有75%的样点AOB的数量高于AOA,AOB与AOA的数量比率为0.3 -18.1.从湖心到湖岸草原带,AOA和AOB的数量有明显增加,但生物多样性呈降低趋势,二者没有呈现正相关.研究发现,AOB的数量与土壤中NH4+-N的变化存在良好响应.系统发育分析显示,退化湖泊湿地AOA克隆序列均来自于泉古菌门(Crenarchaeota);AOB的amoA基因的克隆序列大部分与亚硝化单胞菌属(Nitrosomonas)有一定同源性,较少部分与亚硝化螺菌属(Nitrosospira)有一定同源性.[结论]湖泊退水过程增加了湿地土壤氨氧化微生物的数量,而氨氧化微生物的种群丰度有所降低.AOA和AOB群落对湖泊湿地的退化过程做出了响应,其中AOB的响应较为明显,氧化条件和土壤铵浓度的改变可能是促成这种响应的重要原因.%[Objective] To investigate the structure of ammonia-oxidation microbial communities in the wetlands to dry-up process at 99 degraded lakes of the Huitengxile grassland in the Inner Mongolia Plateau. [ Methods] The microbial quantity of ammonia-oxidizing archaea ( AOA ) and ammonia oxidizing bacteria ( AOB ) were examined by most probable number-polymerase chain reaction (MPN-PCR). The clone libraries of amoA were constructed and phylogenetics were analyzed. With analysis of the soil properties, we evaluated the effects of wetlands degradation on ammonia-oxidation microbes communities. [Results] In 75% of the samples, the quantity of AOB communities was higher than that of AOA; moreover, quantity of bacterial were up to 18. 1

  19. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  20. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Kim, S.J.; Kim, J.G.; Sinninghe Damsté, J.S.; Jeon, C.O.; Rhee, S.K.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia- oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautot

  1. Nitrogen cycling and community structure of proteobacterial ß-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments

    NARCIS (Netherlands)

    McCaig, A.E.; Phillips, C.B.; Stephen, J.R.; Kowalchuk, G.A.; Harvey, S.M.; Herbert, R.A.; Embley, T.M.; Prosser, J.I.

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-pro

  2. Monnte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst(Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 等

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition over the commercial propylene ammoxidation catalyst(Mo-Bi).The simulation is quite in agreement with experimetal results.Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  3. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  4. Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea

    NARCIS (Netherlands)

    Pitcher, A.; Wuchter, C.; Siedenberg, K.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    We followed the abundance and distribution of ammonia-oxidizing Archaea (AOA) in the North Sea from April 2003 to February 2005 and from October 2007 to March 2008 by quantification of archaeal genes and core glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids in suspended particulate m

  5. Impact of ocean acidification on benthic and water column ammonia oxidation

    Science.gov (United States)

    Kitidis, Vassilis; Laverock, Bonnie; McNeill, Louise C.; Beesley, Amanda; Cummings, Denise; Tait, Karen; Osborn, Mark A.; Widdicombe, Stephen

    2011-11-01

    Ammonia oxidation is a key microbial process within the marine N-cycle. Sediment and water column samples from two contrasting sites in the English Channel (mud and sand) were incubated (up to 14 weeks) in CO2-acidified seawater ranging from pH 8.0 to pH 6.1. Additional observations were made off the island of Ischia (Mediterranean Sea), a natural analogue site, where long-term thermogenic CO2 ebullition occurs (from pH 8.2 to pH 7.6). Water column ammonia oxidation rates in English Channel samples decreased under low pH with near-complete inhibition at pH 6.5. Water column Ischia samples showed a similar though not statistically significant trend. However, sediment ammonia oxidation rates at all three locations were not affected by reduced pH. These observations may be explained by buffering within sediments or low-pH adaptation of the microbial ammonia oxidizing communities. Our observations have implications for modeling the future impact of ocean acidification on marine ecosystems.

  6. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally less

  7. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher high efficiency and stability because it held a large amount of biomass in the bioreactor.

  8. A review of ammonia-oxidizing bacteria and archaea in Chinese soils.

    Science.gov (United States)

    Shen, Ju-Pei; Zhang, Li-Mei; Di, Hong J; He, Ji-Zheng

    2012-01-01

    Ammonia (NH(3)) oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N) cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved in ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Chinese soils with variable soil properties and soil management practices. The niche differentiation of AOB and AOA in contrasting soils have been functionally demonstrated using DNA-SIP (stable isotope probing) methods, which have shown that AOA dominate nitrification processes in acidic soils, while AOB dominated in neutral, alkaline and N-rich soils. Finally, we discuss the composition and activity of ammonia oxidizers in paddy soils, as well as the mitigation of the greenhouse gas nitrous oxide (N(2)O) emissions and nitrate leaching via inhibition of nitrification by both AOB and AOA.

  9. A review of ammonia-oxidizing bacteria and archaea in Chinese soils

    Directory of Open Access Journals (Sweden)

    Ji-Zheng eHe

    2012-08-01

    Full Text Available Ammonia (NH3 oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB and ammonia oxidizing archaea (AOA in Chinese soils with variable soil properties and soil management practices. The niche differentiation of AOB and AOA in contrasting soils have been functionally demonstrated using DNA-SIP (stable isotope probing methods, which have shown that AOA dominate nitrification processes in acidic soils, while AOB dominated in neutral, alkaline and N-rich soils. Finally, we discuss the composition and activity of ammonia oxidizer in paddy soils, as well as the mitigation of the greenhouse gas nitrous oxide (N2O emissions and nitrate leaching via inhibition of nitrification by both AOB and AOA.

  10. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    NARCIS (Netherlands)

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, Sanghoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidi

  11. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Science.gov (United States)

    Bagchi, Samik; Vlaeminck, Siegfried E; Sauder, Laura A; Mosquera, Mariela; Neufeld, Josh D; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  12. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Samik Bagchi

    Full Text Available Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA, as opposed to ammonia-oxidizing bacteria (AOB, were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR for bacterial and thaumarchaeal ammonia monooxygenase (amoA genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS based on denaturing gradient gel electrophoresis (DGGE fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater

  13. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  14. Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates

    Institute of Scientific and Technical Information of China (English)

    SONG Ya-na; LIN Zhi-min

    2014-01-01

    Ammonia oxidation, the ifrst and rate-limiting step of nitriifcation, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitriifcation in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha-1 yr-1), N2 (150 kg N ha-1 yr-1), N3 (225 kg N ha-1 yr-1) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were signiifcantly (P<0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn’t change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P<0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the ifeld among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers

  15. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Science.gov (United States)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  16. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species...

  17. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.

    Science.gov (United States)

    Hurley, Sarah J; Elling, Felix J; Könneke, Martin; Buchwald, Carolyn; Wankel, Scott D; Santoro, Alyson E; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe; Pearson, Ann

    2016-07-12

    Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.

  18. Carbon isotope fractionation by the marine ammonia-oxidizing archaeon Nitrosopumilus maritimus

    OpenAIRE

    Könneke, Martin; Lipp, Julius Sebastian; Hinrichs, Kai-Uwe

    2012-01-01

    Abstract Ammonia-oxidizing archaea (AOA) are abundant and widely distributed microorganisms in aquatic and terrestrial habitats. By catalyzing the first and rate limiting step in nitrification, these chemolithoautotrophs play a significant role in the global nitrogen cycle and contribute to primary production. Here, the carbon isotopic fractionation relative to inorganic carbon source was determined for bulk biomass, biphytanes and polar lipid bound sugars of a marine AOA pure culture. Bu...

  19. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Science.gov (United States)

    Fuchslueger, L.; Kastl, E.-M.; Bauer, F.; Kienzl, S.; Hasibeder, R.; Ladreiter-Knauss, T.; Schmitt, M.; Bahn, M.; Schloter, M.; Richter, A.; Szukics, U.

    2014-11-01

    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammonia-oxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH4+ immobilization rates and NH4+ concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO3- immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH4+ levels. However, the effect strength of drought was modulated by grassland management.

  20. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    Science.gov (United States)

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  1. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil.

    Science.gov (United States)

    Hernández, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael

    2011-12-01

    s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50 μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.

  2. Acidification Enhances Hybrid N2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms

    Science.gov (United States)

    Frame, Caitlin H.; Lau, Evan; Nolan, E. Joseph; Goepfert, Tyler J.; Lehmann, Moritz F.

    2017-01-01

    Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2−), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2− produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2− was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2− each contributed N equally to N2O by a “hybrid-N2O” mechanism consistent with a reaction between NH2OH and NO2−, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0–34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia

  3. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    Science.gov (United States)

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  4. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    Science.gov (United States)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially consumed NH3 from NH4Cl when both substrates were provided in equal molar concentrations. However, the urease alpha subunit ureC was expressed in both the presence and absence of urea. One consequence of urea hydrolysis is consumption of intracellular protons during the reaction. As ammonia oxidation produces H+, leading to a decrease in pH, the hydrolysis of urea prior to ammonia oxidation may help alleviate

  5. Dynamics of ammonia-oxidizing Archaea and Bacteria in contrasted freshwater ecosystems.

    Science.gov (United States)

    Hugoni, Mylène; Etien, Sandrine; Bourges, Antoine; Lepère, Cécile; Domaizon, Isabelle; Mallet, Clarisse; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2013-05-01

    Thaumarchaeota have been recognized as the main drivers of aerobic ammonia oxidation in many ecosystems. However, little is known about the role of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in lacustrine ecosystems. In this study, the photic zone of three contrasted freshwater ecosystems located in France was sampled during two periods: winter homothermy (H) and summer thermal stratification (TS), to investigate the distribution of planktonic AOA and AOB. We showed that AOB were predominant in nutrient-rich ecosystems, whereas AOA dominated when ammonia concentrations were the lowest and during winter, which could provide a favorable environment for their growth. Moreover, analyses of archaeal libraries revealed the ubiquity of the thaumarchaeal I.1a clade associated with higher diversity of AOA in the most nutrient-poor lake. More generally, this work assesses the presence of AOA in lakes, but also highlights the existence of clades typically associated with lacustrine and hot spring ecosystems and specific ecological niches occupied by these microorganisms.

  6. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions.

    Science.gov (United States)

    Di, Hong J; Cameron, Keith C; Shen, Ju-Pei; Winefield, Chris S; O'Callaghan, Maureen; Bowatte, Saman; He, Ji-Zheng

    2010-06-01

    Nitrification is a key process of the nitrogen (N) cycle in soil with major environmental implications. The recent discovery of ammonia-oxidizing archaea (AOA) questions the traditional assumption of the dominant role of ammonia-oxidizing bacteria (AOB) in nitrification. We investigated AOB and AOA growth and nitrification rate in two different layers of three grassland soils treated with animal urine substrate and a nitrification inhibitor [dicyandiamide (DCD)]. We show that AOB were more abundant in the topsoils than in the subsoils, whereas AOA were more abundant in one of the subsoils. AOB grew substantially when supplied with a high dose of urine substrate, whereas AOA only grew in the Controls without the urine-N substrate. AOB growth and the amoA gene transcription activity were significantly inhibited by DCD. Nitrification rates were much higher in the topsoils than in the subsoils and were significantly related to AOB abundance, but not to AOA abundance. These results suggest that AOB and AOA prefer different soil N conditions to grow: AOB under high ammonia (NH(3)) substrate and AOA under low NH(3) substrate conditions.

  7. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Soulwène Kouki; Neila Saidi; Fadhel M'hiri; Houda Nasr; Hanène Cherif; Hadda Ouzari; Abdermaceur Hassen

    2011-01-01

    Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems,while mixotrophic AOB have been less thoroughly examined.Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands,and then cultivated in a mixotrophic medium containing ammonium and acetic acid.A molecular characterization was accomplished using ITS-PCR amplification,and phylogenetic analysis based on 16S rRNA gene sequences.Results showed the presence of 35 bacteria,among 400 initially heterotrophic isolates,that were able to remove ammonia.These 35 isolates were classified into 10 genetically different groups based on ITS pattern.Then,a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE ≥ 80%) and their phylogenetic diversity.In conditions of mixotrophy,these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies,AOE between 79% and 87%).Among these facultative mixotrophic AOB,four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium),three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas,Ochrobactrum and Bordetella).

  8. Ammonia-oxidizing bacteria and archaea in groundwater treatment and drinking water distribution systems.

    Science.gov (United States)

    van der Wielen, Paul W J J; Voost, Stefan; van der Kooij, Dick

    2009-07-01

    The ammonia-oxidizing prokaryote (AOP) community in three groundwater treatment plants and connected distribution systems was analyzed by quantitative real-time PCR and sequence analysis targeting the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Results demonstrated that AOB and AOA numbers increased during biological filtration of ammonia-rich anoxic groundwater, and AOP were responsible for ammonium removal during treatment. In one of the treatment trains at plant C, ammonia removal correlated significantly with AOA numbers but not with AOB numbers. Thus, AOA were responsible for ammonia removal in water treatment at one of the studied plants. Furthermore, an observed negative correlation between the dissolved organic carbon (DOC) concentration in the water and AOA numbers suggests that high DOC levels might reduce growth of AOA. AOP entered the distribution system in numbers ranging from 1.5 x 10(3) to 6.5 x 10(4) AOPs ml(-1). These numbers did not change during transport in the distribution system despite the absence of a disinfectant residual. Thus, inactive AOP biomass does not seem to be degraded by heterotrophic microorganisms in the distribution system. We conclude from our results that AOA can be commonly present in distribution systems and groundwater treatment, where they can be responsible for the removal of ammonia.

  9. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Institute of Scientific and Technical Information of China (English)

    Brooke B.OSBORNE; Jill S.BARON; Matthew D.WALLENSTEIN

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high-elevation ecosystems.The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses.In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity,we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash,talus,and meadow).We found that bacteria,not archaea,dominated all ammonia oxidizer communities.Nitrification increased with moisture in all soils and under all temperature treatments.However,temperature was not correlated with nitrification rates in all soils.Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes.Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  10. Presence of Ammonia-oxidizing Archaea and Their Influence on Nitrogen Cycling in Ilica Bay, Turkey

    Science.gov (United States)

    Gulecal, Y.; Temel, M.

    2011-12-01

    Recenlty, the processes of anaerobic ammonium oxidation (anammox), and ammonia oxidation within the domain Archaea, have been recognized as two new links in the global nitrogen cycle. The distribution and ubiquity of marine Archaea an important role in global carbon and nitrogen cycling (Ingalls et al., 2006; Leininger et al., 2006; Wuchter et al.,2006a). However, our knowledge on archaeal distribution in aquatic ecosystem was largely confined to the extreme environments for a long time until DeLong (1992, 1998) revealed the ubiquity of archaea in common marine environments. Despite the great progress, more efforts need to be given to the study of archaeal diversity in the vast oceans and of the variations in the ecological environment from coastal to oceanic waters (Massana et al.,2000). Our studying area which Ilica Bay in Izmir (Turkey) has a lot of thermal springs. The aim of study was to investigate the presence of ammonia-oxidizing Archaea and their roles of nitrogen cycling in marine enviroments.We have not only used the geochemical analyses but also genetic tools. This study will supply knowledge for marine nitrogen cycling to understanding very well, in addition how Archea genes players in the process of anammox in shallow coastal marine environments.

  11. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system

    NARCIS (Netherlands)

    Yan, J.; Haaijer, S.C.M.; Op den Camp, H.J.M.; van Niftrik, L.; Stahl, D.A.; Könneke, M.; Rush, D.; Sinninghe Damsté, J.S.; Hu, Y.Y.; Jetten, M.S.M.

    2012-01-01

    In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale

  12. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  13. Nitrogen removal from sludge dewatering effluent through anaerobic ammonia oxidation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2005-01-01

    Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 mgN/L) of 243.25 mg NH4+ -N/L and 288.31 mg NO2- -N/L.

  14. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NARCIS (Netherlands)

    Zheng, Yan; Huang, Rong; Wang, B.; Bodelier, P.L.E.; Jia, Z.

    2014-01-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable iso

  15. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2002-01-01

    The influence of environmental factors on the community structure of ammonia-oxidizing bacteria (AOB) was investigated in the Schelde estuary. Simultaneously with the increase of oxygen and salinity, a shift of the dominant AOB was observed. Molecular analysis based on 16S rRNA genes showed that the

  16. Diversity and Abundance of Ammonia-Oxidizing Archaea in Hydrothermal Vent Chimneys of the Juan de Fuca Ridge▿ †

    Science.gov (United States)

    Wang, Shufang; Xiao, Xiang; Jiang, Lijing; Peng, Xiaotong; Zhou, Huaiyang; Meng, Jun; Wang, Fengping

    2009-01-01

    The abundance and diversity of archaeal ammonia monooxygenase subunit A (amoA) genes from hydrothermal vent chimneys at the Juan de Fuca Ridge were investigated. The majority of the retrieved archaeal amoA sequences exhibited identities of less than 95% to those in the GenBank database. Novel ammonia-oxidizing archaea may exist in the hydrothermal vent environments. PMID:19395559

  17. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading

    NARCIS (Netherlands)

    Vejmelkova, D.; Sorokin, D.Y.; Abbas, B.; Kovaleva, O.L.; Kleerebezem, R.; Kampschreur, M.J.; Muyzer, G.; Van Loosdrecht, M.C.M.

    2011-01-01

    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was affil

  18. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading

    NARCIS (Netherlands)

    D. Vejmelkova; D.Y. Sorokin; B. Abbas; O.L. Kovaleva; R. Kleerebezem; M.J. Kampschreur; G. Muyzer; M.C.M. van Loosdrecht

    2012-01-01

    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was affil

  19. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.

    Science.gov (United States)

    Kalanetra, Karen M; Bano, Nasreen; Hollibaugh, James T

    2009-09-01

    We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.

  20. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Laura A Sauder

    Full Text Available Ammonia-oxidizing archaea (AOA outnumber ammonia-oxidizing bacteria (AOB in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR to quantify the ammonia monooxygenase (amoA and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  1. Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.

    Science.gov (United States)

    Sauder, Laura A; Engel, Katja; Stearns, Jennifer C; Masella, Andre P; Pawliszyn, Richard; Neufeld, Josh D

    2011-01-01

    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.

  2. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  3. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  4. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics

    Science.gov (United States)

    Li, Yuyang; Ding, Kun; Wen, Xianghua; Zhang, Bing; Shen, Bo; Yang, Yunfeng

    2016-03-01

    Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.

  5. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    Directory of Open Access Journals (Sweden)

    Soo-Je Park

    Full Text Available Ammonia-oxidizing archaea (AOA are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.

  6. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments.

    Science.gov (United States)

    Park, Soo-Je; Ghai, Rohit; Martín-Cuadrado, Ana-Belén; Rodríguez-Valera, Francisco; Chung, Won-Hyong; Kwon, KaeKyoung; Lee, Jung-Hyun; Madsen, Eugene L; Rhee, Sung-Keun

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.

  7. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    Science.gov (United States)

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions.

  8. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  9. Clarifying the regulation of NO/N2O production in Nitrosomonas europaea during anoxic-oxic transition via flux balance analysis of a metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Villas-Boas, Silas G; Swift, Simon; Chandran, Kartik; Singhal, Naresh

    2014-09-01

    The metabolic mechanism regulating the production of nitric and nitrous oxide (NO, N2O) in ammonia oxidizing bacteria (AOB) was characterized by flux balance analysis (FBA) of a stoichiometric metabolic network (SMN) model. The SMN model was created using 51 reactions and 44 metabolites of the energy metabolism in Nitrosomonas europaea, a widely studied AOB. FBA of model simulations provided estimates for reaction rates and yield ratios of intermediate metabolites, substrates, and products. These estimates matched well, deviating on average by 15% from values for 17 M yield ratios reported for non-limiting oxygen and ammonium concentrations. A sensitivity analysis indicated that the reactions catalysed by cytochromes aa3 and P460 principally regulate the pathways of NO and N2O production (hydroxylamine oxidoreductase mediated and nitrifier denitrification). FBA of simulated N. europaea exposure to oxic-anoxic-oxic transition indicated that NO and N2O production primarily resulted from an intracellular imbalance between the production and consumption of electron equivalents during NH3 oxidation, and that NO and N2O are emitted when the sum of their production rates is greater than half the rate of NO oxidation by cytochrome P460.

  10. Seasonal and annual reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure.

    Science.gov (United States)

    Bouskill, Nicholas J; Eveillard, Damien; O'Mullan, Gregory; Jackson, George A; Ward, Bess B

    2011-04-01

    Microbes exhibit remarkably high genetic diversity compared with plant and animal species. Many phylogenetically diverse but apparently functionally redundant microbial taxa are detectable within a cubic centimetre of mud or a millilitre of water, and the significance of this diversity, in terms of ecosystem function, has been difficult to understand. Thus it is not known whether temporal and spatial differences in microbial community composition are linked to particular environmental factors or might modulate ecosystem response to environmental change. Fifty-three water and sediment samples from upper and lower Chesapeake Bay were analysed in triplicate arrays to determine temporal and spatial patterns and relationships between ammonia-oxidizing bacterial (AOB) communities and environmental variables. Thirty-three water samples (three depths) collected during April, August and October, 2001-2004, from the oligohaline upper region of the Bay were analysed to investigate temporal patterns in archetype distribution. Using a combination of a non-weighted discrimination analysis and principal components analysis of community composition data obtained from functional gene microarrays, it was found that co-varying AOB assemblages reoccurred seasonally in concert with specific environmental conditions, potentially revealing patterns of niche differentiation. Among the most notable patterns were correlations of AOB archetypes with temperature, DON and ammonium concentrations. Different AOB archetypes were more prevalent at certain times of the year, e.g. some were more abundant every autumn and others every spring. This data set documents the successional return to an indigenous community following massive perturbation (hurricane induced flooding) as well as the seasonal reoccurrence of specific lineages, identified by key functional genes, associated with the biogeochemically important process nitrification.

  11. Impact of acetochlor on ammonia-oxidizing bacteria in microcosm soils

    Institute of Scientific and Technical Information of China (English)

    LI Xinyu; ZHANG Huiwen; WU Minna; SU Zhencheng; ZHANG Chenggang

    2008-01-01

    Acetochlor is an increasingly used herbicide on corn in North China. Currently, the effect of acetochlor on soil ammonia-oxidizing bacteria (AOB) communities is not well documented. Here, we studied the diversity and community composition of AOB in soil amended with three concentrations of acetochlor (50, 150, 250 mg/kg) and the control (0 mg acetochlor/kg soil) in a microcosm experiment by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and the phylogenetic analysis of excised DGGE bands. DGGE profiles showed that acetochlor had a stimulating effect on AOB at the early stage after acetochlor amended, and the order of intensity and duration is medium-acetochlor amended samples (AM) > low-acetochlor amended samples (AL) > high-acetochlor amended samples (AH). At the end of 60 d microcosm, acetochlor had a negative effect on the diversity of AOB. Cluster analysis of DGGE profiles showed that acetochlor had a greater effect on the community structure of AOB on day 60 than on day 1. The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosospira and formed two separate subclusters designated as subcluster 1 and subcluster 2 affiliated respectively with clusters 3 and 4 in Nitrosospira as defined by Stephen. Some dominant AOB had a change from subcluster 2 to subcluster 1 with the incubation. The results showed that acetochlor had an effect on the AOB on a long-term basis and the chronic effect of acetochlor should be paid more attention in future.

  12. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices.

    Science.gov (United States)

    He, Ji-Zheng; Shen, Ju-Pei; Zhang, Li-Mei; Zhu, Yong-Guan; Zheng, Yuan-Ming; Xu, Ming-Gang; Di, Hongjie

    2007-09-01

    The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H(2)O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira-like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of

  13. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    Science.gov (United States)

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.

  14. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  15. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Science.gov (United States)

    Sonthiphand, Puntipar; Neufeld, Josh D

    2013-01-01

    Anaerobic ammonia oxidizing (anammox) bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE) fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r) for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r) was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library analysis, A438f/A684r

  16. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management

    Energy Technology Data Exchange (ETDEWEB)

    Wessen, E.; Nyberg, K.; Jansson, J.K.; Hallin, S.

    2010-05-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and

  17. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems.

    Science.gov (United States)

    Hu, Hang-Wei; Macdonald, Catriona A; Trivedi, Pankaj; Holmes, Bronwyn; Bodrossy, Levente; He, Ji-Zheng; Singh, Brajesh K

    2015-02-01

    Terrestrial arid and semi-arid ecosystems (drylands) constitute about 41% of the Earth's land surface and are predicted to experience increasing fluctuations in water and nitrogen availability. Mounting evidence has confirmed the significant importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in nitrification, plant nitrogen availability and atmospheric N2 O emissions, but their responses to environmental perturbations in drylands remain largely unknown. Here we evaluate how the factorial combinations of irrigation and fertilization in forests and land-use change from grassland to forest affects the dynamics of AOA and AOB following a 6-year dryland field study. Potential nitrification rates and AOA and AOB abundances were significantly higher in the irrigated plots, accompanied by considerable changes in community compositions, but their responses to fertilization alone were not significant. DNA-stable isotope probing results showed increased (13) CO2 incorporation into the amoA gene of AOA, but not of AOB, in plots receiving water addition, coupled with significantly higher net mineralization and nitrification rates. High-throughput microarray analysis revealed that active AOA assemblages belonging to Nitrosopumilus and Nitrosotalea were increasingly labelled by (13) CO2 following irrigation. However, no obvious effects of land-use changes on nitrification rates or metabolic activity of AOA and AOB could be observed under dry conditions. We provide evidence that water addition had more important roles than nitrogen fertilization in influencing the autotrophic nitrification in dryland ecosystems, and AOA are increasingly involved in ammonia oxidation when dry soils become wetted.

  18. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea.

    Science.gov (United States)

    Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina

    2016-02-01

    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.

  19. [Quantitative and qualitative analysis of total bacteria and ammonia-oxidizing bacteria in Buji River in wet season].

    Science.gov (United States)

    Sun, Hai-mei; Bai, Jiao-jiao; Sun, Wei-ling; Shao, Jun

    2012-08-01

    Microbial community structure and biomass in river water can reflect the situation of water quality in some extent. Nitrogen removal was mainly achieved by the nitrification and denitrification processes, and ammonia oxidation catalyzed by ammonia-oxidizing bacteria (AOB) is the first and rate-limiting step of nitrification. To explore the AOB community structure and biomass in nitrogen polluted river, water samples were collected from Buji River (Shenzhen) in wet season. Quantification of 16S rRNA copy numbers of total bacteria and AOB were performed by real-time PCR, and the microbial community structures were studied by denaturing gradient gel electrophoresis (DGGE). The results showed that the number of total bacterial 16S rRNA changed from 4.73 x 10(10) - 3.90 x 10(11) copies x L(-1) in the water samples. The copy numbers of AOB varied from 5.44 x 10(6) - 5.96 x 10(8)copies x L(-1). Redundancy discrimination analysis (RDA) showed that the main factors affecting the structure and the numbers of bacteria were different. For total bacteria, nitrate influenced the biomass significantly (P analysis showed that water pollution in downstream resulted in evident difference in microbial community structure between upstream and downstream water samples.

  20. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea

    Directory of Open Access Journals (Sweden)

    Yvonne Antonia Lipsewers

    2014-09-01

    Full Text Available Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids (IPLs as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA gene of AOA and AOB, and the hydrazine synthase (hzsA gene of anammox bacteria. AOA, AOB and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB and anammox bacteria.

  1. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  2. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria.

    Science.gov (United States)

    Meinhardt, Kelley A; Bertagnolli, Anthony; Pannu, Manmeet W; Strand, Stuart E; Brown, Sally L; Stahl, David A

    2015-04-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.

  3. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    Science.gov (United States)

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-06-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  4. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  5. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    Directory of Open Access Journals (Sweden)

    Anne eDaebeler

    2012-10-01

    Full Text Available The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of the associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilisation site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative PCR suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while the measured soil physico-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  6. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance and climatic factors

    Directory of Open Access Journals (Sweden)

    Hangwei eHu

    2015-09-01

    Full Text Available Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA and bacteria (AOB in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  7. Temporal changes in abundance and composition of ammonia-oxidizing bacterial and archaeal communities in a drained peat soil in relation to N{sub 2}O emissions

    Energy Technology Data Exchange (ETDEWEB)

    Andert, Janet [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology; Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany); Wessen, Ella; Hallin, Sara [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology; Boerjesson, Gunnar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil and Environment

    2011-12-15

    Boreal peat soils comprise about 3% of the terrestrial environments, and when drained, they become sources of the greenhouse gas nitrous oxide (N{sub 2}O). Ammonia oxidation can result in N{sub 2}O emissions, either directly or by fuelling denitrification, but we know little about the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in peat soils. Our aim was to determine temporal alterations in abundance and composition of these communities in a drained and forested peat soil in relation to N{sub 2}O emissions and ammonia oxidation activity. Materials and methods The peat was sampled at three different depths in the upper 0.5 m over a period of 9 months covering two summer and two winter samplings. Community composition and abundance were determined by T-RFLP and quantitative real-time PCR of the bacterial and archaeal amoA genes. Potential ammonia oxidation rates were measured using the chlorate inhibition technique, and in situ N{sub 2}O emission was determined using chambers. Results and discussion The soil parameters displayed little spatial and temporal heterogeneity, which probably explained why there were no depth-related effects on the abundance, composition, or activity of the ammonia oxidizers. In contrast to most terrestrial environments, the AOB dominated numerically over the AOA. Both groups changed in community composition between sampling occasions, although the AOB showed more significant seasonal signatures than the AOA. Temporal changes in abundance were only observed for the AOB, with a decrease in numbers from May to March. Such differences were not reflected by the activity or N{sub 2}O emissions. Conclusions The high ammonium concentrations in the peat soil likely favored the AOB over the AOA, and we hypothesize that they were more active than the AOA and therefore responded to climatic and environmental changes. However, other processes rather than ammonia oxidation were likely responsible for N{sub 2}O emissions at the site.

  8. Distribution characteristics of ammonia-oxidizing bacteria in the Typha latifolia constructed wetlands using fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Yan, Li; Inamori, Ryuhei; Gui, Ping; Xu, Kai-qin; Kong, Hai-nan; Matsumura, Masatoshi; Inamori, Yuhei

    2005-01-01

    A molecular biology method, fluorescent in situ hybridization (FISH), in which the pre-treatment was improved in allusion to the media of the constructed wetlands (CW), e.g. the soil and the grit, was used to investigate the vertical distribution characteristics of ammonia-oxidizing bacteria (AOB) quantity and the relation with oxidation-reduction potential (ORP) in the Typha latifolia constructed wetlands under three different loadings in summer from May to September. Results showed that the quantity of the AOB decreased in the Typha latifolia CW with the increase of vertical depth. However, the AOB quantity was 2-4 times the quantity of the control in the root area. Additionally, ORP in the rhizosphere was found to be higher than other areas, which showed that Typha latifolia CW was in an aerobic state in summer when using simulated non-point sewage at the rural area of Taihu Lake in China and small town combined sewage.

  9. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    NARCIS (Netherlands)

    Daebeler, A.; Abell, G.C.J.; Bodelier, P.L.E.; Bodrossy, L.; Frampton, D.M.; Hefting, M.M.; Laanbroek, H.J.

    2012-01-01

    The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of am

  10. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    Science.gov (United States)

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  11. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats.

    Directory of Open Access Journals (Sweden)

    Elena V Lebedeva

    Full Text Available The discovery of ammonia-oxidizing archaea (AOA of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called "marine" group I.1a thrives, but these microbes have neither been isolated from these systems nor functionally characterized in situ yet. In this study, we report on the enrichment and genomic characterization of a representative of this lineage from a thermal spring in Kamchatka. This thaumarchaeote, provisionally classified as "Candidatus Nitrosotenuis uzonensis", is a moderately thermophilic, non-halophilic, chemolithoautotrophic ammonia oxidizer. The nearly complete genome sequence (assembled into a single scaffold of this AOA confirmed the presence of the typical thaumarchaeotal pathways for ammonia oxidation and carbon fixation, and indicated its ability to produce coenzyme F420 and to chemotactically react to its environment. Interestingly, like members of the genus Nitrosoarchaeum, "Candidatus N. uzonensis" also possesses a putative artubulin-encoding gene. Genome comparisons to related AOA with available genome sequences confirmed that the newly cultured AOA has an average nucleotide identity far below the species threshold and revealed a substantial degree of genomic plasticity with unique genomic regions in "Ca. N. uzonensis", which potentially include genetic determinants of ecological niche differentiation.

  12. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria, The oxygen- releasing, aerenchymatous emergent macrophyte Glycerin maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  13. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration.

    Science.gov (United States)

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-05-01

    The effect of inorganic carbon (IC) on nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) was investigated over a concentration range of 0-12 mmol C/L, encompassing typical IC levels in a wastewater treatment reactors. The AOB culture was enriched along with nitrite-oxidizing bacteria (NOB) in a sequencing batch reactor (SBR) to perform complete nitrification. Batch experiments were conducted with continuous carbon dioxide (CO2) stripping or at controlled IC concentrations. The results revealed a linear relationship between N2O production rate (N2OR) and IC concentration (R(2) = 0.97) within the IC range studied, suggesting a substantial effect of IC on N2O production by AOB. Similar results were also obtained with an AOB culture treating anaerobic sludge digestion liquor. The fundamental mechanism responsible for this dependency is unclear; however, in agreement with previous studies, it was observed that the ammonia oxidation rate (AOR) was also influenced by the IC concentration, which could be well described by the Monod kinetics. These resulted in an exponential relationship between N2OR and AOR, as previously observed in experiments where AOR was altered by varying dissolved oxygen and ammonia concentrations. It is therefore possible that IC indirectly affected N2OR by causing a change in AOR. The observation in this study indicates that alkalinity (mostly contributed by IC) could be a significant factor influencing N2O production and should be taken into consideration in estimating and mitigating N2O emissions in wastewater treatment systems.

  14. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply.

    Science.gov (United States)

    Simonin, Marie; Le Roux, Xavier; Poly, Franck; Lerondelle, Catherine; Hungate, Bruce A; Nunan, Naoise; Niboyet, Audrey

    2015-10-01

    Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.

  15. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil

    Directory of Open Access Journals (Sweden)

    Barbara eStempfhuber

    2016-01-01

    Full Text Available Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA and bacteria (AOB, and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onwards, indicating its important role in nitrite oxidation.

  16. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil.

    Science.gov (United States)

    Tago, Kanako; Okubo, Takashi; Shimomura, Yumi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Nagayama, Atsushi; Hayatsu, Masahito

    2015-01-01

    The effects of environmental factors such as pH and nutrient content on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soil has been extensively studied using experimental fields. However, how these environmental factors intricately influence the community structure of AOB and AOA in soil from farmers' fields is unclear. In the present study, the abundance and diversity of AOB and AOA in soils collected from farmers' sugarcane fields were investigated using quantitative PCR and barcoded pyrosequencing targeting the ammonia monooxygenase alpha subunit (amoA) gene. The abundances of AOB and AOA amoA genes were estimated to be in the range of 1.8 × 10(5)-9.2 × 10(6) and 1.7 × 10(6)-5.3 × 10(7) gene copies g dry soil(-1), respectively. The abundance of both AOB and AOA positively correlated with the potential nitrification rate. The dominant sequence reads of AOB and AOA were placed in Nitrosospira-related and Nitrososphaera-related clusters in all soils, respectively, which varied at the level of their sub-clusters in each soil. The relationship between these ammonia-oxidizing community structures and soil pH was shown to be significant by the Mantel test. The relative abundances of the OTU1 of Nitrosospira cluster 3 and Nitrososphaera subcluster 7.1 negatively correlated with soil pH. These results indicated that soil pH was the most important factor shaping the AOB and AOA community structures, and that certain subclusters of AOB and AOA adapted to and dominated the acidic soil of agricultural sugarcane fields.

  17. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    Science.gov (United States)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  18. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities.

    Science.gov (United States)

    Guo, Qingwei; Wan, Rui; Xie, Shuguang

    2014-01-01

    The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.

  19. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    Science.gov (United States)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  20. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain.

  1. Modelling combined effect of chloramine and copper on ammonia-oxidizing microbial activity using a biostability approach.

    Science.gov (United States)

    Sarker, Dipok Chandra; Sathasivan, Arumugam; Rittmann, Bruce E

    2015-11-01

    Continuous and batch laboratory experiments were used to evaluate the combined effects of copper and chloramine on ammonia oxidizing microbes present in otherwise high nitrifying water samples. The experimental data were analyzed using a biostability concept and quantified with the biostable residual concentratrion (BRC) of monochloramine, or the concentration that prevents the onset of nitrification. In the batch experiments, copper dosing ≥0.25 mg-Cu L(-1) resulted in complete inhibition of nitrification, and a lower copper dosing (0.1 mg-Cu L(-1)) delayed nitrification. The BRC was systematically lowered with the addition of copper. For example, a free-ammonium concentration of 0.1 mg-N L(-1) had a BRC of 0.73 mg-Cl2 L(-1) with no Cu, but addition of 0.1 mg-Cu L(-1) lowered the BRC to 0.16 mg-Cl2 L(-1), while addition of 0.25 mg-Cu L(-1) eliminated the need to add chloramine (BRC = 0). A non-competitive inhibition model fit the experimental data well with a copper threshold of 0.044 mg-Cu L(-1) and can be used to estimate Cu doses needed to prevent nitrification based on the chloramine concentration. Full scale systems applications need further study.

  2. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen.

    Science.gov (United States)

    Song, He; Che, Zhao; Cao, Wenchao; Huang, Ting; Wang, Jingguo; Dong, Zhaorong

    2016-06-01

    Nitrification coupled with nitrate leaching contributes to soil acidification. However, little is known about the effect of soil acidification on nitrification, especially on ammonia oxidation that is the rate-limiting step of nitrification and performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Serious soil acidification occurs in Chinese greenhouses due to the overuse of N-fertilizer. In the present study, greenhouse soils with 1, 3, 5, 7, and 9 years of vegetable cultivation showed a consistent pH decline (i.e., 7.0, 6.3, 5.6, 4.9, and 4.3). Across the pH gradient, we analyzed the community structure and abundance of AOB and AOA by pyrosequencing and real-time PCR techniques, respectively. The recovered nitrification potential (RNP) method was used to determine relative contributions of AOA and AOB to nitrification potential. The results revealed that soil acidification shaped the community structures of AOA and AOB. In acidifying soil, soil pH, NH3 concentration, and DOC content were critical factors shaping ammonia oxidizer community structure. AOB abundance, but not AOA, was strongly influenced by soil acidification. When soil pH was below 5.0, AOA rather than AOB were responsible for almost all of the RNP. However, when soil pH ranged from 5.6 to 7.0, AOB were the major contributors to RNP. The group I.1a-associatied AOA had more relative abundance in low pH (pHneutral pH. Clusters 2, 10, and 12 in AOB were more abundant in acidic soil (pH neutral soil and slightly acidic soil (pH, 6.0-6.5), respectively. These results suggested that soil acidification had a profound impact on ammonia oxidation and more specific lineages in AOB occupying different pH-associated niches required further investigation.

  3. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia

    Science.gov (United States)

    Zhang, Xinyu; Tang, Yuqian; Shi, Yao; He, Nianpeng; Wen, Xuefa; Yu, Qiang; Zheng, Chunyu; Sun, Xiaomin; Qiu, Weiwen

    2016-09-01

    We used a seven-year urea gradient applied field experiment to investigate the effects of nitrogen (N) applications on soil N hydrolytic enzyme activity and ammonia-oxidizing microbial abundance in a typical steppe ecosystem in Inner Mongolia. The results showed that N additions inhibited the soil N-related hydrolytic enzyme activities, especially in 392 kg N ha‑1 yr‑1 treatment. As N additions increased, the amoA gene copy ratios of ammonia-oxidizing archaea (AOA) to ammonia-oxidizing bacteria (AOB) decreased from 1.13 to 0.65. Pearson correlation analysis showed that the AOA gene copies were negatively related with NH4+-N content. However, the AOB gene copies were positively correlated with NO3‑-N content. Moderate N application rates (56–224 kg N ha‑1 yr‑1) accompanied by P additions are beneficial to maintaining the abundance of AOB, as opposed to the inhibition of highest N application rate (392 kg N ha‑1 yr‑1) on the abundance of AOB. This study suggests that the abundance of AOB and AOA would not decrease unless N applications exceed 224 kg N ha‑1 yr‑1 in temperate grasslands in Inner Mongolia.

  4. Abundance and diversity of ammonia-oxidizing archaea and bacteria on biological activated carbon in a pilot-scale drinking water treatment plant with different treatment processes.

    Science.gov (United States)

    Kasuga, Ikuro; Nakagaki, Hirotaka; Kurisu, Futoshi; Furumai, Hiroaki

    2010-01-01

    The effects of different placements of rapid sand filtration on nitrification performance of BAC treatment in a pilot-scale plant were evaluated. In this plant, rapid sand filtration was placed after ozonation-BAC treatment in Process (A), while it preceded ozonation-BAC treatment in Process (B). Analysis of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) combined with nitrification potential test was conducted. BAC from Process (A) demonstrated slightly higher nitrification potential at every sampling occasion. This might be due to higher abundances of AOB on BAC from Process (A) than those on BAC from Process (B). However, AOA rather than AOB could be predominant ammonia-oxidizers in BAC treatment regardless of the position of rapid sand filtration. The highest nitrification potential was observed for BAC from both processes in February when the highest abundances of AOA-amoA and AOB-amoA genes were detected. Since rapid sand filtration was placed after BAC treatment in Process (A), residual aluminum concentration in BAC influent was higher in Process (A). However, adverse effects of aluminum on nitrification activity were not observed. These results suggest that factors other than aluminum concentration in different treatment processes could possibly have some influence on abundances of ammonia-oxidizing microorganisms on BAC.

  5. Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone

    Institute of Scientific and Technical Information of China (English)

    Zhixin Li; Wenbiao Jin; Zhaoyun Liang; Yangyang Yue; Junhong Lv

    2013-01-01

    Ammonia-oxidizing archaea (AOA) are widely considered key to ammonia oxidation in various environments.However,little work has been conducted to simultaneously investigate the abundance and diversity of AOA as well as correlations between archaeal amoA genotypes and environmental parameters of different ecosystems at one district.To understand the abundance,diversity,and distribution of AOA in Pearl River Delta of China in response to various habitats,the archaeal amoA genes in soil,marine,river,lake,hot spring and wastewater treatment plant (WWTP) samples were investigated using real-time fluorescent quantitative PCR and clone libraries.Our analyses indicated that the diversity of AOA in various habitats was different and could be clustered into five major clades,i.e.,estuary sediment,marine water/sediment,soil,hot spring and Cluster 1.Phylogenetic analyses revealed that the structure of AOA communities in similar ecological habitats exhibited strong relation.The canonical correspondence method indicated that the AOA community structure was strongly correlated to temperature,pH,total organic carbon,total nitrogen and dissolved oxygen variables.Assessing AOA amoA gene copy numbers,ranging from 6.84 × 106 to 9.45 × 107 copies/g in dry soil/sediment,and 6.06 × 106 to 2.41 × 107 copies/L in water samples,were higher than ammonia-oxidizing bacteria (AOB) by 1-2 orders of magnitude.However,AOA amoA copy numbers were much lower than AOB in WWTP activated sludge samples.Overall,these studies suggested that AOA may be a major contributor to ammonia oxidation in natural habitats but play a minor role in highly aerated activated sludge.The result also showed the ratio of AOA to AOB amoA gene abundance was positively correlated with temperature and less correlated with other environmental parameters.New data from our study provide increasing evidence for the relative abundance and diversity of ammonia-oxidizing archaea in the global nitrogen cycle.

  6. Activity and Composition of Ammonia-Oxidizing Bacteria in an Aquic Brown Soil as Influenced by Land Use and Fertilization

    Institute of Scientific and Technical Information of China (English)

    YU Wan-Tai; XU Yong-Gang; BI Ming-Li; MA Qiang; ZHOU Hua

    2010-01-01

    The effects of long-term(19 years)different land use and fertilization on activity and composition of ammonia-oxidizing bacteria(AOB)in an aquic brown soil were investigated in a field experiment in Liaoning Province,China.The 19-year experiment conducted from 1990 to 2008 involved seven treatments designed: cropping rotation of soybean-corn-corn with no fertilizer(control,CK),recycled manure(RM),fertilizer nitrogen(N),phosphorous(P)and potassium(K)(NPK),NPK+RM,and no-crop bare land,mowed fallow,and non-mowed fallow.The results showed that the potential nitrification rates of the RM,NPK+RM,mowed fallow,and non-mowed fallow treatments were significantly higher(P < 0.05)than those of the CK and NPK treatments,indicating that the long-term applications of recycled manure and return of plant residues both significantly increased the activity of AOB.Although the application of NPK did not enhance soil potential nitrification because of decreased pH,available K had an important effect on potential nitrification.Denaturing gradient gel electrophoresis(DGGE)fingerprint profiles showed that no-crop treatments had an increase in the diversity of the AOB community compared to the CK,RM,and NPK treatments,implying that agricultural practices,especially tillage,had an adverse effect on the soil AOB community.The NPK+RM treatment had the most diverse DGGE patterns possibly because of the increased available P in this treatment.A phylogenetic analysis showed that most of the DGGE bands derived belonged to Nitrosoxpira cluster 3,not Nitrosospira cluster 2.These demonstrated that different land use and fertilization significantly influenced the activity and composition of the AOB community by altering the soil properties,mainly including pH,total C,available K,and available P.

  7. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    Science.gov (United States)

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.

  8. Variation of Potential Nitrification and Ammonia-Oxidizing Bacterial Community with Plant-Growing Period in Apple Orchard Soil

    Institute of Scientific and Technical Information of China (English)

    LIU Ling-zhi; QIN Si-jun; L De-guo; WANG Bing-ying; YANG Ze-yuan

    2014-01-01

    In this study, we investigated the potential nitriifcation and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitriifcation activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4+-N content, NO3--N content, and pH showed signiifcant correlations with AOB abundance and nitriifcation activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE ifngerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the β-Proteobacteriaphylum, with the dominant AOB showing high similarity to theNitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NH4+-N and NO3--N, can substantially inlfuence the abundance of AOB communities in soil, and play a critical role in soil-based nitriifcation kinetics.

  9. Comparison of PCR-DGGE and Nested-PCR-DGGE Approach for Ammonia Oxidizers Monitoring in Membrane Bioreactors’ Activated Sludge

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2014-12-01

    Full Text Available Nitritation, the first stage of ammonia removal process is known to be limiting for total process performance. Ammonia oxidizing bacteria (AOB which perform this process are obligatory activated sludge habitants, a mixture consisting of Bacteria, Protozoa and Metazoa used for biological wastewater treatment. Due to this fact they are an interesting bacterial group, from both the technological and ecological point of view. AOB changeability and biodiversity analyses both in wastewater treatment plants and lab-scale reactors are performed on the basis of 16S rRNA gene sequences using PCR-DGGE (Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis as a molecular biology tool. AOB researches are usually led with nested PCR. Because the application of nested PCR is laborious and time consuming, we have attempted to check the possibility of using only first PCR round to obtain DGGE fingerprinting of microbial communities. In this work we are comparing the nested and non-nested PCR-DGGE monitoring of an AOB community and presenting advantages and disadvantages of both methods used. The experiment revealed that PCR technique is a very sensitive tool for the amplification of even a minute amount of DNA sample. But in the case of nested-PCR, the sensitivity is higher and the template amount could be even smaller. The nested PCR-DGGE seems to be a better tool for AOB community monitoring and complexity research in activated sludge, despite shorter fragments of DNA amplification which seems to be a disadvantage in the case of bacteria identification. It is recommended that the sort of analysis approach should be chosen according to the aim of the study: nested-PCR-DGGE for community complexity analysis, while PCR-DGGE for identification of the dominant bacteria.

  10. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  11. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil.

    Science.gov (United States)

    Dai, Yu; Di, Hong J; Cameron, Keith C; He, Ji-Zheng

    2013-11-01

    Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) are important drivers of a key step of the nitrogen cycle - nitrification, which affects the production of the potent greenhouse gas, nitrous oxide (N2O). A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of AOB and AOA and on N2O emissions in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied to some of the N treatments at 10 kg ha(-1). The results showed that the AOB amoA gene copy numbers were greater than those of AOA. The highest ratio of the AOB to AOA amoA gene copy numbers was 106.6 which occurred in the urine-N 600 treatment. The AOB amoA gene copy numbers increased with increasing nitrogen application rates. DCD had a significant impact in reducing the AOB amoA gene copy numbers especially in the high nitrogen application rates. N2O emissions increased with the N application rates. DCD had the most significant effect in reducing the daily and total N2O emissions in the highest nitrogen application rate. The greatest reduction of total N2O emissions by DCD was 69% in the urine-N 600 treatment. The reduction in the N2O emission factor by DCD ranged from 58% to 83%. The N2O flux and NO3(-)-N concentrations were significantly correlated to the growth of AOB, rather than AOA. This study confirms the importance of AOB in nitrification and the effect of DCD in inhibiting AOB growth and in decreasing N2O emissions in grazed pasture soils under field conditions.

  12. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    Science.gov (United States)

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  13. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Directory of Open Access Journals (Sweden)

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  14. Quantitative and Qualitative Analysis of Total Bacteria and Ammonia-oxidizing Bacteria in Buji River in Wet Season%布吉河丰水期总细菌和氨氧化细菌的定性和定量研究

    Institute of Scientific and Technical Information of China (English)

    孙海美; 白姣姣; 孙卫玲; 邵军

    2012-01-01

    河流中微生物的数量和群落结构能在一定程度上反映水环境状况.氨氧化细菌驱动的硝化作用是氮素转化的主要机制,为了解氮素污染河流中氨氧化细菌的群落组成及数量,采用变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)和Real-time PCR技术分析了布吉河丰水期不同断面水样中总细菌和氨氧化细菌的群落结构以及数量变化.结果表明,水样中总细菌(16S rRNA)和氨氧化细菌(16S rRNA)数量变化范围分别为4.73×1010~3.90×1011copies.L-1和5.44×106~5.96×108copies.L-1.冗余度分析表明影响微生物数量和群落结构的水环境因子不同:对于总细菌,与其数量显著相关的环境因子是硝氮(P〈0.05),与其群落结构显著相关的环境因子是氮素(三氮)和金属(Mn和Zn)(P〈0.05);对于氨氧化细菌(ammonia-oxidizing bacteria,AOB),与其数量显著相关的是氨氮和Zn(P〈0.05),与其群落组成显著相关的是氨氮、Mn和Zn(P〈0.05).测序结果表明在布吉河水样中微生物属于变形菌门(Proteobacterium)的Epsilon-Proteobacteria、Gamma-Proteobacteria、Beta-Proteobacteria和Delta-Proteobacteria这4个纲,氨氧化细菌与Nitrosomonas sp.和Nitrosospira sp.属的细菌相似度较高,且Nitrosospira sp.为优势菌属.由于污染影响,布吉河上游和下游微生物群落结构明显不同.%Microbial community structure and biomass in river water can reflect the situation of water quality in some extent.Nitrogen removal was mainly achieved by the nitrification and denitrification processes,and ammonia oxidation catalyzed by ammonia-oxidizing bacteria(AOB) is the first and rate-limiting step of nitrification.To explore the AOB community structure and biomass in nitrogen polluted river,water samples were collected from Buji River(Shenzhen) in wet season.Quantification of 16S rRNA copy numbers of total bacteria and AOB were performed by

  15. Formation of {open_quotes}metal wool{close_quotes} structures and dynamics of catalytic etching of platinum surfaces during ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lyubovsky, M.R.; Barelko, V.V. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

    1994-09-01

    Reconstruction of a clean surface of a platinum catalyst and a platinum surface covered with gold during ammonia oxidation was studied by SEM observations. It was found that the process of catalytic etching had two sequential stages in which different crystal structures with different rates of growth formed on the surface. The first stage was the formation of parallel facets, and the second stage was the formation of individual microcrystals with perfect crystal faces. It was also found that the second state had a threshold character, beginning after some delay from the start of the reaction. A structure resembling metal wool and consisting of interlaced platinum filaments was found to form on the surface of gold-covered platinum catalysts. Characteristic features of this structure`s development are reported. The growth of filaments is attributed to the vapor-liquid-solid mechanism of whisker growth. On the basis of the observed platinum whisker formation and behavior during ammonia oxidation, a mechanism of catalyst surface reconstruction that explains observed characteristic features of the process of catalytic etching is proposed. 25 refs., 8 figs.

  16. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  17. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor.

    Science.gov (United States)

    Tokutomi, Takaaki; Shibayama, Chizu; Soda, Satoshi; Ike, Michihiko

    2010-07-01

    A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification-nitrite or nitrate accumulation-could be controlled by the addition of different alkalinity sources (NaHCO(3) or NaOH, respectively). The maximum rate of ammonia oxidation at 30 degrees C was 2.47kg-N/(m(3) d), with nitrate formation of less than 0.5% of the converted ammonia. Nitrite accumulation of over 90% was maintained stably over 250 days at 30 degrees C and was achieved even at 19 degrees C. Qualitative and quantitative shifts of nitrifying bacteria in the biofilm were monitored by real-time PCR and T-RFLP analysis. Ammonia-oxidizing bacteria (AOB) were dominant but nitrite-oxidizing bacteria (NOB) were eliminated in the reactor when NaHCO(3) was used as the alkalinity source. From the kinetic data, we inferred that high IC concentrations drive stable nitritation by promoting a higher growth rate for AOB than for NOB.

  18. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil.

    Science.gov (United States)

    Kleineidam, Kristina; Košmrlj, Kristina; Kublik, Susanne; Palmer, Iris; Pfab, Helena; Ruser, Reiner; Fiedler, Sabine; Schloter, Michael

    2011-06-01

    In agricultural plant production nitrification inhibitors like 3,4-dimethylpyrazole phosphate (DMPP) are used to retard the microbial nitrification process of fertilized ammonium to enhance the nitrogen supply for cultivated crops and to reduce nitrogen losses from the production system. Besides the well-known ammonia-oxidizing bacteria (AOB) it is known for a few years that also ammonia-oxidizing archaea (AOA) are able to perform the first step in nitrification, hence being also a target for a nitrification inhibitor. However, so far no information are available concerning the effectiveness of DMPP and its extent towards AOB and AOA, neither in bulk soil nor in the root-rhizosphere complex. We investigated in a field experiment performed according to agricultural practice the effect of DMPP on the abundance of AOB and AOA two, four and eight weeks after fertilization. We observed impaired abundances of AOB but not of AOA in both soil compartments that were still visible eight weeks after application, possibly indicating a reduced effectiveness of the nitrification inhibitor in our study.

  19. Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil.

    Science.gov (United States)

    Chen, Qiuhui; Qi, Lingyu; Bi, Qingfang; Dai, Peibin; Sun, Dasheng; Sun, Chengliang; Liu, Wenjing; Lu, Lingli; Ni, Wuzhong; Lin, Xianyong

    2015-01-01

    Nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) have been used extensively to improve nitrogen fertilizer utilization in farmland. However, their comparative effects on ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in agricultural soils are still unclear. Here, we compared the impacts of these two inhibitors on soil nitrification, AOA and AOB abundance as well as their community structure in a vegetable soil by using real-time PCR and terminal restriction fragment length polymorphism (T-RFLP). Our results showed that urea application significantly increased the net nitrification rates, but were significantly inhibited by both NIs, and the inhibitory effect of DMPP was significantly greater than that of DCD. AOB growth was more greatly inhibited by DMPP than by DCD, and the net nitrification rate was significantly related to AOB abundance, but not to AOA abundance. Application of urea and NIs to soil did not change the diversity of the AOA community, with the T-RFs remaining in proportions that were similar to control soils, while the community structure of AOB exhibited obvious shifts within all different treatments compared to the control. Phylogenetic analysis showed that all AOA sequences fell within group 1.1a and group 1.1b, and the AOB community consisted of Nitrosospira cluster 3, cluster 0, and unidentified species. These results suggest that DMPP exhibited a stronger inhibitory effect on nitrification than DCD by inhibiting AOB rather than AOA.

  20. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Iglesias, F.J.; Solla-Gullon, J.; Montiel, V.; Feliu, J.M.; Aldaz, A. [Instituto de Electroquimica, Universidad de Alicante, Apartado 99, 03080 Alicante (Spain)

    2007-09-27

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt{sub 75}Ir{sub 25} and Pt{sub 75}Rh{sub 25} nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes. (author)

  1. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    Science.gov (United States)

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  2. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟%Monte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst (Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 陈丰秋; 阳永荣

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition overthe commercial propylene ammoxidation catalyst(Mo-Bi). The simulation is quite in agreement with experimentalresults. Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  3. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions

    DEFF Research Database (Denmark)

    Kong, Xianwang; Duan, Yun-Feng (Kevin); Schramm, Andreas;

    2016-01-01

    The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is widely used within agriculture to reduce nitrate leaching and improve nitrogen use efficiency of fertilizers, but few studies examined effects on non-target soil functions and microorganisms, i.e. other than the intended delay......) and archaea (AOA) were quantified, and cell-specific nitrification rates were estimated. There was a general trend of increasing AOA and AOB abundance towards the end of incubation irrespective of DMPP treatment, whereas cell-specific activity of AOA and/or AOB was reduced in the presence of DMPP. Overall......, this study indicated that DMPP effectively inhibited nitrification activity without effects on ammonia oxidizer populations, as well as non-target soil microorganisms or functions....

  4. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils.

    Science.gov (United States)

    Mertens, Jelle; Wakelin, Steven A; Broos, Kris; McLaughlin, Mike J; Smolders, Erik

    2010-01-01

    Adaptation of soil microbial communities to elevated copper (Cu) concentrations has been well documented. However, effects of long-term Cu exposure on adaptation responses associated with functional stability and structural composition within the nitrifying community are still unknown. Soils were sampled in three field sites (Denmark, Thailand, and Australia) where Cu gradients had been established from 3 to 80 years prior to sampling. In each field site, the potential nitrification rate (PNR) decreased by over 50% with increasing soil Cu, irrespective of a 20 to >200-fold increase in Cu tolerance (at the highest soil Cu) among the nitrifying communities. This increased tolerance was associated with decreasing numbers (15-120-fold) of ammonia-oxidizing bacteria (AOB), except in the oldest contaminated field site, decreasing numbers of ammonia-oxidizing archaea (AOA; 10-130-fold) and differences in the operational taxonomic unit (OTU) composition of the AOB and, to a lesser extent, AOA communities. The sensitivity of nitrifying communities, previously under long-term Cu exposure, to additional stresses was assessed. Nitrification in soils from the three field sites was measured following acidification, pesticide addition, freeze-thaw cycles, and dry-rewetting cycles. Functional stability of the nitrification process was assessed immediately after stress application (resistance) and after an additional three weeks of incubation (resilience). No indications were found that long-term Cu exposure affected the sensitivity to the selected stressors, suggesting that resistance and resilience were unaffected. It was concluded that the nitrifying community changed structurally in all long-term Cu-exposed field sites and that these changes were associated with increased Cu tolerance but not with a loss of functional stability.

  5. Microbial ecology of á-Proteobacteria ammonia-oxidizers along a concentration gradient of dry atmospheric nitrogen deposition in the San Bernadino Mountain Range.

    Science.gov (United States)

    Jordan, F. L.; Fenn, M. E.; Stein, L. Y.

    2002-12-01

    The fate of atmospherically-deposited nitrogen from industrial pollution is of major concern in the montane ecosystems bordering the South Coast California Air Basin. Nitrogen deposition rates in the more exposed regions of the San Bernardino Mountains (SBM) are among the highest in North America often exceeding 40 kg ha-1 year-1 in throughfall deposition of nitrate and ammonium (Fenn and Poth, 1999). Forest ecosystems with elevated N deposition generally exhibit elevated accumulation of soil nitrate, leaching and runoff, elevated emissions of nitrogenous gases, increased nitrification, and decreased litter decomposition rates. The role of nitrifying microbial populations, especially those taxonomically associated with the beta-Proteobacteria ammonia-oxidizers (AOB), will provide insight into nitrogen-cycling in these extremely N-saturated environments. Using 16S ribosomal DNA-based molecular techniques (16S rDNA clone library construction and Restriction Fragment Length Polymorphism), we are comparing AOB community diversity at 3 different locations along a natural atmospheric N-deposition concentration gradient in the SBM: from high at Camp Paviaka (CP), medium at Strawberry Peak (SP) to low at Dogwood (DW). As observed for wet N-deposition systems on the east coast, we hypothesized a negative correlation between AOB community diversity, abundance and function with nitrogen loading in the dry N deposition system of SBM. Nitrification potentials determined for the 3 sites along the N-deposition gradient were in the order of CP less than SP less than DW. Preliminary results indicate no correlation between diversity of AOB and increased nitrogen loading. Shannon-Weiner diversity indices calculated for ammonia-oxidizer RFLP group units were 2.22, 2.66 and 1.80 for CP, SP and DW, respectively.

  6. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

    Science.gov (United States)

    Bollmann, Annette; Bullerjahn, George S; McKay, Robert Michael

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b) where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a) and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA) showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.

  7. Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo).

    Science.gov (United States)

    Llirós, Marc; Gich, Frederic; Plasencia, Anna; Auguet, Jean-Christophe; Darchambeau, François; Casamayor, Emilio O; Descy, Jean-Pierre; Borrego, Carles

    2010-10-01

    Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.

  8. Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers

    Science.gov (United States)

    Papadopoulou, Evangelia S.; Tsachidou, Bella; Sułowicz, Sławomir; Menkissoglu-Spiroudi, Urania

    2015-01-01

    Thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA), and ethoxyquin (EQ) are used in fruit-packaging plants (FPP) with the stipulation that wastewaters produced by their application would be depurated on site. However, no such treatment systems are currently in place, leading FPP to dispose of their effluents in agricultural land. We investigated the dissipation of those pesticides and their impact on soil microbes known to have a key role on ecosystem functioning. OPP and DPA showed limited persistence (50% dissipation time [DT50], 0.6 and 1.3 days) compared to TBZ and IMZ (DT50, 47.0 and 150.8 days). EQ was rapidly transformed to the short-lived quinone imine (QI) (major metabolite) and the more persistent 2,4-dimethyl-6-ethoxyquinoline (EQNL) (minor metabolite). EQ and OPP exerted significant inhibition of potential nitrification, with the effect of the former being more persistent. This was not reflected in the abundance (determined by quantitative PCR [qPCR]) of the amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Considering the above discrepancy and the metabolic pattern of EQ, we further investigated the hypothesis that its metabolites and not only EQ were toxic to ammonia oxidizers. Potential nitrification, amoA gene abundance, and amoA gene transcripts of AOB and AOA showed that QI was probably responsible for the inhibition of nitrification. Our findings have serious ecological and practical implications for soil productivity and N conservation in agriculturally impacted ecosystems and stress the need to include metabolites and RNA-based methods when the soil microbial toxicity of pesticides is assessed. PMID:26590271

  9. Irrigation water salinity and N fertilization:Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton ifeld

    Institute of Scientific and Technical Information of China (English)

    MIN Wei; GUO Hui-juan; ZHANG Wen; ZHOU Guang-wei; MA Li-juan; YE Jun; HOU Zhen-an

    2016-01-01

    Use of saline water in irrigated agriculture has become an important means for aleviating water scarcity in arid and semi-arid regions. The objective of this ifeld experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitriifcation and denitriifcation. A 3×2 factorial design was used with three levels of irrigation water salinity (0.35, 4.61 and 8.04 dS m–1) and two N rates (0 and 360 kg N ha–1). The results indicated that irrigation water salinity and N fertilization had signiifcant effects on many soil physicochemical properties including water content, salinity, pH, NH4-N concentration, and NO3-N concentration. The abundance (i.e., gene copy number) of ammo-nia-oxidizing archaea (AOA) was greater than that of ammonia-oxidizing bacteria (AOB) in al treatments. Irrigation water salinity had no signiifcant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water (i.e., the 4.61 and 8.04 dS m–1 treatments) reduced AOA abundance, AOB abundance and potential nitriifcation rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water signiifcantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could signiifcantly reduce both the abundance of ammonia oxidizers and potential nitriifcation rates. The AOA may play a more important role than AOB in nitriifcation in desert soil.

  10. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    Directory of Open Access Journals (Sweden)

    Catarina Maria Magalhães

    2014-09-01

    Full Text Available The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA and bacteria (AOB in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four Dry Valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity. Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA, revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.

  11. Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments.

    Science.gov (United States)

    Toyama, Tadashi; Nishimura, Yoshiko; Ogata, Yuka; Sei, Kazunari; Mori, Kazuhiro; Ike, Michihiko

    2015-10-21

    We examined the effect of planting an emergent aquatic plant (Phragmites australis) on nitrogen removal from sediments using a 42-d pot experiment. The experimental pot systems comprised two types of sediments planted with and without young P. australis. Total nitrogen (total N), total dissolved N, and NH4-N in the sediments decreased markedly after planting. In contrast, those levels decreased only slightly in the unplanted sediments. The decrease in total N in the P. australis-planted sediments was 7-20 times those in the unplanted sediments. Abundances of bacterial 16S rRNA, archaeal 16S rRNA, ammonia-oxidizing bacterial ammonia monooxygenase (amoA), ammonia-oxidizing archaeal amoA, and denitrifying bacterial nitrite reductase (nirK) genes increased significantly in sediments after planting. Phragmites australis appears to have released oxygen and created a repeating cycle of oxidizing and reducing conditions in the sediments. These conditions should promote mineralization of organic N, nitrification, and denitrification in the sediments. Phragmites australis absorbed bioavailable nitrogen generated by microbial nitrogen metabolism. During the 42-d period after planting, 31-44% of total N was removed by microbial nitrogen cycling, and 56-69% was removed via absorption by P. australis. These results suggest that planting P. australis can increase microbial populations and their activities, and that nitrogen removal can be accelerated by the combined functions of P. australis and microorganisms in the sediment. Thus, planting P. australis has considerable potential as an effective remediation technology for eutrophic sediments.

  12. 有机废弃物好氧堆肥系统中氨氧化微生物的研究进展%Advances of Ammonia Oxidizing Microorganisms in Organic Waste Aerobic Composting System

    Institute of Scientific and Technical Information of China (English)

    杜雪晴; 廖新俤; 吴银宝; 陈伟

    2014-01-01

    Aerobic composting is an economic and efficient organic waste disposal technology ,and am-monia oxidation ,as a limiting step of nitrogen nitrification ,directly or indirectly affects the compost fertil-izer and greenhouse gas emissions in the process of compost .This paper introduced two kinds of ammonia oxidizing microorganisms ,ammonia oxidizing archaea and ammonia oxidizing bacteria ,and described their physiological and ecological characteristics in the aerobic composting systems .It reviewed the impact of temperature ,ammonium concentration ,pH and other physical and chemical properties on the type ,quan-tity and community structure of ammonia-oxidizing microorganisms during composting process .In addi-tion ,the paper summarize the effects of ammonia oxidizing microorganisms on nitrogen transformation in composting process and the possible control measures ,and finally discussed the future research directions of ammonia oxidizing microorganisms in compost system .%好氧堆肥是一种经济高效的有机废弃物处理技术,在堆肥过程中氨氧化作为氮素硝化作用的限速步骤,直接或间接影响堆肥过程中温室气体的排放和堆肥肥效。论文介绍了有机废弃物好氧堆肥系统中两种氨氧化微生物氨氧化古菌(AOA )和氨氧化细菌(AOB)的生理生态特性,概述了堆温、铵离子浓度、pH 等因素对堆肥过程中氨氧化微生物种类、数量及群落结构的影响,总结了堆肥过程中调控氨氧化微生物对氮素转换作用的相关措施,并展望了氨氧化微生物在有机废弃物堆肥系统中的应用前景。

  13. 甲烷氧化与氨氧化微生物及其耦合功能%Methane-and Ammonia-Oxidation Microorganisms and Their Coupling Functions

    Institute of Scientific and Technical Information of China (English)

    赵吉; 李靖宇; 周玉; 白玉涛; 于景丽

    2012-01-01

    甲烷氧化与氨氧化过程分别对控制温室气体甲烷和氧化亚氮方面有着特殊作用,土壤及湿地等环境中的甲烷氧化菌和氨氧化菌在生态系统碳、氮生物循环中扮演着重要的角色。论述了甲烷氧化与氨氧化过程的微生物学机制,甲烷氧化菌和氨氧化菌的群落结构变化,分析了甲烷氧化菌和氨氧化菌在碳、氮循环以及它们在控制重要温室气体排放中的环境功能,阐述了甲烷氧化菌和氨氧化菌的关联作用机制。以期深入揭示甲烷氧化菌与氨氧化菌的空间分异与耦合机制,为深入探讨这类微生物的生态机制和环境功能提供科学线索。%The greenhouse effects of methane and nitrous oxide are significantly higher than carbon dioxide, respectively 23 and 296 times, respectively. Carbon dioxide, methane and nitrous oxide distribute in the atmosphere, and lead the earth' s temperature rising. The wetlands account for more than half of greenhouse gas emis- sions in the atmosphere than that from water bodies. So the wetlands significantly affect the global climate changes. Soil microorganisms play important roles in maintaining ecological functions of the wetlands. Methane-oxidizer can use methane as the sole carbon and energy, and generate the energy for growth during the oxidation of methane to same amount of carbon dioxide. Methane-oxidizer plays an important role not only in methane consuming, but also in carbon, oxygen, nitrogen cycles in the land-water environments. Methane-oxidizer is the key group for controlling the methane emission and involving in the carbon cycle, and play important roles in greenhouse gas methane emission and in the carbon cycle. Ammonia-oxidation is the key and limiting step of the nitrification which is re- sponsible for deep-sea huge library of nitrate formation. Methane- and ammonia-oxidizer have similar substrates methane and ammonia to generate energy respectively. Oxidation of methane and

  14. Landfill Leachate as Enrichment Culture for Ammonia-Oxidizing Bacteria%利用垃圾渗滤液富集培养氨氧化菌

    Institute of Scientific and Technical Information of China (English)

    崔荣; 李金玲; 李凤德; 韩京龙

    2011-01-01

    Maintaining a certain amount of active ammonia-oxidizing bacteria (AOB) in activated sludge is essential for the biological nitrogen removal process. The addition of enriched AOB into activated sludge is an effective option to increase AOB population. To economically get enriched AOB and effectively treat landfill leachate, the feasibility of using landfill leachate as a culture for enriching AOB was examined. Leachate from the Yantai municipal landfill site was used as the culture, and returned sludge from the Xin' an River municipal sewage treatment plant A2/O process was used as seed sludge. The AOB were enriched by fed batch cultivation. The results showed that after four cultivation cycles, the population of cells in the enriched AOB was 5. 6 times higher than the original activated sludge. By adding 14.5% of enriched AOB after four cultivation cycles into the activated sludge, the ammonia oxidation rate increased by 65.4%, which confirmed that landfill leachate could be used as a culture for enriching AOB.%确保活性污泥中适当的氨氧化菌(AOB)的数量及活性对污水生物除氮过程至关重要,投加富集AOB是增加活性污泥中AOB浓度的方法之一.为了经济有效地获取富集的AOB并有效处理难降解的垃圾渗滤液,对利用垃圾渗滤液富集培养AOB的可行性进行了研究.采用烟台市生活垃圾填埋场的垃圾渗滤液作为培养基,利用辛安河污水处理厂A2/O工艺二沉池的回流污泥进行接种,通过更代方式富集培养AOB.结果显示:更代4次后,菌液中AOB的浓度增至原来的5.6倍;向活性污泥中投加14.5%的经过4次更代富集培养的AOB,氨氧化速率提高了65.4%,从而验证了利用垃圾渗滤液富集AOB是可行的.

  15. 石墨烯载Ir催化剂对氨氧化的电催化性能%Electrocatalytic Performance of Graphene Supported Ir Catalyst for Ammonia Oxidation

    Institute of Scientific and Technical Information of China (English)

    李林儒; 付宏刚; 陆天虹

    2012-01-01

    用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir( Ir/XC)催化剂.X射线衍射(XRD)谱测量结果表明,Ir/G和Ir/XC催化剂的Ir粒子平均粒径相似.拉曼光谱的测量结果表明,G的石墨化程度和电导率高于XC.因此,Ir/G催化剂对氨氧化的电催化性能优于Ir/XC催化剂.氨在Ir/G催化剂电极上氧化的电流密度与氨浓度呈很好的线性关系曲线,相关系数R为0.99557.因此,Ir/G催化剂电极可作为电流型电化学氨传感器的工作电极.%Instead Vulcan XC-72 carbon(XC) , grapheme(G) was used as the support to prepare the Ir/G catalyst. The electrochemical measurement indicted that the electrocatalytic performance of the Ir/G catalyst for the ammonia oxidation was better than that of the Ir/XC catalyst. XRD and TEM measurements indicated that the average sizes of Ir particles in Ir/G and Ir/XC catalysts were similar. The measurement of the Raman spectroscopy illustrates the graphitization extent of G is higher than that of XC. Thus, the conductivity of G is higher than that of XC. Therefore, the electrocatalytic performance of the Ir/G catalyst is better than that of the Ir/XC catalyst can be attributed to the high conductivity due to the high graphitization extent of G. The results show that there is the good linear relationship between the current density of the ammonia oxidation at the Ir/G catalyst electrode and the concentration of ammonia. The related coefficient (R) is 0. 99557. Thus, Ir/G catalyst electrode can be used as the working electrode in the current type of electrochemical ammonia sensor.

  16. Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea.

    Science.gov (United States)

    Gilch, Stefan; Vogel, Manja; Lorenz, Matthias W; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    The ammonia monooxygenase (AMO) of Nitrosomonas europaea is a metalloenzyme that catalyses the oxidation of ammonia to hydroxylamine. We have identified histidine 191 of AmoA as the binding site for the oxidized mechanism-based inactivator acetylene. Binding of acetylene changed the molecular mass of His-191 from 155.15 to 197.2 Da (+42.05), providing evidence that acetylene was oxidized to ketene (CH2CO; 42.04 Da) which binds specifically to His-191. It must be assumed that His-191 is part of the acetylene-activating site in AMO or at least directly neighbours this site.

  17. Abundance and community structure of ammonia-oxidizing Archaea and Bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia.

    Science.gov (United States)

    Chen, Yong-Liang; Hu, Hang-Wei; Han, Hong-Yan; Du, Yue; Wan, Shi-Qiang; Xu, Zhu-Wen; Chen, Bao-Dong

    2014-07-01

    Based on a 6-year field trial in a temperate steppe in Inner Mongolia, we investigated the effects of nitrogen (N) and phosphorus (P) fertilization and mowing on the abundance and community compositions of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) upon early (May) and peak (August) plant growth using quantitative PCR (qPCR), terminal-restriction fragment length polymorphism (T-RFLP), cloning and sequencing. The results showed that N fertilization changed AOB community composition and increased AOB abundance in both May and August, but significantly decreased AOA abundance in May. By contrast, P fertilization significantly influenced AOB abundance only in August. Mowing significantly decreased AOA abundance and had little effect on AOA community compositions in May, while significantly influencing AOB abundance in both May and August, Moreover, AOA and AOB community structures showed obvious seasonal variations between May and August. Phylogenetic analysis showed that all AOA sequences fell into the Nitrososphaera cluster, and the AOB community was dominated by Nitrosospira Cluster 3. The results suggest that fertilization and mowing play important roles in affecting the abundance and community compositions of AOA and AOB.

  18. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community.

    Science.gov (United States)

    Fan, Fenliang; Yang, Qianbao; Li, Zhaojun; Wei, Dan; Cui, Xi'an; Liang, Yongchao

    2011-11-01

    The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from -40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification.

  19. MELiSSA third compartment: Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures in bioreactors

    Science.gov (United States)

    Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles

    Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the

  20. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  1. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Kateryna V Zhalnina

    Full Text Available The activity of ammonia-oxidizing archaea (AOA leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.

  2. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil.

    Science.gov (United States)

    Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao

    2007-01-01

    The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.

  3. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor.

    Science.gov (United States)

    Kinh, Co Thi; Ahn, Johwan; Suenaga, Toshikazu; Sittivorakulpong, Nakanya; Noophan, Pongsak; Hori, Tomoyuki; Riya, Shohei; Hosomi, Masaaki; Terada, Akihiko

    2017-02-01

    We investigated the effects of free ammonia (FA) and free nitrous acid (FNA) concentrations on the predominant ammonia-oxidizing bacteria (AOB) and the emission of nitrous oxide (N2O) in a lab-scale sequencing batch reactor for partial nitrification. The reactor was operated with stepwise increases in the NH4(+) loading rate, which resulted in a maximum FA concentration of 29.3 mg-N/L at pH 8.3. Afterwards, FNA was increased by a gradual decrease of pH, reaching its maximum concentration of 4.1 mg-N/L at pH 6.3. Fluorescence in situ hybridization indicated that AOB remained predominant during the operation, achieving specific nitrification rates of 1.04 and 0.99 g-N/g-VSS/day at the highest accumulations of FA and FNA, respectively. These rates were in conjunction with partial nitrification efficiencies of >84%. The N2O emission factor of oxidized NH4(+) was 0.90% at pH 7.0, which was higher than those at pH 8.3 (0.11%) and 6.3 (0.12%), the pHs with the maximum FA and FNA concentrations, respectively. High-throughput sequencing of 16S ribosomal RNA genes showed that increases in FNA drastically changed the predominant AOB species, although increased FA produced no significant changes. This study demonstrates that the FNA concentration and pH are the main drivers that determine the predominant AOB species and N2O-emission in a partial nitrifying bioreactor.

  4. Community Structure and Abundance of Soil Ammonia-oxidizing Bacteria and Ammonia-oxidizing Archea as Influenced by Insect-resistant Bivalent Transgenic Cotton%双价转基因抗虫棉花对土壤氨氧化细菌和氨氧化古菌群落结构及丰度的影响

    Institute of Scientific and Technical Information of China (English)

    吴元凤; 李刚; 修伟明; 冀国桢; 宋晓龙; 赵建宁; 杨殿林

    2014-01-01

    The cultivation area of genetically modified(GM)crops has expanded significantly in recent years. However, concerns have been raised over impacts of GM crops on soil ecosystem, especially soil microorganisms. Here, we examined the influence of insect-resistant biva-lent transgenic cotton on soil ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA). Terminal restriction fragment length polymorphism(T-RFLP)was used to evaluate community structure change and qPCR to detect abundance difference. Compared to the control, the population of dominant AOB and AOA did not show significant difference in insect-resistant bivalent transgenic cotton soil, with no changes over the growth season though the ratio of each dominant species population varied in different varieties and at different growth stages of cotton. The Shannon index and Evenness index of AOB had no significant difference between the transgenic cotton soil and its control during the whole growth period. The Shannon index of AOA had similar results, but Evenness index of AOA was significantly low-er in the transgenic cotton soil than in the control at the seedling stage(P<0.05), with no difference found at the other growth stages. The abundance of AOB in the transgenic cotton soil was higher at the blooming stage, whereas lower at the other stages, as compared with the control soil. However, AOA had lower abundance in the GM cotton than in the control soil throughout the growing season. Therefore, the in-sect-resistant bivalent transgenic cotton had no significant impact on the community structure of soil AOB and AOA, but reduced the abun-dance of AOB and AOA, suggesting potential impacts of transgenic cotton on soil ammonia-oxidizing microorganisms.%采用末端片段多态性分析(T-RFLP)和实时定量PCR(Quantitative real-time PCR, qPCR)方法,研究了不同生长时期双价转基因抗虫棉花和亲本非转基因棉花(对照)土壤氨氧化细菌(Ammonia-oxidizing bacteria

  5. AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea

    Directory of Open Access Journals (Sweden)

    Tatsuki Miyamoto

    2016-06-01

    Full Text Available Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.

  6. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-cycle in biological soil crusts

    Science.gov (United States)

    Zhou, Xiaobing; Smith, Hilda J.; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran

    2017-01-01

    N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

  7. Effects of Transgenic DREB Soybean Dongnong 50 on the Diversity of Soil Ammonia-oxidizing Bacteria%转基因大豆东农50对土壤氨氧化细菌的影响

    Institute of Scientific and Technical Information of China (English)

    金羽; 曲娟娟; 任广明; 董蕾

    2013-01-01

    [目的]考查转基因大豆东农50对土壤氨氧化细菌的影响.[方法]通过PCR-DGGE及序列分析方法研究盆栽条件下转基因大豆和近等基因的非转基因大豆在正常水分条件下和干旱胁迫下土壤中氨氧化细菌cto基因的多样性.[结果]根际土壤氨氧化细菌多样性分析表明,转基因大豆与非转基因大豆的氨氧化细菌多样性没有区别,但是,在正常水分条件和干旱胁迫下,处于收获期的转基因大豆的土壤氨氧化细菌多样性提高.对DGGE回收的17个条带进行系统发育分析,结果表明,所有的条带均与β-变形亚纲的亚硝化弧菌属(Nitrosovibrio)以及亚硝化螺菌属(Nitrososp ira)相似性较高.[结论]转基因大豆对土壤氨氧化细菌没有影响.%[Objective] The aim was to understand the effects of transgenic DREB soybean on the ammonia-oxidizing bacteria.[Method] The diversity of the cto gene in pot-planted transgenic soybean and near-isogenic non-transgenic soybean under normal water condition and drought stress was analyzed by PCR-DGGE and sequence analysis.[Result] Rhizosphere community diversity of ammonia-oxidizing bacteria showed no difference between the treatments of transgenic soybean and its non-transgenic isolines,moreover transgenic soybean under normal water condition and drought stress improved the diversity of the ammonia-oxidizing bacteria in the harvest time.The phylogenetic analysis revealed that all the sequences of excised DGGE bands were closely related to members of the genus Nitrosovibrio and Nitrosospira of the β-subclass Proteobacteria.[Conclusion] Transgenic DREB soybean has no adverse impact on soil ammonia-oxidizing bacteria.

  8. Effects of Soil on Ammonia, Ethylene, Chloroethane, and 1,1,1-Trichloroethane Oxidation by Nitrosomonas europaea†

    OpenAIRE

    Hommes, Norman G.; Russell, Sterling A.; Bottomley, Peter J.; Arp, Daniel J.

    1998-01-01

    Ammonia monooxygenase (AMO) from Nitrosomonas europaea catalyzes the oxidation of ammonia to hydroxylamine and has been shown to oxidize a variety of halogenated and nonhalogenated hydrocarbons. As part of a program focused upon extending these observations to natural systems, a study was conducted to examine the influence of soil upon the cooxidative abilities of N. europaea. Small quantities of Willamette silt loam (organic carbon content, 1.8%; cation-exchange capacity, 15 cmol/kg of soil)...

  9. Effect of Transgenic Soybean on Amount and Diversity of Ammonia-oxidizing Bacteria in Rhizospheric Soil%转基因大豆对土壤氨氧化细菌的影响

    Institute of Scientific and Technical Information of China (English)

    赖欣; 张永生; 赵帅; 杨殿林

    2011-01-01

    The genetically modified (GM)crops are more and more concerned by public;meanwhile more and more GM crops are planted in fields globally. Besides the food safety, the ecological risks are also gained focus. In order to deeply understand the effect of transgenic soybean on diversity of rhizoperic ammonia-oxidizing bacteria in soil,DGGE-cloning and quantitative PCR were used. Both the DGGE-cloning and qPCR results showed that seasonal changes were observed throughout the soybean growth stages, indicating the impact of crop growth stage overweigh that of exogenous gene insertion and transgenic soybean has not diversely affect on rhizosphere ammonia-oxidizing bacteria abundance and community composition in soil.%采用DGGE-cloning测序技术与定量PCR技术相结合的方法,研究了转基因大豆对土壤中氨氧化细菌群落多样性的影响.定量PCR试验结果表明,相同的生长时期转基因大豆对氨氧化细菌数量没有显著的影响,而与此同时,土壤中的氨氧化细菌的数量呈现出随生长期先增加后减少的趋势;DGGE图谱分析表明,同一生长时期不同大豆土壤中的氨氧化细菌主要条带一致,这表明生长时期的影响明显大于转基因大豆对土壤氨氧化细菌的影响.

  10. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  11. 多年蔬菜连作对土壤氨氧化微生物群落组成的影响%Effects of Continuous Cropping of Vegetables on Ammonia Oxidizers Community Structure

    Institute of Scientific and Technical Information of China (English)

    孟德龙; 杨扬; 伍延正; 吴敏娜; 秦红灵; 朱亦君; 魏文学

    2012-01-01

    Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability.Two series of vegetable soils were selected from Huangxing,Changsha,reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history.In each series five independent topsoils(0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field.Terminal restriction fragment length polymorphism(T-RFLP) and quantity PCR(Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria(AOB) and ammonia-oxidizing archaea(AOA) communities.Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene,soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA.In the vegetable soils,although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene,no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate.It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA,but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential(PNF).%为揭示农业生产中长期大量施用化学肥料对土壤硝化过程微生物种群的影响及其与土壤硝化能力的偶联关系,本研究通过在长沙黄兴蔬菜基地采集长期连作蔬菜(20 a以上,VL)和短期蔬菜种植地(2 a左右,VS)表层土壤(0~20 cm),利用末端限制性片段多态性(T-RFLP)和实时定量PCR(Q-PCR)等手段系统研究了蔬菜连作对氨氧化细菌(ammonia-oxidizingbacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)的组成和丰度的

  12. Electrocatalytic Performance of Ir Catalyst Supported on Macroporous Carbon for Ammonia Oxidation%大孔炭载Ir催化剂对氨氧化的电催化性能

    Institute of Scientific and Technical Information of China (English)

    李林儒; 陈冲; 徐斌; 曹高萍; 杨裕生; 陆天虹

    2012-01-01

    Macroporous carbon supported Ir (Ir/MC) and Vulcan XC-72 carbon supported Ir (Ir/XC ) catalysts were prepared respectively. Based on the characterization of the catalysts using the energy dispersive spectroscopy, X-ray diffraction spectroscopy and Raman spectroscopy, the electrocatalytic performances of the two catalysts for the ammonia oxidation were investigated. It was found that the peak current density of the ammonia oxidation at the Ir/MC catalyst electrode is 38. 7% larger than that at the Ir/XC catalyst electrode and the electrocatalytic stability of the Ir/MC catalyst is better than that of the Ir/XC catalyst. Because the average size and the relative crystallinity of the Ir particles in the Ir/MC catalyst is similar to that in the Ir/XC catalyst, the above results can be attributed to the larger pore size and porosity as well as the higher conductivity due to the high graphitization extent of MC.%分别以大孔炭(MC)和Vulcan XC-72炭黑(XC)为载体,制备了Ir/MC和Ir/XC催化剂.在用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱对催化剂表征的基础上,用电化学技术研究了2种炭载Ir催化剂对氨氧化的电催化性能,发现氨在Ir/MC催化剂电极上,氧化峰峰电流密度比在Ir/XC催化剂电极上大38.7%左右,而且电催化稳定性明显好于Ir/XC催化剂.由于Ir/MC和Ir/XC催化剂的Ir粒子平均粒径和相对结晶度相似,因此,这只能归结于MC有大的孔径和孔率及高的石墨化程度引起的高电导率.所以MC是一种比XC更好的催化剂的炭载体.

  13. Impact of Long-Term Fertilization on Community Structure of Ammonia Oxidizing and Denitrifying Bacteria Based on amoA and nirK Genes in a Rice Paddy from Tai Lake Region, China

    Institute of Scientific and Technical Information of China (English)

    JIN Zhen-jiang; LI Lian-qing; LIU Xiao-yu; PAN Gen-xing; Qaiser Hussein; LIU Yong-zhuo

    2014-01-01

    Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A ifeld trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and richnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE proifles showed signiifcant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was signiifcantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitriifcation potential showed a positive correlation with SOC content, while a signiifcantly lower denitriifcation potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.

  14. Application of an integrated statistical design for optimization of culture condition for ammonium removal by Nitrosomonas europaea.

    Science.gov (United States)

    Bao, Yingling; Zhengfang, Ye

    2013-01-01

    Statistical methodology was applied to the optimization of the ammonium oxidation by Nitrosomonas europaea for biomass concentration (C(B)), nitrite yield (Y(N)) and ammonium removal (R(A)). Initial screening by Plackett-Burman design was performed to select major variables out of nineteen factors, among which NH4Cl concentration (C(N)), trace element solution (TES), agitation speed (AS), and fermentation time (T) were found to have significant effects. Path of steepest ascent and response surface methodology was applied to optimize the levels of the selected factors. Finally, multi-objective optimization was used to obtain optimal condition by compromise of the three desirable objectives through a combination of weighted coefficient method coupled with entropy measurement methodology. These models enabled us to identify the optimum operation conditions (C(N)= 84.1 mM; TES = 0.74 ml; AS= 100 rpm and T = 78 h), under which C(B)= 3.386×10(8) cells/ml; Y(N)= 1.98 mg/mg and R(A) = 97.76% were simultaneously obtained. The optimized conditions were shown to be feasible through verification tests.

  15. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.

  16. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  17. Dynamic changes of ammonia-oxidizing archaea community structure during aerobic composting of chicken manure%鸡粪好氧堆肥过程中氨氧化古菌群落结构的动态变化

    Institute of Scientific and Technical Information of China (English)

    解开治; 徐培智; 张发宝; 唐拴虎; 顾文杰; 黄旭; 蒋瑞萍; 卢钰升

    2012-01-01

    The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the community structure and species diversity of ammonia-oxidizing archaea (AOA) during poultry species composting. The results show that the AOA community structure and species diversity at different stages of chicken manure composting are markedly changed, and the band b, which shows 96% similarity to the AOA HH - 2 (GU225872. 1 ) and band m, which shows 99% similarity to the uncultured Crenarchaeote NM-152 ( HQ875225.1 ) , represent the major AOA bacterial species during the composting. The bands c, b, f and i, and the bands m, k, ] and n represent the species of the two populations of bacteria, respectively. Shannon-Weiner index (H) and evenness index (EH) of the AOA colonies are different at different stages of the eomposting, and the following order is : day 30 〉 day 5 〉 day 25 ≈ day 45 〉 day 3 ≈ day 12 〉 day 1 ≈ day 15. The redundancy analysis of the AOA colonies at different stages of the composting shows that the AOA colony evolution is all significantly affected by the composting temperature, whole nitrogen, ammonia nitrogen and nitrate nitrogen (P 〈0. 05 ), while pH is not affected. The AOA community structure is changed markedly on days 1,5, 15, 30 and 45 of the composting. These results indicate that several parameters could control AOA community structure during composting of chicken manure.%应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究了好氧堆肥过程氨氧化古菌(ammonia-oxidizingarchaea,AOA)的群落结构和多样性变化。结果表明,不同堆肥时期鸡粪好氧堆肥AOA菌群的群落结构发生了明显的变化。与AOAHH-2(GU225872.1)亲缘关系较近的b条带(相似性96%)和未培养泉古菌属[uncuhured crenarchaeoteNM-152(HQ875225.1)]的m条带(相似性99%)是堆肥过程一直存在的AOA菌属。条带C、b、f、i和条带m、k、1

  18. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  19. Long-term Fertilization Determining Ammonia-oxidizing Organism Abundance and Distribution in Dry Highland Soil of Loess Plateau%长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响

    Institute of Scientific and Technical Information of China (English)

    辛亮; 武传东; 曲东

    2012-01-01

    采用基于氨单加氧酶基因(amoA)的荧光定量PCR技术,以黄土高原旱地土为材料,研究长期施肥对土壤氨氧化细菌和氨氧化古菌丰度的影响,并分析环境因素与氨氧化菌丰度的关系.以不施肥土壤为对照(CK),设置3个施肥处理,分别为单施磷肥(P),氮、磷共施(NP)和氮、磷、有机肥共施(NPM)3个处理.结果表明,不同处理氨氧化菌amoA基因拷贝数为1.326×106~1.886×106 g1,各处理间氨氧化细菌丰度差异不显著;氨氧化古菌的arch-amoA基因拷贝数为1.329×106~4.510×106 g-1,表现为处理NPM> NP>CK>P,NPM处理为对照的3.314倍,二者呈现显著性差异.采用DCCA法对4个处理进行环境相似度分类,结果显示,P和NPM处理、CK和NP处理分别构成了2个相似类群;4个处理和12个环境因子的关联(CCA)分析表明,不同处理中的氨氧化微生物活跃度以及氨氧化过程强度表现为处理NMP>NP>CK>P;不同环境因子和不同施肥处理生境相似度分布存在不同的关系,其中反映氨氧化过程的硝态氮含量、氨氧化细菌和氨氧化古菌丰度,以及代表微生物生长主要环境因素的pH值、含水量、全氮和有机碳含量与不同施肥处理导致的生境相似度的分布关系最为紧密.%Real-time PCR with primers targeting Ammonia monooxygenase subunit A gene iamoA) was performed to quantify abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing ar-chaea (AOA) in dry highland soilt long-term fertilized, from Loess Plateau. We also investigated the relationship between environmental factors and abundance of ammonia-oxidizing organism. The treatments were no fertilizer (CK), phosphate (P), nitrogen/phosphate fertilizers (NP), and NP combined with organic fertilizer (NPM). We found that fertilization caused no significant difference on the amoA gene copy numbers of AOB arranging from 1, 326× 106 to 1. 886 × 106 copies · g-1 dry soil. In contrast, abundance of

  20. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  1. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    Science.gov (United States)

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  2. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  3. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  4. Effects of long-term N fertilizer application and liming on nitrification and ammonia oxidizers in acidic soils%长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响

    Institute of Scientific and Technical Information of China (English)

    张苗苗; 王伯仁; 李冬初; 贺纪正; 张丽梅

    2015-01-01

    High levels of N fertilization and acid deposition could cause soil acidification directly and indirectly. The nitrogen cycle, especially nitrification, makes a great contribution to the acidification of agricultural soils across China, which further leads to the mobilization of potentially toxic metals such as aluminum ( Al ) and manganese ( Mn ) and decerases crop yields. Chemicals ( e. g., CaO) are amended as soil conditioners to relieve soil acidification. Ammonia oxidation, the rate-limiting step in the nitrification process, is driven by ammonia-oxidizing bacteria ( AOB) and ammonia-oxidizing archaea ( AOA) . Increasing evidence demonstrates that pH is one of the most important factors determining the niche separation of AOA and AOB, and AOA play the more important role in nitrification of acidic soils. However, abundant AOB have been detected in acidic soils but little is known about their ecological function. In this study, the effects of long-term N fertilization practices and liming on nitrification and ammonia oxidizers in acidic soils were investigated using quantitative PCR and DGGE methods combined with soil physiochemical analysis. Compared with a previous study conducted 6 years ago at the same site, N fertilizer application without liming further decreased soil pH (3.35—3.47) and potential nitrification rate (PNR) (0.02—0.14 μg NO-2-N g-1 soil h-1), while 2 years liming alleviated soil acidification (pH 4.10—4.46) and increased PNR (0.22—0.34μg NO-2-N g-1 soil h-1) significantly. There was a significantly positive correlation between soil pH and PNR, indicating the increase in soil pH via liming had positive effects on nitrification in acidic soils. AOA amoA gene copy numbers ( 7. 40 × 107—4. 08 × 108 copies/g ) were significantly higher than their counterpart AOB (1.67 × 106—2.57 × 107 copies/g) in soils that received different chemical N fertilizers. Ratios of AOA and AOB amoA gene abundance ranged between 10. 9 and 44. 3

  5. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  6. Solid-phase contact assay that uses a lux-marked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil.

    Science.gov (United States)

    Brandt, Kristian K; Pedersen, Anders; Sørensen, Jan

    2002-07-01

    Information about in situ toxicity of the bioavailable pools of adsorptive soil pollutants is a prerequisite for proper ecological risk assessment in contaminated soils. Such toxicity data may be obtained by assays allowing for direct exposure of introduced test microorganisms to the toxicants, as they appear in solid solution equilibria in the natural soil. We describe a novel sensitive solid-phase contact assay for in situ toxicity testing of soil pollutants based on a recombinant bioluminescent reporter strain of Nitrosomonas europaea. A slurry of the reporter strain and soil sample was shaken for 1 h, after which bioluminescence was measured either directly (soil slurry protocol) or in the supernatant obtained after centrifugation (soil extract protocol). The assay was validated for both protocols by using linear alkylbenzene sulfonate (LAS) as a toxic and adsorptive model compound in the soil samples. Interestingly, LAS showed the same toxicity to the reporter strain with either soil incubation (both protocols) or pure culture, suggesting that adsorbed LAS pools contributed to the observed toxicity. The solid-phase contact assay that used the reporter strain of lux-marked N. europaea was slightly more sensitive for the detection of LAS toxicity in soil than activity-based assays targeting indigenous nitrifiers and much more sensitive than assays targeting indigenous heterotrophic microbes. We conclude that the new solid-phase contact assay, which is based on direct interaction of the test microorganisms with bioavailable pools of the toxicants in soil, provides a most sensitive and relevant method for evaluating the in situ toxicity and assessing the risks of soil contaminants.

  7. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  8. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  9. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  10. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater.

    Science.gov (United States)

    Shore, Jennifer L; M'Coy, William S; Gunsch, Claudia K; Deshusses, Marc A

    2012-05-01

    This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp.

  11. Real-time PCR quantification of ammonia oxidizing bacteria in short-cut A~2/O process treating domestic wastewater%实时荧光定量PCR对A~2/O短程硝化系统内氨氧化菌的定量分析

    Institute of Scientific and Technical Information of China (English)

    李磊; 张立东; 刘晶茹; 曾薇; 杨莹莹; 王向东

    2012-01-01

    Short-cut nitrification and denitrification was started up and maintained in a lab-scale A2/O process treating low C/N ratio domestic wastewater by controlling DO concentration in low level and decreasing the aerobic actual hydraulic retention time(AHRT).The average nitrite accumulation rate reached about 90% and above 95% of ammonia nitrogen(NH+4-N) could be removed.The genome DNA of the enriched ammonia oxidizing bacteria(AOB) culture was extracted and amplified,and then electrophoresed on agarose gel twice.The DNA fragments in reamplified agarose gel bands were recovered and purified,and then used as standard molecule.A standard curve of real-time fluorescent PCR was set up for AOB quantification.The numbers of the AOB in sludge samples under different operational conditions and nitrite accumulation rates were monitored and compared by using real-time quantitative PCR.The results showed that the numbers of AOB significantly increased with increasing of nitrite accumulation rates.The numbers of AOB in the complete nitrification activated sludge and short-cut nitrification activated sludge were 5.28×109 cells/g MLVSS and 3.95×1010 cells/g MLVSS,respectively.Moreover,the decrease of the nitrite accumulation rates lagged behind the decline of AOB numbers.%通过控制好氧区低DO浓度以及缩短好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2/O工艺中,成功启动并维持了短程硝化反硝化;系统亚硝酸盐积累率稳定维持在90%左右,氨氮去除率在95%以上。通过提取富集氨氧化菌(ammonia oxidizing bacteria,AOB)的基因组DNA,经两次常规PCR扩增和琼脂糖凝胶电泳,以纯化回收的DNA扩增片段作为实时荧光定量PCR检测AOB数量的DNA标准品,建立了检测AOB数量的实时荧光定量PCR标准曲线。利用实时荧光定量PCR技术比较了A2/O系统在不同运行条件及亚硝酸盐积累率情况下AOB菌群数量。结果表明,

  12. Effects of Nitriifcation Inhibitors on Soil N2O Emission and Community Structure and Abundance of Ammonia Oxidation Microorganism in Soil under Extensively ManagedPhyllostachys edulis Stands%硝化抑制剂对毛竹林土壤N2O排放和氨氧化微生物的影响

    Institute of Scientific and Technical Information of China (English)

    毛新伟; 程敏; 徐秋芳; 陈俊辉; 赵天心; 余晓; 李永春

    2016-01-01

    Abstract[Objective]Combined application of nitrification inhibitors and ammonium-containing fertilizers is considered an effective means for improving N utilization efficiency and reducing pollution risk. To determine effects of the use of two nitrification inhibitors:dicyandiamide(DCD)and 3, 4-dimethylpyrazole phosphate(DMPP),separately,on N2O emission,nitrogen transformation rate, and community structure and abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)in soils applied with ammonium-containing fertilizers.[Method]An in-lab incubation test was conducted of soil samples collected from an extensively managedPhyllostachys edulis plantation. The soil samples were subjected to six treatments,separately,that is(1)CK(no fertilizer);(2) Urea(Urea);(3)Urea + 1% DMPP(1% of Urea in quantity);(4)Urea + 1.5% DMPP;(5) Urea + 10% DCD;(6)Urea + 15% DCD. Dynamics of N2O emissionand soil parameters at the time of N2O emissionturning point(10 d,50 d and 90 d)were determined.[Result]Results show that both of the two nitrification inhibitors greatly reduced N2O emission during the 160 days of incubation. The reduction rate in Treatments Urea + DMPP(both 1% and 1.5%),Treatment Urea +10% DCD,and Treatment Urea +15% DCD was 54%,28%,and 41%,respectively. Significant differences were found in cumulative emission of N2O(p<0.05)between the treatments,but not between the two Urea + DMPP treatments. The treatments in which urea was combined with nitrification inhibitors were similar to Treatment CK in N2O emission rate during the first 40 days of incubation,and then the formers began to rise gradually with the incubation going on and exceeded CK. Significantly lower N2O cumulative emission was observed in Treatment Urea +15% DCD than in Treatment Urea +10% DCD. Soil NH4+-N levels due to urea application increased rapidly to a maximum and then decreased gradually,with Treatment Ureabeing lower than all the urea + inhibitor treatments on D50 and D90 of

  13. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  14. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  15. Pangenome Evolution in the Marine Bacterium Alteromonas.

    Science.gov (United States)

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-06-03

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.

  16. Isolation of ammonia oxidizing bacteria from near-natural wetland in Tai Lake buffer zones and its performance on ammonia degradation%太湖缓冲带近自然湿地氨氧化细菌的筛选及降解效果比较

    Institute of Scientific and Technical Information of China (English)

    魏伟伟; 叶春; 李春华; 李定龙

    2014-01-01

    以太湖缓冲带近自然湿地底泥为菌源,利用传统的富集、分离纯化等微生物手段,筛选出3株氨氧化细菌BW-1、BW-2、BW-3,检测其在富集培养液中的生长特征.测定3株细菌的16S rRNA基因序列,测序结果提交至Gen Bank进行同源性检索分析,并通过MEGA 5.0软件进行比对和系统发育分析,结果显示菌株BW-1和BW-2皆为Nitrosomonas sp.,BW-3为Nitrobacter sp..缓冲带近自然湿地中的NH4+-N属于低污染范畴,最高为2.11mg/L.以10%(体积分数)接种量接入约5mg/L的NH4+-N废水中培养12d,定量检测结果显示菌株BW-3去除效果最好,NH4+-N去除率为73.86%,菌株BW-1对NH4+-N降解效果略差于BW-3,去除率为73.42%,菌株BW-2对NH4+-N降解效果最差,去除率仅为34.11%.

  17. Ammonia-oxidizing Archaea from high artic soils

    OpenAIRE

    Alves, Ricardo Jorge Eloy

    2011-01-01

    Tese de mestrado. Biologia (Microbiologia Aplicada). Universidade de Lisboa, Faculdade de Ciências, 2011 As regiões árcticas e boreais cobrem 22% da superfície terrestre e englobam toda uma variedade de ecossistemas particularmente sensíveis a alterações ambientais, entre ecossistemas terrestres (Chapin III et al., 2000; Sala et al., 2000). O Árctico está actualmente a sofrer alterações dramáticas, previstas de aumentar drasticamente durante o presente século em resultado do aumento das te...

  18. Formation of hydroxylamine on dust grains via ammonia oxidation

    CERN Document Server

    He, Jiao; Lemaire, Jean-Louis; Garrod, Robin T

    2015-01-01

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH$_2$OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH$_2$OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH$_2$OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH$_2$OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH$_3$. Suggestions of conditions for future observations are provided.

  19. FORMATION OF HYDROXYLAMINE ON DUST GRAINS VIA AMMONIA OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Lemaire, Jean-Louis [Paris Observatory, F-75014 Paris (France); Garrod, Robin T., E-mail: gvidali@syr.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-01-20

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH{sub 2}OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH{sub 2}OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH{sub 2}OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH{sub 2}OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH{sub 3}. Suggestions of conditions for future observations are provided.

  20. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong;

    2013-01-01

    For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...... of oxygen, yielding dinitrogen gas. This process, termed anammox, accounts for over 50% of nitrogen loss in marine ecosystems1–5. However, the significance of anammox in freshwater ecosystems has remained uncertain 6,7. Here, we use molecular and isotopic techniques to monitor anammox activity in sediments...

  1. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer...

  2. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt;

    2016-01-01

    were interpreted in terms of a detailed chemical kinetic model. The rate constant for the reaction of the important intermediate H2NO with O2 was determined from ab initio calculations to be 2.3 × 102 T2.994 exp (−9510 K/T) cm3 mol−1 s−1. The agreement between experimental results and model work...

  3. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  4. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in esterified form) as carbon

  5. A review on regulation methods of nitrite oxidizing bacteria in one-stage anaerobic ammonia oxidation process%一段式厌氧氨氧化工艺亚硝酸盐氧化菌抑制方法研究进展

    Institute of Scientific and Technical Information of China (English)

    谢丽; 殷紫; 尹志轩; 王悦超; 周琪

    2016-01-01

    近年来,厌氧氨氧化工艺(anaerobic ammonium oxidation, Anammox)作为一种新型的脱氮技术,由于其耗能少、效率高而被应用于高氨氮废水的处理中。然而,实际运行的厌氧氨氧化工程中有时会出现亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)大量繁殖的情况,导致硝酸盐积累,脱氮效率下降。在一段式 Anammox 反应器中,通过控制某些影响因素,如调节体系中的溶解氧,控制游离氨和游离亚硝酸的浓度,调控碳源浓度以及外加中间产物(N2H4、NO 和 NH2OH)等方式,能够在维持 Anammox 工艺脱氮效率的同时有效抑制 NOB。除了系统地综述一段式 Anammox 工艺中 NOB 抑制手段以外,将进一步讨论实际 Anammox 工程应用中抑制 NOB 大量繁殖行之有效的手段。%In recent years,anaerobic ammonium oxidation (Anammox), a new technology for nitrogen removal, has been used in the treatment of high-strength ammonia wastewater due to its low energy consumption and high treatment efficiency. Whereas, the accumulation of nitrite oxidizing bacteria (NOB) often occurs in full-scale Anammox process, leading to the accumulation of nitrate and deterioration of nitrogen removal effectiveness. In two-stage Anammox processes, NOB accumulation often occurs in partial nitritation stage, the inhibition of which has been discussed in details. While in one-stage Anammox process, NOB accumulation is more common and fatal due to the complexity brought by the coexistence of functional bacteria like ammonium oxidizing bacteria (AOB), NOB, anaerobic ammonia oxidizing bacteria (AnAOB) and denitrifiers. It has been reported that NOB could be effectively suppressed in the one-stage Anammox process by some methods, e.g. regulating dissolved oxygen, altering the free ammonia and free nitrous acid concentration, adjusting carbon source and adding externally intermediate products (N2H4, NO, NH2OH), etc. The regulation methods

  6. 抗盐碱转基因大豆对根际与非根际土壤氨氧化古菌多样性的影响%Effects of Salinization Resistence Transgenic Soybeans (SRTS) on the Diversity of Ammonia Oxidizing Archaea(AOA ) in Rhizosphere Soil and Non-rhizosphere Soil

    Institute of Scientific and Technical Information of China (English)

    宋立娟; 王宏燕; 李传宝; 刘佳宾; 刘朴方

    2011-01-01

    采用PCR-DGGE技术,研究了抗盐碱转基因大豆(SRTS)对根际与非根际土壤氨氧化古菌(AOA)群落多样性的影响.结果表明,在非根际土壤中,SRTS的氨氧化古菌DGGE条带数、多样性指数显著高于其受体亲本黑农35和其他两种大豆处理,而均匀度指数较低;在根际土壤中,SRTS的DGGE条带数和多样性指数均高于其受体亲本,但并不显著,其均匀度指数则显著高于其他处理;每种大豆自身根际与非根际比较显示,SRTS非根际氨氧化古菌DGGE条带数、多样性指数明显高于根际,均匀度指数却低于根际,而其受体亲本与其他两个处理反之.聚类分析结果表明,SRTS的DGGE带谱与其他大豆处理差异较大,且自身非根际与根际处理差异显著,与其受体亲本黑农35相似性很低.测序结果表明,在SRTS处理中特有条带12、15和优势条带13、14均属于Uncultured crenarchaeote.在盐碱土壤生态系统中,SRTS提高了非根际土壤氨氧化古菌群落的多样性,但对根际土壤中氨氧化古菌的群落多样性有一定的抑制作用.%The use and development of genetically modified soybeans has been a topic of considerable public debate in recent years. The majority of studies addressing potential risks of soybeans cultivation have addressed only aboveground effects. But, recent methodological advances in soil microbial have allowed research focus to move underground to try to gain knowledge of soybeans-driven effects on the micro-bial communities and processes in soil system. In order to deeply understand the effect of salinization insistence transgenic soybeans( SRTS ) on the diversity of rhizosphere ammonia oxidizing archae( AOA) and non-rhizosphere AOA in saline-alkali soil system, PCR-DGGE cloning was used. The main conclusions were shown as follow:The results of DCGE fingerprint showed that the AOA bands' number and the diversity indexes of SRTS in rhizosphere soil and non-rhizosphere soil were all

  7. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  8. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  9. Effects of Withering of Cyanobacteria Bloom on Abundance and Community Composition of Ammonia-Oxidizing ;Bacteria in Surface Lake Sediments%蓝藻水华消亡对湖泊表层沉积物中氨氧化细菌丰度和群落结构的影响

    Institute of Scientific and Technical Information of China (English)

    黄睿; 沈烽; 罗娟; 王司辰; 唐启彤; 徐慧敏; 吴燕; 赵大勇

    2015-01-01

    为探索蓝藻水华消亡对湖泊表层沉积物中氨氧化细菌( ammonia⁃oxidizing bacteria,AOB)的影响,设计了室内沉积物-水微宇宙模拟体系,体系中分别添加野外收集蓝藻和室内培养蓝藻,运用荧光定量PCR和克隆建库等分子生物学方法分析氨氧化细菌的丰度、群落结构和多样性。结果表明:(1)添加蓝藻处理组的氨氧化细菌丰度和群落多样性高于未添加蓝藻的空白对照组;(2)属于亚硝化单胞菌属( Nitrosomonas)的N. oligotropha类群在表层沉积物的氨氧化细菌中占有绝对优势,相对丰度达75%;(3)与空白对照组相比,添加蓝藻处理组的氨氧化细菌中新出现了N. communis和Nitrosospira类群。添加蓝藻会提高沉积物中氨氧化细菌的丰度并增加其群落多样性。%A simulation system was constructed to investigate effect of withering of Cyanobacteria bloom on abundance and community composition of ammonia⁃oxidizing bacteria ( AOB) in surface sediments. The system consisted of three treat⁃ments, [i.e. (1) CK, (2) addition of lab⁃cultured Cyanobacteria and (3) addition of wild Cyanobacteria collected from a lake] . Abundance, community composition and diversity of AOB were analyzed with the real⁃time qPCR and molecular bi⁃ological methods, like clone library, etc.. Results show that (1) Treatments 2 and 3 were much higher than Treatment 1 in abundance and community diversity of AOB;( 2) N. oligotropha group of Nitrosomonas was the dominant AOB group, ac⁃counting for approximately 75% of the total AOB community in the surface sediments;and ( 3) Compared to Treatment 1, Treatments 2 and 3 were found to have some new AOB groups, such as N. communis and Nitrosospira. The findings indi⁃cate that N. oligotropha is absolutely the dominant group in all the treatments, and withering of Cyanobacteria bloom may improve AOB in the surface lake sediments in both abundance and

  10. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  11. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  12. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  13. Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp. (MB1)

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Naik, C.G.; Rodrigues, C.

    . In the present study, we used an organic solvent-tolerant marine bacterium, Moraxella sp. MB1. 16S rRNA sequencing revealed that the bacterium shows 98% similarity with an uncultured marine bacterium with gene bank accession number AY936933. This bacterium...

  14. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  15. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris.

    Science.gov (United States)

    Chen, Zhangran; Zhang, Jingyan; Lei, Xueqian; Zhang, Bangzhou; Cai, Guanjing; Zhang, Huajun; Li, Yi; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2014-10-01

    Experiments were conducted to find out the molecular features, infection process of a special alga plaque-forming microorganism and its potential influence on the biomass of Chlorella vulgaris during the infection process. Direct contact between the algal cell and the bacterium may be the primary steps needed for the bacterium to lyse the alga. Addition of C. vulgaris cells into f/2 medium allowed us obtain the object bacterium. The 16S rRNA gene sequence comparisons results showed that the plaque-forming bacterium kept the closest relationship with Labrenzia aggregata IAM 12614(T) at 98.90%. The existence of the bacterium could influence both the dry weight and lipid content of C. vulgaris. This study demonstrated that direct cell wall disruption of C. vulgaris by the bacterium would be a potentially effective method to utilize the biomass of microalgae.

  16. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  17. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  18. Liver abscess associated with an oral flora bacterium Streptococcus anginosus

    Directory of Open Access Journals (Sweden)

    Hava Yılmaz

    2012-03-01

    Full Text Available Viridans group Streptococcus, a bacterium of the oral flora has a low-virulence and rarely causes liver abscess. A 40-yearoldmale patient was admitted to the hospital complaining of high fever and malaise. A physical examination revealedpoor oral hygiene; there were caries on many teeth, and he had hepatomegaly. A hepatic abscess was identified inhis abdominal tomography. Streptococcus anginosus was isolated from the drainage material, and the bile ducts werenormal in his MRI cholangiography. An immunocompetent case of liver abscess caused by Streptococcus anginosusoriginated most probably from oral flora is presented here. J Microbiol Infect Dis 2012; 2(1:33-35

  19. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  20. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    Directory of Open Access Journals (Sweden)

    S. A. Ahmad

    2013-01-01

    Full Text Available A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue. Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  1. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    Science.gov (United States)

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  2. Pathogenesis of helicobacter pylori infection: Bacterium and host relationship

    Directory of Open Access Journals (Sweden)

    Sokić-Milutinović Aleksandra

    2004-01-01

    Full Text Available Helicobacter pylori (H. pylori colonizes the gastric mucosa of a half of the mankind. Duodenal ulcer is found in 15-25%, t gastric ulcer in 13%, while gastric adenocarcinoma develops in 1% of all infected individuals. Pathogenesis of H. pylori infection is related to the virulence factors of the bacterium, environmental (dietary habits, hygiene, stress and host factors (age, sex, blood type. Colonization of the gastric mucosa is related to the motility of the bacterium, presence of lipopolysacharide (LPS and various bacterial enzymes. Gastric mucosal injury is the result of H. pylori LPS, vacuolization cytotoxin (vacA, cytotoxin associated protein (cagA, heat shock proteins and factors responsible for neutrophil chemotaxis and activity. H. pylori colonizes the gastric mucosa and zones of ectopic gastric epithelium. H. pylori infection is transmitted via oral-oral, fecal-oral and iatrogenic way (during endoscopy. Higher prevalence of the infection is associated with lower socioeconomic level, lack of drinking water, and living in a community. Acute H. pylori gastritis is superficial pangastritis progressing into the chronic phase after 7-10 days. Gastric mucosal atrophy and intestinal metaplasia can develop during the course of H. pylori infection. Clearly defined factors that influence the outcome of H. pylori infection include bacterial strain, distribution of gastritis, acid secretion and gastric mucosal atrophy.

  3. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  4. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA seq...

  5. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  6. Roseomonas gilardii subsp rosea, a pink bacterium associated with bacteremia: the first case in Thailand.

    Science.gov (United States)

    Srifuengfung, Somporn; Tharavichitkul, Prasit; Pumprueg, Satchana; Tribuddharat, Chanwit

    2007-09-01

    Roseomonas is a pink-pigmented, non-fermentative, gram-negative coccobacillus bacterium. Human infections caused by Roseomonas are very rare. We report the first case of bacteremia associated with Roseomonas gilardii subsp rosea in Thailand. The bacterium was isolated from blood culture and identified by cellular morphology, characteristics of colonies on blood agar, extensive biochemical tests and 16S ribosomal DNA sequencing.

  7. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8

    OpenAIRE

    2014-01-01

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  8. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8.

    Science.gov (United States)

    Deveau, A; Gross, H; Morin, E; Karpinets, T; Utturkar, S; Mehnaz, S; Martin, F; Frey-Klett, P; Labbé, J

    2014-01-09

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  9. Impact of Short-Term Acidification on Nitrification and Nitrifying Bacterial Community Dynamics in Soilless Cultivation Media

    Science.gov (United States)

    Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-01-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems. PMID:22773643

  10. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    Science.gov (United States)

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  11. Characterisation of an unusual bacterium isolated from genital ulcers.

    Science.gov (United States)

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  12. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  13. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  14. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    Energy Technology Data Exchange (ETDEWEB)

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H. [Cornell Univ., Ithaca, NY (United States)] [and others

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  15. Effect of analgesics and their derivatives on antibiotic resistance of environmental microbes.

    Science.gov (United States)

    Dhanapal, L P; Morse, A N

    2009-01-01

    This research is a preliminary study conducted to determine the effects of aspirin (acetyl-salicylic acid) and salicylic acid (analgesics and their derivatives) on the antibiotic resistance of ammonia oxidizing bacterium (AOB) (a non-pathogenic environmental microbe) cultured from the Texas Tech University-Water Recovery System that treats a space related wastewater for NASA. The effect of salicylic acid was investigated by obtaining the minimal inhibition concentration (MIC) of antibiotics (amoxicillin, ciprofloxacin, and nalidixic acid) in the presence of aspirin and salicylic acid. The possibility of transfer of resistance genes between unrelated species was investigated by analyzing the similarity of the AcrA protein (a multi-drug efflux protein) in Nitrosomonas europaea, Escherichia coli and Salmonella enterica. The protein alignment analysis was done using ExPASy, a proteomics tool. The results of this preliminary study indicated that the antibiotic resistance of AOBs increased in the presence of aspirin and salicylic acid and similarities in the AcrA protein of different species indicated the likelihood of possible resistance transfer between the species. This paper high lights the importance of research and further investigation on antibiotic resistance and resistance transfer, highlighting the number of parameters that should be considered while assessing antibiotic resistance in environmental samples.

  16. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor.

    Science.gov (United States)

    Liu, Tao; Mao, Yan-Jun; Shi, Yan-Ping; Quan, Xie

    2017-03-01

    Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

  17. The lipopolysaccharide of a chloridazon-degrading bacterium.

    Science.gov (United States)

    Weisshaar, R; Lingens, F

    1983-12-01

    Lipopolysaccharide of a chloridazon-degrading bacterium was obtained by a two-stage extraction procedure with phenol/EDTA in a yield of 0.3% of dried bacteria. The carbohydrate moiety consisted of heptose, 3-deoxyoctulosonic acid and D-glucose in a molar ratio of 1:2:2 X 3. Lipid A was composed of 1 mol 2,3-diamino-2,3-dideoxy-D-glucose, 2 mol amide-bound and 2.6 mol ester-bound fatty acids/mol. Amide-bound fatty acids were 3-hydroxydodecanoic acid and 3-hydroxyhexadecanoic acid; dodecanoic acid and R-(-)-3-hydroxydodec-5-cis-enoic acid were found to be present in ester linkage. Under conditions of acidic hydrolysis, the latter was converted into the cis and trans isomers of 5-hexyltetrahydrofuran-2-acetic acid. Dodecanoic acid was demonstrated to be linked with the hydroxy groups of the amide-bound fatty acids. The taxonomic significance of these results, especially the demonstration of 2,3-diamino-2, 3-dideoxy-D-glucose, is discussed.

  18. Presence of an unusual methanogenic bacterium in coal gasification waste.

    Science.gov (United States)

    Tomei, F A; Rouse, D; Maki, J S; Mitchell, R

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 mum wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed.

  19. Tracing the run-flip motion of an individual bacterium

    Science.gov (United States)

    Liu, Bin; Morse, Michael; Tang, Jay; Powers, Thomas; Breuer, Kenneth S.

    2012-11-01

    We have developed a digital 3D tracking microscope in which the microscope stage follows the motion of an individual motile microorganism so that the target remains focused at the center of the view-field. The tracking mechanism is achieved by a high-speed feedback control through real-time image analysis and the trace of the microorganism is recorded with submicron accuracy. We apply this tracking microscope to a study of the motion of an individual Caulobacter crescentus, a bacterium that moves up to 100 microns (or 50 body lengths) per second and reverses its direction of motion occasionally by switching the rotation direction of its single helical flagellum. By tracking the motion of a single cell over many seconds, we show how a flip event occurs with submicron resolution and how the speed of a single cell varies over time and with the rotational rate of the flagellum. We also present statistics for the run-reverse dynamics of an ensemble of cells.

  20. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    Directory of Open Access Journals (Sweden)

    Alexei Y. Kostygov

    2016-03-01

    Full Text Available We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae.

  1. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  2. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  3. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    Directory of Open Access Journals (Sweden)

    Robson Ee Han-Jen

    2013-10-01

    Full Text Available Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL. To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.

  4. New Approaches to Evaluate the Biological Degradation of RDX in Groundwater

    Science.gov (United States)

    2014-08-27

    Preparation of [13C] and [15N]-labeled RDX Custom synthesis of [13C] and [15N]-labeled RDX was completed by Dr. Steve Fallis at the Naval Air Warfare...hydroxide, and [15N]sodium nitrate. From these materials, and using synthesis protocols developed at China Lake, three stable isotope-labeled RDX...C. Layton, G. Harms, I. R. Gregory, K. G. Robinson, and G. S. Sayler. 2002. Quantification of Nitrosomonas oligotropha-like ammonia -oxidizing

  5. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    Science.gov (United States)

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  6. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  7. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Science.gov (United States)

    Hoffman, Michele T; Gunatilaka, Malkanthi K; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  8. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  9. Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli.

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch (BFB of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic

  10. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    OpenAIRE

    J. Michael eBeman; Victoria Jean Bertics; Thomas eBraunschweiler; Jesse eWilson

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation-reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another—yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly under...

  11. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    OpenAIRE

    Beman, J. M.; Bertics, Victoria J.; Braunschweiler, Thomas; Wilson, Jesse M.

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly unde...

  12. Characterization of an Endophytic Bacterium G062 Isolate with Beneficial Traits

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA

    2014-12-01

    Full Text Available An endophytic bacterium isolate G062 was characterized base on its molecular genetic potents, morphology, physiology, and biochemistry reactions. Analysis of 16S rDNA sequences of G062 showed the highest similarity to Paracoccus halophilus (98%. Detection of the phlD and prnC genes occurrence indicated that the bacterium had this antibiotic-like genes of Diacethylphloroglucinol (DAPG and pyrrolnitrin. The cells are rod shaped (0.59-0.89 x 1.85-3.3 µm, aerobic, Gram negative, non motile, non spore forming, positive catalase, positive oxydase, could reduce NO3 to N2, nitrogen fixing, producing siderophore and plant growth hormones-like compounds (IAA, Gibberellin, and zeatin, and solubilizing phosphate. The G062 isolate could grow on media containing 2.5% NaCl. Range of the temperature and pH growth were 15-40 and 5.0-9.5 oC, respectively. The bacterium did not cause red blood cells lysis. There was no hypersensitive response when it was injected into tobacco leaves, and it was not pathogenic against potato plantlets. Moreover, the bacterium promoted the growth of the potato plant and had high colonization ability. These results suggested that the bacterium had beneficial and good traits as biological agent candidate to promote potato plant growth.

  13. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted....... gingivalis exploits RBCs as a transport vehicle, rendering it inaccessible to attack by phagocytes, and by doing so plays a role in the development of systemic diseases....

  14. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  15. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  17. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  18. Atopobacter phocae gen. nov., sp. nov., a novel bacterium isolated from common seals.

    Science.gov (United States)

    Lawson, P A; Foster, G; Falsen, E; Ohlén, M; Collins, M D

    2000-09-01

    Two strains of a Gram-positive, catalase-negative, facultatively anaerobic, rod-shaped bacterium isolated from common seals were characterized using phenotypic and molecular taxonomic methods. The two strains closely resembled each other based on their biochemical characteristics, and PAGE analysis of whole-cell protein patterns confirmed their close phenotypic affinity. 16S rRNA gene sequencing showed that the two strains were genetically highly related (99.8% sequence similarity) and that they constitute a new line of descent within the lactic acid group of bacteria. The nearest phylogenetic neighbours of the unknown bacterium were Granulicatella spp., with related taxa such as enterococci, carnobacteria, Desemzia incerta, Lactosphaera pasteurii, Melissococcus plutonius, tetragenococci and vagococci more distantly related. Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium from seals be classified in a new genus as Atopobacter phocae gen. nov., sp. nov. The type strain of Atopobacter phocae is CCUG 42358T (= CIP 106392T).

  19. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  20. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.

  1. Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte Glyceria maxima

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Duyts, H.; Blom, C.W.P.M.; Laanbroek, H.J.

    1998-01-01

    The population dynamics of the chemolithoautotrophic nitrifiers Nitrosomonas europaea and Nitrobacter winogradskyi were studied in gnotobiotic microcosms fed with ammonium in response to the presence or absence of the emergent macrophyte Glyceria maxima and the heterotrophic denitrifying bacterium P

  2. Expression of the Bacillus thuringiensis mosquitocidal toxin Cry11Aa in the aquatic bacterium Asticcacaulis excentricus.

    Science.gov (United States)

    Armengol, Gemma; Guevara, Oscar Enrique; Orduz, Sergio; Crickmore, Neil

    2005-12-01

    A mosquitocidal aquatic bacterium has been developed by introducing an operon containing the cry11Aa, and p20 genes from Bacillus thuringiensis subsp. israelensis (Bti) into the gram-negative aquatic bacterium Asticcacaulis excentricus. After transformation, the cry11Aa gene was successfully expressed in recombinant A. excentricus under the tac promoter, at the level of 0.04 pg/cell. The recombinant bacteria were toxic to Aedes aegypti larvae with an LC(50) of 6.83 x 10(5) cells/mL. We believe that these bacteria may have potential as genetically engineered microorganisms for the control of mosquito larvae.

  3. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    activity. The G + C content of the cellular DNA of strain 6A was 35.2 +/- 0.8 mol%. Complete 16S rDNA sequence analysis showed that strain 6A was phylogenetically related to Caldicellulosiruptor saccharolyticus. It is proposed that the isolated bacterium be named Caldicellulosiruptor lactoaceticus sp. nov....... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  4. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    OpenAIRE

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms.

  5. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    Science.gov (United States)

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  6. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    Science.gov (United States)

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.

  7. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    Science.gov (United States)

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis.

  8. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading.

  9. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  10. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya

    OpenAIRE

    Wax, Richard; Synder, Linda; Kaplan, Louis

    1982-01-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  11. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  12. Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium Cupriavidus metallidurans

    NARCIS (Netherlands)

    Hajdu, R.; Pinheiro, J.P.; Galceran, J.; Slaveykova, V.I.

    2010-01-01

    The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on

  13. Photobacterium marinum sp. nov., a marine bacterium isolated from a sediment sample from Palk Bay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; VijayaBhaskar, Y.; Bhumika, V.; AnilKumar, P.

    histaminum sp. nov., a histamine-producing marine bacterium. Int. J. Syst. Bacteriol. 44, 631-636. [20] Ostle, A.G., Holt, J.G. (1982) Nile blue A as fluorescent stain for poly-b-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238-241. [21] Park, Y...

  14. Fluoroacetate biosynthesis from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674.

    Science.gov (United States)

    Huang, Sheng; Ma, Long; Tong, Ming Him; Yu, Yi; O'Hagan, David; Deng, Hai

    2014-07-21

    Genome sequencing identified a fluorinase gene in the marine bacterium Streptomyces xinghaiensis NRRL B-24674. Fermentation of the organism with inorganic fluoride (2 mM) demonstrated that the organism could biosynthesise fluoroacetate and that fluoroacetate production is sea-salt dependent. This is the first fluorometabolite producing microorganism identified from the marine environment.

  15. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  16. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  17. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    Science.gov (United States)

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  18. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1 sup(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate...

  19. Marinilabilia nitratireducens sp. nov., a lipolytic bacterium of the family Marinilabiliaceae isolated from marine solar saltern

    Digital Repository Service at National Institute of Oceanography (India)

    Shalley, S.; PradipKumar; Srinivas, T.N.R.; Suresh, K.; AnilKumar, P.

    A Gram-negative, rod shaped, motile bacterium, was isolated from a marine solar saltern sample collected from Kakinada, India. Strain AK2 sup(T) was determined to be positive for nitrate reduction, catalase, Ala-Phe-Pro-arylamidase, beta...

  20. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    Science.gov (United States)

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  1. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  2. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    Science.gov (United States)

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  3. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  4. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    Science.gov (United States)

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors.

  5. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    ’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...

  6. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    Science.gov (United States)

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  7. The construction of an engineered bacterium to remove cadmium from wastewater.

    Science.gov (United States)

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  8. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Ravinder, K.; Korpole, S.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T , was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, L-proline arylamidase...

  9. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen,; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  10. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus

    NARCIS (Netherlands)

    Gaillard, Isabelle; Slotboom, Dirk-Jan; Knol, Jan; Lolkema, Juke S.; Konings, Wil N.

    1996-01-01

    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli

  11. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic solve

  12. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-11-12

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia.

  13. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    Science.gov (United States)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  14. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya.

    Science.gov (United States)

    Wax, R; Synder, L; Kaplan, L

    1982-10-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  15. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    Science.gov (United States)

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  16. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  17. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  18. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  19. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola

    Directory of Open Access Journals (Sweden)

    Goryanin Igor

    2009-02-01

    Full Text Available Abstract Background In silico analyses provide valuable insight into the biology of obligately intracellular pathogens and symbionts with small genomes. There is a particular opportunity to apply systems-level tools developed for the model bacterium Escherichia coli to study the evolution and function of symbiotic bacteria which are metabolically specialised to overproduce specific nutrients for their host and, remarkably, have a gene complement that is a subset of the E. coli genome. Results We have reconstructed and analysed the metabolic network of the γ-proteobacterium Buchnera aphidicola (symbiont of the pea aphid as a model for using systems-level approaches to discover key traits of symbionts with small genomes. The metabolic network is extremely fragile with > 90% of the reactions essential for viability in silico; and it is structured so that the bacterium cannot grow without producing the essential amino acid, histidine, which is released to the insect host. Further, the amount of essential amino acid produced by the bacterium in silico can be controlled by host supply of carbon and nitrogen substrates. Conclusion This systems-level analysis predicts that the fragility of the bacterial metabolic network renders the symbiotic bacterium intolerant of drastic environmental fluctuations, whilst the coupling of histidine production to growth prevents the bacterium from exploiting host nutrients without reciprocating. These metabolic traits underpin the sustained nutritional contribution of B. aphidicola to the host and, together with the impact of host-derived substrates on the profile of nutrients released from the bacteria, point to a dominant role of the host in controlling the symbiosis.

  20. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Zhao-Ming Gao; Jiang-Tao Li; Salim Bougouffa; Ren Mao Tian; Vladimir B.Bajic; Pei-Yuan Qian

    2016-01-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum,of which the metabolic processes and ecological importance remain unclear.In the present study,we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method.Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments.Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla.The genome of TCS1 (at least 1.27 Mbp)contains a full set of genes encoding core metabolic pathways,including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate.The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat.Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism.The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljungdahl pathway were also found in the genome.Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens.Compared with genomes of acetogenic bacteria,Aerophobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism,sulfur metabolism,signal transduction and cell motility.The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2,hydrogen and sugars,and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps.

  1. Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)

    Energy Technology Data Exchange (ETDEWEB)

    Rafti, Matías [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Fac. Cs. Exactas, Universidad Nacional de La Plata, 64 y Diag. 113 (1900), La Plata (Argentina); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany); Borkenhagen, Benjamin; Lilienkamp, Gerhard [Institut für Energieforschung und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Lovis, Florian; Smolinsky, Tim; Imbihl, Ronald, E-mail: imbihl@pci.uni-hannvover.de [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover (Germany)

    2015-11-14

    The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.

  2. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake

    NARCIS (Netherlands)

    Vissers, E.W.; Blaga, C.I.; Bodelier, P.L.E.; Muyzer, G.; Schleper, C.; Sinninghe Damsté, J.S.; Tourna, M.; Laanbroek, H.J.

    2013-01-01

    The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding o

  3. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  4. Intact polar lipids of ammonia-oxidizing Archaea: structural diversity application in molecular ecology

    NARCIS (Netherlands)

    Pitcher, A.M.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by non-extremophilic Crenarchaeota to interpret the presence,

  5. QPCR quantification of ammonia oxidizing bacteria: What should the target be?

    DEFF Research Database (Denmark)

    Musovic, Sanin; Palomo, Alejandro; Diwan, Vaibhav

    be carried out by targeting either the 16S rRNA gene or amoA, for which standard primer sets are widely used. Using these two approaches to quantify AOB abundance across three Danish rapid sand filters (RSFs) revealed a significant discrepancy: in two RSFs, the amoA-based qPCR consistently yielded estimate...

  6. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas;

    2010-01-01

    Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH3) and other volatile compounds during storage. The occurrence of NO2- and NO3- in the crusts indicate the presence of actively metabolizing NH3 oxidizing bacteria (AOB) which may...... microorganisms, including AOB. The microbial activity may thus contribute to a considerable reduction of ammonia emissions from slurry tanks with well-developed crusts....

  7. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation.

    Science.gov (United States)

    Galand, Pierre E; Lovejoy, Connie; Hamilton, Andrew K; Ingram, R Grant; Pedneault, Estelle; Carmack, Eddy C

    2009-04-01

    Evidence of microbial zonation in the open ocean is rapidly accumulating, but while the distribution of communities is often described according to depth, the other physical factors structuring microbial diversity and function remain poorly understood. Here we identify three different water masses in the North Water (eastern Canadian Arctic), defined by distinct temperature and salinity characteristics, and show that they contained distinct archaeal communities. Moreover, we found that one of the water masses contained an increased abundance of the archaeal alpha-subunit of the ammonia monooxygenase gene (amoA) and accounted for 70% of the amoA gene detected overall. This indicates likely differences in putative biogeochemical capacities among different water masses. The ensemble of our results strongly suggest that the widely accepted view of depth stratification did not explain microbial diversity, but rather that parent water masses provide the framework for predicting communities and potential microbial function in an Arctic marine system. Our results emphasize that microbial distributions are strongly influenced by oceanic circulation, implying that shifting currents and water mass boundaries resulting from climate change may well impact patterns of microbial diversity by displacing whole biomes from their historic distributions. This relocation could have the potential to establish a substantially different geography of microbial-driven biogeochemical processes and associated oceanic production.

  8. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Science.gov (United States)

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any) do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited) host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources. PMID:27242732

  9. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers

    Directory of Open Access Journals (Sweden)

    Petra eBukovská

    2016-05-01

    Full Text Available Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass, while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources.

  10. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  11. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  12. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Science.gov (United States)

    Banerjee, Aulie; Supakar, Subhrangshu; Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13)C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  13. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  14. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    Institute of Scientific and Technical Information of China (English)

    GAO Jun; PAN Hongmiao; YUE Haidong; SONG Tao; ZHAO Yong; CHEN Guanjun; Wu Longfei; XIAO Tian

    2006-01-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in dimeter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gran stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  15. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  16. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    Science.gov (United States)

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.

  17. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  18. Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya.

    Science.gov (United States)

    Streicher, S L; Tyler, B

    1981-01-01

    The enzymatic activity of glutamine synthetase [GS; L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] from the Gram-positive bacterium Streptomyces cattleya is regulated by covalent modification. In whole cells containing high levels of GS the addition of ammonium chloride leads to a rapid decline in GS activity. Crude extracts prepared from such ammonia-shocked cells had very low levels of GS activity as measured by biosynthetic and gamma-glutamyltransferase assays. Incubation of the crude extracts with snake venom phosphodiesterase restored GS activity. In cell extracts, GS was also inactivated by an ATP- and glutamine-dependent reaction. Radioactive labeling studies demonstrated the incorporation of an AmP moiety into GS protein upon modification. Our results suggest a covalent modification of GS in a Gram-positive bacterium. This modification appears to be adenylylation of the GS subunit similar to that found in the Gram-negative bacteria.

  19. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    Science.gov (United States)

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  20. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  1. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  2. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  3. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  4. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  5. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    Science.gov (United States)

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  6. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  7. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.

    Science.gov (United States)

    Roldán, M D; Blasco, R; Caballero, F J; Castillo, F

    1998-01-01

    The phototrophic bacterium Rhodobacter capsulatus detoxified p-nitrophenol and 4-nitrocatechol. The bacterium tolerated moderate concentrations of p-nitrophenol (up to 0.5 mM) and degraded it under light at an optimal O2 pressure of 20 kPa. The bacterium did not metabolize the xenobiotic in the dark or under strictly anoxic conditions or high O2 pressure. Bacterial growth with acetate in the presence of p-nitrophenol took place with the simultaneous release of nonstoichiometric amounts of 4-nitrocatechol, which can also be degraded by the bacterium. Crude extracts from R. capsulatus produced 4-nitrocatechol from p-nitrophenol upon the addition of NAD(P)H, although at a very low rate. A constitutive catechol 1, 2-dioxygenase activity yielding cis,cis-muconate was also detected in crude extracts of R. capsulatus. Further degradation of 4-nitrocatechol included both nitrite- and CO2-releasing steps since: (1) a strain of R. capsulatus (B10) unable to assimilate nitrate and nitrite released nitrite into the medium when grown with p-nitrophenol or 4-nitrocatechol, and the nitrite concentration was stoichiometric with the 4-nitrocatechol degraded, and (2) cultures of R. capsulatus growing microaerobically produced low amounts of 14CO2 from radiolabeled p-nitrophenol. The radioactivity was also incorporated into cellular compounds from cells grown with uniformly labeled 14C-p-nitrophenol. From these results we concluded that the xenobiotic is used as a carbon source by R. capsulatus, but that only the strain able to assimilate nitrite (E1F1) can use p-nitrophenol as a nitrogen source.

  8. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2014-01-01

    Full Text Available Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  9. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography.

    Science.gov (United States)

    Dai, Wei; Schmid, Michael F; King, Jonathan A; Chiu, Wah

    2014-06-01

    Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  10. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    OpenAIRE

    Wei Dai; Schmid, Michael F.; King, Jonathan A.; Wah Chiu

    2014-01-01

    Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  11. Draft Genome Sequence of Agarivorans albus Strain MKT 106T, an Agarolytic Marine Bacterium.

    Science.gov (United States)

    Yasuike, Motoshige; Nakamura, Yoji; Kai, Wataru; Fujiwara, Atushi; Fukui, Youhei; Satomi, Masataka; Sano, Motohiko

    2013-07-18

    Agarivorans albus is a Gram-negative, strictly aerobic, and agar-hydrolyzing marine bacterium. We present the draft genome sequence of the A. albus strain MKT 106(T), which is composed of 67 contigs (>500 bp) totaling 4,734,285 bp and containing 4,397 coding DNA sequences (CDSs), four rRNAs, and 64 tRNA sequences.

  12. Genome Sequence of Marine Bacterium Idiomarina sp. Strain 28-8, Isolated from Korean Ark Shells.

    Science.gov (United States)

    Kim, Woo-Jin; Kim, Young-Ok; Kim, Dong-Gyun; Nam, Bo-Hye; Kong, Hee Jeong; Jung, Hyungtaek; Lee, Sang-Jun; Kim, Dong-Wook; Kim, Dae-Soo; Chae, Sung-Hwa

    2013-10-03

    Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.

  13. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

  14. Biological control and endophytism of the olive root bacterium Pseudomonas fluorescens PICF7

    OpenAIRE

    Maldonado González, Mercedes

    2015-01-01

    Olive (Olea europaea L.) has always been a fundamental crop in the Mediterranean Basin. Driven by the fact, among others, that an increasing number of scientific reports highlight the benefits that olive oil consumption has for human health, olive tree cultivation has spread worldwide to other regions with Mediterranean-type climate. Two relevant pathogens affecting olive trees are the hemibiotrophic soil-borne fungus Verticillium dahliae and the bacterium Pseudomonas savastano...

  15. Draft Genome Sequence of the Cyanide-Utilizing Bacterium Pseudomonas fluorescens Strain NCIMB 11764

    OpenAIRE

    2012-01-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  16. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.

    Science.gov (United States)

    Vilo, Claudia A; Benedik, Michael J; Kunz, Daniel A; Dong, Qunfeng

    2012-12-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  17. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate.

  18. Complete genome sequence of Rufibacter tibetensis strain 1351, a radiation-resistant bacterium from Tibet plateau.

    Science.gov (United States)

    Zhang, Yi; Yu, Can; Zhou, Mengzhou; Tang, Jingfeng; Li, Xin; Wang, Zhi; Li, Zhijun; Yao, Juan; Li, Pei; Zheng, Guobin; Chen, Xiong; Dai, Jun

    2015-12-20

    Rufibacter tibetensis strain 1351, isolated from the soil of the Tibet plateau of China, belongs to the family of Cytophagaceae. It is a red-pigmented, gram-negative, strictly aerobic and rod-shaped bacterium and shows resistance to UV radiation. Here, we report its complete genome sequence, which can help us find the key genes of the carotenoid biosynthesis and resistance to UV radiation.

  19. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  20. Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium.

    Science.gov (United States)

    Kohli, Puneet; Dua, Ankita; Sangwan, Naseer; Oldach, Phoebe; Khurana, J P; Lal, Rup

    2013-11-14

    Here, we report the draft genome sequence of the hexachlorocyclohexane (HCH)-degrading bacterium Sphingobium ummariense strain RL-3, which was isolated from the HCH dumpsite located in Lucknow, India (27°00'N and 81°09'E). The annotated draft genome sequence (4.75 Mb) of strain RL-3 consisted of 139 contigs, 4,645 coding sequences, and 65% G+C content.

  1. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    OpenAIRE

    Xianzhen Li; Bo Zhu; Nuo Li; Fang Chen; Yan Han

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relative...

  2. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  3. Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L.

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2012-12-01

    Full Text Available The interface between endophytes and nanomaterials is a relatively new and unexplored area the present study evaluates screening of bacterial endophytes from surfaced sterilized leaf and stem segments of agro economical plant Coffee arabica L. towards synthesis of silver nanoparticles and antimicrobial metabolites. Among thirty two endophytes isolated nine isolates exhibited antimicrobial activity among which one bacterium was capable of extracellular synthesis of silver nanoparticles upon evaluation of supernatant with 1 mM of silver nitrate, biosynthesis of silver nanoparticles were assessed by UV-Visible Spectroscopy and the bacterium was capable of secreting antimicrobial secondary metabolites upon crude ethyl acetate extract evaluated for antimicrobial activity against panel of both gram positive and gram negative as well as phytopathogenic fungi. Partial characterization was carried out via bioautographic technique with Rf value 0.3 and 0.6 exhibiting antimicrobial activity against MRSA strain. Further studies in this area will be promising enough for molecular characterization of endophytic bacterium and chemical profiling of antimicrobial metabolites at the same time physiochemical characterization of nanoparticles will be valuable to reveal the size and shape. 

  4. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  5. Widespread association of a Rickettsiales-like bacterium with reef-building corals.

    Science.gov (United States)

    Casas, Veronica; Kline, David I; Wegley, Linda; Yu, Yanan; Breitbart, Mya; Rohwer, Forest

    2004-11-01

    White band disease type I (WBD I) has been a major cause of the dramatic decline of Acroporid coral populations throughout the Caribbean during the last two decades, yet the aetiological agent of this disease is unknown. In this study, the bacterial communities associated with both healthy and diseased Acropora species were compared by 16S rDNA analyses. The bacterial communities of both healthy and diseased Acropora spp. were dominated by a single ribotype with 90% identity to a bacterium in the order Rickettsiales. Screening by nested PCR specific to the coral-associated Rickettsiales 1 (CAR1) bacterium showed that this microbe was widespread in both healthy and diseased A. cervicornis and A. palmata corals from 'healthy' (i.e. low WBD I incidence) and 'stressed' reefs (i.e. high WBD I incidence). These results indicate that there were no dramatic changes in the composition of the microbial community associated with WBD I. CAR1 was also associated with non-Acroporid corals of the Caribbean, as well as with two Acroporid corals native to the Pacific. CAR1 was not present in the water column. This bacterium was also absent from preserved Caribbean Acroporid samples collected between 1937 and 1980 before the outbreak of WBD I. These results suggest CAR1 is a relatively new bacterial associate of Acroporids and that a non-bacterial pathogen might be the cause of WBD I.

  6. Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater.

    Science.gov (United States)

    Feng, Zehua; Peng, Lin; Chen, Mei; Li, Mengying

    2012-09-01

    An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0-5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.

  7. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    Science.gov (United States)

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  8. Epidemiological analysis of acute diarrhea in children and inspection of pathogenic bacterium, viruses and other microorganisms

    Institute of Scientific and Technical Information of China (English)

    Li Hu; Yan Wang

    2016-01-01

    Objective:To investigate of epidemiological analysis of acute diarrhea in children, and to discuss the inspection of pathogenic bacterium, viruses and other microorganisms, in order to provide theoretical basis for the prevention and treatment of the disease.Methods: Five hundred and sixty-two cases of children with acute diarrhea treated in our center were selected as the research subjects, whose epidemiological data were analyzed. The fecal samples were collected for bacterial culture and identification, and the distribution characteristics of pathogenic bacteria were collected, then their relative characteristics were analyzed.Results:Children with acute diarrhea were more common in men aged 1-2 years old,and the incidence of time was more concentrated in June-August. There were four hundred and eighty-nine strains in the five hundred and sixty-two cases of children, among which the rate of viruses was the most, and the human rotavirus accounted for 30.67%, and the Shigella bacterium accounted for 20.65% in the total microorganisms, which was the highest detection rate of pathogenic bacterium. Rotavirus infection occured mainly in Winter, but the bacterial and goblet viral diarrhea was prevalent in summer.Conclusions:Children with acute diarrhea were more common in men aged 1-2 years old , and the rate of viruses in the detection of microorganisms is the highest, so targeted treatment should be taken according to the type of infection.

  9. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    Science.gov (United States)

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.

  10. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    Directory of Open Access Journals (Sweden)

    Esther Gómez

    Full Text Available Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.

  11. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium

    Institute of Scientific and Technical Information of China (English)

    WANG Gaoge; LIN Wei; ZHANG Lijing; YAN Xiaojun; DUAN Delin

    2004-01-01

    TdT-mediated dUTP-biotin nick end labeling (TUNEL) is a sensitive and valid method for detecting DNA cleavage in programmed cell death (PCD). Using this method, DNA cleavage was observed in Laminaria japonica sporophytic tissues, which were infected with alginic acid decomposing bacterium. It was found that DNA cleavage occurred 5 min after the infection, the fragments with 3′-OH groups of cleaved nuclear DNA increased with time of infection and spread from the infection site. Although no typical DNA ladder (200 bp/180 bp) was detected by routine agarose gel electrophoresis, the cleavage of nuclear DNA fragments of 97~48.5 kb could be detected by pulsed field gel electrophoresis (PFGE). By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 activity has been detected in response to the infection of alginic acid decomposing bacterium. Our results are similar to the observations in hypersensitive response (HR) of higher plant, suggesting that the rapid cell death of L. Japonica infected by alginic acid decomposing bacterium might be involved in PCD, and indicating that the occurrence of PCD is an active defense process against the pathogen's infection.

  12. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  13. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1.

    Directory of Open Access Journals (Sweden)

    Samanbir S Kalirai

    Full Text Available There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD spectra measured with scanning transmission X-ray microscopy (STXM. We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment.

  14. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    Science.gov (United States)

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  15. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten Silvia; Miller, Mette; Cox, Raymond Pickett

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3...

  16. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  17. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-04-21

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens.

  18. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  19. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol.

    Science.gov (United States)

    Adamse, A D; Velzeboer, C T

    1982-01-01

    Isolation and characterization of a new, obligatory, anaerobic, methylotrophic, homoacetogenic bacterium is described. This bacterium is a mesophilic, motile, slightly curved rod that demonstrated a negative Gram reaction, formed spherical, (sub)terminal spores and performed a homoacetic fermentation with methanol, a CO2-2H2-gas mixture, glucose or fructose, respectively, as the substrate. The methanol fermentation proceeded only when a suitable amount of NaHCO3 was available in the nutrient solution supplied.

  20. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa

    Directory of Open Access Journals (Sweden)

    FF. Campos

    Full Text Available Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  1. A Literature Review of the Bacterium Klebsiella spp.: Grays Harbor and Chehalis River Improvements to Navigation Environmental Studies,

    Science.gov (United States)

    1981-04-01

    Taxonomy of Klebsiella pneumoniae isolated from pulp/paper mill wastewater . Environmental Protection Agency, 660/2-75-024. Knittel, M. D. 1975...AD-AI 263 CORPS OF ENGINEERS SEATTLE WASH SEATTLE DISTRICT F/6 13/2 L.ITERATURE REVIEW OF THE BACTERIUM KLEBSIELLA SPP.I BRAYS HAR--ETC(Ul...UNCLASSIFIED N Ehhmmmhhh TA GRAYS HARBOR AND CHEHALIS RIVER IMPROVEMENTS TO NAVIGATIO ENVIRONMENTAL STUDIES A LITERATURE REVIEW OF THE BACTERIUM KLEBSIELLA SPP

  2. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  3. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    Science.gov (United States)

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  4. [Analysis of the changes of microbial community structure on bio-carrier of recirculating aquaculture systems (RAS)].

    Science.gov (United States)

    Zhang, Hai-Geng; Ma, Shao-Sai; Li, Qiu-Fen; Fu, Xue-Jun; Zhang, Yan; Qu, Ke-Ming

    2011-01-01

    In order to study the variation of microbial community structure and the mechanism of denitrification on bio-carrier in recirculating aquaculture systems (RAS) during the periods of bio-film formation and operation the systems, traditional microbiological methods were applied to count the quantity of heterotrophic bacteria, ammonia oxidize bacteria and nitrite oxidize bacteria. The amplified products of variable V3 region of bacterial 16S rDNA were separated by using denaturing gradient gel electrophoresis (DGGE). And bacterial community DNA fingerprint was obtained. The sequences retrieved from the DGGE bands were used for homology analysis and construction of phylogenetic tree. It presented a trend that the quantity of the three types of bacteria increased gradually to a top and then fallen slowly to a stable level. The composition of microbial community of bio-carrier was very abundant in all periods, and the Shannon index was 1.53, 1.44, 1.57, 1.08, 1.27 and 1.30, respectively. During different periods, there was a certain shift in the microbial community structure, while the C(s) value (similar index) in two adjacent periods was high, indicating the variation and succession of the microbial community was slow and regular. Several bacteria had an effect on removal of pollutants for farming water and the effluent water quality could meet the requirements of high-density culture. Among them, Proteobacteria and Flavobacteria were main communities. The Nitrosomonas and some other facultative anaerobic bacteria (Flavobacteriaceae bacterium) were identified, which indicated that there may be coexisted pathways of nitrification and denitrification in bio-filter.

  5. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Science.gov (United States)

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  6. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio).

    Science.gov (United States)

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  7. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    Science.gov (United States)

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  8. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    Science.gov (United States)

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.

  9. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    OpenAIRE

    Vasilyeva, Lina V; Omelchenko, Marina V.; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N.; Zavarzin, George A

    2006-01-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at lo...

  10. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  11. A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon

    OpenAIRE

    2015-01-01

    We report a sustainable approach to obtain carbon materials with nitrogen and phosphorus dual functionalities from a common bacterium strain (S. aureus) as a highly efficient hydrogen-evolution reaction (HER) catalyst. With mesoporous structure introduced by ZnCl2 salt and cathodic activation, it demonstrates an onset overpotential as low as 76 mV, a Tafel slope of 58.4 mV dec(-1) and a large normalized exchange current density of 1.72 x 10(-2) mA cm(-2), which are comparable to those of hith...

  12. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...... was found, but no single stranded intermediates, characteristic of rolling circle replication, were found on Southern blots. The larger plasmid, pBAL, was found to be a 8294 bp plasmid with a GC content of 39%. It revealed 17 ORFs, of which three showed similarity at the amino acid (aa) level to known...

  13. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    OpenAIRE

    2010-01-01

    Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical pro...

  14. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment.

  15. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  16. Dynamic detection of a single bacterium: nonlinear rotation rate shifts of driven magnetic microsphere stages

    CERN Document Server

    McNaughton, B H; Kopelman, R; Agayan, Rodney R.; Kopelman, Raoul; Naughton, Brandon H. Mc

    2006-01-01

    We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed average shift in the nonlinear rotation rate changed by a factor of ~3.8.

  17. Isolation and identification of a novel alginate-degrading bacterium, Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Xiao-wei Zhao

    2008-03-01

    Full Text Available An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou Isles in the East China Sea. The strain, designated WZUH09-1, is a short rod, gram-negative, obligatory aerobic, grows under the following conditions: 5-40oC, pH 3-9, and 0-2 times of the seawater concentration, and is able to depolymerize alginates with higher enzyme activity than that of others reported so far.

  18. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    Science.gov (United States)

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  19. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    Science.gov (United States)

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates.

  20. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  1. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  2. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  3. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    Science.gov (United States)

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  4. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  5. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  6. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis.

    Science.gov (United States)

    Loyola-Machado, Ana Carolina; Azevedo-Martins, Allan Cézar; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Galina, Antonio; Motta, Maria Cristina M

    2017-02-28

    The mutualistic relationship between trypanosomatids and their respective endosymbiotic bacteria represents an excellent model for studying metabolic co-evolution since the symbiont completes essential biosynthetic routes of the host cell. In this work, we investigated the influence of the endosymbiont on the energy metabolism of Strigomonas culicis by comparing the wild strain with aposymbiotic protists. The bacterium maintains a frequent and close association with glycosomes, which are distributed around the prokaryote. Furthermore, 3D reconstructions revealed that the shape and distribution of glycosomes are different in symbiont-bearing protists compared to symbiont-free cells. Results of bioenergetic assays showed that the presence of the symbiont enhances the O2 consumption of the host cell. When the quantity of intracellular or released glycerol was evaluated, the aposymbiotic strain presented higher values when compared to symbiont-containing cells. Furthermore, inhibition of oxidative phosphorylation by potassium cyanide increased the rate of glycerol release and slightly diminished the ATP content in cells without the symbiont, indicating that the host trypanosomatid enhances its fermentative activity when the bacterium is lost.

  7. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  8. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    Science.gov (United States)

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  9. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Institute of Scientific and Technical Information of China (English)

    Swetha Sunkar; C Valli Nachiyar

    2012-01-01

    Objective:To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods: The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results:The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions:The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity.

  10. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  11. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  12. Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates.

    Science.gov (United States)

    Song, Yong-Su; Seo, Dong-Jun; Ju, Wan-Taek; Lee, Yong-Seong; Jung, Woo-Jin

    2015-12-01

    Various chitin substrates were used to investigate the properties of enzymes produced from the chitinase-producing bacterium Paenibacillus chitinolyticus MP-306 against phytopathogens. The MP-306 bacterium was incubated in nine culture media [crab shell powder chitin (CRS), chitin-protein complex powder (CPC), carboxymethyl-chitin powder (CMC), yeast extract only (YE), LB (Trypton, NaCl, and yeast extract), GT (Trypton, NaCl, and glucose), crab shell colloidal chitin (CSC), squid pen powder chitin (SPC), and cicada slough powder chitin (CSP)] at 30 °C for 3 days. Chitinase isozymes in CPC medium were expressed strongly as CN1, CN2, CN3, CN4, CN5, and CN6 bands on native-PAGE gels. Chitinase isozymes in CPC and CMC medium were expressed as 13 bands (CS1-CS13) on SDS-PAGE gels. Chitinase isozymes were expressed strongly on SDS-PAGE gels as two bands (CS6 and CS8) on YE and LB medium and 13 bands (CS1-CS13) on SPC medium. In crude enzyme, chitinase isozymes at pH 7 and pH 9 in chitin media appeared strongly on SDS-PAGE gels. Partial purified enzyme indicated high stability of enzyme activity at various temperatures and pHs in chitin medium, while these enzymes indicated low activity staining of enzyme on electrophoresis gels at various temperatures and pHs condition of chitin medium.

  13. Economic game theory to model the attenuation of virulence of an obligate intracellular bacterium

    Directory of Open Access Journals (Sweden)

    Damian Tago

    2016-08-01

    Full Text Available Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host’s defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g. with Ehrlichia ruminantium, there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  14. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Science.gov (United States)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  15. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  16. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  17. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    Science.gov (United States)

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.

  18. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment.

  19. Marine bacterium strain screening and pyrethroid insecticide-degrading efficiency analysis

    Science.gov (United States)

    Sun, Aili; Liu, Jinghua; Shi, Xizhi; Li, Dexiang; Chen, Jiong; Tang, Daojun

    2014-09-01

    A pyrethroid insecticide-degrading bacterium, strain HS-24, was isolated from an offshore seawater environment. The strain, which can degrade cypermethrin (CYP) and deltamethrin (DEL), was identified as Methylophaga sp. The optimal culture and degradation conditions for CYP and DEL by strain HS-24 is pH 7 at 28°C. Under optimum culture conditions, strain HS-24 exhibited a broad degradation concentration range of 100, 200, 400, 600, and 800 mg/L for CYP and DEL. The metabolic intermediates were analyzed by NMR, which provided strong evidence that CYP and DEL removal occurred mainly because of a biological process. The toxicity of the degradation products of strain HS-24 was studied simultaneously by measuring the light output of the luminescence bacterium. This demonstrated that the biodegradation ability of strain HS-24 significantly decreased the toxicity of CYP- and DEL-contaminated aquaculture seawater. Finally, the findings of this paper indicate that strain HS-24 is thus revealed as a biological agent for the remediation of marine aquatic environments.

  20. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds.

    Science.gov (United States)

    Parrilli, Ermengilda; Papa, Rosanna; Tutino, Maria Luisa; Sannia, Giovanni

    2010-01-01

    Microbial degradation of aromatic hydrocarbons has been studied with the aim of developing applications for the removal of toxic compounds. Efforts have been directed toward the genetic manipulation of mesophilic bacteria to improve their ability to degrade pollutants, even though many pollution problems occur in sea waters and in effluents of industrial processes which are characterized by low temperatures. From these considerations the idea of engineering a psychrophilic microorganism for the oxidation of aromatic compounds was developed.In a previous paper it was demonstrated that the recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (PhTAC/tou) expressing a toluene-o-xylene monooxygenase (ToMO) is able to convert several aromatic compounds into corresponding catechols. In our work we improved the metabolic capability of PhTAC/tou cells by combining action of recombinant ToMO enzyme with that of the endogenous P. haloplanktis TAC125 laccase-like protein. This strategy allowed conferring new and specific degradative capabilities to a bacterium isolated from an unpolluted environment; indeed engineered PhTAC/tou cells are able to grow on aromatic compounds as sole carbon and energy sources. Our approach demonstrates the possibility to use the engineered psychrophilic bacterium for the bioremediation of chemically contaminated marine environments and/or cold effluents.

  1. Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea.

    Science.gov (United States)

    Ishii, Akihiro; Nakasone, Kaoru; Sato, Takako; Wachi, Masaaki; Sugai, Motoyuki; Nagai, Kazuo; Kato, Chiaki

    2002-08-01

    The dcw cluster of genes involved in cell division and cell wall synthesis from the piezophilic deep-sea bacterium Shewanella violacea was isolated and characterized. It comprises 15 open reading frames, of which the organization is mraZ-mraW-ftsL-ftsI-murE-murF-mraY-murD-ftsW-murG-murC-ftsQ-ftsA-ftsZ-envA, in that order. To analyze transcription upstream from the ftsZ gene, Northern blot and primer extension analyses were performed. The results showed that gene expression is not pressure dependent. Western blot analysis showed that the FtsZ protein is equally expressed under several pressure conditions in the range of atmospheric (0.1 MPa) to high (50 MPa) pressures. Using immunofluorescence microscopy, the FtsZ ring was observed in the center of cells at pressure conditions of 0.1 to 50 MPa. These results imply that the FtsZ protein function is not affected by elevated pressure in this piezophilic bacterium.

  2. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  3. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria.

  4. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  5. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296

    Directory of Open Access Journals (Sweden)

    Larissa Balabanova

    2016-09-01

    Full Text Available Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296 genome (“The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853” [1] providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites.

  6. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed.

  7. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability

    Institute of Scientific and Technical Information of China (English)

    SHI Shunyu; LIU Yongding; SHEN Yinwu; LI Genbao

    2005-01-01

    A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricornutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at Iow temperatures and in the dark. Different concentrations of CaCI2 and NaNO3 influenced the lytic effects;the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloomforming planktonic microalgae.

  8. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  9. Draft Genome Sequence of the Endophytic Bacterium Enterobacter spp. MR1, Isolated from Drought Tolerant Plant (Butea monosperma).

    Science.gov (United States)

    Parakhia, Manoj V; Tomar, Rukam S; Malaviya, Bipin J; Dhingani, Rashmin M; Rathod, Visha M; Thakkar, Jalpa R; Golakiya, B A

    2014-03-01

    Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and other useful genes for plant growth.

  10. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio.

    Directory of Open Access Journals (Sweden)

    Sascha Knauf

    Full Text Available The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum, yaws (ssp. pertenue, and endemic syphilis (ssp. endemicum in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90% baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560 versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7. Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication

  11. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  12. Complete Genome Sequence of the Unclassified Iron-Oxidizing, Chemolithoautotrophic Burkholderiales Bacterium GJ-E10, Isolated from an Acidic River.

    Science.gov (United States)

    Fukushima, Jun; Tojo, Fuyumi; Asano, Ryoki; Kobayashi, Yayoi; Shimura, Yoichiro; Okano, Kunihiro; Miyata, Naoyuki

    2015-02-05

    Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing.

  13. Mathematical model of the Lux luminescence system in the terrestrial bacterium Photorhabdus luminescens.

    Science.gov (United States)

    Welham, Patricia A; Stekel, Dov J

    2009-01-01

    A mathematical model of the Lux luminescence system, governed by the operon luxCDABE in the terrestrial bacterium Photorhabdus luminescens, was constructed using a set of coupled ordinary differential equations. This model will have value in the interpretation of Lux data when used as a reporter in time-course gene expression experiments. The system was tested on time series and stationary data from published papers and the model is in good agreement with the published data. Metabolic control analysis demonstrates that control of the system lies mainly with the aldehyde recycling pathway (LuxE and LuxC). The rate at which light is produced in the steady state model shows a low sensitivity to changes in kinetic parameter values to those measured in other species of luminescent bacteria, demonstrating the robustness of the Lux system.

  14. Chemical compounds effective against the citrus Huanglongbing bacterium 'Candidatus Liberibacter asiaticus' in planta.

    Science.gov (United States)

    Zhang, Muqing; Powell, Charles A; Zhou, Lijuan; He, Zhenli; Stover, Ed; Duan, Yongping

    2011-09-01

    Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide and is threatening the survival of the Floridian citrus industry. Currently, there is no established cure for this century-old and emerging disease. As a possible control strategy for citrus HLB, therapeutic compounds were screened using a propagation test system with 'Candidatus Liberibacter asiaticus'-infected periwinkle and citrus plants. The results demonstrated that the combination of penicillin and streptomycin (PS) was effective in eliminating or suppressing the 'Ca. L. asiaticus' bacterium and provided a therapeutically effective level of control for a much longer period of time than when administering either antibiotic separately. When treated with the PS, 'Ca. L. asiaticus'-infected periwinkle cuttings achieved 70% of regeneration rates versus citrus plants. This may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases.

  15. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961.

    Science.gov (United States)

    González-García, Yolanda; Nungaray, Jesús; Córdova, Jesús; González-Reynoso, Orfil; Koller, Martin; Atlic, Aid; Braunegg, Gerhart

    2008-06-01

    The marine bacterium Saccharophagus degradans was investigated for the synthesis of polyhydroxyalkanoates (PHAs), using glucose as the sole source of carbon in a two-step batch culture. In the first step the microorganism grew under nutrient balanced conditions; in the second step the cells were cultivated under limitation of nitrogen source. The biopolymer accumulated in S. degradans cells was detected by Nile red staining and FT-IR analysis. From GC-MS analysis, it was found that this strain produced a homopolymer of 3-hydroxybutyric acid. The cellular polymer concentration, its molecular mass, glass transition temperature, melting point and heat of fusion were 17.2+/-2.7% of dry cell weight, 54.2+/-0.6 kDa, 37.4+/-6.0 degrees C, 165.6+/-5.5 degrees C and 59.6+/-2.2 J g(-1), respectively. This work is the first report determining the capacity of S. degradans to synthesize PHAs.

  16. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation.

  17. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle.

    Science.gov (United States)

    Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H

    2014-11-01

    Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes.

  18. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  19. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  20. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  1. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium.

    Science.gov (United States)

    Schubert, Torsten; Maskow, Thomas; Benndorf, Dirk; Harms, Hauke; Breuer, Uta

    2007-05-01

    The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter-1 ectoine with a space-time yield of 40 mg liter-1 h-1, with the vast majority of the ectoine being excreted.

  2. [Isolation and characteristic of a moderately halophilic bacterium accumulated ectoine as main compatible solute].

    Science.gov (United States)

    He, Jian; Wang, Ting; Sun, Ji-Quan; Gu, Li-Feng; Li, Shun-Peng

    2005-12-01

    A moderately halophilic bacterium(designated strain I15) was isolated from lawn soil. Based on the analysis of 16S rDNA (GenBank accession number DQ010162), morphology, physiological and biochemical characteristics, strain I15 was identified as Virgibacillus marismortuii. This strain was capable of growing under 0% approximately 25% NaCl, and exhibited an optimum NaCl concentration of 10% and an optimum temperature of 30 degrees C and an optimum pH of 7.5 - 8.0 for its growth, respectively. Under hyperosmotic stress, strain 115 accumulated ectoine as the main compatible solute. Under 15% NaCl conditions the intracellar ectoine can reach to 1.608 mmol/(g x cdw), accounted for 89.6% of the total compatible solutes. The biosynthesis of ectoine was under the control of osmotic, and the accumulated ectoine synthesized intraceilularly can released under hypoosmotic shocks and resynthesis under hyperosmotic shock rapidly.

  3. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  4. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Acera, Felipe; Igeño, Ma Isabel; Wibberg, Daniel; Roldán, Ma Dolores; Sáez, Lara P; Hennig, Magdalena; Quesada, Alberto; Huertas, Ma José; Blom, Jochen; Merchán, Faustino; Escribano, Ma Paz; Jaenicke, Sebastian; Estepa, Jessica; Guijo, Ma Isabel; Martínez-Luque, Manuel; Macías, Daniel; Szczepanowski, Rafael; Becerra, Gracia; Ramirez, Silvia; Carmona, Ma Isabel; Gutiérrez, Oscar; Manso, Isabel; Pühler, Alfred; Castillo, Francisco; Moreno-Vivián, Conrado; Schlüter, Andreas; Blasco, Rafael

    2013-01-01

    Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.

  5. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  6. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    gel using MALDI‐TOF‐MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid......Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...... bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range....

  7. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.

    Science.gov (United States)

    Pohlmann, Anne; Fricke, Wolfgang Florian; Reinecke, Frank; Kusian, Bernhard; Liesegang, Heiko; Cramm, Rainer; Eitinger, Thomas; Ewering, Christian; Pötter, Markus; Schwartz, Edward; Strittmatter, Axel; Voss, Ingo; Gottschalk, Gerhard; Steinbüchel, Alexander; Friedrich, Bärbel; Bowien, Botho

    2006-10-01

    The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.

  8. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil.

    Science.gov (United States)

    Miller, K J; Leschine, S B; Huguenin, R L

    1983-01-01

    The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.

  9. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H

    Science.gov (United States)

    Harvilla, Paul B.; Wolcott, Holly N.

    2014-01-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth’s ecosystems are at temperatures ≤ 5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: 4O1W). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  10. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    Science.gov (United States)

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  11. Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils

    Science.gov (United States)

    Connell, Hancock T.L.; Costello, A.M.; Lidstrom, M.E.; Oremland, R.S.

    1998-01-01

    A facultatively methylotrophic bacterium, strain IMB-1, that has been isolated from agricultural soil grows on methyl bromide (MeBr), methyl iodide, methyl chloride, and methylated amines, as well as on glucose, pyruvate, or acetate. Phylogenetic analysis of its 16S rRNA gene sequence indicates that strain IMB-1 classes in the alpha subgroup of the class Proteobacteria and is closely related to members of the genus Rhizobium. The ability of strain IMB-1 to oxidize MeBr to CO2 is constitutive in cells regardless of the growth substrate. Addition of cell suspensions of strain IMB-1 to soils greatly accelerates the oxidation of MeBr, as does pretreatment of soils with low concentrations of methyl iodide. These results suggest that soil treatment strategies can be devised whereby bacteria can effectively consume MeBr during field fumigations, which would diminish or eliminate the outward flux of MeBr to the atmosphere.

  12. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  13. Extraction and physicochemical characteristics of a red pigment produced by marine bacterium strain S-9801

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 刘晨临; 边际; 苗金来

    2002-01-01

    -- A red pigment that has better biological properties is produced by marine bacterium strain S- 9801. The extraction methods, physicochemical and toxicity of the pigment have been studied.Dissolubility of pigment in the five organic solvent has been tested, and ethanol is optimally chosen for extraction. Physicochemical characteristics of this pigment was stable. The absorbance of the pigment solution was no losing when put under natural light for 10 days or treated by UV for 30 minutes, color of the pigment unchanged after 100 ℃ hythere for 1 h or 80 ℃ xerother for 2 h. The median lethal dose (LD50) of the rat by celiac injection was 670.04 mg/kg and minimum lethal dose of oral was greater than 2 000 mg/kg.

  14. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Thangaraju, M

    2007-01-01

    Gluconacetobacter diazotrophicus an endophytic diazotroph also encountered as rhizosphere bacterium is reported to possess different plant growth promoting characteristics. In this study, we assessed the zinc solubilizing potential of G. diazotrophicus under in vitro conditions with different Zn compounds using glucose or sucrose as carbon sources. G. diazotrophicus showed variations in their solubilization potential with the strains used and the Zn compounds tested. G. diazotrophicus PAl5 efficiently solubilized the Zn compounds tested and ZnO was effectively solubilized than ZnCO(3) or Zn(3)(PO(4))(2). The soluble Zn concentration was determined in the culture supernatant through Atomic Absorption Spectrophotometer. Gas chromatography coupled Mass Spectrometry analysis revealed 5-ketogluconic acid, a derivative of gluconic acid as the major organic acid produced by G. diazotrophicus PAl5 cultured with glucose as carbon source. This organic anion may be an important agent that helped in the solubilization of insoluble Zn compounds.

  15. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    Science.gov (United States)

    Hänelt, Inga; Müller, Volker

    2013-01-01

    The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341

  16. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].

    Science.gov (United States)

    Ignatov, O V; Kamnev, A A; Markina, L N; Antoniuk, L P; Kolina, M; Ignatov, V V

    2001-01-01

    The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

  17. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud.

    Science.gov (United States)

    Viulu, Samson; Nakamura, Kohei; Okada, Yurina; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-02-01

    A novel species of Fe(III)-reducing bacterium, designated strain OSK6(T), belonging to the genus Geobacter, was isolated from lotus field mud in Japan. Strain OSK6(T) was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, gram-negative, motile, straight rod-shaped bacterium, 0.6-1.9 µm long and 0.2-0.4 µm wide. The growth of the isolate occurred at 20-40 °C with optima of 30-37 °C and pH 6.5-7.5 in the presence of up to 0.5 g NaCl l(-1). The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6(T) was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6(T) is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6(T) is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6(T) ( = DSM 24905(T) = JCM 17780(T)).

  18. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  19. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria

    Science.gov (United States)

    Mardanov, Andrey V.; Beletsky, Alexey V.; Kadnikov, Vitaly V.; Slobodkin, Alexander I.; Ravin, Nikolai V.

    2016-01-01

    Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  20. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources.

    Science.gov (United States)

    Jebeli, Mohammad Ahmadi; Maleki, Afshin; Amoozegar, Mohammad Ali; Kalantar, Enayatollah; Izanloo, Hassan; Gharibi, Fardin

    2017-02-01

    A total of 14 arsenic-resistant bacteria were isolated from an arsenic-contaminated travertine spring water in the central district of Qorveh county, Kurdistan Province, Iran. One of strains designated As-12 was selected for further investigation because of its ability to transform arsenic. The strain was identified by cultural, morphological and biochemical tests, and 16S rRNA gene sequencing. Finally, the growth characteristics of the isolate were investigated in a chemically defined medium which included varied ranges of environmental factors such as pH, temperature and salinity. Moreover, the resistance of this strain to some heavy metals was evaluated. The bacterium was a Gram-positive, endospore-forming with all other characteristics of the genus Bacillus. It revealed maximum similarity at the 16S rRNA gene level with Bacillus flexus. The optimum growth of the strain was observed at 38 °C, pH 9 and 2% salinity. This strain was resistant to heavy metals such as zinc, chromium, lead, nickel, copper, mercuric and cadmium at concentrations of 15 mM, 15.5 mM, 11.5 mM, 12 mM, 11 mM, 5.5 mM, and 1 mM, respectively. The isolated bacterium was able to reduce As (V) to As (III) (about 28%) and oxidize As (III) to As (V) (about 45%) after 48 h of incubation at 37 °C. In conclusion, Bacillus flexus strain As-12, was identified as an arsenic transformer, for the first time.