WorldWideScience

Sample records for ammonia gas cell

  1. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  2. Purge gas recovery of ammonia synthesis plant by integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel technology

    Science.gov (United States)

    Siavashi, Fakhteh; Saidi, Majid; Rahimpour, Mohammad Reza

    2014-12-01

    The purge gas emission of ammonia synthesis plant which contains hazardous components is one of the major sources of environmental pollution. Using integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell (SOFC) system is a new approach which has a great impact to reduce the pollutant emission. By application of this method, not only emission of ammonia and methane in the atmosphere is prevented, hydrogen is produced through the methane steam reforming and ammonia decomposition reactions that take place simultaneously in a catalytic membrane reactor. The pure generated hydrogen by recovery of the purge gas in the Pd-Ag membrane reactor is used as a feed of SOFC. Since water is the only byproduct of the electrochemical reaction in the SOFC, it is recycled to the reactor for providing the required water of the reforming reaction. Performance investigation of the reactor represents that the rate of hydrogen permeation increases with enhancing the reactor temperature and pressure. Also modeling results indicate that the SOFC performance improves with increasing the temperature and fuel utilization ratio. The generated power by recovery of the purging gas stream of ammonia synthesis plant in the Razi petrochemical complex is about 8 MW.

  3. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  4. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    Science.gov (United States)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  5. Method of production of ammonia synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    1943-09-10

    In the catalytic synthesis of complicated hydrocarbons from carbon monoxide and hydrogen at normal or slightly increased pressures by the Fischer--Tropsch process, or carried out at higher pressures in some other proposals, the synthesis gas was incompletely transformed. After the conclusion of the synthesis, the residual gas, upon the separation of the liquid constituents, contained, in addition to the unreacted carbon moxoxide and hydrogen, also considerable amounts of methane, carbon dioxide, and nitrogen from the original synthesis gas. This residual gas had been used as fuel. It was, however, pure and contained no sulfur or other catalyst poisons and burning it was considered uneconomical. It was proposed to make better use of it by using it as fuel. It was, however, pure and contained no sulfur or other catalyst poisons and burning it was considered uneconomical. It was proposed to make better use of it by using it as a raw material for the production of synthesis gas by decomposing the methane present in it with steam according to the equation CH/sub 4/ + H/sub 2/O = CO + 3H/sub 2/. This conversion was to be brought about either by a return to the producers or else in special splitting units. Also, it had been found that the residual gas, possibly even in the presence of oxygen compounds, could be conveniently used for the synthesis of ammonia. Several examples of ammonia synthesis were discussed.

  6. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, E onset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media. © 2013 Elsevier B.V. All rights reserved.

  7. DIRECT AMMONIA-AIR FUEL CELL.

    Science.gov (United States)

    A new type of direct oxidation ammonia fuel cell was investigated. This cell is based on the use of a non-aqueous fused hydroxide electrolyte matrix...EMF’s of 0.5 to 0.6 volts. At practical levels of current density the direct ammonia fuel cell has an overall efficiency of about 60% compared to 30-35% for the indirect-type fuel cell . (Author)

  8. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  9. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    Science.gov (United States)

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  10. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  11. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  12. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  13. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  14. Ammonia concentration modeling based on retained gas sampler data

    International Nuclear Information System (INIS)

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste

  15. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  16. Abatement of ammonia emissions from digested manure using gas-permeable membranes

    Science.gov (United States)

    A new strategy to avoid ammonia emissions from anaerobically digested swine manure was tested using the gas-permeable membrane process. Evaluation of the efficiency of ammonia recovery from digestate as well as mitigation of ammonia emissions to the atmosphere were carried out. Digestate was colle...

  17. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2014-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from hydrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixture containing hydrogen gas in concentration of three orders...

  18. Catalysts for selective oxidation of ammonia in a gas containing hydrogen

    DEFF Research Database (Denmark)

    2015-01-01

    The invention contributes to a cost effective way to solve the problem of trace ammonia removal from a hydrogen and nitrogen containing gas. The set of catalysts of the invention selectively oxidised ammonia in ppm concentration even in gas mixtures containing hydrogen gas in concentrations...

  19. Improved [13N]ammonia yield from the proton irradiation of water using methane gas

    International Nuclear Information System (INIS)

    Krasikova, R.N.; Fedorova, O.S.; Korsakov, M.V.; Landmeier Bennington, B.; Berridge, M.S.

    1999-01-01

    Production of N-13 ammonia directly in the cyclotron target has previously been accomplished by use of hydrogen pressurization or by addition of organic compounds, chiefly ethanol. All methods enjoy limited success and then either fail to produce ammonia at high beam dose, or require very high pressures to maintain ammonia production. We report that low-pressure methane gas in the target results in production of radiochemically pure ammonia throughout the feasible range of target irradiation conditions

  20. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes

    Science.gov (United States)

    Gas-permeable membrane technology is useful to recover ammonia from liquid manures. In this study, phosphorus (P) recovery via magnesium chloride precipitation was enhanced by combining it with ammonia recovery through gas-permeable membranes. Anaerobically digested swine effluent containing approx...

  1. Reactor for removing ammonia

    Science.gov (United States)

    Luo, Weifang [Livermore, CA; Stewart, Kenneth D [Valley Springs, CA

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  2. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2017-12-01

    Full Text Available In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO nanowire array produced by atomic layer deposition (ALD while an organic material was a p-type semiconductor, poly(3-hexylthiophene (P3HT. P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  3. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas.

    Science.gov (United States)

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-12-25

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 10 19 cm -3 and 24.7 cm²∙V -1 ∙s -1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  4. A study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions

    OpenAIRE

    Xiao, Hua; Howard, Michael; Valera Medina, Agustin; Dooley, Stephen; Bowen, Philip John

    2016-01-01

    As an alternative fuel and hydrogen carrier, ammonia is believed to have good potential for future power generation. To explore the feasibility of co-firing ammonia with methane, studies involving robust numerical analyses with detailed chemistry are required to progress towards industrial implementation. Therefore, the objective of this study is to determine a reduced mechanism for simulation studies of ammonia/methane combustion in practical gas turbine combustor conditions. Firstly, five d...

  5. Resistive Ammonia Gas Sensor Based on Non-Stoichiometric Copper Sulfide Thin Films

    Directory of Open Access Journals (Sweden)

    Abhay A. Sagade

    2008-08-01

    Full Text Available Resistive ammonia gas sensor is fabricated by using solution growth technique deposited copper sulfide (Cu1.8S thin films. Structural and opto-electronic properties of the films are studied by X-ray diffraction, atomic force microscopy, optical absorbance and electrical resistance. Ammonia gas sensor response measured from 20 to 500 ppm concentration at room temperature (300 K. The sensor response is increases with gas concentration.

  6. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    Unknown

    The thin film gas sensor for ammonia was operated at different concentrations in the temperature range. 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K.

  7. Removal and recovery of ammonia from livestock wastewater using hydrophobic gas-permeable membranes

    Science.gov (United States)

    The costs of fertilizers have rapidly increased in recent years, especially nitrogen fertilizer such as anhydrous ammonia which is made from natural gas. Thus, new treatment technologies for abatement of ammonia emissions in livestock operations are being focused on nitrogern (N) recovery in additio...

  8. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration

    Science.gov (United States)

    Gas-permeable membranes can recover ammonia from manure, reducing pollution whilst converting ammonia into ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the...

  9. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

  10. Coal gas desulfurization by the ammonia method. Odsiarczanie gazu koksowniczego metoda amoniakalna

    Energy Technology Data Exchange (ETDEWEB)

    Gwiner, H. (Instytut Chemii Przerobki Wegla (Poland))

    1988-01-01

    Reviews principles of gas desulfurization by the ammonia method and the various processes used: the methods of Still, Koppers, DIAMOX, DESULF, Zyklopur (of Kohletechnik). Further processing of NH{sub 3} and H{sub 2}S obtained in the ammonia process is considered, i.e. production of ammonium sulphates, sulfuric acid, ammonia and elemental sulfur. Advantages of the ammonia method are described: no foreign chemicals used, low cost, no need for gas heating or open cooling towers and a high degree of desulfurization. Hydrogen sulfide content as low as 0.7-1 g/m{sup 3} is gained. Additional cleaning by gaseous ammonia or soda lye permits the hydrogen sulfide content to be reduced down to 0.2-0.5 g/m{sup 3}. 65 refs.

  11. Ammonia gas transport and reactions in unsaturated sediments: Implications for use as an amendment to immobilize inorganic contaminants

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Truex, M.J.; Williams, M.D.; Liu, Y.

    2015-01-01

    Highlights: • Ammonia transport can be predicted from gas movement and equilibrium partitioning. • Ammonia diffusion rate in unsaturated sediment is a function of water contents. • High pH induced by ammonia causes mineral dissolution and sequential precipitation. • Ammonia treatment effectively immobilized uranium from contaminated sediments. - Abstract: Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has a potential for use in treating inorganic contaminants (such as uranium) because it induces a high pore-water pH, causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application of this treatment, further knowledge of ammonia transport in porous media and the geochemical reactions induced by ammonia treatment is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate inter-phase (gas/sediment/pore water) reactions, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions, such as flow rate, gas concentration, and water content. Uranium-contaminated sediment was treated with ammonia gas to demonstrate U immobilization. Ammonia gas quickly partitions into sediment pore water and increases the pH up to 13.2. Injected ammonia gas advection front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Sodium, aluminum, and silica pore-water concentrations increase upon exposure to ammonia and then decline as aluminosilicates precipitate when the pH declines due to buffering. Up to 85% of

  12. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    Science.gov (United States)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  13. Performance test of deodorants for ammonia gas; Ammonia gas ni taisuru dasshuzai no seino kentei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H.; Hashimoto, S.; Yonemura, S. [Shimizu Corp., Tokyo (Japan); Shoda, M. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-01-10

    This paper presents the results of performance tests of various kinds of adsorbents by static and dynamic adsorption methods to select the optimum deodorant (adsorbent) for ammonia gas (NH3). In the performance test of the static adsorption method, the amounts of NH3 adsorbed by 21 kinds of adsorbents including physical and chemical adsorbents were measure. The amounts adsorbed physical adsorbent No. 6, chemical adsorbents Nos. 18, 19 and 20 which showed higher adsorption ability were 0.0160g/g, 0.0284g/g, 0.0250g/g, and 0.0249g/g respectively at 30degC under equilibrium pressure of 50 mmHg. All of the adsorbent showed in Freundlich`s adsorption isotherm for NH3. Although the correlation between specific area, pore volume, mean pore radius, pH each adsorbent and the amount of adsorbed were tried, the correlation between the pH and the amount of NH3 adsorbed was significant. This suggests that the pH is a proper criterion for selection for adsorbents. The performance test of the dynamic adsorption method, was conducted for adsorbents Nos. 6, 18, 19 and 20 above-mentioned. The 10% breakthrough time was compared as the performance index. The breakthrough time of the adsorbent which the amount adsorbed was large was long but the breakthrough time was not proportional to the amount adsorbed. These results suggest that the performance test only by the static adsorption method is insufficient and that the breakthrough time test by the dynamic adsorption method is essential. 13 refs., 10 figs., 4 tabs.

  14. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  15. Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions

    OpenAIRE

    Xiao, Hua; Valera Medina, Agustin; Bowen, Philip J.

    2017-01-01

    To utilize ammonia as an alternative fuel for future power generation, it is essential to develop combustion chemical kinetic mechanisms which can describe in some detail the reaction characteristics and combustion properties. In the present study, a detailed chemical-kinetics mechanism is developed to validate premixed combustion characteristics of ammonia and hydrogen fuel blends comprehensively. In order to obtain a useful model for gas turbine applications, the proposed kinetic mechanism ...

  16. Investigation on an ammonia supply system for flue gas denitrification of low-speed marine diesel

    Science.gov (United States)

    Huang, Xiankun; Yuan, Han; Zhao, Jian; Mei, Ning

    2017-12-01

    Low-speed marine diesel flue gas denitrification is in great demand in the ship transport industry. This research proposes an ammonia supply system which can be used for flue gas denitrification of low-speed marine diesel. In this proposed ammonia supply system, ammonium bicarbonate is selected as the ammonia carrier to produce ammonia and carbon dioxide by thermal decomposition. The diesel engine exhaust heat is used as the heating source for ammonium bicarbonate decomposition and ammonia gas desorption. As the ammonium bicarbonate decomposition is critical to the proper operation of this system, effects have been observed to reveal the performance of the thermal decomposition chamber in this paper. A visualization experiment for determination of the single-tube heat transfer coefficient and simulation of flow and heat transfer in two structures is conducted; the decomposition of ammonium bicarbonate is simulated by ASPEN PLUS. The results show that the single-tube heat transfer coefficient is 1052 W m2 °C-1; the thermal decomposition chamber fork-type structure gets a higher heat transfer compared with the row-type. With regard to the simulation of ammonium bicarbonate thermal decomposition, the ammonia production is significantly affected by the reaction temperature and the mass flow rate of the ammonium bicarbonate input.

  17. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration

    Science.gov (United States)

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  18. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    Science.gov (United States)

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-10-16

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  19. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    Science.gov (United States)

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  20. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    Science.gov (United States)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  1. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems

    NARCIS (Netherlands)

    Kuntke, P.; Zamora, P.; Saakes, M.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    The application of a gas-permeable hydrophobic tubular membrane in bio-electrochemical systems enables efficient recovery of ammonia (NH3) from their cathode compartments. Due to a hydrogen evolution reaction at the cathode, no chemical addition was required to increase the pH for

  2. Room Temperature Single Walled Carbon Nanotubes (SWCNT Chemiresistive Ammonia Gas Sensor

    Directory of Open Access Journals (Sweden)

    Bala Sekhar DASARI

    2015-07-01

    Full Text Available Single walled carbon nanotubes were functionalized with carboxyl (–COOH group using simple acid treatment process. Thin films of functionalized SWCNTs were fabricated using drop cast technique from the dispersion prepared in de-ionized water. These films were characterized using FE-SEM, FTIR, Raman spectroscopy techniques and current-voltage measurements were carried at room and elevated temperature. SWCNT chemiresistor gas sensor devices on silicon substrate were fabricated using conventional microfabrication technology with pristine and functionalized SWCNTs. Fabricated gas sensors were exposed to ammonia in an in-house developed gas sensor characterization system and response was measured at ammonia concentration up to 50 ppm at room temperature. Functionalized SWCNTs chemiresistor showed an impressive ammonia response of 20.2 % compared with 2.9 % of pristine counterpart. Response enhancement mechanisms are discussed in terms of defects and gas molecule adsorption on CNT surface. The achieved results are a step towards development of miniaturized, room temperature ammonia sensor for environment pollution monitoring and control.

  3. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nanocrystalline Al Composites from Powder Milled under Ammonia Gas Flow

    Directory of Open Access Journals (Sweden)

    J. Cintas

    2014-01-01

    Full Text Available The production of high hardness and thermally stable nanocrystalline aluminium composites is described. Al powder was milled at room temperature in an ammonia flow for a period of less than 5 h. NH3 dissociation during milling provokes the absorption, at a high rate, of nitrogen into aluminium, hardening it by forming a solid solution. Controlled amounts of AlN and Al5O6N are formed during the subsequent sintering of milled powders for consolidation. The pinning action of these abundant dispersoids highly restrains aluminium grain growth during heating. The mean size of the Al grains remains below 45 nm and even after the milled powder is sintered at 650°C for 1 h.

  5. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing

    Directory of Open Access Journals (Sweden)

    Lakhi Chetia

    2017-11-01

    Full Text Available Growth of silver nanoparticles through photo induced bioreduction mechanism on the surface of diatom cells, which is a kind of photosensitive fresh water organism containing hydrated amorphous silica structure, has been found to be a cost-effective, rapid, non-toxic, eco-friendly, photo-induced bottom-up process. This material shows broad absorbance in the visible light spectra. Light sensitive fucoxanthin pigment of diatoms that contain hydroxyl (−OH groups, play a vital role in the formation of silver cluster on the surface of diatom cells and its growth process. Involvement of the compounds and proteins of the diatoms which are responsible for reduction of metal ions and stabilization of the grown nanoparticles on diatom cells, are confirmed by FTIR analysis. Investigations are done to see if the synthesized samples acted as sensing material in the fabrication of a room temperature sensor of dissolved ammonia. With increase in ammonia concentration the visible light absorption peaks tend to higher intensity with blue shift due to the formation of [Ag(NH32]+ complexes causing repulsion between the Ag nanoparticles and consequently lead to the formation of smaller Ag nanoparticles. The intensity of absorption of the as-synthesized material is linearly correlated with the concentration of dissolved ammonia as observed from 0 to 100ppm. The use of naturally occurring diatoms for Ag nanoparticles synthesis has the benefits of amenability for large-scale easy production. Also the experimental findings indicate that the as-synthesized material can act as fast and reliable sensing material. Keywords: Diatoms, Fucoxanthin, Silver nanoparticles, Ammonia sensor

  6. Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    He Lifang; Jia Yong; Meng Fanli; Li Minqiang; Liu Jinhuai

    2009-01-01

    Polyaniline-coated multi-wall carbon nanotubes (PANI-coated MWNTs) were prepared by in situ polymerization method. Field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis were used to characterize the as-prepared PANI-coated MWNTs. Obtained results indicated that PANI was uniformly coated on MWNTs, and the thickness of the coatings can be controlled by changing the weight ratios of aniline monomer and MWNTs in the polymerization process. Sensors were fabricated by spin-coating onto pre-patterned electrodes, and ammonia gas sensing properties of the as-prepared PANI-coated MWNTs were studied. The results showed a good response and reproducibility towards ammonia at room temperature. In addition, PANI-coated MWNTs exhibited a linear response to ammonia in the range of 0.2-15 ppm. The effects of the thickness of PANI coatings on the gas sensing properties were also investigated in detail. The results suggest a potential application of PANI-coated MWNTs in gas sensor for detecting ammonia.

  7. Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique

    Directory of Open Access Journals (Sweden)

    Anju Yadav

    2015-01-01

    Full Text Available Dodecyl benzene sulfonic acid (DBSA doped polyaniline (PANI-DBSA has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.

  8. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  9. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    International Nuclear Information System (INIS)

    Garagounis, Ioannis; Kyriakou, Vasileios; Skodra, Aglaia; Vasileiou, Eirini; Stoukides, Michael

    2014-01-01

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH 3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10 -8 mol s -1 cm -2 , obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe 0.7 Cu 0.1 Ni 0.2 O 3 , cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10 −9 mol s -1 cm -2 using Ce 0.8 Y 0.2 O 2-δ –[Ca 3 (PO 4 ) 2 –K 3 PO 4 ] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  10. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  11. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...

  12. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure.

    Science.gov (United States)

    Fillingham, Melanie; VanderZaag, Andrew; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J Douglas

    2017-10-07

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 to 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment.

  13. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure

    Directory of Open Access Journals (Sweden)

    Melanie Fillingham

    2017-10-01

    Full Text Available Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE GPM was used to (1 characterize the effect of total ammonium nitrogen (TAN concentration, temperature, and pH on the ammonia capture rate using GPM, and (2 to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 to 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment.

  14. Effect of ammonia-generating diet on ovine serum and follicular fluid ammonia and urea levels, serum oestrogen and progesterone concentrations and granulosa cell functions.

    Science.gov (United States)

    Nandi, S; Mondal, S; Pal, D T; Gupta, P S P

    2016-04-01

    This study was undertaken to elucidate the effect of ammonia-generating diet on serum and follicular fluid ammonia and urea levels, serum oestrogen and progesterone concentrations and granulosa cell growth and secretion parameters in ewes (Ovis aries). Ewes were fed with 14% CP diet (control) or ammonia-generating diet or ammonia-generating diet plus soluble sugar. The serum and follicular fluid ammonia and urea level, serum oestrogen and progesterone levels and granulosa cell (obtained from ovaries of slaughtered ewes) growth parameters and secretory activities were estimated. Ammonia-generating diet (high-protein diet) increased the serum ammonia and urea concentration. Supplementation of soluble sugar significantly reduced the ammonia concentration in serum with comparable levels as in control group; however, the urea level in the same group was higher than that observed in control group. Supplementation of soluble sugar significantly reduced the follicular fluid ammonia concentration; however, the level was significantly higher compared to control group. Supplementation of soluble sugar brought down the follicular fluid urea level comparable to that observed in control group. Oestrogen and progesterone levels remained unchanged in ewes fed with different types of diet. Oestrogen and progesterone secretion were significantly lowered from granulosa cells recovered from ewes fed with high ammonia-generating diet. Low metabolic activity and high incidence of apoptosis were observed in granulosa cells obtained from ovaries of ewes fed with ammonia-generating diet. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  15. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  16. The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

    Science.gov (United States)

    Keown, Jared; Di Francesco, James; Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Ginsburg, Adam; Offner, Stella S. R.; Caselli, Paola; Alves, Felipe; Chacón-Tanarro, Ana; Punanova, Anna; Redaelli, Elena; Seo, Young Min; Matzner, Christopher D.; Chun-Yuan Chen, Michael; Goodman, Alyssa A.; Chen, How-Huan; Shirley, Yancy; Singh, Ayushi; Arce, Hector G.; Martin, Peter; Myers, Philip C.

    2017-11-01

    We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ˜10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact (0.01 {pc}≲ {R}{eff}≲ 0.1 {pc}) and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.″2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 - 10) and HC5N (9-8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.

  17. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing

    International Nuclear Information System (INIS)

    He Boshu; Zheng Xianyu; Wen Yan; Tong Huiling; Chen Meiqian; Chen Changhe

    2003-01-01

    Emissions reduction in industrial processes, i.e. clean production, is an essential requirement for sustainable development. Fossil fuel combustion is the main emission source for gas pollutants, such as NO X , SO 2 and CO 2 , and coal is now a primary energy source used worldwide with coal combustion being the greatest atmospheric pollution source in China. This paper analyzes flue gas cleaning by ammonia scrubbing (FGCAS) for power plants to remove gaseous pollutants, such as NO X , SO 2 and CO 2 , and presents the conceptual zero emission design for power plants. The byproducts from the FGCAS process can be used in agriculture or for gas recovery. Experimental results presented for SO 2 removal from the simulated flue gas in a continuous flow experiment, which was similar to an actual flue gas system, showed that the effectiveness of the ammonia injection or scrubbing depends on the temperature. The FGCAS process can effectively remove SO 2 , but the process temperature should be below 60 deg. C or above 80 deg. C for SO 2 reduction by NH 3 scrubbing

  18. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    International Nuclear Information System (INIS)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-01-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH 3 ) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS 2 ) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS 2 composite film, P3HT/MoS 2 bilayer film and MoS 2 /P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS 2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS 2 . Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π–π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors. (paper)

  19. Application of copper sulfate pentahydrate as an ammonia removal reagent for the determination of trace impurities in ammonia by gas chromatography.

    Science.gov (United States)

    Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu

    2010-03-12

    Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Hot gas stripping of ammonia and carbon dioxide from simulated and actual in situ retort waters

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.L.

    1979-01-01

    This study proved that ammonia and carbon dioxide could be removed from retort water by hot gas stripping and that overall transfer rates were slower than for physical desorption alone. The ammonia in solution complexed with the carbonate species with the result that the CO/sub 2/ transfer rates were linked to the relatively slower desorption of NH/sub 3/ from solution. Ionic reactions in the liquid phase limited the quantity of free NH/sub 3/ and CO/sub 2/, thus decreasing the driving forces for mass transfer. The retort water exhibited foaming tendencies that affected the interfacial area which should be taken into account if a stripping tower is considered on a larger scale. Transfer unit heights were calculated for the process conditions studied and correlated such that scaleup to increased capacities is possible.

  1. Detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.; Defrees, D.J.; Mclean, A.D.; Molecular Research Institute, Palo Alto, CA; IBM Almaden Research Center, San Jose, CA)

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds. 41 references

  2. The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate.

    Science.gov (United States)

    Berge, Nicole D; Reinhart, Debra R; Dietz, John D; Townsend, Tim

    2007-05-01

    Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 degrees C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 degrees C and 5% oxygen, fit well (r2=0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies.

  3. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas.

    Science.gov (United States)

    Ringer, Joachim M

    2013-01-01

    The chemical warfare agents (CWA) Sarin, Soman, Cyclosarin and Tabun were characterised by proton transfer mass spectrometry (PTRMS). It was found that PTRMS is a suitable technique to detect nerve agents highly sensitively, highly selectively and in near real-time. Methods were found to suppress molecule fragmentation which is significant under PTRMS hollow cathode ionisation conditions. In this context, the drift voltage (as one of the most important system parameters) was varied and ammonia was introduced as an additional chemical reagent gas. Auxiliary chemicals such as ammonia affect ionisation processes and are quite common in context with detectors for CWAs based on ion mobility spectrometry (IMS). With both, variation of drift voltage and ammonia as the reagent gas, fragmentation can be suppressed effectively. Suppression of fragmentation is crucial particularly concerning the implementation of an algorithm for automated agent identification in field applications. On the other hand, appearance of particular fragments might deliver additional information. Degradation and rearrangement products of nerve agents are not distinctive for the particular agent but for the chemical class they belong to. It was found that switching between ammonia doped and ordinary water ionisation chemistry can easily be performed within a few seconds. Making use of this effect it is possible to switch between fragment and molecular ion peak spectra. Thus, targeted fragmentation can be used to confirm identification based only on single peak detection. PTRMS turned out to be a promising technique for future CWA detectors. In terms of sensitivity, response time and selectivity (or confidence of identification, respectively) PTRMS performs as a bridging technique between IMS and GC-MS.

  4. Impact on the Gas Barrier Property of Silicon Oxide Films Prepared by Tetramethylsilane-Based PECVD Incorporating with Ammonia

    Directory of Open Access Journals (Sweden)

    Hua-Wen Liu

    2017-01-01

    Full Text Available The gas barrier property of a silicon oxide (SiOx film synthesized from plasma-enhanced chemical vapor deposition using the tetramethysilane (TMS-oxygen gas mixture was modified by introducing ammonia gas in the glow discharge. The change in the glow discharge with the ammonia gas incorporation was monitored by an optical emission spectrometer (OES. Structures, chemical bond configurations, and material properties of the resulting films were investigated. The introduced ammonia gas in the TMS-oxygen plasma resulted in emission lines dominated by the N2 and CN species with the suppression of the OH and oxygen-related radicals, thereby introducing nitrogen and carbon atoms in the deposited film. A silicon oxynitride (SiOxNy film had the best surface morphology and the lowest residual internal stress was achievable by controlling the reactant gas flow ratio of the ammonia and oxygen. The barrier property to the water vapor permeation of the silicon oxide film (~1.65 g/m2/day deposited onto the polyethylene terephthalate (PET substrate was thus greatly improved to 0.06 g/m2/day for the film synthesized from an adequate TMS-oxygen-ammonia gas mixture.

  5. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    Directory of Open Access Journals (Sweden)

    Yuriy Vashpanov

    2011-11-01

    Full Text Available This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  6. Studies on the behavior of ammonia and ammonium salts in the atmosphere (1) - Fractional collection of ammonia gas and particulate ammonium

    Science.gov (United States)

    Kiin, K.; Fujimura, M.; Hashimoto, Y.

    1981-01-01

    Methods for the fractional collection of trace amounts of atmospheric ammonia gas and ammonium particles on a two staged glass fiber filter are summarized. A standard glass fiber filter washed with distilled water and dried at 120 to 130 C was used. A second filter was impregnated with a mixture of 3% boric acid and 25% glycerin solution. The blank of glass fiber filters impregnated with a mixture of the above solution was very low for ammonia, i.e. 0.06 micrograms in a filter of 47 mm in diameter. The mean concentrations of ammonia and ammonium in air at Kawasaki, a polluted area, were 7.6 and 2.3 micrograms cu m, and those at Sanriku, an unpolluted area 0.9 and 0.2 micrograms cu m, respectively. Ratios of concentration levels of ammonium to total ammonia in the atmosphere were 0.3 and 0.2 for the polluted and unpolluted areas, respectively. Ammonium salts in air at both areas were not correlated with relative humidity. Variations in time of ammonia concentrations and sources in surrounding areas are also considered.

  7. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  8. Removal of ammonia from gas streams with dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Xia Lanyan; Huang Li; Shu Xiaohong; Zhang Renxi; Dong Wenbo; Hou Huiqi

    2008-01-01

    We reported on the experimental study of gas-phase removal of ammonia (NH 3 ) via dielectric barrier discharge (DBD) at atmospheric pressure, in which we mainly concentrated on three aspects-influence of initial NH 3 concentration, peak voltage, and gas residence time on NH 3 removal efficiency. Effectiveness, e.g. the removal efficiency, specific energy density, absolute removal amount and energy yield, of the self-made DBD reactor had also been studied. Basic analysis on DBD physical parameters and its performance was made in comparison with previous investigation. Moreover, products were detected via ion exchange chromatography (IEC). Experimental results demonstrated the application potential of DBD as an alternative technology for odor-causing gases elimination from gas streams

  9. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  10. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH

    Science.gov (United States)

    Nitrogen recovery of swine manure was investigated using gas-permeable membranes. The process involved a continuous recirculation of an acidic solution through a tubular gas-permeable membrane submerged in a manure filled vessel. Ammonia contained in manure was concentrated in the acidic solution ...

  11. Electro Decomposition of Ammonia into Hydrogen for Fuel Cell Use

    Science.gov (United States)

    2012-01-01

    400 million gallon per day (MGD). Currently, wastewater treatment solutions for ammonia ( biological and chemical treatments) consume a significant...of the catalytic and inhibition mechanisms of urease. Journal of Biological Inorganic Chemistry. 6(3):300-314. National Research Council (NRC) and...electrodes for urea oxidation (Talk) Denitrification of wastewater through ammonia electrolysis (Talk) Journal publicationsg Daramola, Damilola A

  12. Use of dilute ammonia gas for treatment of 1,2,3-trichloropropane and explosives-contaminated soils.

    Science.gov (United States)

    Coyle, Charles G; Waisner, Scott A; Medina, Victor F; Griggs, Chris S

    2017-12-15

    Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89-94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils. Published by Elsevier Ltd.

  13. Gas-diffusion-based passive sampler for ammonia monitoring in marine waters.

    Science.gov (United States)

    O'Connor Šraj, Lenka; Almeida, M Inês G S; Bassett, Chelsea; McKelvie, Ian D; Kolev, Spas D

    2018-05-01

    A novel passive sampler based on gas-diffusion across a hydrophobic membrane is described for the determination of the time-weighted average concentration of dissolved molecular ammonia in high ionic strength aquatic environments, such as sea, coastal and estuarine waters, for a period of 3 days. The passive sampler developed is cheap, easy-to-use, reusable, and has a dynamic concentration range of 2.0-12µM, which covers the water quality guideline trigger value of 11.4µM (160µgL -1 NH 3 -N) for high conservation value waters, making this a powerful new tool for water quality managers involved in long-term ammonia monitoring. The gas-diffusion-based passive sampler was calibrated under laboratory conditions and deployed in a tank of seawater in the laboratory and at an estuarine site for proof of concept, and a good agreement between passive and spot sampling was achieved in both cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  15. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  16. Enhancing fuel cell system life by removing ammonia. Final report; Erhoehung der Lebensdauer von Brennstoffzellensystemen durch Ammoniak-Entfernung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The problem of ammonia production and effects in the gas processor of fuel cell heating systems during steam reforming of hydrogen-containing natural gas was investigated, providing fundamental knowledge on NH{sub 3} formation. The processes of ammonia formation in reformer systems during reformation of nitrogen-containing natural gas were simulated and compared with experimental findings. Laboratory experiments defined the boundary conditions of ammonia synthesis in reformer systems as a function of N{sub 2} concentration in natural gas, temperature, catalysts and load dependence. The effects of ammonia on the catalysts of a steam reformer were investigated as well. It was the intention to develop a simple purification module that will remove ammonia traces from the product gas of reforming processes and can be integrated in fuel cell heating systems. In view of the strongly hydrophylic nature of ammonia, methods for solution and separation of ammonia in liquid water were investigated. Various technical concepts were implemented and investigated in laboratory experiments. The limitations of liquid water based processes were assessed, and options for complete removal of ammonia were investigated. An optimized laboratory version of a purification module was developed which ensures complete purification as well as product gas conditioning (temperature, moisture) for applications in fuel cells. Finally, the purification module was tested in a modified test stand with appropriate peripheral components. (orig./AKB) [German] Im Rahmen des Vorhabens wurde die Ammoniakproblematik hinsichtlich Entstehung und Wirkung im Gasprozessor von Brennstoffzellenheizgeraeten (BZH) bei der Dampfreformierung stickstoffhaltiger Erdgase untersucht und dabei grundlegende Erkenntnisse zur NH{sub 3}-Bildung gewonnen. Es wurden prozesstechnische Simulationen zur Ammoniakbildung im Reformersystem bei der Reformierung stickstoffhaltiger Erdgase durchgefuehrt und mit experimentell gewonnenen

  17. Nozzle-less Ultrasonic Spray Deposition for Flexible Ammonia and Ozone Gas Sensors

    Directory of Open Access Journals (Sweden)

    Mónica ACUAUTLA

    2016-06-01

    Full Text Available In the last years printing and flexible electronic is transforming the way we used electronic devices. Among these, special interest is given to the development of gas sensors for industrial and environmental applications. Nozzle-less ultrasonic spray deposition is a simple and precise technique, which offers good homogeneity and high quality of the sensitive thin film. In addition, it represents a potential fabrication process for flexible electronic with low cost production and low waste of material. In this paper, nanoparticles of zinc oxide were deposited by nozzle-less ultrasonic spray deposition on flexible substrate. The sensing properties towards reducing and oxidizing gases in function of the operational temperature are reported. The flexible platform consists in titanium/platinum interdigitated electrodes and a micro-heater device, both fabricated by lift-off and photolithography. The operating temperature of the sensor is also challenging in term of power consumption. It is allowing the reaction with the exposure gases. Most of the semiconducting metal oxide materials used for gas sensing applications require high temperatures above 250 °C. Flexible gas sensors fabricated in this work present good responses towards ammonia and ozone at 300 °C and 200 °C respectively, with fast response and recovery time in a wide range of gas concentration.

  18. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing

    International Nuclear Information System (INIS)

    Tran, Quang Trung; Huynh, Tran My Hoa; Tong, Duc Tai; Tran, Van Tam; Nguyen, Nang Dinh

    2013-01-01

    Graphene, consisting of a single carbon layer in a two-dimensional (2D) lattice, has been a promising material for application to nanoelectrical devices in recent years. In this study we report the development of a useful ammonia (NH 3 ) gas sensor based on graphene–silver nanowires ‘composite’ with planar electrode structure. The basic strategy involves three steps: (i) preparation of graphene oxide (GO) by modified Hummers method; (ii) synthesis of silver nanowires by polyol method; and (iii) preparation of graphene and silver nanowires on two electrodes using spin and spray-coating of precursor solutions, respectively. Exposure of this sensor to NH 3 induces a reversible resistance change at room temperature that is as large as ΔR/R 0 ∼ 28% and this sensitivity is eight times larger than the sensitivity of the ‘intrinsic’ graphene based NH 3 gas sensor (ΔR/R 0 ∼ 3,5%). Their responses and the recovery times go down to ∼200 and ∼60 s, respectively. Because graphene synthesized by chemical methods has many defects and small sheets, it cannot be perfectly used for gas sensor or for nanoelectrical devices. The silver nanowires are applied to play the role of small bridges connecting many graphene islands together to improve electrical properties of graphene/silver nanowires composite and result in higher NH 3 gas sensitivity. (paper)

  19. Recovery of ammonia and production of high-grade phosphates from side-stream digester effluents using gas-permeable membranes

    Science.gov (United States)

    Phosphorus recovery was combined with ammonia recovery using gas-permeable membranes. In a first step, the ammonia and alkalinity were removed from municipal side-stream wastewater using low-rate aeration and a gas-permeable membrane manifold. In a second step, the phosphorus was removed using magne...

  20. Development of absorption fiber optic sensor for distributed measurement of ammonia gas

    Science.gov (United States)

    Aubrecht, J.; Kalvoda, L.

    2013-05-01

    Polymer-clad silica optical fibers are employed for development of different absorption optic fiber sensors of gaseous analytes. In our case, the physical principles of the detection are combined with a chemical reaction between analyte and suitable opto-chemical absorption reagents. Selected organometallic complex reagents with different lengths of lateral aliphatic chains are studied with respect to the type of central ions and their coordinative conditions to surrounding ligands. The effect of solvent type on solubility and the long-term stability of the prepared reagents in solid matrix are presented and discussed. Various methods are also tested in order to achieve an effective reagent immobilization into the polymer matrix, which creates optical fiber cladding. The chemical reaction of the reagents with ammonia based on ligand exchange process is accompanied by changes of visible-near-infrared optical absorption influencing via evanescent field on the guided light intensity. Experimental results suggest that the selected reagents provide optical properties suitable for practical sensing applications and that the sensitized PCS optical fibers could be used for detection of ammonia gas.

  1. Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion.

    Science.gov (United States)

    Takeuchi, Yukiko; Nakayama, Yasumune; Fukusaki, Eiichiro; Irino, Yasuhiro

    2018-01-01

    Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM BY ION-EXCHANGE MEMBRANES

    Science.gov (United States)

    Metabolites such as ammonia and lactic acid formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. Cell culture conducted in the presence of such accumulated metabolites is therefore limited in pro...

  3. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    Science.gov (United States)

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  4. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  5. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

    International Nuclear Information System (INIS)

    Kim, Jong Nam; Yoo, Chung-Yul; Joo, Jong Hoon; Yu, Ji Haeng; Sharma, Monika; Yoon, Hyung Chul; Jeoung, Hana; Song, Ki Chang

    2014-01-01

    Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400-600 .deg. C and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e.. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67x10 -11 mols -1 cm -2 with 0.1% faradaic efficiency at 600 .deg. C

  6. Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3-C7 solid dicarboxylic acids.

    Science.gov (United States)

    Fairhurst, Michelle C; Ezell, Michael J; Finlayson-Pitts, Barbara J

    2017-10-04

    While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level. A simple model system for understanding the interactions between the gas and particle phases is the reaction of bases with acids, both of which are common constituents of atmospheric particles. In the present study, uptake coefficients for the reactions of gas phase ammonia, methylamine, ethylamine, dimethylamine and trimethylamine with a series of solid dicarboxylic acids (diacids) were measured at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. The uptake coefficients (γ) for a given amine follow an odd-even trend in carbon number of the diacid, and are larger for the odd carbon diacids. Values range from γ = 0.4 for ethylamine on malonic acid (C3) to less than ∼10 -6 for ammonia and all amines on adipic (C6) and pimelic (C7) acids. Basicity or structure of the amines/ammonia alone do not explain the effect of the base on uptake. The crystal structures of the diacids also play a key role, which is especially evident for malonic acid (C3). Evaporation of aqueous mixtures of amines/ammonia with odd carbon diacids show the formation of ionic liquids (ILs) or in some cases, metastable ILs that revert back to a stable solid salt upon complete evaporation of water. The trends with amine and diacid structure provide insight into the mechanisms of uptake and molecular interactions that control it, including the formation of ionic liquid layers in some cases. The diversity in the kinetics and mechanisms involved in this relatively simple model system illustrate the challenges in accurately representing such processes in atmospheric models.

  7. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  8. Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy

    International Nuclear Information System (INIS)

    Suehiro, Junya; Zhou Guangbin; Hara, Masanori

    2003-01-01

    This paper describes a new method for fabricating a gas sensor composed of multi-wall carbon nanotubes (MWCNTs) using dielectrophoresis (DEP). MWCNTs dispersed in ethanol were trapped and enriched in an interdigitated microelectrode gap under the action of a positive DEP force that drove the MWCNTs to a higher electric field region. During the trapping of MWCNTs, the electrode impedance varied as the number of MWCNTs bridging the electrode gap increased. After the DEP process, the ethanol was evaporated and the microelectrode retaining the MWCNTs was exposed to ammonia (NH 3 ) gas while the electrode impedance was monitored. It was found that the electrode impedance was altered by ppm-levels of ammonia at room temperature. The ammonia exposure decreased the sensor conductance, while the capacitance increased. The sensor showed a reversible response with a time constant of a few minutes. The conductance change was proportional to ammonia concentration below 10 ppm and then gradually saturated at higher concentrations. Effects of the number of trapped MWCNTs on sensor response were also discussed. (rapid communication)

  9. Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans

    International Nuclear Information System (INIS)

    Kotzerke, J.; Glatting, G.; Neumaier, B.; Reske, S.N.; Hoff, J. van den; Hoeher, M.; Woehrle, J. n

    2001-01-01

    We simultaneously determined global myocardial blood flow (MBF) by the argon inert gas technique and by nitrogen-13 ammonia positron emission tomography (PET) to validate PET-derived MBF values in humans. A total of 19 patients were investigated at rest (n=19) and during adenosine-induced hyperaemia (n=16). Regional coronary artery stenoses were ruled out by angiography. The argon inert gas method uses the difference of arterial and coronary sinus argon concentrations during inhalation of a mixture of 75% argon and 25% oxygen to estimate global MBF. It can be considered as valid as the microspheres technique, which, however, cannot be applied in humans. Dynamic PET was performed after injection of 0.8±0.2 GBq 13 N-ammonia and MBF was calculated applying a two-tissue compartment model. MBF values derived from the argon method at rest and during the hyperaemic state were 1.03±0.24 ml min -1 g -1 and 2.64±1.02 ml min -1 g -1 , respectively. MBF values derived from ammonia PET at rest and during hyperaemia were 0.95±0.23 ml min -1 g -1 and 2.44±0.81 ml min -1 g -1 , respectively. The correlation between the two methods was close (y=0.92x+0.14, r=0.96; P 13 N-ammonia PET. (orig.)

  10. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    Science.gov (United States)

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. Published by Elsevier Ltd.

  11. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems.

    Science.gov (United States)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Ter Heijne, Annemiek; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2017-03-07

    Recycling of hydrogen gas (H 2 ) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H 2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At a current density of 20 A m -2 , TAN removal rate from the influent was 151 g N m -2 d -1 at an energy demand of 26.1 kJ g N -1 . The maximum TAN transport rate of 335 g N m -2 d -1 was achieved at a current density of 50 A m -2 and an energy demand of 56.3 kJ g N -1 . High TAN removal efficiency (73-82%) and recovery (60-73%) were reached in all experiments. Therefore, our HRES is a promising alternative for electrochemical and bioelectrochemical TAN recovery. Advantages are the lower energy input and lower risk of chloride oxidation compared to electrochemical technologies and high rates and independence of organic matter compared to bioelectrochemical systems.

  12. Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Dai, Yiping

    2013-01-01

    Due to a good behavior of ammonia-water during the two-phase heat addition process and the liquefied natural gas with great cold energy, an ammonia-water power system with LNG as its heat sink is proposed to utilize the low grade waste heat. Based on the thermodynamic mathematical models, the effects of key thermodynamic design parameters, including turbine inlet pressure, turbine inlet temperature, ammonia mass fraction, pinch temperature difference and approach temperature difference in the heat recovery vapor generator, on the system performance are examined from the view of both thermodynamics and economics. To obtain the optimum performance, multi-objective optimization is conducted to find the best thermodynamic design parameters from both thermodynamic and economic aspects using NSGA-II (Non-dominated sorting genetic algorithm-II). The exergy efficiency, total heat transfer capability and turbine size parameter are selected as three objective functions to maximize the exergy efficiency, and minimize the total heat transfer capability and turbine size parameter under the given waste heat conditions. The results show that turbine inlet pressure, turbine inlet temperature, ammonia mass fraction, pinch temperature difference and approach temperature difference have significant effects on the system performance. By multi-objective optimization, the Pareto frontier solution for the ammonia-water power system is obtained. - Highlights: ► An ammonia-water power system with LNG as its heat sink is proposed. ► The effects of key parameters on the system performance are examined. ► Multi-objective optimization is conducted to obtain optimum system performance

  13. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    Science.gov (United States)

    Nitrogen (N) can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate) is one with the highest N content in ammonia form. It is desirable to reduce the high ammonia content in swine manure because it reduces biogas production by in...

  14. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ye; Ran, Ran; Guo, Youmin; Zhou, Wei; Cai, Rui; Wang, Jun; Shao, Zongping [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, No.5 Xin Mofan Road, Nanjing 210009 (China)

    2010-04-15

    Anode-supported proton-conducting fuel cell with BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) cathode was fabricated. Peak power densities of {proportional_to}420 and 135 mW/cm{sup 2} were achieved, respectively, at 700 and 450 C for a cell with 35 {mu}m thick electrolyte operating on hydrogen fuel. The endothermic nature of the ammonia decomposition reaction, however, resulted in cell temperature 30-65 C lower than the furnace when operating on ammonia. Accounting the cooling effect, comparable power density was achieved for the cell operating on ammonia and hydrogen at high temperature. At reduced temperature, the cell demonstrated worse performance when operating on ammonia than on hydrogen due to the poor activity of the anode towards NH{sub 3} catalytic decomposition. By applying on-line catalytic decomposition products of N{sub 2}H{sub 4} as the fuel, similar cell performance to that with NH{sub 3} fuel was also observed. (author)

  15. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  16. Determination of carbon number distributions of complex phthalates by gas chromatography-mass spectrometry with ammonia chemical ionization.

    Science.gov (United States)

    Di Sanzo, Frank P; Lim, Peniel J; Han, Wenning W

    2015-01-01

    An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers. The carbon number distributions are determined in the acceptable range of 85 mole percent (m/m). Several examples of analysis made on commercial DINP and DIDP are presented. The use of only 5% instead of 100% ammonia simplifies use of GC-MS-PCI-NH3 but still produces sufficient M + 1 ion intensities that are appropriate for the assay. In addition, use of low concentrations of ammonia mitigates potential safety aspects related to use of ammonia and provides less corrosion for the instrument hardware. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2011-01-01

    Full Text Available The Border Air Quality and Meteorology study (BAQS-Met was an intensive field campaign conducted in Southwestern Ontario during the summer of 2007. The focus of BAQS-Met was determining the causes of the formation of ozone and fine particulate matter (PM2.5, and of the regional significance of trans-boundary transport and lake breeze circulations on that formation. Fast (1 Hz measurements of ammonia were acquired using a Quantum Cascade Laser Tunable Infrared Differential Absorption Spectrometer (QC-TILDAS at the Harrow supersite. Measurements of PM2.5 ammonium, sulfate and nitrate were made using an Ambient Ion Monitor Ion Chromatograph (AIM-IC with hourly time resolution. The median mixing ratio of ammonia was 2.5 ppb, with occasional high spikes at night resulting from local emissions. Measurements were used to assess major local emissions of NH3, diurnal profiles and gas-particle partitioning. The measurements were compared with results from A Unified Regional Air-quality Modelling System (AURAMS. While the fraction of total ammonia (NHx≡NH3 + NH4+ observed in the gas phase peaks between 0.1 and 0.8, AURAMS tended to predict fractions of either less than 0.05 or greater than 0.8. The model frequently predicted acidic aerosol, in contrast with observations wherein NHx almost always exceeded the observed equivalents of sulfate. One explanation for our observations is that the net flux of ammonia from the land surface to the atmosphere increases when aerosol sulfate is present, effectively buffering the mixing ratio of gas phase ammonia, a process not included in the model. A simple representation of an offline bi-directional flux parameterization using the ISORROPIA thermodynamic model was successful at reducing the population of zero gas fraction points, but not the higher gas fraction points.

  18. Validation of Ammonia Diffusive and Active Samplers in a Controlled Atmosphere Test Facility Using Traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, N. A.; Ferracci, V.; Cassidy, N.; Hook, J.; Battersby, R. M.; Tang, Y. S.; Stevens, A. C. M.; Jones, M. R.; Braban, C. F.; Gates, L.; Hangartner, M.; Sacco, P.; Pagani, D.; Hoffnagle, J.

    2016-12-01

    Intensive farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, leading to a loss of biodiversity, undesirable changes to the ecosystem, and to secondary particulate matter (PM) formation. Measurements of ambient ammonia over a wide geographical area, are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each technique delivering time-integrated values over the monitoring period. The goal of this work was to measure the NH3 diffusive sampling rates of five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler), together with validation tests with a denuder sampler (CEH DELTA denuder). The would deliver validated improvements in the accuracy of ambient measurements of NH3 in the field through the establishment of metrological traceability using new stable ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at NPL. All devices were simultaneously exposed in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of ammonia applicable to a range of ambient monitoring conditions, with well-defined conditions of temperature, relative humidity and wind speed. Online continuous monitoring of the test atmospheres was carried out with a calibrated cavity ring-down spectrometer modified to account for cross interference by water. Exposed samplers were analysed by individual manufacturers for ammonium using traceable wet chemical techniques. The measured diffusive sampling rates were then applied to field measurements carried out at the Whim Bog experimental station in Scotland, where there is a facility in place for controlled releases of NH3 and also a background site.

  19. Reduced chemical mechanisms for ammonia/methane co-firing for gas turbine applications

    OpenAIRE

    Xiao, Hua; Howard, M.S.; Valera Medina, Agustin; Dooley, S.; Bowen, Philip John

    2017-01-01

    Energy storage is one of the major challenges facing the world towards its challenging 2050 climate-change targets. A potential enabler of a low-carbon economy is the energy vector hydrogen. However, issues associated with hydrogen have led to consider other molecules such as ammonia as a potential candidate for chemical storage. Apart from its relatively high stability under atmospheric temperature, ammonia has the added attraction that it can also be sold on international markets or be used...

  20. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation

    OpenAIRE

    Valera Medina, Agustin; Marsh, Richard; Runyon, Jon; Pugh, Daniel; Beasley, Paul; Hughes, Timothy Richard; Bowen, Philip John

    2017-01-01

    Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were...

  1. Validation of ammonia diffusive and active samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Stoll, Jean-Marc; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.

    2017-04-01

    Intensive animal farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for the observed increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, potentially leading to a loss of biodiversity and undesirable changes to the ecosystem. It also contributes to the formation of secondary particulate matter (PM) formation, which is associated with poor air quality and adverse health outcomes. Measurements of ambient ammonia are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each method delivering time-integrated values over the monitoring period. However, such techniques have not yet been extensively validated. The goal of this work was to provide improvements in the metrological traceability through the determination of NH3 diffusive sampling rates. Five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler) were employed, together with a pumped denuder sampler (CEH DELTA denuder) for comparison. All devices were simultaneously exposed for either 28 days or 14 days (dependent on sampler type) in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of humidified ammonia using new stable ammonia Primary Standard Gas Mixtures developed by gravimetry at NPL, under a wide range of conditions that are relevant to ambient monitoring. Online continuous monitoring of the ammonia test atmospheres was carried out by extractive sampling, employing a calibrated cavity ring-down spectrometer, which had been modified to account for cross interference by water vapour. Each manufacturer extracted the captured ammonia on the exposed samplers in the form of ammonium (NH4+) using their own accredited traceable wet chemical techniques, and then reported data

  2. Nutritive value of wheat straw treated with gaseous or liquid ammonia trough nylon bag and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Samad Sadeghi

    2016-04-01

    Full Text Available Introduction Feed shortage is the most important characteristic of Iranian animal industry. Increased costs of livestock production have caused the Iranian producers to reduce feed costs mainly by inclusion low quality crop residues into ruminants diets. It is estimated that around 20 million tons wheat straw produced in Iran every year. Both the digestibility and crude protein content of wheat straw are typically low. Since 1900, a wide variety of chemical treatments have been tested for their potential to improve the feeding value of wheat straw. Upgrading of wheat straw by ammoniation has been known for a long time, but application of this method of wheat straw treatment has received the least attention in the area (Khorasan Province, Iran. Therefore, the object of the present study was to evaluate the effect of gaseous and liquid ammonia on nutritive value of wheat straw through in vitro techniques. Material and Methods One kg dry wheat straw was placed into the plastic cylinders with dimension of 1 m (diameter and 1.8 m (height and 0.8 mm (thickness. Gaseous and liquid commercial ammonia was injected or added to the wrapped straw at the rate of 2, 4 and 6 percent. The treatment time was 1 month at room temperature (20-25 ºC. At the end of treatment period the cylinders were opened and the ammoniated straw exposed to the air for 4 days. The treated straws were sampled for the subsequent analyses. Dry matter degradability of the samples was done by using nylon bags (10x20 cm with pore size of 40 micron. About 2 g ground samples (2 mm were placed into the nylon bags and incubated in rumen of 4 permanently fistulated steers for 3, 6, 12, 24, 36, 48, 72, 96 and 120 hrs. The experimental steers were fed by the ordinary diet containing 65% forage and 35% concentrate twice daily. The Menke and Steingass method was followed for the in vitro gas production method. Result and discussion Crude protein (CP content of the treated wheat straw samples

  3. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm.

    Science.gov (United States)

    Fillingham, M A; VanderZaag, A C; Burtt, S; Baldé, H; Ngwabie, N M; Smith, W; Hakami, A; Wagner-Riddle, C; Bittman, S; MacDonald, D

    2017-12-01

    Recent developments in composting technology enable dairy farms to produce their own bedding from composted manure. This management practice alters the fate of carbon and nitrogen; however, there is little data available documenting how gaseous emissions are impacted. This study measured in-situ emissions of methane (CH 4 ), carbon dioxide (CO 2 ), nitrous oxide (N 2 O), and ammonia (NH 3 ) from an on-farm solid-liquid separation system followed by continuously-turned plug-flow composting over three seasons. Emissions were measured separately from the continuously-turned compost phase, and the compost-storage phase prior to the compost being used for cattle bedding. Active composting had low emissions of N 2 O and CH 4 with most carbon being emitted as CO 2 -C and most N emitted as NH 3 -N. Compost storage had higher CH 4 and N 2 O emissions than the active phase, while NH 3 was emitted at a lower rate, and CO 2 was similar. Overall, combining both the active composting and storage phases, the mean total emissions were 3.9×10 -2 gCH 4 kg -1 raw manure (RM), 11.3gCO 2 kg -1 RM, 2.5×10 -4 g N 2 O kg -1 RM, and 0.13g NH 3 kg -1 RM. Emissions with solid-separation and composting were compared to calculated emissions for a traditional (unseparated) liquid manure storage tank. The total greenhouse gas emissions (CH 4 +N 2 O) from solid separation, composting, compost storage, and separated liquid storage were reduced substantially on a CO 2 -equivalent basis compared to traditional liquid storage. Solid-liquid separation and well-managed composting could mitigate overall greenhouse gas emissions; however, an environmental trade off was that NH 3 was emitted at higher rates from the continuously turned composter than reported values for traditional storage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Ammonia Gas Sensing Properties of Nanocrystalline Zn1-xCuxFe2O4 Doped with Noble Metal

    Directory of Open Access Journals (Sweden)

    S. V. JAGTAP

    2010-11-01

    Full Text Available The sensors are required basically for monitoring of trace gases in environment. In order to detect, measure and control these gases; one should know the amount and type of gases present in the environment. Among the most toxic and hazardous gases, it is necessary to detect and monitor the ammonia gas because this is enhance in the agricultural sector by the addition of large amounts of NH3 to cultivated farmland in the form of fertilizers. Nanocrystalline spinel type Zn1-xCuxFe2O4 (x=0, 0.2, 0.4 0.6 & 0.8 has been synthesized by sol-gel citrate method. The synthesized powders were characterized by XRD and SEM. The results revealed that the particle size is in the range of 40–45 nm for Cu–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like CO, LPG, NH3 and H2S and it is observed that Cu–Zn ferrite shows high response to ammonia gas at relatively lower operating temperature. The Zn0.6Cu0.4Fe2O4 nanomaterial shows better sensitivity towards NH3 gas at an operating temperature 300 0C. Incorporation of Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 0C to 250 0C for NH3 sensor.

  5. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  6. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    Science.gov (United States)

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  7. Occurrence of gas phase ammonia in the area of Beijing (China)

    Science.gov (United States)

    Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Rantica, E.; Ancora, M. P.; Hu, M.; Zhu, T.

    2010-10-01

    The atmospheric concentrations of gaseous ammonia have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China). These measurements were carried out by means of diffusion annular denuders coated with phosphorous acid. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. The daily average NH3 concentrations were in the range of 0.20-44.38 μg/m3 and showed regular temporal variations with higher concentrations during summer and with lower during winter. The temporal trends seemed to be largely affected by air temperature because of agricultural sources. No diurnal variability was observed for gaseous NH3 levels in both winter and summer seasons. The highest ammonia value of 105.67 μg/m3 was measured in the early morning during the summer period when stable atmospheric conditions occurred. The diurnal winter and summer trends of ammonia showed a weak dependence on the air temperature and they were affected nearly by wind direction suggesting regional and local source influences. Ammonia was also correlated with the atmospheric mixing in the boundary layer, and, with NOx, CO and PM2.5 air concentrations supporting the hypothesis that the traffic may be also an important source of ammonia in Beijing.

  8. In-situ monitoring of ammonia gas using an optical fibre based approach

    Science.gov (United States)

    Dooly, G.; Manap, H.; O'Keeffe, S.; Lewis, E.

    2011-08-01

    An optical fibre sensor for the monitoring of low level atmospheric ammonia concentrations is presented. The measuring technique employed is based on a differential optical absorption approach, rather than a semiconductor based technique which is generally exploited within comparable commercially available products. The sensor described herein demonstrates vast improvements in terms of sensitivity, selectivity and lifespan over ammonia sensors currently available commercially. Extensive laboratory-based experimental tests demonstrate the sensor's ability to monitor concentrations as low as 1ppm without any notable cross-sensitivity issues to atmospheric gases such as nitrogen, oxygen and carbon dioxide. Furthermore, in-situ experimental tests within an agricultural cattle enclosure demonstrate sensor's suitability to environments where low concentration monitoring of ammonia over extended periods of time is necessary.

  9. In-situ monitoring of ammonia gas using an optical fibre based approach

    International Nuclear Information System (INIS)

    Dooly, G; Manap, H; O'Keeffe, S; Lewis, E

    2011-01-01

    An optical fibre sensor for the monitoring of low level atmospheric ammonia concentrations is presented. The measuring technique employed is based on a differential optical absorption approach, rather than a semiconductor based technique which is generally exploited within comparable commercially available products. The sensor described herein demonstrates vast improvements in terms of sensitivity, selectivity and lifespan over ammonia sensors currently available commercially. Extensive laboratory-based experimental tests demonstrate the sensor's ability to monitor concentrations as low as 1ppm without any notable cross-sensitivity issues to atmospheric gases such as nitrogen, oxygen and carbon dioxide. Furthermore, in-situ experimental tests within an agricultural cattle enclosure demonstrate sensor's suitability to environments where low concentration monitoring of ammonia over extended periods of time is necessary.

  10. Organic Gas Sensor with an Improved Lifetime for Detecting Breath Ammonia in Hemodialysis Patients.

    Science.gov (United States)

    Chuang, Ming-Yen; Chen, Chang-Chiang; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung

    2017-12-22

    In this work, a TFB (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-s-butylphenyl)diphenylamine)]) sensor with a cylindrical nanopore structure exhibits a high sensitivity to ammonia in ppb-regime. The lifetime and sensitivity of the TFB sensor were studied and compared to those of P3HT (poly(3-hexylthiophene)), NPB (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine), and TAPC (4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]) sensors with the same cylindrical nanopore structures. The TFB sensor outstands the others in sensitivity and lifetime and it shows a sensing response (current variation ratio) of 13% to 100 ppb ammonia after 64 days of storage in air. A repeated sensing periods testing and a long-term measurement have also been demonstrated for the test of robustness. The performance of the TFB sensor is stable in both tests, which reveals that the TFB sensor can be utilized in our targeting clinical trials. In the last part of this work, we study the change of ammonia concentration in the breath of hemodialysis (HD) patients before and after dialysis. An obvious drop of breath ammonia concentration can be observed after dialysis. The reduction of breath ammonia is also correlated with the reduction of blood urea nitrogen (BUN). A correlation coefficient of 0.82 is achieved. The result implies that TFB sensor may be used as a real-time and low cost breath ammonia sensor for the daily tracking of hemodialysis patients.

  11. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  12. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Joo-Youn; Shin, Hang-Sik [Department of Civil and Environmental Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon, 305-701 (Korea); Kim, Hyun-Woo [Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P. O. Box 875701, Tempe, AZ 85287-5701 (United States)

    2010-10-01

    Batch experiments are conducted at various concentrations of initial total ammonia nitrogen (TAN) with acetate as an electron donor to examine the effects of free ammonia (NH{sub 3}) inhibition on electricity production in single-chambered microbial fuel cells (MFCs). This research demonstrates that initial TAN concentrations of over 500 mg N L{sup -1} significantly inhibit electricity generation in MFCs. The maximum power density of 4240 mW m{sup -3} at 500 mg N L{sup -1} drastically decreases to 1700 mW m{sup -3} as the initial TAN increases up to 4000 mg N L{sup -1}. Nitrite and nitrate analysis confirms that nitrification after complete acetate removal consumes some TAN. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are also inhibited by increasing the initial TAN concentrations. Another batch experiment verifies the strong inhibitory effect of TAN with only small differences between the half-maximum effective concentration (EC{sub 50}) for TAN (894 mg N L{sup -1} equivalent to 10 mg N L{sup -1} as NH{sub 3}) and optimum TAN conditions; it requires careful monitoring of the TAN for MFCs. In addition, abiotic control experiments reveal that granular activated carbon, which is used as an auxiliary anode material, adsorbs a significant amount of ammonia at each TAN concentration in batch MFCs. (author)

  13. Separation of ammonia and phosphate minerals from wastewater using gas-permeable membranes

    Science.gov (United States)

    Conservation and recovery of nitrogen and phosphorus from animal wastes and municipal effluents is important because of economic and environmental reasons. In this paper we present a novel technology for separation and recovery of ammonia and phosphorus from liquid swine manure. Phosphorus recovery ...

  14. Manure ammonia and greenhouse gas emissions from beef cattle fed condensed tannins

    Science.gov (United States)

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feed yard steers on ammonia and GHG emissions from manure. Condensed tannins were fed at rates of 0, 0.5 and 1.0 percent on a dry matter basis. Manure and urine were collected from two periods over 6 d...

  15. Development of the hybrid cells in series model to simulate ammonia nutrient pollutant transport along the Umgeni River.

    Science.gov (United States)

    Olowe, Kayode O; Kumarasamy, Muthukrishnavellaisamy

    2017-10-01

    Discharge of organic waste results in high nutrient pollution of the water bodies which is a major menace to the environment. A high quantity of nutrients such as ammonia causes a reduction in the dissolved oxygen level and induces algal growth in the water bodies. Water quality models have been the tools to evaluate the rate at which streams can disperse the pollutants they receive. Many water quality models are flawed either because of their inadequacy to completely simulate the advection component of the pollutant transport, or because of the limited application of the models, due to inaccurate estimation of model parameters. The hybrid cell in series (HCIS) developed by Ghosh et al. (2004) has been able to overcome such difficulties associated with the mixing cell-based models. Thus, the current study focuses on developing an analytical solution for the pollutant transport of the ammonia concentration through the plug flow, the first and second well-mixed cells of the HCIS model. The HCIS model coupled with the first order kinetic equation for ammonia nutrient was developed to simulate the ammonia pollutant concentration in the water column. The ammonia concentration at various points along the river system was assessed by considering the effects of the transformation of ammonia to nitrite, the uptake of ammonia by the algae, the respiration rate of the algae and the input of benthic source to the ammonia concentration in the water column. The proposed model was tested using synthetic data, and the HCIS-NH 3 model simulations for spatial and temporal variation of ammonia pollutant transport were analysed. The simulated results of the HCIS-NH 3 model agreed with the Fickian-based advection-dispersion equation (ADE) for simulating ammonia concentration solved using an explicit finite difference scheme. The HCIS-NH 3 model also showed a good agreement with the observed data from the Umgeni River, except during rainy periods.

  16. A study of the effect of ammonia gas on the solid mono- and dinuclear oxorhenium(V complexes

    Directory of Open Access Journals (Sweden)

    M. M. MASHALY

    1999-09-01

    Full Text Available The reaction of ammonia gas with the solid oxorhenium(V complexes [Re2 O3L2Cl4]·2H2O, [Re2O2L3Cl6]·2H2O, [ReOLCl(OH23]Cl2, [ReOL2(OH23]CCl3, [ReOLCl3(OH2], [ReOL(SCN2Cl(OH2]·H2O and [ReOL(SCNCl2(OH2] (where L = 2-benzimadazolethione, yielded the corresponding ammine and/or amine complexes, [Re2O3L2(NH32(NH22]Cl2 (I, [Re2O2L3(NH32(NH24]Cl2 (II, [Re2O3L2(NH32 (NH24]·H2O (III, [Re2O3L4(NH24] (IV, [Re2O3L2(NH32(NH24C (V, [Re2O3L2(SCN4(NH32] (VI and [Re2O3L2(Thio2(NH24] (VII, respectively, (Thio = thiourea where ammonia gas has replaced other ligands such as chlorine and water. In complex VII thiourea replaced the thiocyanate group in the start complex through its reaction with ammonia gas. The obtained ammine and/or amine of rhenium(V complexes have been observed to decompose through several isolatable, as well as non-isolatable complex species as intermediates during heating. [Re2O3L4], [Re2O3L2(NH24] and [Re2O3L2(SCN4], were synthesized pyrolytically in the solid state from the corresponding parent oxorhenium complexes. The electronic absorption spectra and magnetic moments of the complexes show that the Re(V cation has an octahedral configuration. IR,1H-NMR spectroscopy, conductivity measurements and thermal analysies show that ammonia and thiourea behave as neutral monodentate ligands, SCN- and NH2- as monodentate monoanionic ligands, the organic ligand (L as a neutral monodentate or bidentate ligand towards the metal cation.

  17. On the deposition of volatiles and semivolatiles from cigarette smoke aerosols: relative rates of transfer of nicotine and ammonia from particles to the gas phase.

    Science.gov (United States)

    Seeman, Jeffrey I; Lipowicz, Peter J; Piadé, Jean-Jacques; Poget, Laurent; Sanders, Edward B; Snyder, James P; Trowbridge, Clarence G

    2004-08-01

    The hypothesis that elevated levels of ammonia-releasing compounds in tobacco and ammonia in mainstream (MS) smoke increase the rate and amount of nicotine evaporation from the particles of MS smoke aerosol was examined by kinetic modeling and experiments with MS cigarette smoke. Computational simulation of a kinetic mechanism describing volatile loss of nicotine, ammonia, and acetic acid from an aqueous solution was used to compute the time-dependent concentration of all species in the model. Because of the high volatility of ammonia relative to that of nicotine, variation over a wide range of initial ammonia concentration had no significant effect upon the rate of loss of nicotine from the model system. The effects of a variation in the volatile loss rate constant for ammonia and for the acid were examined. The simulations show that ammonia is lost from the model solution at a greater rate than nicotine and acid, and the loss of volatile acid has a significant role in the rate and amount of nicotine loss. Simulations with a model system undergoing a continuous steady addition of ammonia showed that high rates of ammonia addition could significantly increase the rate of nicotine volatile loss from the model solution. A series of smoking experiments was performed using blended cigarettes connected to a denuder tube. Deposition of smoke constituents can occur directly from the gas phase and by the deposition of smoke aerosol particles themselves. As nicotine exists >99% in the particle phase of MS smoke, in the absence of particle deposition, denuder tube deposition of nicotine occurs via the evaporation-deposition pathway. Solanesol, a nonvolatile tobacco and smoke terpene, was used to quantify the amount of particle deposition onto the denuder tube. The amount of ammonia deposited on the denuder tube was an order of magnitude greater than that of nicotine, showing that ammonia evaporates from the MS smoke particles much faster than does nicotine. The experimental

  18. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-04-08

    In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

  19. Removal of ammonia generated from farm poultry and their use in the fuel cells and as fertilizer

    International Nuclear Information System (INIS)

    Ferreira, Joao Coutinho

    2010-01-01

    The process here stressed uses a cation exchange material. The aim of the present work has been to prepare a suitable cation exchanger material with especially high selectivity for ammonia, as the cation NH 4+ or as aqueous ammonia solution containing NH 4 OH hydroxide as well. Aliquots of the above mentioned exchangers were set up inside an chicken farm production near Sao Paulo city. Periodically the exchanger was removed to the laboratory and eluted with a convenient acid to regenerate the exchanger for the new cycle. The ammonia retention was quite high and presents no difficulty for its elution. The selected exchanger is a solid material, non toxic, without smell and have good physical properties. The first results encouraged us and our plants to do large experiments that in progress. This process is a contribution to remediation of the avicola local, removing the ammonia gas and suppressing greatly its smell and bad effect to the animals and even to workers. (author)

  20. Room Temperature Ammonia Gas Sensing Using Mixed Conductor based TEMPOS Structures

    Directory of Open Access Journals (Sweden)

    Amita Chandra

    2008-10-01

    Full Text Available The current/voltage characteristics of mixed (ion+electron conductor-based ‘TEMPOS’ (Tunable Electronic Material with Pores in Oxide on Silicon structures are reported. TEMPOS are novel electronic MOS-like structures having etched swift heavy ion tracks (i.e., nanopores in the dielectric layer filled with some conducting material. The three contacts (two on top and one on the bottom, which resemble the classical bipolar or field effect transistor arrangements are, in principle, interchangeable when the overall electrical resistance along the tracks and on the surface are similar. Consequently, three configurations are obtained by interchanging the top contacts with the base contact in electronic circuits. The current/voltage characteristics show a diode like behaviour. Impedance measurements have been made for TEMPOS structures with tracks filled with ion conductors and also mixed conductors to study the ammonia sensing behaviour. The impedance has been found to be a function of frequency and magnitude of the applied signal and concentration of the ammonia solution. This is attributed to the large number of charge carriers (here protons available for conduction on exposure to ammonia and also to the large surface to volume ratio of the polymer composites embedded in the ion tracks. The measurement of both, the real and imaginary parts of impedance allows one to enhance the detection sensitivity greatly.

  1. Room Temperature Ammonia Gas Sensing Using Mixed Conductor based TEMPOS Structures.

    Science.gov (United States)

    Saroch, Mamta; Srivastava, Sunita; Fink, Dietmar; Chandra, Amita

    2008-10-14

    The current/voltage characteristics of mixed (ion+electron) conductor-based 'TEMPOS' (Tunable Electronic Material with Pores in Oxide on Silicon) structures are reported. TEMPOS are novel electronic MOS-like structures having etched swift heavy ion tracks (i.e., nanopores) in the dielectric layer filled with some conducting material. The three contacts (two on top and one on the bottom), which resemble the classical bipolar or field effect transistor arrangements are, in principle, interchangeable when the overall electrical resistance along the tracks and on the surface are similar. Consequently, three configurations are obtained by interchanging the top contacts with the base contact in electronic circuits. The current/voltage characteristics show a diode like behaviour. Impedance measurements have been made for TEMPOS structures with tracks filled with ion conductors and also mixed conductors to study the ammonia sensing behaviour. The impedance has been found to be a function of frequency and magnitude of the applied signal and concentration of the ammonia solution. This is attributed to the large number of charge carriers (here protons) available for conduction on exposure to ammonia and also to the large surface to volume ratio of the polymer composites embedded in the ion tracks. The measurement of both, the real and imaginary parts of impedance allows one to enhance the detection sensitivity greatly.

  2. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  3. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thomle, Jonathan N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  4. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  5. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Science.gov (United States)

    Khunjar, Wendell O; Sahin, Asli; West, Alan C; Chandran, Kartik; Banta, Scott

    2012-01-01

    The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC) that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  6. Determination of 4-Methylimidazole in Ammonia Caramel Using Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS

    Directory of Open Access Journals (Sweden)

    Martyna N. Wieczorek

    2018-01-01

    Full Text Available One of Maillard reaction products formed in the production of ammonia caramel is 4(5-methylimidazole (4-MeI classified as carcinogen. A method of 4-MeI determination based on ion-pair extraction and derivatisation with isobutyl chloroformate with subsequent gas chromatography-tandem mass spectrometry analysis was proposed. Tandem mass spectrometry was applied to reduce the influence of matrix and increase the selectivity and sensitivity of the method. Triple quadrupole GC-MS system was used for this study. The collision energies were optimized for MRM mode. The detection (LOD and quantification limits (LOQ of the elaborated method were 17 and 37.8 μg kg−1, respectively, repeatability was <15% RSD for analyzed caramel samples, and the recovery for 4-MeI was 101%. Comparison of MS/MS with SIM detection on the same instrument proved almost 30 times lower LODs achieved by tandem mass spectrometry compared to SIM. Described method can be routinely used for monitoring 4-MeI as a quality and safety marker in the production of ammonia caramel.

  7. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    DEFF Research Database (Denmark)

    Hansen, Kristina; Sørensen, Lise Lotte; Hornsby, Karen E.

    diffusion denuders with detection by florescence and half-hourly flux measurements are calculated. HNO3 REA system is based on gas capture on sodium chloride (NaCl) coated denuders with subsequent analysis by ion-chromatography, and the resulting fluxes have a resolution of 3-4 hours. CO2 fluxes...... are measured by eddy covariance using a closed-path Licor LI-7500, while two MSP MOUDI-110 impactors are used to measure the 24-hourly average inorganic and 48 hourly averaged organic ion concentrations in 11 size bins, respectively, just above the canopy level (28 m). The results of this field campaign......Quantifying the atmosphere-biosphere exchange of reactive nitrogen gasses (including ammonia (NH3) and nitric acid (HNO3)) is crucial to assessing the impact of anthropogenic activities on natural and semi-natural ecosystems. However, measuring the deposition of reactive nitrogen is challenging due...

  8. 'Fair-wind gas cell' - a new concept of a buffer gas cell design

    CERN Document Server

    Varentsov, V L

    2003-01-01

    A new concept of the buffer gas cell design is presented for the first time. For fast and efficient transport of stopped ions through the gas cell and afterwards to guide them out of the cell, the use of an intensive compulsory buffer gas flow through the cell combined with an RF-funnel structure is suggested. The operation of this type of gas cell that we call the fair-wind gas cell has been investigated by means of detailed computer simulations. Results of calculations for big size gas cell at 1 bar He buffer gas pressure are presented and discussed.

  9. Evaluation of aluminum sulfate (alum) as a feedlot surface amendment to reduce ammonia, hydrogen sulfide, and greenhouse gas emissions from beef feedlots

    Science.gov (United States)

    Ammonia (NH3) and greenhouse gas (GHG) emissions from concentrated feeding operations are a concern. The poultry industry has successfully used aluminum sulfate (Alum) as a litter amendment to reduce NH3 emissions from poultry barns. Alum has not been evaluated for similar uses on cattle feedlot sur...

  10. Temperature Optimized Ammonia and Ethanol Sensing Using Ce Doped Tin Oxide Thin Films in a Novel Flow Metric Gas Sensing Chamber

    Directory of Open Access Journals (Sweden)

    K. Govardhan

    2016-01-01

    Full Text Available A simple process of gas sensing is represented here using Ce doped tin oxide nanomaterial based thin film sensor. A novel flow metric gas chamber has been designed and utilized for gas sensing. Doping plays a vital role in enhancing the sensing properties of nanomaterials. Ce doped tin oxide was prepared by hydrothermal method and the same has been used to fabricate a thin film for sensing. The microstructure and morphology of the prepared materials were analysed by SEM, XRD, and FTIR analysis. The SEM images clearly show that doping can clamp down the growth of the large crystallites and can lead to large agglomeration spheres. Thin film gas sensors were formed from undoped pure SnO2 and Ce doped SnO2. The sensors were exposed to ammonia and ethanol gases. The responses of the sensors to different concentrations (50–500 ppm of ammonia and ethanol at different operating temperatures (225°C–500°C were studied. Results show that a good sensitivity towards ammonia was obtained with Ce doped SnO2 thin film sensor at an optimal operating temperature of 325°C. The Ce doped sensor also showed good selectivity towards ammonia when compared with ethanol. Pure SnO2 showed good sensitivity with ethanol when compared with Ce doped SnO2 thin film sensor. Response time of the sensor and its stability were also studied.

  11. Incoporating Ammonia Synthesis for an Offshore Gas-to-Liquid Process

    OpenAIRE

    Lundgren, Mathias Kristoffer

    2016-01-01

    The world energy demand is increasing, and so is the demand for fertilizer to sustain an exponential population growth. Currently, with low oil prices, asso- ciated natural gas is flared off or re-injected into oil reservoirs for enhanced oil recovery (EOR). A gas-to-liquid process (GTL) for offshore applications aboard a foating production, storage, and offoading vessel (FPSO) incorpo- rating Fischer-Tropsch Synthesis (FTS) seeks to reform natural gas into more valuable liq...

  12. Greenhouse gas and ammonia emissions from composting of animal manure and other organic waste products

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune

    Modern intensive confinement systems for livestock and poultry production have allowed farmers to greatly increase production efficiency and economic profitability, but this has inevitably resulted in significant environmental challenges, including generation of large volumes of manure in very....... Laboratory studies showed that differences in the initial physical properties (moisture, bulk density, particle density and air-filled porosity) of separated animal slurry solid fractions (SSF) had a considerable impact on the development of compost maximum temperatures (40-70 o C) and the time required (2...... small areas without sufficient nearby farm land for application. In addition to significant impacts on climate due to emissions of greenhouse gases (GHG) and ammonia (NH3) from manure management, losses of nitrogen to the environment reduce the fertiliser value of manure and have negative effects...

  13. Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe.

    Science.gov (United States)

    Fu, Jingni; Zhang, Luning

    2018-01-16

    Relying on the nanometer-thick water core and large surface area-to-volume ratio (∼2 × 10 8 m -1 ) of common black film (CBF), we are able to use a pH-sensitive dye (carboxy-seminaphthorhodafluor-1, SNARF-1) to detect ammonia and acetic acid gas adsorption into the CBF, with the limit of detection reaching 0.8 ppm for NH 3 gas and 3 ppb for CH 3 COOH gas in the air. Data analysis reveals that fluorescence signal change is linearly proportional to the gas concentration up to 15 ppm and 65 ppb for NH 3 and CH 3 COOH, respectively.

  14. Ammonia diffusion through Nalophan™ bags.

    Science.gov (United States)

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film.

  15. Production of ammonia from plasma-catalytic decomposition of urea: Effects of carrier gas composition.

    Science.gov (United States)

    Fan, Xing; Li, Jian; Qiu, Danqi; Zhu, Tianle

    2018-04-01

    Effects of carrier gas composition (N 2 /air) on NH 3 production, energy efficiency regarding NH 3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al 2 O 3 -packed dielectric barrier discharge (DBD) reactor at room temperature. Results show that the presence of O 2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH 3 . The final yield of NH 3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23kV, respectively when air was used as the carrier gas instead of N 2 . From the viewpoint of energy savings, however, air carrier gas is better than N 2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al 2 O 3 catalyst to give NH 3 and CO 2 as the main products. Compared to a small amount of N 2 O formed with N 2 as the carrier gas, however, more byproducts including N 2 O and NO 2 in the gas phase and NH 4 NO 3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH 3 , the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma. Copyright © 2017. Published by Elsevier B.V.

  16. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2010-01-01

    we utilize the abundant loss of ammonia upon ETD of peptide ions as a universal reporter of positional randomization of the exchangeable hydrogens (hydrogen scrambling) during HX-ETD experiments. We show that the loss of ammonia from peptide ions proceeds without depletion of deuterium when employing......The application of electron-transfer dissociation (ETD) to obtain single-residue resolution in hydrogen exchange-mass spectrometry (HX-MS) experiments has recently been demonstrated. For such measurements, it is critical to ensure that the level of gas-phase hydrogen scrambling is negligible. Here...... detected by a depletion of deuterium when deuterated ammonia is lost from peptides during ETD. This straightforward method requires no modifications to the experimental workflow and has the great advantage that the occurrence of hydrogen scrambling can be directly detected in the actual peptides analyzed...

  17. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  18. The separation and recovery of hydrogen from the recycling gas in ammonia production by means of lanthanum-rich mischmetal nickel hydride beds

    International Nuclear Information System (INIS)

    Qidong, W.; Jing, W.; Changpin, C.; Weifang, L.

    1985-01-01

    The separation and recovery of hydrogen by means of a MlNi/sub 5/ (Ml: La-rich mischmetal) beds were studied. The influence of the impurity gas components (O/sub 2/, H/sub 2/O, N/sub 2/, Ar, CH/sub 4/ and NH/sub 3/ etc) on the hydrogen absorption capacity, hydriding and dehydriding kinetics and cycling ageing stability of the beds was investigated for both stagnant gases and continuously flowing gas streams. In small reactors, at first artificially made gas mixtures and finally the actual recycling gas from ammonia production were tested. In the presence of trace ammonia (<100ppm) in recycling gas stream, the efficiency of recovery amounted to 85 - 93% and the purity of the product hydrogen was around 99.9%. When ammonia amounted to 2.5%, the efficiency of recovery decreased to 81 - 86%. The hydrogen absorption capacity of the alloy bed remained unchanged after cycling 50 times, indicating the stability of the alloy satisfactory

  19. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    Unknown

    Introduction. Gas sensors play vital role in detecting, monitoring and controlling the presence of hazardous and poisonous gases in the atmosphere at very low concentrations. Semicon- .... detailed procedure for deposition of indium tin oxide films and the effect of .... The conductance of the sensor was measured with digital.

  20. An infrared spectroscopy method to detect ammonia in gastric juice.

    Science.gov (United States)

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations.

  1. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  2. Flue-gas desulfurization gypsum effects on urea-degrading bacteria and ammonia volatilization from broiler litter.

    Science.gov (United States)

    Burt, Christopher D; Cabrera, Miguel L; Rothrock, Michael J; Kissel, D E

    2017-08-01

    A major concern of the broiler industry is the volatilization of ammonia (NH3) from the mixture of bedding material and broiler excretion that covers the floor of broiler houses. Gypsum has been proposed as a litter amendment to reduce NH3 volatilization, but reports of NH3 abatement vary among studies and the mechanism responsible for decreasing NH3 volatilization is not well understood. The goal of this study was to evaluate the effect of adding 20 or 40% flue-gas desulfurization gypsum (FGDG) to broiler litter on pH, electrical conductivity (EC), water potential, urea-degrading bacteria abundance, NH3 and carbon dioxide (CO2) evolution, and nitrogen (N) mineralization in several 21-d experiments. The addition of FGDG to broiler litter increased EC by 24 to 33% (P mineralization by 10 to 11% (P = 0.0001) as compared to litters not amended with FGDG. Furthermore, the addition of FGDG to broiler litter decreased NH3 volatilization by 18 to 28% (P litter pH values compared to un-amended litter (P litter with 20% FGDG can decrease NH3 volatilization and increase the fertlizer value of broiler litter. © 2017 Poultry Science Association Inc.

  3. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell.

    Science.gov (United States)

    Milton, Ross D; Cai, Rong; Abdellaoui, Sofiene; Leech, Dónal; De Lacey, Antonio L; Pita, Marcos; Minteer, Shelley D

    2017-03-01

    Nitrogenases are the only enzymes known to reduce molecular nitrogen (N 2 ) to ammonia (NH 3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N 2 reduction to NH 3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H 2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH 3 from H 2 and N 2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H 2  /N 2 EFCs, which resulted in the formation of 286 nmol NH 3  mg -1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  5. Sensitivity Improvement of Ammonia Gas Sensor Based on Poly(3,4-ethylenedioxythiophene:Poly(styrenesulfonate by Employing Doping of Bromocresol Green

    Directory of Open Access Journals (Sweden)

    La Aba

    2014-01-01

    Full Text Available The aim of this research is to improve the sensitivity of ammonia gas sensor (hereafter referred to as sensor based on poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS by employing the doping dye of bromocresol green (BCG. The doping process was carried out by mixing the BCG and the PEDOT:PSS in a solution with an optimum ratio of 1 : 1 in volume. The sensor was fabricated by using spin-coating technique followed by annealing process. For comparison, the BCG thin film and the PEDOT:PSS thin film were also deposited with the same method on glass substrates. For optical characterization, a red-light laser diode with a 650 nm wavelength was used as light source. Under illumination with the laser diode, the bare glass substrate and BCG film showed no absorption. The sensor exhibited linear response to ammonia gas for the range of 200 ppm to 800 ppm. It increased the sensitivity of sensor based on PEDOT:PSS with BCG doping being about twofold higher compared to that of without BCG doping. Furthermore, the response time and the recovery time of the sensor were found very fast. It suggests that the optical sensor based on BCG-doped PEDOT:PSS is promising for application as ammonia gas sensor.

  6. Sensitivity Improvement of Ammonia Gas Sensor Based on Poly(3,4-ethylenedioxy thiophene):Poly(styrenesulfonate) by Employing Doping of Bromo cresol Green

    International Nuclear Information System (INIS)

    Aba, L.; Yusuf, Y.; Triyana, K.; Aba, L.; Siswanta, D.

    2014-01-01

    The aim of this research is to improve the sensitivity of ammonia gas sensor (hereafter referred to as sensor) based on poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) by employing the doping dye of bromo cresol green (BCG). The doping process was carried out by mixing the BCG and the PEDOT:PSS in a solution with an optimum ratio of 1:1 in volume. The sensor was fabricated by using spin-coating technique followed by annealing process. For comparison, the BCG thin film and the PEDOT:PSS thin film were also deposited with the same method on glass substrates. For optical characterization, a red-light laser diode with a 650 nm wavelength was used as light source. Under illumination with the laser diode, the bare glass substrate and BCG film showed no absorption. The sensor exhibited linear response to ammonia gas for the range of 200 ppm to 800 ppm. It increased the sensitivity of sensor based on PEDOT:PSS with BCG doping being about twofold higher compared to that of without BCG doping. Furthermore, the response time and the recovery time of the sensor were found very fast. It suggests that the optical sensor based on BCG-doped PEDOT:PSS is promising for application as ammonia gas sensor.

  7. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications

    Science.gov (United States)

    Cox, Brian; Treyer, Karin

    2015-02-01

    Global mobile telecommunication is possible due to millions of Base Transceiver Stations (BTS). Nearly 1 million of these are operating off-grid, typically powered by diesel generators and therefore leading to significant CO2 emissions and other environmental burdens. A novel type of Alkaline Fuel Cell (AFC) powered by cracked ammonia is being developed for replacement of these generators. This study compares the environmental and economic performance of the two systems by means of Life Cycle Assessment (LCA) and Levelised Cost of Electricity (LCOE), respectively. Results show that the production of ammonia dominates the LCA results, and that renewable ammonia production pathways greatly improve environmental performance. Sensitivity analyses reveal that the fuel cell parameters that most affect system cost and environmental burdens are cell power density and lifetime and system efficiency. Recycling of anode catalyst and electrode substrate materials is found to have large impacts on environmental performance, though without large cost incentives. For a set of target parameter values and fossil sourced ammonia, the AFC is calculated to produce electricity with life cycle CO2 eq emissions of 1.08 kg kWh-1, which is 23% lower than a diesel generator with electricity costs that are 14% higher in the same application.

  8. Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors

    Science.gov (United States)

    Wang, Binghao; Ding, Jinqiang; Zhu, Tao; Huang, Wei; Cui, Zequn; Chen, Jianmei; Huang, Lizhen; Chi, Lifeng

    2016-02-01

    A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors.A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors. Electronic supplementary information (ESI) available: Optical, SEM images of DTBDT-C6 microstripes; output characteristics of OTFTs based on DTBDT-C6 microstripes. See DOI: 10.1039/c5nr09001f

  9. Liberation of ammonia by cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.W.

    1986-04-01

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog /sup 14/C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism.

  10. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  11. Gas-phase ammonia and PM2.5 ammonium in a busy traffic area of Nanjing, China.

    Science.gov (United States)

    Wang, Wenxin; Wang, Shanshan; Xu, Jianhua; Zhou, Rui; Shi, Chanzhen; Zhou, Bin

    2016-01-01

    The gas-phase ammonia (NH3) and fine particle PM2.5 ammonium (pNH4(+)) (collectively, NHx) were monitored between July 2013 and August 2014 in a busy traffic area of Nanjing, China. Results showed that PM2.5 concentration was 66.7 μg m(-3), and NH3 concentration was 6.66 μg m(-3). In the PM2.5, the concentration of pNH4(+) was 3.04 μg m(-3), SO4(2-) (pSO4(2-)) was 10.16 μg m(-3), and NO3(-) (pNO3(-)) was 1.60 μg m(-3). The significant correlation curves from the tests of PM2.5 revealed that molar ratio of pNH4(+) and pSO4(2-) was approximately 2, which could be (NH4)2SO4. Particulate NH4(+) primarily associated with pSO4(2-), which accounted for 4.54% of total PM2.5 mass. The PM2.5 observed acidic and the NH3 in the atmosphere neutralized acidic species, mainly in a sulfate form. The traffic intensity in the region was partially related to the formation of PM2.5 and NH3, suggesting that traffic pollution may be an important source of PM2.5. The reaction between NHx and acidic species was assumed to the secondary PM2.5. The neutralization and photochemical property of NHx were discussed.

  12. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    Science.gov (United States)

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  13. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available BACKGROUND: Greenhouse gas (GHG production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3, leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. METHODOLOGY/PRINCIPAL FINDINGS: An experiment was conducted to quantify production of carbon dioxide (CO₂ and average daily gain (ADG as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄ and nitrous oxide (N₂O as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. CONCLUSIONS/SIGNIFICANCE: This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  14. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption

    Science.gov (United States)

    Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold

    2010-01-01

    Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900

  15. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  16. De Novo Glutamine Synthesis: Importance for the Proliferation of Glioma Cells and Potentials for Its Detection With 13N-Ammonia.

    Science.gov (United States)

    He, Qiao; Shi, Xinchong; Zhang, Linqi; Yi, Chang; Zhang, Xuezhen; Zhang, Xiangsong

    2016-01-01

    The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma cells and its detection with (13)N-ammonia. Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS) inhibitor. (13)N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro-positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and (13)N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of (13)N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher (13)N-ammonia uptake and GS expression in contrast to C6 xenografts. De novo Gln synthesis through ammonia-glutamate reaction plays an important role in the proliferation of C6 cells. (13)N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors. © The Author(s) 2016.

  17. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperature

    Science.gov (United States)

    Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad

    2016-11-15

    A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.

  18. Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell

    Science.gov (United States)

    Zamora, Patricia; Georgieva, Tanya; Ter Heijne, Annemiek; Sleutels, Tom H. J. A.; Jeremiasse, Adriaan W.; Saakes, Michel; Buisman, Cees J. N.; Kuntke, Philipp

    2017-07-01

    A two-step treatment system for nutrient and energy recovery from urine was successfully operated for six months. In the first step, phosphorus (P) was recovered as struvite (magnesium ammonium phosphate or MAP) in a MAP reactor. The effluent of this MAP reactor was used for total ammonia-nitrogen (TAN) recovery and hydrogen production in a Microbial Electrolysis Cell (MEC). This MEC was coupled to a Transmembranechemisorption (TMCS) module, in which the TAN was recovered as an ammonium sulphate solution. The MEC had a projected surface area of 0.5 m2 and was operated at different urine dilutions. The system was stable during the operation on 2 times diluted and undiluted urine at an applied voltage of 0.5 V with an average current density of 1.7 ± 0.2 A m-2. During stable current production, the TAN transport efficiency over the CEM was 92 ± 25% and the TAN recovery was 31 ± 59%. In terms of energy efficiency, the electrical energy required for the TAN recovery was 4.9 ± 1.0 MJ kgN-1, which is lower than competing electrochemical nitrogen removal/recovery technologies. Overall, this study shows, for the first time, the application of a scaled-up MEC for nutrient recovery from urine.

  19. Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery.

    Science.gov (United States)

    Kim, Taeyoung; An, Junyeong; Jang, Jae Kyung; Chang, In Seop

    2015-11-01

    Microbial fuel cells (MFCs) were investigated for use in removing total ammonia nitrogen (TAN) and residual COD from effluent digested in an anaerobic digester (AD) fed with actual swine wastewater for 32 days in batch mode. Cumulative COD removal in the AD was as high as 59,647±2096 mg/L (80.5% removed), whereas TAN removal in the AD was negligible at 296±116 mg-N/L (5.8% removed), causing a decrease in the COD/TAN ratio from 14.5 to 3.0. In a subsequent MFC system, 77.5% of TAN was removed at 36 days, leading to an increase in COD/TAN ratio from 4.6 to 8.1. As a result, the COD in the anode was further reduced from 19,319±417 mg/L to 7519±554 mg/L (61.1% removed). From these results, removing the TAN in MFCs was found to increase the COD/TAN ratio, with the COD being further degraded. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Highly Sensitive Ammonia Gas Sensor Based on Single-Crystal Poly(3-hexylthiophene) (P3HT) Organic Field Effect Transistor.

    Science.gov (United States)

    Mun, Seohyun; Park, Yoonkyung; Lee, Yong-Eun Koo; Sung, Myung Mo

    2017-11-28

    A highly sensitive organic field-effect transistor (OFET)-based sensor for ammonia in the range of 0.01 to 25 ppm was developed. The sensor was fabricated by employing an array of single-crystal poly(3-hexylthiophene) (P3HT) nanowires as the organic semiconductor (OSC) layer of an OFET with a top-contact geometry. The electrical characteristics (field-effect mobility, on/off current ratio) of the single-crystal P3HT nanowire OFET were about 2 orders of magnitude larger than those of the P3HT thin film OFET with the same geometry. The P3HT nanowire OFET showed excellent sensitivity to ammonia, about 3 times higher than that of the P3HT thin film OFET at 25 ppm ammonia. The ammonia response of the OFET was reversible and was not affected by changes in relative humidity from 45 to 100%. The high ammonia sensitivity of the P3HT nanowire OFET is believed to result from the single crystal nature and high surface/volume ratio of the P3HT nanowire used in the OSC layer.

  1. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen

    Science.gov (United States)

    Meng, Guangyao; Jiang, Cairong; Ma, Jianjun; Ma, Qianli; Liu, Xingqin

    A nickel-based anode-supported solid oxide fuel cell (SOFC) was assembled with a 10 μm thick Ce 0.8Sm 0.2O 2- δ (SDC) electrolyte and a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) cathode. The cell performance was investigated with hydrogen and ammonia gas evaporated from liquefied ammonia as fuel. Fueled by hydrogen the maximum power densities were 1872, 1357, and 748 mW cm -2 at 650, 600, and 550 °C, respectively. While with ammonia as fuel, the cell showed the maximum power densities of 1190, 434, and 167 mW cm -2, correspondingly. The power densities lower than that predicted, particularly at the lower operating temperatures for ammonia fuel cell, compared to hydrogen fuel cell, could be attributed to actual lower temperature than thermocouple display due to endothermic reaction of ammonia decomposition as well as the rather larger inlet ammonia flow rate. The results demonstrated that the ammonia was a right convenient liquid fuel for SOFCs as long as it was keeping the decomposition completion of ammonia in the cell or before entering the cell.

  2. Ammonia intoxication

    International Nuclear Information System (INIS)

    Bessman, S.P.; Pal, N.

    1982-01-01

    Data is presented which shows that there is a relation between ammonia concentration in the blood and state of consciousness. The concentrations of GTP and ATP also relate both to the ammonia concentration in blood and the state of consciousness. The rate of protein synthesis in the brain as measured by the percent of intracellular counts that are incorporated into protein is also related to ammonia concentration. These findings of energy depletion and depressed synthesis resulting from energy depletion suggest that the primary lesion in ammonia intoxication involves the Krebs cycle. The greater effect of ammonia on GTP than on ATP metabolism supports the view that the primary site of action of ammonia is at the glutamate dehydrogenase-ketoglutarate reduction step - and is consistent with previous work on this subject. (H.K.)

  3. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    Science.gov (United States)

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  5. Ammonia Monitor

    Science.gov (United States)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  6. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments.

    Science.gov (United States)

    Chundawat, Shishir P S; Vismeh, Ramin; Sharma, Lekh N; Humpula, James F; da Costa Sousa, Leonardo; Chambliss, C Kevin; Jones, A Daniel; Balan, Venkatesh; Dale, Bruce E

    2010-11-01

    Decomposition products formed/released during ammonia fiber expansion (AFEX) and dilute acid (DA) pretreatment of corn stover (CS) were quantified using robust mass spectrometry based analytical platforms. Ammonolytic cleavage of cell wall ester linkages during AFEX resulted in the formation of acetamide (25mg/g AFEX CS) and various phenolic amides (15mg/g AFEX CS) that are effective nutrients for downstream fermentation. After ammonolysis, Maillard reactions with carbonyl-containing intermediates represent the second largest sink for ammonia during AFEX. On the other hand, several carboxylic acids were formed (e.g. 35mg acetic acid/g DA CS) during DA pretreatment. Formation of furans was 36-fold lower for AFEX compared to DA treatment; while carboxylic acids (e.g. lactic and succinic acids) yield was 100-1000-fold lower during AFEX compared to previous reports using sodium hydroxide as pretreatment reagent. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer.

    Science.gov (United States)

    Feng, Shanglei; Yang, Yingguo; Li, Meng; Wang, Jinmiao; Cheng, Zhendong; Li, Jihao; Ji, Gengwu; Yin, Guangzhi; Song, Fei; Wang, Zhaokui; Li, Jingye; Gao, Xingyu

    2016-06-15

    The introduction of an ammonia modified graphene oxide (GO:NH3) layer into perovskite-based solar cells (PSCs) with a structure of indium-tin oxide (ITO)/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) ( PSS)-GO: NH3/CH3NH3PbI3-xClx/phenyl C61-butyric acid methyl ester (PCBM)/(solution Bphen) sBphen/Ag improves their performance and perovskite structure stability significantly. The fabricated devices with a champion PCE up to 16.11% are superior in all the performances in comparison with all the reference devices without the GO:NH3 layer. To understand the improved device performances, synchrotron-based grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and UV-visible absorption measurements have been conducted on perovskite films on different substrates. It was found that these improvements should be partially attributed to the improved crystallization and preferred orientation order of peovskite structure, partially to the improved morphology with nearly complete coverage, partially to the enhanced optical absorption caused by the PSS-GO:NH3 layer, and partially to the better matched energy-level-alignment at the perovskite interface. Furthermore, the device was shown to be more stable in the ambient condition, which is clearly associated with the improved peovskite structure stability by the GO:NH3 layer observed by the GIXRD measurements. All these achievements will promote more applications of chemically modified graphene oxide interfacial layer in the PSCs as well as other organic multilayer devices.

  8. Ammonia blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003506.htm Ammonia blood test To use the sharing features on this page, ... Encephalopathy - ammonia; Cirrhosis - ammonia; Liver failure - ammonia Images Blood test References Chernecky CC, Berger BJ. Ammonia (NH3) - blood ...

  9. Liquid ammonia injury.

    Science.gov (United States)

    George, A; Bang, R L; Lari, A R; Gang, R K; Kanjoor, J R

    2000-06-01

    The toxic effects of a gas depend on the time of exposure, concentration and its chemical nature. Pressurized liquids and gases exert an additional cold thermal injury and this may complicate the clinical picture. A patient who had an accidental exposure to liquid ammonia over a prolonged period, manifesting in cutaneous, respiratory and ocular damage in addition to a severe cold thermal injury (frostbite) with a fatal outcome is presented. The patient had flaccid quadriparesis and episodes of bradycardia, which has not been reported previously. These manifestations raise the possibility of the systemic toxicity in patients with prolonged exposure to ammonia.

  10. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  11. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shilpa [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Karmakar, Narayan [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Shah, Akshara [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Kothari, D.C. [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); National Centre for Nanosciences& Nanotechnology, University of Mumbai, Santacruz (East), Mumbai-400098,India (India); Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon (India); Shimpi, Navinchandra G, E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098,India (India)

    2017-02-28

    Highlights: • Synthesis of 1-Dimensional ZnO-Polypyrrole nanocomposite using In-situ oxidative polymerization technique. • High response ammonia sensing. • Optimization of ZnO content in nanocomposites for maximum sensor response. • Effect of CSA doping on structural, thermal, optical and sensing behavior. • Optimization of CSA concentration for high sensitivity, fast response and recovery time. - Abstract: Nanocomposites of polypyrrole (PPy) with varying concentration of ZnO nanorods (ZnO NRs) were synthesized using in-situ oxidative polymerization technique. The prepared nanocomposites (PPy, PPy-ZnO and CSA doped PPy-ZnO) were studied for various oxidizing and reducing gases at room temperature and found to be more selective towards ammonia gas. Various concentrations of ZnO NRs in Ppy matrix were studied and 15% was found to be optimum in terms of sensor response (66% towards 120 ppm NH{sub 3}). Further, with 15% doping of camphor sulphonic acid (CSA) in PPy-ZnO nanocomposite for 15% ZnO NRs in Ppy matrix, sensor response increased from 66 to 79% towards 120 ppm of NH{sub 3}. Structural, Optical and thermal behavior of nanocomposites were studied using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), UV–vis (UV–vis) absorption spectroscopy, room temperature Photoluminescence (PL) Spectroscopy, Thermo-gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). ZnO has been completely embedded inside the polymeric chains as observed from in SEM. Meanwhile, FT-IR spectra indicate better conjugation and interaction in nanocomposites. With CSA doping interaction grows stronger due to extended delocalization over π electrons leading to higher sensor response and with response time and recovery time of 24 s and 34 s respectively. CSA doped PPy-ZnO (15%) nanocomposites observed to be a potential candidate for ammonia detection at lower ppm level.

  12. Kinetics of 13N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow

    International Nuclear Information System (INIS)

    Rauch, B.; Helus, F.; Grunze, M.; Braunwell, E.; Mall, G.; Hasselbach, W.; Kuebler, W.

    1985-01-01

    To study kinetics and principles of cellular uptake of 13 N-ammonia, a marker of coronary perfusion in myocardial scintigraphy, heart muscle cells of adult rats were isolated by perfusion with collagenase and hyaluronidase. Net uptake of 13 N, measured by flow dialysis, reached equilibrium within 20 sec in the presence of sodium bicarbonate and carbon dioxide (pH 7.4, 37 degrees C). Total extraction, 80 sec after the reaction start, was 786 +/- 159 mumol/ml cell volume. Cells destroyed by calcium overload were unable to extract 13 N-ammonia. Omission of bicarbonate and carbon dioxide reduced total extraction to 36% of control. 13 N-Ammonia uptake could also be reduced by 50 muM 4,4' diisothiocyanostilbene 2,2' disulfonic acid, by 100 micrograms/ml 1-methionine sulfoximine, and by preincubation with 5 muM free oleic acid. These results indicate that in addition to metabolic trapping by glutamine synthetase, the extraction of 13 N-ammonia by myocardial cells is influenced by cell membrane integrity, intracellular-extracellular pH gradient, and possibly an anion exchange system for bicarbonate. For this reason, the uptake of 13 N-ammonia may not always provide a valid measurement of myocardial perfusion

  13. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    OpenAIRE

    Nakagawa, Tatsunori; Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopu...

  14. Polyaniline-based optical ammonia detector

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  15. Industrial ammonia absorption refrigeration plants in combination with gas engines; Groupes de refrigeration industriels a absorption d'ammoniac combines avec des moteurs a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Bassols, J. [Colibri bv (Netherlands); Sahu, J. [Gas Natural SDG, S.A. (Spain)

    2000-07-01

    In many industrial sectors, co-generation systems with gas turbines or engines and ammonia absorption refrigeration plants are being introduced for the simultaneous production of electricity and refrigeration in order to meet the energy requirements inherent to each process and to reduce the operating costs. The different possibilities to link the absorption refrigeration plant to the cogeneration system and to the consumers are described. Different examples of realised projects are used to illustrate the different systems. Despite the fact that, compared to compression refrigeration machines, ARP's have lower COP (coefficient of performance) and higher investment costs, the advantage of using thermal energy as a driving energy instead of electricity makes the combination cogeneration-ARP very attractive. The plants can easily be integrated into an existing refrigeration installation. The full automatic control systems provide a trouble-free operation. Because most of the components of an ARP are heat exchangers, the plants only need little maintenance and are not susceptible to trouble. For their maintenance, no special knowledge is necessary. Plants working with NH{sub 3}-H{sub 2}O use ammonia as a refrigerant, which is a natural and environment-friendly fluid. (authors)

  16. Thermodynamic analysis of solid oxide fuel cell gas turbine systems operating with various biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H.C.; Woudstra, T.; Aravind, P.V. [Process and Energy Laboratory, Delft University of Technology, Section Energy Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2012-12-15

    Solid oxide fuel cell-gas turbine (SOFC-GT) systems provide a thermodynamically high efficiency alternative for power generation from biofuels. In this study biofuels namely methane, ethanol, methanol, hydrogen, and ammonia are evaluated exergetically with respect to their performance at system level and in system components like heat exchangers, fuel cell, gas turbine, combustor, compressor, and the stack. Further, the fuel cell losses are investigated in detail with respect to their dependence on operating parameters such as fuel utilization, Nernst voltage, etc. as well as fuel specific parameters like heat effects. It is found that the heat effects play a major role in setting up the flows in the system and hence, power levels attained in individual components. The per pass fuel utilization dictates the efficiency of the fuel cell itself, but the system efficiency is not entirely dependent on fuel cell efficiency alone, but depends on the split between the fuel cell and gas turbine powers which in turn depends highly on the nature of the fuel and its chemistry. Counter intuitively it is found that with recycle, the fuel cell efficiency of methane is less than that of hydrogen but the system efficiency of methane is higher. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. State of the art stationary and mobile infrastructure for the dynamic generation and dilution of traceable reference gas mixtures of Ammonia at ambient air amount fractions

    Science.gov (United States)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Ammonia (NH3) in the atmosphere is the major precursor for neutralising atmospheric acids and is thus affecting not only the long-range transport of sulphur dioxide and nitrogen oxides but also stabilises secondary particulate matter. These aerosols have negative impacts on air quality and human health. Moreover, they negatively affect terrestrial ecosystems after deposition. NH3 has been included in the air quality monitoring networks and emission reduction directives of European nations. Atmospheric concentrations are in the order of 0.5-500 nmol/mol. However, the lowest substance amount fraction of available certified reference material (CRM) is 10 μmol/mol. This due to the fact that adsorption on the walls of aluminium cylinders and desorption as pressure in the cylinder decreases cause substantial instabilities in the amount fractions of the gas mixtures. Moreover, analytical techniques to be calibrated are very diverse and cause challenges for the production and application of CRM. The Federal Institute of Metrology METAS has developed, partially in the framework of EMRP JRP ENV55 MetNH3, an infrastructure to meet with the different requirements in order to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol and with uncertainties UNH3 international key-comparison CCQM K117. It is planned to establish this system to calibrate and re-sample gas cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results of the first performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  18. Marine, freshwater and aerially acclimated mangrove rivulus (Kryptolebias marmoratus) use different strategies for cutaneous ammonia excretion

    Science.gov (United States)

    Cooper, Christopher A.; Wilson, Jonathan M.

    2013-01-01

    Rhesus (Rh) glycoproteins are ammonia gas (NH3) channels known to be involved in ammonia transport in animals. Because of the different osmoregulatory and ionoregulatory challenges faced by teleost fishes in marine and freshwater (FW) environments, we hypothesized that ammonia excretion strategies would differ between environments. Also, we hypothesized that cutaneous NH3 volatilization in air-acclimated fish is facilitated by base secretion. To test these hypotheses, we used the skin of the euryhaline amphibious mangrove rivulus (Kryptolebias marmoratus). The skin excretes ammonia and expresses Rh glycoproteins. Serosal-to-mucosal cutaneous ammonia flux was saturable (0–16 mmol/l ammonia, Km of 6.42 mmol/l). In FW, ammonia excretion increased in response to low mucosal pH but decreased with pharmacological inhibition of Na+/H+ exchangers (NHE) and H+ ATPase. Conversely, in brackish water (BW), lowering the mucosal pH significantly decreased ammonia excretion. Inhibitors of NHE also decreased ammonia excretion in BW fish. Immunofluorescence microscopy demonstrated that both the Rh isoform, Rhcg1, and NHE3 proteins colocalized in Na+/K+ ATPase expressing mitochondrion-rich cells in the gills, kidney, and skin. We propose that the mechanisms of cutaneous ammonia excretion in FW K. marmoratus are consistent with the model for branchial ammonia excretion in FW teleost fish. NH4+ excretion appeared to play a stronger role in BW. NH4+ excretion in BW may be facilitated by apical NHE and/or diffuse through paracellular pathways. In aerially acclimated fish, inhibition of NHE and H+ ATPase, but not the Cl−/HCO3− exchanger, significantly affected cutaneous surface pH, suggesting that direct base excretion is not critical for NH3 volatilization. Overall, K. marmoratus use different strategies for excreting ammonia in three different environments, FW, BW, and air, and Rh glycoproteins and NHE are integral to all. PMID:23389109

  19. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology

    Science.gov (United States)

    Ye, Zongbiao; Tai, Huiling; Guo, Rui; Yuan, Zhen; Liu, Chunhua; Su, Yuanjie; Chen, Zhi; Jiang, Yadong

    2017-10-01

    Reduced graphene oxide (rGO)-titanium dioxide (TiO2) hybrid material has been prepared through a facile hydrothermal method for ammonia detection at room temperature. The combined characterizations including X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and scanning electron microscopy (SEM) indicated the successful formation of rGO-TiO2 hybrid. It also showed that the morphology of graphene sheets was greatly improved to become porous and undulating due to introduction of synthetic titanium dioxide. Accordingly, the hybrid-based sensor showed much more excellent sensing properties in comparison to that of bare graphene film sensor. The mechanism for the improvement could be ascribed to the synergetic effect between rGO sheets and TiO2 nanospheres, specifically, the enrichment of active adsorption sites on account of the supporting function of TiO2 nanospheres.

  20. Selective catalytic reduction of nitrogen oxide with ammonia in a novel reactor called the floating gas-solid fluidized bed

    NARCIS (Netherlands)

    Kwant, G.J.; Kwant, G.J.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    The floating gas-solid fluidized bed (FGSFB) is a new type of gas-solid contacting device described earlier by Kwant et al. (Fluidization VII, Proc. 7th Engng Foud. Conf. on Fluidization, Brisbane, May, 1992). It is a tapered column provided with several coarse grids, in which catalyst particles are

  1. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    Science.gov (United States)

    Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment. PMID:23995944

  2. Renal Ammonia Metabolism and Transport

    Science.gov (United States)

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  3. Dimethylamine as a Replacement for Ammonia Dosing in the Secondary Circuit of an Advanced Gas-Cooled Reactor (AGR) Power Station

    International Nuclear Information System (INIS)

    Armstrong, C.; Mitchell, M.; Bull, A.; Quirk, G.P.; Rudge, A.

    2012-09-01

    Increasing flow resistance observed over recent years within the helical once-through boilers in the four Advanced Gas-Cooled Reactors (AGRs) at Hartlepool and Heysham 1 Power stations have reduced boiler performance, resulting in reductions in feedwater flow, steam temperatures, power output and the need to carry out periodic chemical cleaning. The root cause is believed to be the development of magnetite deposits with high flow impedance in the 9%Cr evaporator section of the boiler tubing. To prevent continued increases in boiler flow resistance, dimethylamine is being trialled, in one of the four affected units, as a replacement to the conventional ammonia dosing. Dimethylamine increases the pH at temperature around the secondary circuit and, based on full scale boiler rig simulations, is expected to reduce iron transport and prevent flow resistance increases within the evaporator section of the boiler. The dimethylamine plant trial commenced in January 2011 and is ongoing. The feedwater concentration of dimethylamine has been increased progressively towards a final target value of 900 μg kg -1 and its effect on iron transport and boiler pressure loss is being closely monitored. The high steam temperatures (>500 deg. C) of the secondary circuit lead to some decomposition of dimethylamine, which is being carefully monitored at various locations around the circuit. The decomposition products identified with dimethylamine dosing include ammonia, methylamine, formic acid, carbon dioxide and, as yet, unidentified neutral organic species. The effect of dimethylamine dosing on iron transport, boiler pressure drops and its decomposition behaviour around the secondary circuit during the plant trial will be presented in this paper. (authors)

  4. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior

    Science.gov (United States)

    Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra; Shimpi, Navinchandra G.

    2017-02-01

    Nanocomposites of polypyrrole (PPy) with varying concentration of ZnO nanorods (ZnO NRs) were synthesized using in-situ oxidative polymerization technique. The prepared nanocomposites (PPy, PPy-ZnO and CSA doped PPy-ZnO) were studied for various oxidizing and reducing gases at room temperature and found to be more selective towards ammonia gas. Various concentrations of ZnO NRs in Ppy matrix were studied and 15% was found to be optimum in terms of sensor response (66% towards 120 ppm NH3). Further, with 15% doping of camphor sulphonic acid (CSA) in PPy-ZnO nanocomposite for 15% ZnO NRs in Ppy matrix, sensor response increased from 66 to 79% towards 120 ppm of NH3. Structural, Optical and thermal behavior of nanocomposites were studied using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) Spectroscopy, Thermo-gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). ZnO has been completely embedded inside the polymeric chains as observed from in SEM. Meanwhile, FT-IR spectra indicate better conjugation and interaction in nanocomposites. With CSA doping interaction grows stronger due to extended delocalization over π electrons leading to higher sensor response and with response time and recovery time of 24 s and 34 s respectively. CSA doped PPy-ZnO (15%) nanocomposites observed to be a potential candidate for ammonia detection at lower ppm level.

  5. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  6. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.

    Science.gov (United States)

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-11-01

    Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Amino acid synthesis in photosynthesizing spinach cells: effects of ammonia on pool sizes and rates of labeling from 14CO2

    International Nuclear Information System (INIS)

    Larsen, P.O.; Cornwell, K.L.; Gee, S.L.; Bassham, J.A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO 2 fixation for more than 60 hours. The incorporation of 14 CO 2 under saturating CO 2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14 C saturation of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphenoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on-such synthesis

  9. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  10. Sensitivity improvement of ammonia determination based on flow-injection indophenol spectrophotometry with manganese(II) ion as a catalyst and analysis of exhaust gas of thermal power plant.

    Science.gov (United States)

    Tsuboi, Tomonori; Hirano, Yoshio; Shibata, Yoshinori; Motomizu, Shoji

    2002-10-01

    The sensitivity improvement of a flow-injection spectrophotometric method for the determination of ammonia was examined based on an indophenol blue coloration reaction with salicylate and hypochlorite in the presence of manganese(II) as a reaction promotion catalyst. The optimal conditions for achieving higher sensitivity of ammonia determination were examined using a three-line flow system. The limit of detection corresponding to a signal-to-noise ratio (S/N) of 3 was 0.005 mg l(-1) (approximately equal to 5 ppb) of NH4+. A calibration graph was linear in the range from 5 ppb to 1,000 ppb of ammonium ion. The relative standard deviations (n = 9) for 50 ppb and 100 ppb of ammonium ion were 6.4% and 2.2%, respectively. The proposed method was applied to the determination of ammonia in the exhaust gas of a thermal power plant. Prior to the FIA determination, ammonia in the exhaust gas was absorbed into a boric acid solution; the absorption solution was then analyzed by the proposed FIA.

  11. Ammonia toxicity: from head to toe?

    Science.gov (United States)

    Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F

    2017-04-01

    Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.

  12. Laboratory-Scale Demonstration Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives)

    Science.gov (United States)

    2016-06-01

    degradation rates will be limited if conditions are too dry. A column study using soils from a site in Utah exhibited higher fuel biodegradation rates as the...mixture into the soil matrix will be impeded due to blockage of pore spaces by moisture. To maximize penetration of the reactive gas mixture...The portioning in water is predictable, following Henry’s Law (Hedengren et al. 2000). In soils , this reaction will occur in the soil moisture

  13. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  14. Effects of Feeding Encapsulated Nitrate to Beef Cattle on Ammonia and Greenhouse Gas Emissions from Their Manure in a Short-Term Manure Storage System.

    Science.gov (United States)

    Lee, Chanhee; Araujo, Rafael C; Koenig, Karen M; Hile, Michael L; Fabian-Wheeler, Eileen E; Beauchemin, Karen A

    2016-11-01

    A study was conducted to investigate effects of feeding encapsulated nitrate (EN) to beef cattle on ammonia (NH) and greenhouse gas emissions from their manure. Eight beef heifers were randomly assigned to diets containing 0 (control), 1, 2, or 3% EN (55% forage dry matter; EN replaced encapsulated urea in the control diet and therefore all diets were iso-nitrogenous) in a replicated 4 × 4 Latin square design. Urine and feces collected from individual animals were reconstituted into manure and incubated over 156 h using a steady-state flux chamber system to monitor NH, methane (CH), carbon dioxide (CO), and nitrous oxide (NO) emissions. Urinary, fecal, and manure nitrate (NO)-N concentration linearly increased ( emissions of NH, CO, and NO (mg head h) were not affected, although NH emission rates tended to be lower ( = 0.070) for EN compared with Control at 0 to 12 h. Cumulative NH, CO, and NO emissions over 156 h were not affected, but CH emissions were less (4.5 vs. 7.4 g head; = 0.027) for EN compared with Control. In conclusion, although NH emissions were initially lower for EN manures, total NH emitted over 156 h was not affected. Dietary EN lowered CH emissions from manure, and, despite greater NO concentrations in EN manure, NO emissions were not affected in this short-term incubation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Environmental assessment of three egg production systems--Part II. Ammonia, greenhouse gas, and particulate matter emissions.

    Science.gov (United States)

    Shepherd, T A; Zhao, Y; Li, H; Stinn, J P; Hayes, M D; Xin, H

    2015-03-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P<0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P<0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P<0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable

  16. Environmental assessment of three egg production systems — Part II. Ammonia, greenhouse gas, and particulate matter emissions

    Science.gov (United States)

    Shepherd, T. A.; Zhao, Y.; Li, H.; Stinn, J. P.; Hayes, M. D.; Xin, H.

    2015-01-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P < 0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P < 0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P < 0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study

  17. Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

    Directory of Open Access Journals (Sweden)

    Qingxin Nie

    2016-09-01

    Full Text Available Indium nitrate/polyvinyl pyrrolidone (In(NO33/PVP composite nanofibers were synthesized via electrospinning, and then hollow structure indium oxide (In2O3 nanofibers were obtained through calcination with PVP as template material. In situ polymerization was used to prepare indium oxide/polyaniline (In2O3/PANI composite nanofibers with different mass ratios of In2O3 to aniline. The structure and morphology of In(NO33/PVP, In2O3/PANI composite nanofibers and pure PANI were investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, transmission electron microscopy (TEM and current–voltage (I–V measurements. The gas sensing properties of these materials towards NH3 vapor (100 to 1000 ppm were measured at room temperature. The results revealed that the gas sensing abilities of In2O3/PANI composite nanofibers were better than pure PANI. In addition, the mass ratio of In2O3 to aniline and the p–n heterostructure between In2O3 and PANI influences the sensing performance of the In2O3/PANI composite nanofibers. In this paper, In2O3/PANI composite nanofibers with a mass ratio of 1:2 exhibited the highest response values, excellent selectivity, good repeatability and reversibility.

  18. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia.

    Science.gov (United States)

    Trubyanov, Maxim M; Mochalov, Georgy M; Vorotyntsev, Ilya V; Vorotyntsev, Andrey V; Suvorov, Sergey S; Smirnov, Konstantin Y; Vorotyntsev, Vladimir M

    2016-05-20

    A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ammonia Detection

    Science.gov (United States)

    Ward, William Douglas (Inventor)

    2014-01-01

    The different advantageous embodiments provide for identifying gas leakage in a platform. A processor unit identifies a rate of the gas of the substance leaking from a container in a first compartment for a platform. The processor unit also identifies an amount of gas that has leaked from the container at a selected time based on the rate of the gas of the substance leaking from the container and a total time. The processor unit identifies an amount of the gas of the substance present in a number of compartments associated with the first compartment using the amount of gas leaked from the container in the first compartment and a pressure for each compartment in the number of compartments. The processor unit determines whether the amount of gas in at least one of the first compartment and the number of compartments is outside of a desired amount for the gas.

  20. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.; Hoogveld, H.L.

    2002-01-01

    Ammonia-starved cells of Nitrosomonas europaea are able to preserve a high level of ammonia-oxidizing activity in the absence of ammonium. However, when the nitrite-oxidizing cells that form part of the natural nitrifying community do not keep pace with the ammonia-oxidizing cells, nitrite

  1. Comparative study of water and ammonia rinsing processes of potassium fluoride-treated Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Khatri, Ishwor; Shudo, Kosuke; Matsuura, Junpei; Sugiyama, Mutsumi; Nakada, Tokio

    2017-08-01

    In this work, potassium fluoride (KF)-treated Cu(In,Ga)Se2 (CIGS) thin films were rinsed in ammonia and water solutions before buffer layer (CdS) deposition and the effects of rinsing on photovoltaic properties were investigated. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) measurements revealed that sodium atoms out-diffused at the surface region during KF deposition. Water and ammonia rinsing processes of KF-treated CIGS thin films reduced alkali metals from the surface. However, sodium at the Cu-depleted surface layer remained at a high concentration, suggesting the occupation of Cu vacancies with sodium atoms. On the other hand, ammonia rinsing removed the Cu-poor region from the surfaces of KF-treated CIGS thin films affecting the growth (or nucleation) of the CdS layer. The surface coverage of the CdS layer deposited on the ammonia-rinsed KF-treated CIGS thin film was inferior to than that of water-rinsed samples, resulting in the poor cell performance due to an increased interface recombination.

  2. SNCR - Improved control utilising modern gas analysis systems, ammonia slip retention and formation of ammonium salts in flue gas processes; SNCR - Foerbaettrad reglering genom modern gasanalysteknik, infaangning och saltbildning av ammoniakoeverskott vid roekgasrening

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Holmberg, P.; Soederbom, J.

    1996-10-01

    A key and fundamental feature of all regulating systems, including SNCR, is the collection of representative measurement parameters which reflect the changes in the process, preferably with the shortest response time possible. Effective regulating equipment, the injection system in the SNCR process, is required which must offer sufficient flexibility so that the reducing agent dosage is suited to flue gas flow, geometry of the channel, and can accommodate variations of the combustion process. The link between the injection system and the parameter signals is provided by a suitable computer algorithm which steers the process to achieve optimum performance within economic and environmental constraints. This project represents the first stage towards investigating the possibilities of improving the steering system of existing SNCR installations. The work focuses on the technical aspects associated with the measurement parameters, especially on how continual gas analysis techniques can be applied and used to regulate the process. In certain cases, gas measurements including ammonia, NH{sub 3}, are necessary in particle laden, raw flue gases (in situ measurements). The optical DOAS technique has been shown to be a suitable option for this application. A system for on-line speciation measurements of both gaseous and particle bound NH{sub 3} has been developed and proven in the field. An additional part of the project was to identify the most influential parameters affecting the process at two SNCR installations. Furthermore the degree of NH{sub 3} retention for three different types of flue gas cleaning systems has been studied. 32 refs, 39 figs, 6 tabs

  3. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field.

    Science.gov (United States)

    Zhang, Tao; Liu, Hongbin; Luo, Jiafa; Wang, Hongyuan; Zhai, Limei; Geng, Yucong; Zhang, Yitao; Li, Jungai; Lei, Qiuliang; Bashir, Muhammad Amjad; Wu, Shuxia; Lindsey, Stuart

    2018-03-22

    The impacts of manure application on soil ammonia (NH 3 ) volatilization and greenhouse gas (GHG) emissions are of interest for both agronomic and environmental reasons. However, how the swine manure addition affects greenhouse gas and N emissions in North China Plain wheat fields is still unknown. A long-term fertilization experiment was carried out on a maize-wheat rotation system in Northern China (Zea mays L-Triticum aestivum L.) from 1990 to 2017. The experiment included four treatments: (1) No fertilizer (CK), (2) single application of chemical fertilizers (NPK), (3) NPK plus 22.5t/ha swine manure (NPKM), (4) NPK plus 33.7t/ha swine manure (NPKM+). A short-term fertilization experiment was conducted from 2016 to 2017 using the same treatments in a field that had been abandoned for decades. The emissions of NH 3 and GHGs were measured during the wheat season from 2016 to 2017. Results showed that after long-term fertilization the wheat yields for NPKM treatment were 7105kg/ha, which were higher than NPK (3880kg/ha) and NPKM+ treatments (5518kg/ha). The wheat yields were similar after short-term fertilization (6098-6887kg/ha). The NH 3 -N emission factors (EF amm ) for NPKM and NPKM+ treatments (1.1 and 1.1-1.4%, respectively) were lower than NPK treatment (2.2%) in both the long and short-term fertilization treatments. In the long- and short-term experiments the nitrous oxide (N 2 O) emission factors (EF nit ) for NPKM+ treatment were 4.2% and 3.7%, respectively, which were higher than for the NPK treatment (3.5% and 2.5%, respectively) and the NPKM treatment (3.6% and 2.2%, respectively). In addition, under long and short-term fertilization, the greenhouse gas intensities for the NPKM+ treatment were 33.7 and 27.0kg CO 2 -eq/kg yield, respectively, which were higher than for the NPKM treatment (22.8 and 21.1kg CO 2 -eq/kg yield, respectively). These results imply that excessive swine manure application does not increase yield but increases GHG emissions

  4. Short communication: Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms

    Directory of Open Access Journals (Sweden)

    José Pereira

    2015-12-01

    Full Text Available The aim of this study was evaluate the relationship between the intensity of milk production for a wide range of Portuguese commercial cattle farms and NH3 and greenhouse gas (GHG emissions from manure management and enteric fermentation. A survey was carried out at 1471 commercial dairy cattle farms (Holstein-Friesian and the NH3, N2O and CH4 emissions at each stage of manure management were estimated as well as CH4 losses from enteric fermentation. Gaseous emissions were estimated by a mass flow approach and following the recommendations of IPCC guidelines. The manure management and enteric fermentation in a typical Portuguese cattle farm contributes with 7.5±0.15 g N/L milk produced as NH3 and 1.2±0.22 kg CO2 equivalent per litre of milk as GHG. Increasing milk production will significantly reduce NH3 and GHG emissions per litre of milk produced. It can be concluded that a win-win strategy for reducing NH3 and GHG emissions from dairy cattle farms will be the increase of milk production on these farms. This goal can be achieved by implementing animal breeding programs and improving feed efficiency in order to increase productivity.

  5. Impact of the intensity of milk production on ammonia and greenhouse gas emissions in Portuguese cattle farms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.; Trindade, H.

    2015-07-01

    The aim of this study was evaluate the relationship between the intensity of milk production for a wide range of Portuguese commercial cattle farms and NH3 and greenhouse gas (GHG) emissions from manure management and enteric fermentation. A survey was carried out at 1471 commercial dairy cattle farms (Holstein-Friesian) and the NH3, N2O and CH4 emissions at each stage of manure management were estimated as well as CH4 losses from enteric fermentation. Gaseous emissions were estimated by a mass flow approach and following the recommendations of IPCC guidelines. The manure management and enteric fermentation in a typical Portuguese cattle farm contributes with 7.5±0.15 g N/L milk produced as NH3 and 1.2±0.22 kg CO2 equivalent per litre of milk as GHG. Increasing milk production will significantly reduce NH3 and GHG emissions per litre of milk produced. It can be concluded that a win-win strategy for reducing NH3 and GHG emissions from dairy cattle farms will be the increase of milk production on these farms. This goal can be achieved by implementing animal breeding programs and improving feed efficiency in order to increase productivity. (Author)

  6. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  7. Off-line test of the KISS gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kim, Yung Hee [Seoul National University, Seoul 151 742 (Korea, Republic of); Mukai, Momo [Tsukuba University, Ibaraki 305 0006 (Japan); Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351 0198 (Japan); Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet [Instituut voor Kern-en Stralingsfysica, KU Leuven, B-3001 Leuven (Belgium)

    2013-12-15

    Highlights: • Construction of the KEK Isotope Separation System (KISS) at RIKEN. • Ionization scheme of an iron. • Measurement of transport time profile in a gas cell. -- Abstract: The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  8. Synthesis of ammonia using sodium melt.

    Science.gov (United States)

    Kawamura, Fumio; Taniguchi, Takashi

    2017-09-14

    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO 2 . Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO 2 . To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H 2 -N 2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  9. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.

    Science.gov (United States)

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-04-10

    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhou [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J., E-mail: jjwang@agcenter.lsu.edu [School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Liu, Shuai [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Zhang, Zengqiang, E-mail: zqzhang@nwsuaf.edu.cn [College of Resources and Environment, Northwest A& F University, Yangling, Shaanxi (China); Dodla, Syam K.; Myers, Gerald [School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States)

    2015-11-15

    Nitrogen (N) fertilization affects both ammonia (NH{sub 3}) and greenhouse gas (GHG) emissions that have implications in air quality and global warming potential. Different cropping systems practice varying N fertilizations. The aim of this study was to investigate the effects of applications of polymer-coated urea and urea treated with N process inhibitors: NBPT [N-(n-butyl)thiophosphoric triamide], urease inhibitor, and DCD [Dicyandiamide], nitrification inhibitor, on NH{sub 3} and GHG emissions from a cotton production system in the Mississippi delta region. A two-year field experiment consisting of five treatments including the Check (unfertilized), urea, polymer-coated urea (ESN), urea + NBPT, and urea + DCD was conducted over 2013 and 2014 in a Cancienne loam (Fine-silty, mixed, superactive, nonacid, hyperthermic Fluvaquentic Epiaquepts). Ammonia and GHG samples were collected using active and passive chamber methods, respectively, and characterized. The results showed that the N loss to the atmosphere following urea-N application was dominated by a significantly higher emission of N{sub 2}O-N than NH{sub 3}-N and the most N{sub 2}O-N and NH{sub 3}-N emissions were during the first 30–50 days. Among different N treatments compared to regular urea, NBPT was the most effective in reducing NH{sub 3}-N volatilization (by 58–63%), whereas DCD the most significant in mitigating N{sub 2}O-N emissions (by 75%). Polymer-coated urea (ESN) and NBPT also significantly reduced N{sub 2}O-N losses (both by 52%) over urea. The emission factors (EFs) for urea, ESN, urea-NBPT, urea + DCD were 1.9%, 1.0%, 0.2%, 0.8% for NH{sub 3}-N, and 8.3%, 3.4%, 3.9%, 1.0% for N{sub 2}O-N, respectively. There were no significant effects of different N treatments on CO{sub 2}-C and CH{sub 4}-C fluxes. Overall both of these N stabilizers and polymer-coated urea could be used as a mitigation strategy for reducing N{sub 2}O emission while urease inhibitor NBPT for reducing NH{sub 3} emission

  11. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere

    Czech Academy of Sciences Publication Activity Database

    Heitz, J.; Švorčík, V.; Bačáková, Lucie; Ročková, K.; Ratajová, E.; Gumpenberger, T.; Bäuerle, D.; Dvořánková, B.; Kahr, H.; Graz, I.; Romanin, C.

    67A, č. 1 (2003), s. 130-137 ISSN 0021-9304 R&D Projects: GA AV ČR IAA5011301 Grant - others:FWF(AT) P14476-TPH; GA FRVŠ(CZ) 283-2002-G1; CZ-AT Scientific-Technical Cooperation(CZ) 2002-7 Institutional research plan: CEZ:AV0Z5011922 Keywords : cell adhesion * UV-modified polymer * amino acid grafting Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.397, year: 2003

  12. Study of the acceleration of ammonia generation process from poultry residues aiming at hydrogen production

    International Nuclear Information System (INIS)

    Egute, Nayara dos Santos

    2010-01-01

    The hydrogen, utilized in fuel cells, can be produced from a variety of intermediate chemicals, between them, the ammonia. The ammonia gas as a raw material for the hydrogen production has been used due to its high energetic content, facility of decomposition, high availability, low prices, low storage pressure and its by-products are environmentally correct. One of the sources of ammonia is poultry and egg production systems. In these systems the ammonia is produced from the decomposition of uric acid present in the excreta of birds. The residue from the poultry-rearing farms is the broiler litter and from the egg production system is the excreta without any substrate. The characterization of these residues was performed using the Wavelength-Dispersive X-Ray Fluorescence (WDXRF), Elementary Analysis (CHN), Thermogravimetry and GC/MS - Gas chromatography/ Mass spectrometry. The studied factors which influence the ammonia volatilization were: nitrogen content, raising period, urease enzyme, temperature, pH and moisture content. The experiment results with poultry litter and excreta allow to conclude that the manipulation of the following parameters increased the ammonia emission: pH, nitrogen content, raising period, age of birds and excreta accumulation, urease enzyme and the temperature. The addition of different amounts of sand in the excreta and different volumes of water in the poultry litter inhibited the emission of ammonia. The variation of the quantity of material (broiler litter or excreta) and the volume of the flask used as incubator chamber showed no significant alterations to be chosen as a variable. The excreta was considered more appropriate than poultry litter for the objectives of this work due to the higher ammonia concentrations determined in this material. Due to the large amount of poultry litter and excreta from the production processes, the reuse of poultry residues to obtain ammonia is necessary to improve the quality of the local

  13. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    to the gas diffusion electrodes. A dispersion with PTFE particles of a particle size of about 1 µm in combination with electro-catalysts, such as silver nanotubes, was used to coat the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry measurements were performed to determine...... to increase the cell size from lab scale (1 cm2) to areas like 25 cm2....

  14. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed...

  15. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  16. Chemical Safety Alert: Hazards of Ammonia Releases at Ammonia Refrigeration Facilities

    Science.gov (United States)

    Anhydrous ammonia is used as a refrigerant in mechanical compression systems, often liquefied under pressure which increases exposure risk due to potential for rapid release into the air as a toxic gas.

  17. Fuel cell/gas turbine system performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G.T.; Sudhoff, F.A.

    1996-12-31

    Because of the synergistic effects (higher efficiencies, lower emissions) of combining a fuel cell and a gas turbine into a power generation system, many potential system configurations were studied. This work is focused on novel power plant systems by combining gas turbines, solid oxide fuel cells, and a high-temperature heat exchanger; these systems are ideal for the distributed power and on- site markets in the 1-5 MW size range.

  18. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH2, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH2 signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H2O and D2O, the only spectral feature was in the range of

  19. Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45L-scale.

    Science.gov (United States)

    Hiegemann, Heinz; Lübken, Manfred; Schulte, Patrick; Schmelz, Karl-Georg; Gredigk-Hoffmann, Sylvia; Wichern, Marc

    2018-05-15

    A 45-liter microbial fuel cell (MFC) system was integrated into a full-scale wastewater treatment plant (WWTP). The system was operated under practical conditions with supernatant of a pre-thickener for 50days in order to identify, whether higher power output and energy recovery is possible compared to the use of primary clarifier effluent, as used in a previous study. The higher COD (chemical oxygen demand) loading rates of supernatant neither increased power densities, nor energy recovery, but impact loads of total ammonia nitrogen (TAN) in concentrations >800mg/L (free ammonia nitrogen (FAN)>40mg/L) led to an instant collapse of power output and nutrient removal, which was reversed when ammonia concentrations decreased. Investigations in lab-scale under defined conditions verified that the inhibition of the exoelectrogenic biofilm is in fact caused by high levels of FAN. Here, COD removal, power output and energy recovery constantly decreased, when FAN-concentrations were increased above 64mg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ultra-clean hydrogen production by ammonia decomposition

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar

    2018-01-01

    Full Text Available A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR and a single fixed bed membrane reactor (FBMR shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However, 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that, a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.

  1. Indirect-fired gas turbine dual fuel cell power cycle

    Science.gov (United States)

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  2. Ammonia Affects Astroglial Proliferation in Culture.

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    Full Text Available Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis.

  3. Ammonia Affects Astroglial Proliferation in Culture

    Science.gov (United States)

    Bodega, Guillermo; Segura, Berta; Ciordia, Sergio; Mena, María del Carmen; López-Fernández, Luis Andrés; García, María Isabel; Trabado, Isabel; Suárez, Isabel

    2015-01-01

    Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis. PMID:26421615

  4. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  5. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    HEDENGREN, D.C.

    2000-01-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  6. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  7. Aquatic Life Criteria - Ammonia

    Science.gov (United States)

    Documents related to EPA's final 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia (Freshwater). These documents pertain to the safe levels of Ammonia in water that should protect to the majority of species.

  8. Improving photovoltaic performance of perovskite solar cells: The interfacial modification role of aluminum chloride and ammonia on ZnO nanorods

    Science.gov (United States)

    Li, Zhaosong; Zhang, Jun; Xu, Yang; Xue, Mengni; Wang, Hanbin; Duan, Jinxia; Wang, Hao

    ZnO nanorods (ZnO NRs) as electron transport layer (ETL) in organometal halide perovskite solar cells (PSCs) had been prepared because of ZnO exhibiting excellent electron mobility and light transmission performance. The ZnO NRs were modified with a simple solvothermal method using aluminum chloride (AlCl3) and ammonia (NH3ṡH2O) as precursor solution, the primary advantage of this approach was low temperature, simple process. The concentration of the precursor solution was further investigated, and a power conversion efficiency (PCE) of 12.1% was achieved.

  9. Microbial fuel cells: Running on gas

    Science.gov (United States)

    Ren, Zhiyong Jason

    2017-06-01

    Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.

  10. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  11. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    Science.gov (United States)

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in

  12. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  13. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH(4) (+) in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea......The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...

  14. Gas Cell Development for Infrared Spectra Calibration

    Science.gov (United States)

    Valdivielso, Luisa; Esparza, Pedro; Martín, Eduardo L.

    NAHUAL is a high-resolution near-infrared echelle spectrograph of high stability on preliminary phase development for GTC (Gran Telescopio de Canarias). Its natural location is a Nasmyth focus. One of the principal scientific aims is to carry out high precision radial velocity measurements (from 1 to 10 m/s) in the near infrared. To achieve high stability on radial velocity measurements, NAHUAL needs a calibration unit that uses a mixture of gases whose absorption spectra must be as homogeneous as possible between 0.95 and 2.4 μm. We report on the measurements done to date with potentially active gas mixtures as acetylene, methane, nitrous oxide or hydrocarbons.

  15. The Innovative Design of Lucas Cell for Radon Gas Measurement

    International Nuclear Information System (INIS)

    Wanabongse, Paitoon; Rattanabussayaporn, Sakon; Sriya, Maitree; Sola, Banthom

    2007-08-01

    Full text: Lucas scintillation cell has been widely used for radon gas measurement. They are commercially available but usually with a rather high price, therefore, four cells were developed and built in house. The invented radon gas detector has a special feature; the circumference of the upper part of the cylindrical detector is larger than the lower part. The purpose of this is to allow the light sensing device coupled at the lower end can better detect the phosphorescence light occurred inside. The result is that the invented detector yields higher detection efficiency. This special feature also allows us to increase the volume of the detector which results in higher detection sensitivity

  16. Observations of atmospheric ammonia from TANSO-FTS/GOSAT

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Shiomi, Kei

    2017-04-01

    Atmospheric ammonia has large impacts on the nitrogen cycles or atmospheric environment such as nucleation of PM2.5 particles. It is reported that ammonia in the atmosphere has been increasing rapidly with the growth of population globally and this trend must continue in the future. Satellite observation is an effective approach to get to know the global perspectives of the gas. Atmospheric ammonia is observable using the thermal infrared (TIR) spectra, and IASI, TES and CrIS had been revealed those distributions. GOSAT also has TIR band including the ammonia absorption bands. GOSAT has the shorter revisit cycle than that of the other hyper-spectral TIR sounders mentioned above, therefore, the shorter time-scale events can be represented. In addition to the importance of the impacts of ammonia itself, the concentration ratio between ammonia and the other trace gases such as CO which is one of the main targets of the GOSAT-2 project is useful as the indicator of their emission sources. In this study, we introduce an algorithm to retrieve the column amount of atmospheric ammonia based on non-linear optimal estimation (Rogers, 2000) from GOSAT spectra in the ammonia absorption band between 960 - 970 cm-1. Temperature and water vapor profiles are estimated in advance of the ammonia retrieval. The preliminary results showed significant high concentrations of ammonia in the Northern India and the Eastern China as pointed out in the previous researches. We will discuss the global distribution of ammonia in the presentation.

  17. Ammonia production, excretion, toxicity, and defense in fish: A Review

    Directory of Open Access Journals (Sweden)

    Alex Y K Ip

    2010-10-01

    Full Text Available Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+ transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia-tolerance, respectively.

  18. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  19. Ammonia in London: is it increasing and what is the relevance of urban ammonia for air quality impacts?

    Science.gov (United States)

    Braban, Christine; Tang, Sim; Poskitt, Janet; Van Dijk, Netty; Leeson, Sarah; Dragosits, Ulli; Hutchings, Torben; Twigg, Marsailidh; Di Marco, Chiara; Langford, Ben; Tremper, Anja; Nemitz, Eiko; Sutton, Mark

    2017-04-01

    Emissions of ammonia affect both rural and urban air quality primarily via reaction of ammonia in the atmosphere forming secondary ammonium salts in particulate matter (PM). Urban ammonia emissions come from a variety of sources including biological decomposition, human waste, industrial processes and combustion engines. In the UK, the only long-term urban ammonia measurement is a UK National Ammonia Monitoring Network site at London Cromwell Road, recording monthly average concentrations. Short term measurements have also been made in the past decade at Marylebone Road, North Kensington and on the BT Tower. Cromwell Road is a kerbside site operational since 1999. The Cromwell Road data indicates that ammonia concentrations may be increasing since 2010-2012 after a long period of decreasing. Data from the National Atmospheric Emissions Inventory indicates ammonia emissions from diesel fleet exhausts increasing over this time period but an overall net decrease in ammonia emissions. With changes in engine and exhaust technology to minimise pollutant emissions and the importance of ammonia as a precursor gas for secondary PM, there is a challenge to understand urban ammonia concentrations and subsequent impacts on urban air quality. In this paper the long term measurements are assessed in conjunction with the short-term measurements.The challenges to assess the relative importance of local versus long range ammonia emission are discussed.

  20. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  1. Electrochemical monitoring of ammonia during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    Ammonia is known as key inhibitor to methanogens in anaerobic digestion (AD) process. It’s of importance to develop efficient tool for ammonia monitoring. In this study, an electrolysis cell (EC) coupled with a complete nitrification reactor was developed as sensor for real time and online......-rich digesters. It was observed that the initial transient currents (0 min) were linearly corresponding to the ammonia levels (from 0 to 95.75 mg/L NH4+-N, R2 = 0.9673). Finally, this new sensor was tested with real AD effluent and the results showed no significant difference with that measured by conventional...

  2. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.

    Science.gov (United States)

    Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki; Ito, Yasuhiko

    2003-01-15

    Ammonia was successfully synthesized by using a new electrochemical reaction with high current efficiency at atmospheric pressure and at lower temperatures than the Haber-Bosch process. In this method, nitride ion (N3-), which is produced by the reduction from nitrogen gas at the cathode, is anodically oxidized and reacts with hydrogen to produce ammonia at the anode.

  3. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  4. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  5. Sources of atmospheric ammonia

    International Nuclear Information System (INIS)

    Harriss, R.C.; Michaels, J.T.

    1982-01-01

    The information available on factors that influence emissions from the principal societal sources of ammonia to the atmosphere, namely combustion processes, volatilization of farm animal wastes, and volatilization of fertilizers, is reviewed. Emission factors are established for each major source of atmospheric ammonia. The factors are then multiplied by appropriate source characterization descriptors to obtain calculated fluxes of ammonia to the atmosphere on a state-by-state basis for the United States

  6. Kinetics and thermodynamics of Si(111) surface nitridation in ammonia

    Science.gov (United States)

    Mansurov, Vladimir G.; Malin, Timur V.; Galitsyn, Yurij G.; Shklyaev, Alexander A.; Zhuravlev, Konstantin S.

    2016-05-01

    Kinetics and thermodynamics of Si(111) surface nitridation under an ammonia flux at different substrate temperatures are investigated by reflection high-energy electron diffraction. Two different stages of the nitridation process were revealed. The initial stage is the fast (within few seconds) formation of ordered two-dimensional SiN phase, occuring due to the topmost active surface Si atom (Sisurf) interaction with ammonia molecules. It is followed by the late stage consisting in the slow (within few minutes) amorphous Si3N4 phase formation as a result of the interaction of Si atoms in the lattice site (Siinc) with chemisorbed ammonia molecules. It was found that the ordered SiN phase formation rate decreases, as the temperature increases. The kinetic model of the initial stage was developed, in which the ordered SiN phase formation is the two-dimensional phase transition in the lattice gas with SiN cells. The enthalpy of the active surface Si atom generation on the clean Si(111) surface was estimated to be about 1.5 eV. In contrast, the amorphous Si3N4 phase formation is the normal (thermally activated) chemical process with the first-order kinetics, whose activation energy and pre-exponential factor are 2.4 eV and 108 1/s, respectively.

  7. Integration of antibody by surface functionalization of graphite-encapsulated magnetic beads using ammonia gas plasma technology for capturing influenza A virus.

    Science.gov (United States)

    Sakudo, Akikazu; Chou, Han; Ikuta, Kazuyoshi; Nagatsu, Masaaki

    2015-05-01

    Antibody-integrated magnetic beads have been functionalized for influenza A virus capture. First, ammonia plasma produced by a radio frequency power source was reacted with the surface of graphite-encapsulated magnetic beads to introduce amino groups. Anti-influenza A virus hemagglutinin antibody was then anchored by its surface sulfide groups to the amino groups on the beads via N-succinimidyl 3-(2-pyridyldithio) propionate. After incubation with influenza A virus, adsorption of the virus to the beads was confirmed by immunochromatography, polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and inoculation of chicken embryonated eggs, indicating that virus infectivity is maintained and that the proposed method is useful for the enhanced detection and isolation of influenza A virus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  9. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  10. Method for forming ammonia

    Science.gov (United States)

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  11. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions. High......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  12. A large multi-cell threshold gas Cerenkov counter

    International Nuclear Information System (INIS)

    Declais, Y.; Aubert, J.J.; Bassompierre, G.; Payre, P.; Thenard, J.M.; Urban, L.

    1980-08-01

    A large multi-cell threshold gas Cerenkov counter consisting of 78 cells has been built for use in a high energy muon scattering experiment at CERN (European Muon Collaboration). It is used with neon, nitrogen or a mixture of those two gases, allowing the pion threshold to be varied between 6 and 20 GeV/c. The sensitive region of the counter has a length of 4.0 m and entrance and exit windows of 1.1 x 2.4 m 2 and 2.4 x 5.0 m 2 , respectively

  13. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  14. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    Science.gov (United States)

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  15. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    Science.gov (United States)

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  16. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  17. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  18. Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations.

    Science.gov (United States)

    Mente, Carsten; Voss-Böhme, Anja; Deutsch, Andreas

    2015-04-01

    Collective dynamics of migrating cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. Collective cell behavior at the tissue level is typically characterized by considering cell density patterns such as clusters and moving cell fronts. However, there are also important observables of collective dynamics related to individual cell behavior. In particular, individual cell trajectories are footprints of emergent behavior in populations of migrating cells. Lattice-gas cellular automata (LGCA) have proven successful to model and analyze collective behavior arising from interactions of migrating cells. There are well-established methods to analyze cell density patterns in LGCA models. Although LGCA dynamics are defined by cell-based rules, individual cells are not distinguished. Therefore, individual cell trajectories cannot be analyzed in LGCA so far. Here, we extend the classical LGCA framework to allow labeling and tracking of individual cells. We consider cell number conserving LGCA models of migrating cell populations where cell interactions are regulated by local cell density and derive stochastic differential equations approximating individual cell trajectories in LGCA. This result allows the prediction of complex individual cell trajectories emerging in LGCA models and is a basis for model-experiment comparisons at the individual cell level.

  19. New high temperature gas flow cell developed at ISIS

    Science.gov (United States)

    Haynes, R.; Norberg, S. T.; Eriksson, S. G.; Chowdhury, M. A. H.; Goodway, C. M.; Howells, G. D.; Kirichek, O.; Hull, S.

    2010-11-01

    A flow-through quartz gas cell, together with a gas flow control and monitoring system, has been designed and constructed at ISIS. This equipment allows neutron powder diffraction data to be collected on samples at temperatures up to around 1300 K when exposed to user chosen mixtures of O2, Ar, CO2, and CO. By exploiting the sensitivity of neutrons to the presence of light atoms such as oxygen, it is possible to probe the crystal structure of oxide materials as a function of oxygen partial pressures down to log10p(O2) of about -20. The resultant structural information can then be correlated with the bulk properties of the materials, whose research and technological interests lie in fields such as energy production, storage materials, catalysis, and earth science.

  20. New high temperature gas flow cell developed at ISIS

    International Nuclear Information System (INIS)

    Haynes, R; Norberg, S T; Eriksson, S G; Chowdhury, M A H; Goodway, C M; Howells, G D; Kirichek, O; Hull, S

    2010-01-01

    A flow-through quartz gas cell, together with a gas flow control and monitoring system, has been designed and constructed at ISIS. This equipment allows neutron powder diffraction data to be collected on samples at temperatures up to around 1300 K when exposed to user chosen mixtures of O 2 , Ar, CO 2 , and CO. By exploiting the sensitivity of neutrons to the presence of light atoms such as oxygen, it is possible to probe the crystal structure of oxide materials as a function of oxygen partial pressures down to log 10 p(O 2 ) of about -20. The resultant structural information can then be correlated with the bulk properties of the materials, whose research and technological interests lie in fields such as energy production, storage materials, catalysis, and earth science.

  1. First European fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell

    Science.gov (United States)

    Krumbeck, M.; Klinge, T.; Döding, B.

    The City of Ahlen in North Rhine Westphalia, Germany and RWE Fuel Cells GmbH, Essen, cooperate in order to install a molten carbonate fuel cell in the municipal sewage works of Ahlen in May/June 2005. The MCFC unit, a so-called HotModule made by MTU CFC Solutions, Ottobrunn operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Europe. This article outlines the experiences of RWE Fuel Cells with planning, installation and operation of MCFC systems and is focussing on the use of digester gas. The engineering and installation phase is described regarding to the special features of digester gas, for example variation in gas composition and impurities as well as different flow rates. The results of the first months of operation are interpreted and influences to the performance of the fuel cell on digester gas composition are compared. One focus of the recent RWE Fuel Cells projects is the use of MCFC systems using different biofuels. With the results from planning, installation and operation of the MCFC in Ahlen a system design for the application of different fuels can be validated and tested.

  2. Ammonia Release on ISS

    Science.gov (United States)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  3. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    Science.gov (United States)

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  4. Titan's Ammonia Feature

    Science.gov (United States)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  5. [Ammonia oxidation kinetics of ammonia oxidizer mixed culture under the conditions of O2 and trace NO2 mixed gasses].

    Science.gov (United States)

    Zhang, Dai-Jun; Zu, Bo; Ren, Hong-Yang; Zhang, Ping; Cong, Li-Ying; Yan, Qing

    2008-01-01

    The kinetics of the NO2-dependent ammonia oxidation was developed for ammonia oxidizer mixed culture when there was no molecular oxygen in the batch tests. The kinetics parameters were determined, where the half saturate coefficient of NO2 was 0.821 micromol x L(-1), inhibition coefficient of NO2 concentration was 1.721 micromol x L(-1), and the maximum ammonia oxidation rate were 0.144 mg x (mg x h)(-1). After adding the volume fraction of O2 was 2% to trace NO2, the ammonia oxidation rates increased obviously. The maximum ammonia oxidation rate, 0.198 mg x (mg x h)(-1) occurred under the condition of the mixed gasses containing the volume fraction of O2 was 2% and 50 x 10(-6) NO2. Under the condition of mixed gasses containing the volume fraction of O2 was 21% to trace NO2, the ammonia oxidation rates further increased greatly. The maximum ammonia oxidation rate, 0.477 mg x (mg x h)(-1) occurred when the volume fraction of O2 was 21% and 100 x 10(-6) NO2 in the mixed gas, which is 3 times higher than the general aerobic ammonia oxidation rate. The function for NO2 apparently to enhance ammonia oxidation was suggested. The kinetics model of ammonia oxidation under the conditions of O2 and trace NO2 mixed gasses was developed. The model was validated by the results of ammonia oxidation experiments under the conditions of the mixed gasses containing 2% O2 and trace NO2. The mechanism for NO2 to enhance ammonia oxidation under the conditions of O2 and trace NO2 mixed gasses was discussed.

  6. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    Science.gov (United States)

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  7. Evaluation of the potential for significant ammonia releases from Hanford waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

    1996-07-01

    Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release.

  8. Evaluation of the potential for significant ammonia releases from Hanford waste tanks

    International Nuclear Information System (INIS)

    Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

    1996-07-01

    Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release

  9. Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available Sodium alginate is the most commonly used polymer matrix in microalgae immobilization for water treatment. However, the susceptibility of alginate matrixes to cation chelating agents and antigelling cation limits the use of alginates in estuarine and marine systems. Hence, the present study aims to investigate the stability of alginate bead in marine water and the feasibility of microalgae to grow when immobilized in alginate bead for marine water treatment. Different concentrations of alginate and hardening cation calcium were used to formulate beads. The beads were incubated in Guillard’s f/2 medium and shaken vigorously by using orbital shaker for 15 days. The results indicated that bead stability was enhanced by increasing alginate and CaCl2 concentrations. Subsequently, the marine microalga, Nannochloropsis sp., was immobilized in calcium alginate bead. The growth and ammoniacal-nitrogen (NH4+-N uptake by immobilized cell were compared with free cell culture in f/2 medium. Specific growth rate of immobilized cell (0.063 hr−1 was significantly higher than free cell (0.027 hr−1. There was no significant difference on specific uptake rate of free cell and immobilized cell; but immobilized cell removed significantly more NH4+-N (82.2% than free cell (47.3% culture at the end of the experiment. The present study demonstrated the potential use of alginate immobilization technique in marine microalgae culture and water treatment simultaneously.

  10. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  11. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  12. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  13. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    Science.gov (United States)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution

  14. Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer.

    Science.gov (United States)

    Leen, J Brian; Yu, Xiao-Ying; Gupta, Manish; Baer, Douglas S; Hubbe, John M; Kluzek, Celine D; Tomlinson, Jason M; Hubbell, Mike R

    2013-09-17

    A new ammonia (NH3) analyzer was developed based on off-axis integrated cavity output spectroscopy. Its feasibility was demonstrated by making tropospheric measurements in flights aboard the Department of Energy Gulfstream-1 aircraft. The ammonia analyzer consists of an optical cell, quantum-cascade laser, gas sampling system, control and data acquisition electronics, and analysis software. The NH3 mixing ratio is determined from high-resolution absorption spectra obtained by tuning the laser wavelength over the NH3 fundamental vibration band near 9.67 μm. Excellent linearity is obtained over a wide dynamic range (0-101 ppbv) with a response rate (1/e) of 2 Hz and a precision of ±90 pptv (1σ in 1 s). Two research flights were conducted over the Yakima Valley in Washington State. In the first flight, the ammonia analyzer was used to identify signatures of livestock from local dairy farms with high vertical and spatial resolution under low wind and calm atmospheric conditions. In the second flight, the analyzer captured livestock emission signals under windy conditions. Our results demonstrate that this new ammonia spectrometer is capable of providing fast, precise, and accurate in situ observations of ammonia aboard airborne platforms to advance our understanding of atmospheric compositions and aerosol formation.

  15. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene

    2011-01-01

    in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...... enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important......Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme...

  16. Low-cost fiber-optic waveguide sensor for the colorimetric detection of ammonia

    OpenAIRE

    Schmitt, Katrin; Rist, Jonas; Peter, Carolin; Wöllenstein, Jürgen

    2012-01-01

    We present the development and characterization of a low-cost fiber-optic colorimetric gas sensor for ammonia combined with the electronic circuitry for measurement control and RFID communication. The gas sensor detects ammonia using a 300 μm polyolefin fiber coated with a gas-sensitive polymer film. The spectral and time-dependent sensitivity of various polymer films was tested in transmission measurements at λ = 590 nm. A prototype of the gas sensor was tested under realistic measurement co...

  17. Process for producing 13N-ammonia and device therefor

    International Nuclear Information System (INIS)

    Tanaka, Akira; Suzuki, Hirofumi.

    1997-01-01

    Ethanol or hydrogen is added to purified water or distilled water for injection, they are filled into a target vessel, and proton beams are irradiated to produce 13N-ammonia in the target vessel. A target liquid containing the resultant is introduced to a heat-reaction vessel. A slight amount of weak alkali solution is added to the target liquid in the heat-reaction vessel. The reaction vessel is heated to evaporate water and 13N-ammonia, and they are transferred to a vial. In this case, nitrogen gas as a gas to be entrained is supplied. 13N-ammonia is subjected to bubbling into the distilled water for injection or physiological saline water and recovered into the vial. 13N-ammonia is thus separated and purified as an injection which is a medical labelled compound. (I.N.)

  18. A method for the determination of volatile ammonia in air, using a nitrogen-cooled trap and fluorometric detection

    NARCIS (Netherlands)

    Westra, H.G.; Tigchelaar, R.G.; Berden, J.A.

    2001-01-01

    A quick, cheap, and accurate method for the determination of ammonia in air is described. Ammonia and water vapor are trapped simultaneously in a gas sampling tube cooled in liquid nitrogen. Subsequently ammonia is derivatized with o-phthaldialdehyde and determined using fluorescence detection. The

  19. Ammonia - LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2016-01-01

    In the current study it has been hypothesized that, when organic loading of an anaerobic reactor is increased, the additional cell biomass biosynthesis would capture more ammonia nitrogen and thereby reduce the ammonia toxicity. Therefore, the alleviation of the toxicity of high ammonia levels us...

  20. Tritiated ammonia formation

    International Nuclear Information System (INIS)

    Heung, L.K.

    1995-01-01

    When nitrogen was selected as the glovebox atmosphere for the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS), a concern was raised as to the possibility of tritiated ammonia formation in the gloveboxes. Experimental data were produced to study the tritiated ammonia formation rate in a tritium and nitrogen mixture. A rate equation that closely simulates the experimental data was developed. This rate equation can be used to calculate the formation of tritiated ammonia from different concentrations of tritium and nitrogen. The reaction of T 2 and N 2 to form NT 3 is a slow process, particularly when the tritium concentration is low. The reaction requires weeks or months to reach radiochemical equilibrium dependent on the concentrations of the reactants. 4 refs., 6 figs., 1 tab

  1. Time Delay for Aerial Ammonia Concentration Measurements in Livestock Buildings

    OpenAIRE

    Rom; Zhang

    2010-01-01

    Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different lev...

  2. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Scheuer, J.T.; Walter, K.C.; Rej, D.J.; Nastasi, M.; Blanchard, J.P.

    1995-01-01

    Ammonia gas (NH 3 ) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 10 17 N-at/cm 2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  3. Respiratory ammonia output and blood ammonia concentration during incremental exercise

    NARCIS (Netherlands)

    Ament, W; Huizenga, [No Value; Kort, E; van der Mark, TW; Grevink, RG; Verkerke, GJ

    The aim of this study was to investigate whether the increase of ammonia concentration and lactate concentration in blood was accompanied by an increased expiration of ammonia during graded exercise. Eleven healthy subjects performed an incremental cycle ergometer test. Blood ammonia, blood lactate

  4. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the la......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...

  5. The Ammonia-Soda Process.

    Science.gov (United States)

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  6. SIRT5 regulation of ammonia-induced autophagy and mitophagy

    Science.gov (United States)

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism. PMID:25700560

  7. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  8. Stereodynamics in the Collisional Autoionization of Water, Ammonia, and Hydrogen Sulfide with Metastable Rare Gas Atoms: Competition Between Intermolecular Halogen and Hydrogen Bonds.

    Science.gov (United States)

    Falcinelli, Stefano; Bartocci, Alessio; Cavalli, Simonetta; Pirani, Fernando; Vecchiocattivi, Franco

    2016-01-11

    Recent experiments on the title subject, performed with a high-resolution crossed-beam apparatus, have provided the total ionization cross sections as a function of the collision energy between noble gas atoms, electronically excited in their metastable states (Ng*), and H2 O, H2 S, and NH3 reagents, as well as the emitted electron energy spectra. This paper presents a rationalization of all the experimental findings in a unifying picture to cast light on the basic chemical properties of Ng* under conditions of great relevance both from a fundamental and from an applied point of view. The importance of this investigation is that it isolates the selective role of the intermolecular halogen and hydrogen bonds, to assess their anisotropic effects on the stereodynamics of the promoted ionization reactions, and to model energy transfer and reactivity in systems of applied interest, such as planetary atmospheres, plasmas, lasers, and flames. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rectal administration of 13N-ammonia in the study of ammonia metabolism

    International Nuclear Information System (INIS)

    Koen, Hirofumi

    1980-01-01

    13 N-ammonia produced by the cyclotron was instilled intrarectally in patients with liver diseases for the study of the turnover of rectally absorbed 13 N-ammonia. A positron camera connected to an on-line computer system was used for imaging of the liver and heart; 13 N-activity over the head was also recorded. Sequential changes of 13 N-activity in blood was measured, and chromatographic analysis of 13 N-labeled substances in blood was carried out using a Dowex 50W x 8 column. In the control, 13 N-ammonia was absorbed quickly into blood visualizing the liver shortly after administration, and hepatic uptake of 13 N-ammonia reached a plateau in 10 -- 15 min, whereas in patients with cirrhosis, the lung and heart were visualized in 5 min when the liver image was still faint. 13 N-activity over the head was apparently higher in the cirrhotic group. It was suggested that a large proportion of absorbed 13 N-ammonia bypassed liver cells and reached peripheral tissues. The heart/liver ratio of 13 N and 13 N over the head were closely correlated with various indices of portal hypertension. The relative proportion of 13 N-metabolites in blood was lower at 5 min and 15 min after administration in cirrhosis, suggesting a reduced capacity of the liver to remove and metabolize ammonia. (author)

  10. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    electrolysis. PAA-K allowed for a wider operating potential for the electrolytic cell while increasing the rate for HER at lower cell voltages. The conversion of ammonia improved from 16 % to 25 %, while the current efficiency for the consumption of ammonia increased from 92 +/- 1 % to 97 +/- 2 % by using PAA-K in lieu of KOH. The use of PAA-K also prevented the crossover of the hydrogen produced to the anode side, unlike aqueous KOH.

  11. Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system

    International Nuclear Information System (INIS)

    Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

    2002-01-01

    Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H(sub 2)-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO+ H(sub 2)O(rightleftharpoons) CO(sub 2)+ H(sub 2), is used to convert the bulk of the reformate CO to CO(sub 2). Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H(sub 2) for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H(sub 2)) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from

  12. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  13. Hydroaminomethylation in supercritical ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Kant, M. [Leibniz-Institute for Catalysis, Berlin (Germany); Klein, H.; Jackstell, R.; Beller, M. [Leibniz-Institute for Catalysis, Rostock (Germany)

    2006-07-01

    Thermodynamic measurements were carried in the reaction system of hydroaminomethylation of olefins. Mixtures of ammonia, olefins, co-solvents, syngas and products such as nonylamine used as model and water were studied. In dependence on the reaction conditions and the mixtures selected opalescence points in a region from 92-290 bar and 120-172 C were found. (orig.)

  14. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  15. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  16. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  17. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Methods of ammonia removal in anaerobic digestion: a review.

    Science.gov (United States)

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  19. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases In liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process Is followed by means of the gas pressure decrease which is recorded by means of a

  20. Diffusivity Measurements in Some Organic Solvents by a Gas-Liquid Diaphragm Cell

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases in liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process is followed by means of the gas pressure decrease which is recorded by means of a

  1. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics

    International Nuclear Information System (INIS)

    Li Liang; Liu Yan

    2009-01-01

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO 2 /Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl - . The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L -1 h -1 and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl - . About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N 2 in the produced gas. The rate at which Cl - lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl - concentration affected the constant of the pseudo zero-order kinetics, expressed by k = 0.0024[Cl - ] x j. The ammonia was reduced to less than 0.5 mg N L -1 after 2 h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements

  2. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  3. Lethal concentration (CL50) of un-ionized ammonia for pejerrey larvae in acute exposure

    OpenAIRE

    Piedras, Sérgio Renato Noguez; Pouey, Juvêncio Luís Osório Fernandes; Moraes, Paulo Roberto Rocha; Cardoso, Daniela Fençon

    2006-01-01

    Ammonia results from decomposition of effluents organic matter, e.g. feed wastes and fish faeces. Its un-ionized form can be toxic because diffuses easily through fish respiratory membranes, damaging gill epithelium and impairing gas exchanges. The objective of this work was determining the 96-hour CL50 of un-ionized ammonia for newly hatched pejerrey Odontesthes bonariensis larvae. Trials were set up completely randomized design, with three different concentration of un-ionized ammonia (0.57...

  4. Effect of SiO2 Overlayer on WO3 Sensitivity to Ammonia

    Directory of Open Access Journals (Sweden)

    Vibha Srivastava

    2010-06-01

    Full Text Available Ammonia gas sensing properties of tungsten trioxide thick film sensor was investigated. The doping of noble catalysts such as Pt, Pd, Au enhanced the gas sensitivity. Platinum doping was found to result in highest sensitivity. Remarkable sensitivity enhancement was realized by coating WO3 thick film sensors with SiO2 overlayer. Sol gel process derived silica overlayer increased ammonia gas sensitivity for doped as well as undoped sensor.

  5. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  6. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  7. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    Science.gov (United States)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  8. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  9. Hydrogen Production from Ammonia Using a Plasma Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Shinji Kambara

    2016-06-01

    Full Text Available In this study, an efficient method for using pulsed plasma to produce hydrogen from ammonia was developed. An original pulsed plasma reactor with a hydrogen separation membrane was developed for efficient hydrogen production, and its hydrogen production performance was investigated. Hydrogen production in the plasma was affected by the applied voltage and flow rate of ammonia gas. The maximum hydrogen production flow rate of a typical plasma reactor was 8.7 L/h, whereas that of the plasma membrane reactor was 21.0 L/h. We found that ammonia recombination reactions in the plasma controlled hydrogen production in the plasma reactor. In the plasma membrane reactor, a significant increase in hydrogen production was obtained because ammonia recombination reactions were inhibited by the permeation of hydrogen radicals generated in the plasma through a palladium alloy membrane. The energy efficiency was 4.42 mol-H2/kWh depending on the discharge power.

  10. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.

    2006-01-01

    . Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully......Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations...

  11. Review of Options for Ammonia/Ammonium Management

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-06

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processes and provides reasoning to not consider those processes further for this application.

  12. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  13. Study of the acceleration of ammonia generation process from poultry residues aiming at hydrogen production; Estudo do processo para a aceleracao da geracao de amonia a partir de residuos avicolas visando a producao de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Egute, Nayara dos Santos

    2010-07-01

    The hydrogen, utilized in fuel cells, can be produced from a variety of intermediate chemicals, between them, the ammonia. The ammonia gas as a raw material for the hydrogen production has been used due to its high energetic content, facility of decomposition, high availability, low prices, low storage pressure and its by-products are environmentally correct. One of the sources of ammonia is poultry and egg production systems. In these systems the ammonia is produced from the decomposition of uric acid present in the excreta of birds. The residue from the poultry-rearing farms is the broiler litter and from the egg production system is the excreta without any substrate. The characterization of these residues was performed using the Wavelength-Dispersive X-Ray Fluorescence (WDXRF), Elementary Analysis (CHN), Thermogravimetry and GC/MS - Gas chromatography/ Mass spectrometry. The studied factors which influence the ammonia volatilization were: nitrogen content, raising period, urease enzyme, temperature, pH and moisture content. The experiment results with poultry litter and excreta allow to conclude that the manipulation of the following parameters increased the ammonia emission: pH, nitrogen content, raising period, age of birds and excreta accumulation, urease enzyme and the temperature. The addition of different amounts of sand in the excreta and different volumes of water in the poultry litter inhibited the emission of ammonia. The variation of the quantity of material (broiler litter or excreta) and the volume of the flask used as incubator chamber showed no significant alterations to be chosen as a variable. The excreta was considered more appropriate than poultry litter for the objectives of this work due to the higher ammonia concentrations determined in this material. Due to the large amount of poultry litter and excreta from the production processes, the reuse of poultry residues to obtain ammonia is necessary to improve the quality of the local

  14. Study of the process for accelerating ammonia generation from poultry residues aiming its hydrogen production; Estudo do processo para a aceleracao da geracao de amonia a partir de residuos avicolas visando a producao de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Egute, Nayara dos Santos

    2010-07-01

    The hydrogen, utilized in fuel cells, can be produced from a variety of intermediate chemicals, between them, the ammonia. The ammonia gas as a raw material for the hydrogen production has been used due to its high energetic content, facility of decomposition, high availability, low prices, low storage pressure and its by-products are environmentally correct. One of the sources of ammonia is poultry and egg production systems. In these systems the ammonia is produced from the decomposition of uric acid present in the excreta of birds. The residue from the poultry-rearing farms is the broiler litter and from the egg production system is the excreta without any substrate. The characterization of these residues was performed using the wavelength-dispersive X-ray fluorescence (WDXRF), elementary analysis (CHN), thermogravimetry and GC/MS - gas chromatography/ mass spectrometry. The studied factors which influence the ammonia volatilization were: nitrogen content, raising period, urease enzyme, temperature, pH and moisture content. The experiment results with poultry litter and excreta allow to conclude that the manipulation of the following parameters increased the ammonia emission: pH, nitrogen content, raising period, age of birds and excreta accumulation, urease enzyme and the temperature. The addition of different amounts of sand in the excreta and different volumes of water in the poultry litter inhibited the emission of ammonia. The variation of the quantity of material (broiler litter or excreta) and the volume of the flask used as incubator chamber showed no significant alterations to be chosen as a variable. The excreta was considered more appropriate than poultry litter for the objectives of this work due to the higher ammonia concentrations determined in this material. Due to the large amount of poultry litter and excreta from the production processes, the reuse of poultry residues to obtain ammonia is necessary to improve the quality of the local

  15. Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments

    DEFF Research Database (Denmark)

    Becher, Valentin; Clausen, Sønnik; Fateev, Alexander

    2011-01-01

    AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis...

  16. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  17. Process monitoring and control: Ammonia measurements in off-gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, S.; Ottesen, D.; Johnson, H. [Sandia National Labs., Livermore, CA (United States); Lambert, D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1997-05-01

    This interim report describes technical progress in the development of a laser-based, real-time optical monitor for ammonia in off-gas streams from defense waste processing applications at the Savannah River Site (SRS). An optimized monitor has been fabricated by Spectrum Diagnostix using a tunable diode laser operating in the 1.55-{mu}m wavelength region. Instrument detection limits of 2-3 ppm for ammonia are demonstrated that are more than adequate for the SRS required sensitivity of 10 ppm. Laboratory research at Sandia revealed a lack of interference at the operating wavelength by other molecular species that might be present in the SRS off-gas stream. Initial tests of the ammonia monitor by Sandia were conducted at SRS using a bench-scale processing system for surrogate defense waste sludges. The results of these experiments confirmed that ammonia concentrations issuing from the ammonia-scrubber section of the bench-scale reactor were below the design limit of 10 ppm. We also found that no other molecular species in the off-gas produced observable false-positive readings from the monitor. 5 refs., 6 figs.

  18. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  19. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  20. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    Science.gov (United States)

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  1. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    to the gas diffusion electrodes. A dispersion with PTFE particles of a particle size of about 1 µm in combination with electro-catalysts, such as silver nanotubes, was used to coat the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry measurements were performed to determine...

  2. Neutron diffraction and gravimetric study of the manganese nitriding reaction under ammonia decomposition conditions.

    Science.gov (United States)

    Wood, Thomas J; Makepeace, Joshua W; David, William I F

    2018-03-28

    Manganese and its nitrides have recently been shown to co-catalyse the ammonia decomposition reaction. The nitriding reaction of manganese under ammonia decomposition conditions is studied in situ simultaneously by thermogravimetric analysis and neutron diffraction. Combining these complementary measurements has yielded information on the rate of manganese nitriding as well as the elucidation of a gamut of different manganese nitride phases. The neutron diffraction background was shown to be related to the extent of the ammonia decomposition and therefore the gas composition. From this and the sample mass, implications about the rate-limiting steps for nitriding by ammonia and nitriding by nitrogen are discussed.

  3. Treatment of reactive process wastewater with high-level ammonia by blow-off method

    International Nuclear Information System (INIS)

    Chen Xiaotong; Quan Ying; Wang Yang; Fu Genna; Liu Bing; Tang Yaping

    2012-01-01

    The ceramic UO 2 kernels for nuclear fuel elements of high temperature gas cooled reactors were prepared through sol-gel process with uranyl nitrate, which produces process wastewater containing high-level ammonia and uranium. The blow-off method on a bench scale was investigated to remove ammonia from reactive wastewater. Under the optimized operating conditions, the ammonia can be removed by more than 95%, with little reactive uranium distilled. The effects of pH, heating temperature and stripping time were studied. Static tests with ion-exchange resin indicate that ammonia removal treatment increases uranium accumulation in anion exchange resin. (authors)

  4. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    International Nuclear Information System (INIS)

    Humenick, M.J.; Garwacka, K.

    1984-01-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process

  5. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Humenick, M.J.; Garwacka, K.

    1984-02-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process.

  6. Oxidative destruction of ammonia for restoration of uranium solution mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Humenick, M.J.; Garwacka, K.

    1984-01-01

    A laboratory experimental research project was conducted to evaluate the use of chlorine for the oxidative destruction of residual ammonia that may remain in ground water after in-situ uranium solution mining operations. The work tested the idea of injecting high strength calcium hypochlorite solution into the mining zone to convert ammonia to nitrogen gas as a final cleanup process for ammonia removal from the ground water system. This paper details ammonia removal efficiency as a function of chlorine dose, reactant, and product material balances, and how the concept may be used as a final ground water restoration process.

  7. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  8. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.

    Science.gov (United States)

    Spinelli, Jessica B; Yoon, Haejin; Ringel, Alison E; Jeanfavre, Sarah; Clish, Clary B; Haigis, Marcia C

    2017-11-17

    Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass. Copyright © 2017, American Association for the Advancement of Science.

  9. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow.

    Science.gov (United States)

    Jung, Younghun; Decker, Ann M; Wang, Jingcheng; Lee, Eunsohl; Kana, Lulia A; Yumoto, Kenji; Cackowski, Frank C; Rhee, James; Carmeliet, Peter; Buttitta, Laura; Morgan, Todd M; Taichman, Russell S

    2016-05-03

    GAS6 and its receptors (Tryo 3, Axl, Mer or "TAM") are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment.We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133-/CD44-) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo.Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease.

  10. Incident at university research facility - pressure testing of gas hydrate cell

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    A master student designed a cell for observing the development of gas hydrates as conditions in the cell were changed. The supervisor asked for a pressure test of the cell before the experiments started. The student chose-to perform the pressure test using compressed air and this resulted in one...

  11. Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant

    International Nuclear Information System (INIS)

    Cinti, Giovanni; Frattini, Domenico; Jannelli, Elio; Desideri, Umberto; Bidini, Gianni

    2017-01-01

    Highlights: • An innovative NH 3 production plant was designed. • CO 2 emissions and energy consumption are studied in three different designs. • High temperature electrolysis allows to achieve high efficiency and heat recovery. • The coupling permits storage of electricity into a liquid carbon free chemical. - Abstract: Ammonia is one of the most produced chemicals worldwide and is currently synthesized using nitrogen separated from air and hydrogen from natural gas reforming with consequent high consumption of fossil fuel and high emission of CO 2 . A renewable path for ammonia production is desirable considering the potential development of ammonia as energy carrier. This study reports design and analysis of an innovative system for the production of green ammonia using electricity from renewable energy sources. This concept couples Solid Oxide Electrolysis (SOE), for the production of hydrogen, with an improved Haber Bosch Reactor (HBR), for ammonia synthesis. An air separator is also introduced to supply pure nitrogen. SOE operates with extremely high efficiency recovering high temperature heat from the Haber-Bosch reactor. Aspen was used to develop a model to study the performance of the plant. Both the SOE and the HBR operate at 650 °C. Ammonia production with zero emission of CO 2 can be obtained with a reduction of 40% of power input compared to equivalent plants.

  12. Effects of potassium adsorption filters on the removal of ammonia from blood products.

    Science.gov (United States)

    Fujita, Hiroshi; Shiotani, Yoko; Takada, Yuko; Nishimura, Shigeko

    2018-02-01

    Although ammonia in plasma does not usually pass through the blood-brain barrier (BBB), in cases of traumatic brain injury it may do so, acting as a neurotoxin on the brain. Excess intake of ammonia should be restricted in conditions involving BBB breakdown, such as traumatic brain injury. Washing is a method to remove ammonia from blood products, but fresh-frozen plasma and albumin products cannot be washed. A potassium adsorption filter (PAF) can remove not only potassium, but also ammonia from red blood cell solutions. We, therefore, examined the effects of a PAF on the removal of ammonia from a range of blood products. Ammonia concentrations were measured in expired red blood cell solutions, fresh-frozen plasma, and platelet concentrates and purchased albumin products before and after filtration through a PAF. The PAF was primed with saline, which was removed before the filter was used. The percentages of ammonia removal from the red blood cell solutions, fresh-frozen plasma, plasma concentrates, 20% albumin and 5% albumin were approximately 76-87%, 21-31%, 53%, 77-92% and 49-63%, respectively. A PAF appears capable of removing ammonia from a range of blood products, although the reason for the lesser effect on the ammonia concentration in fresh-frozen plasma compared to other blood products remains unknown. We hypothesise that, by lowering ammonia levels in blood products, the PAF could improve the clinical prognosis of neonates with an underdeveloped BBB or patients with BBB breakdown following traumatic brain injury.

  13. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N.; Omata, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  14. Summer ammonia measurements in a densely populated Mediterranean city

    NARCIS (Netherlands)

    Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R.P.; Blom, M.J.; Querol, X.

    2012-01-01

    Real-time measurements of ambient concentrations of gas-phase ammonia (NH3) were performed in Barcelona (NE Spain) in summer between May and September 2011. Two measurement sites were selected: one in an urban background traffic-influenced area (UB) and the other in the historical city centre (CC).

  15. Gravure-printed ammonia sensor based on organic polyaniline colloids

    Czech Academy of Sciences Publication Activity Database

    Syrový, T.; Kuberský, P.; Sapurina, Irina; Pretl, S.; Bober, Patrycja; Syrová, L.; Hamáček, A.; Stejskal, Jaroslav

    2016-01-01

    Roč. 225, 31 March (2016), s. 510-516 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LH14199; GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : ammonia gas * polyaniline * conducting polymer Subject RIV: CG - Electrochemistry Impact factor: 5.401, year: 2016

  16. Shannon Entropy of Ammonia Volatilization from Fertilized Agricultural Soils

    Science.gov (United States)

    The economic loss of ammonia (NH3) volatilization from chemical N fertilizers applied to farmlands worldwide is 11.6 billion US dollars per year. The economic impact of negative environmental effects resulted from NH3 volatilization, i.e., formation of potent greenhouse gas (N2O) and PM2.5, is diffi...

  17. Efficiency of deodorant materials for ammonia reduction in indoor air

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor

    2014-01-01

    A comparative study about the removability of ammonia gas in the air by activated carbon fiber (ACF) felt chemically treated with acid and a cotton fabric processed with iron phthalocyanine with copper (Cu) was performed in small-scale experiments. The test rig consisted of a heated plate and its...

  18. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.

    Science.gov (United States)

    Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M

    2013-09-15

    In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Edge seal for a porous gas distribution plate of a fuel cell

    Science.gov (United States)

    Feigenbaum, Haim; Pudick, Sheldon; Singh, Rajindar

    1984-01-01

    In an improved seal for a gas distribution plate of a fuel cell, a groove is provided extending along an edge of the plate. A member of resinous material is arranged within the groove and a paste comprising an immobilized acid is arranged surrounding the member and substantially filling the groove. The seal, which is impervious to the gas being distributed, is resistant to deterioration by the electrolyte of the cell.

  20. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  1. Mobility Spectrometer Studies on Hydrazine and Ammonia Detection

    Science.gov (United States)

    Niu, William; Eiceman, Gary; Szumlas, Andrew; Lewis, John

    2011-01-01

    An airborne vapor analyzer for detecting sub- to low- parts-per-million (ppm) hydrazine in the presence of higher concentration levels of ammonia has been under development for the Orion program. The detector is based on ambient pressure ionization and ion mobility characterization. The detector encompasses: 1) a membrane inlet to exclude particulate and aerosols from the analyzer inlet; 2) a method to separate hydrazine from ammonia which would otherwise lead to loss of calibration and quantitative accuracy for the hydrazine determination; and 3) response and quantitative determinations for both hydrazine and ammonia. Laboratory studies were made to explore some of these features including mobility measurements mindful of power, size, and weight issues. The study recommended the use of a mobility spectrometer of traditional design with a reagent gas and equipped with an inlet transfer line of bonded phase fused silica tube. The inlet transfer line provided gas phase separation of neutrals of ammonia from hydrazine at 50 C simplifying significantly the ionization chemistry that underlies response in a mobility spectrometer. Performance of the analyzer was acceptable between ranges of 30 to 80 C for both the pre-fractionation column and the drift tube. An inlet comprised of a combined membrane with valve-less injector allowed high speed quantitative determination of ammonia and hydrazine without cross reactivity from common metabolites such as alcohols, esters, and aldehydes. Preliminary test results and some of the design features are discussed.

  2. Indoor concentrations of ammonia and the potential contribution of humans to atmospheric budgets

    Science.gov (United States)

    Atkins, D. H. F.; Lee, David S.

    Simple passive diffusion tube samplers were used for the determination of ammonia concentrations in homes. The gas was collected by molecular diffusion on sulphuric-acid-impregnated glass-fibre discs and subsequently determined spectrophotometrically. In a survey of 10 homes, ammonia levels were found to average 39, 37 and 32 μg m -3 (NH 3 as N), respectively, in kietchens living rooms and bedrooms. The maximum concentration found was 85 μg m -3 in a kitchen and a minimum of 13 μg m -3 in a kitchen and a living room. These values were obtained with sampling periods of at least 1 week. The relative constancy of ammonia levels throughout the houses surveyed may be explained on the basis that the occupants themselves are the main source of the gas. The potential human contribution to atmospheric ammonia is discussed along with its implications for ammonia budgets in the atmosphere.

  3. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  4. Comparative study of ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammonia-free precursors

    International Nuclear Information System (INIS)

    Chen Liangyan; Zhang Daoli; Zhai Guangmei; Zhang Jianbing

    2010-01-01

    Ammonia is one of the complexing agents which are the most commonly used in the precursors of ZnSe thin films by chemical bath deposition, but its high volatility may be harmful to human beings and environments. In our experiments, ZnSe films were obtained from modified chemical solutions with ammonia-containing and ammonia-free precursors. X-ray diffraction, field-emission scanning electron microscope (FSEM), and absorption spectrum were applied to investigate the microstructure, morphology and optical properties of the samples obtained from both growth conditions, which were investigated in this work. The ammonia-free chemical bath deposited ZnSe films showed comparable properties with the ammonia-containing ones, indicating that ZnSe films from ammonia-free chemical solution may be preferred buffer layer in thin film solar cells with less environmental contamination.

  5. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling.

    Science.gov (United States)

    Fried, David E; Watson, Ralph E; Robson, Simon C; Gulbransen, Brian D

    2017-12-01

    Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca 2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP :: Cre ER T2+/- /connexin43 f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABA A receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia. NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the

  6. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes

    International Nuclear Information System (INIS)

    Stroemberg, Niklas; Hakonen, Aron

    2011-01-01

    Highlights: → A plasmophore sensitized optode for imaging ammonia (NH 3 ) concentrations in muscle tissues was developed. → Ammonia concentrations ranging from 10 nM and upwards can be quantified reversibly with an optical resolution of 127 μm. → The general sensing scheme offers new possibilities for the development of artificial optical noses and tongues. - Abstract: A plasmophore sensitized optode was developed for imaging ammonia (NH 3 ) concentrations in muscle tissues. The developed ammonia sensor and an equivalent non plasmophore version of the sensor were tested side by side to compare their limit of detection, dynamic range, reversibility and overall imaging quality. Bio-degradation patterns of ammonia release from lean porcine skeletal muscle were studied over a period of 11 days. We demonstrate that ammonia concentrations ranging from 10 nM can be quantified reversibly with an optical resolution of 127 μm in a sample area of 25 mm x 35 mm. The plasmophore ammonia optode showed improved reversibility, less false pixels and a 2 nM ammonia detection limit compared to 200 nM for the non-plasmophore sensor. Main principles of the sensing mechanism include ammonia transfer over a gas permeable film, ammonia protonation, nonactin facilitated merocyanine-ammonium coextraction and plasmophore enhancement. The vast signal improvement is suggested to rely on solvatochroism, nanoparticle scattering and plasmonic interactions that are utilized constructively in a fluorescence ratio. In addition to fundamental medicinal and biological research applications in tissue physiology, reversible ammonia quantification will be possible for a majority of demanding imaging and non imaging applications such as monitoring of low ammonia background concentrations in air and non-invasive medicinal diagnosis through medical breath or saliva analysis. The nanoparticle doped sensor constitutes a highly competitive technique for ammonia sensing in complex matrixes and the

  7. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Ammonia

    Science.gov (United States)

    Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.

  9. Impacts of ammonia on zinc oxide nanoparticle toxicity to Nitrosomonas europaea

    Science.gov (United States)

    Wu, Junkang; Chang, Yan; Gao, Huan; Yu, Ran

    2017-05-01

    A Although the toxicity effects of engineering nanoparticles (NPs) in biological wastewater nitrogen removal (BNR) system have been extensively attracted, the impacts of co-existing contaminants from wastewater on NP toxicity have been less addressed. In this study, the effects of ammonia on ZnO NP toxicity to typical ammonia oxidizing bacteria-Nitrosomonas europaea were investigated, as indicated by the cell density, membrane integrity, ammonia oxidation rate, and AMO activity. After 6-h’s exposure to 10 mg/L ZnO NPs, the cell density, membrane integrity, ammonia oxidation rate, and AMO activity was dramatically suppressed despite of the increasing ammonia loading. Ammonia at varying concentrations did not obviously affect ZnO NPs toxicity to cell density. The presence of ammonia at 100 or 200 mg/L significantly alleviated the antibacterial effects of ZnO NPs on cells. The reduction of the concentration of released Zn2+ might be responsible for the compromised ZnO NPs toxicity. However, the presence of extremely dosed ammonia at 200 mg/L imposed restrictions on further alleviation of ZnO NPs toxicities probably due to the production of free ammonia and acclamation of nitrite. All these findings would provide new insights for risk assessment of the combined effects of NPs with other co-existing contaminants in the BNR system.

  10. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  11. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  12. Anhydrous Ammonia Frost on Titan

    Science.gov (United States)

    Smythe, W. D.; Nelson, R.; Boryta, M. D.

    2009-12-01

    Ammonia has been suggested as a probable source for sustaining Titan's thick nitrogen-dominated atmosphere. Ammonia is believed to be important to maintaining nitrogen in Titan's atmosphere. Ammonia is seen in clouds in the atmospheres of Jupiter and Saturn, but has yet to be detected on any of the satellites. This may be because all forms of NH3 are unstable in the ambient conditions of the satellites surfaces or that its spectral features are altered by other components of the surface, and have not been identified. It has recently been demonstrated[1] that brightening occurs in Titan’s atmosphere that is transient on the time-scale of months. The spectral shape of the brightening is more consistent with that of the transient apparition of a pure ammonia frost than of an ammonia monohydrate or ammonia dihydrate frost. However, the phase behavior of the ammonia water system has peritectics at compositions of 1:1 and 1:2. These hydrate forms would be expected to dominate if the frost, or the reservoir from which the frost was derived had any water present. Physical mechanisms for producing measurable quanitities of anhydrous ammonia can include chemical dehydration or dehydration of the vapor phase - but it is challenging to store significant quantities of the anhydrous material because of the phase behavior in the solid state. [1] Nelson, R.M., et al. Saturn’s Titan: Surface Change, Ammonia, and Implications for Atmospheric and Tectonic Activity., Icarus, 199, pp. 429-441, 2009 This work was performed at JPL under contract to NASA

  13. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Ozaki, Osamu; Sato, Hajime; Kimura, Shoji; Miyauchi, Terukatsu.

    1977-01-01

    A separation cell embodying two kinds of membrane-porous and nonporous, i.e. differing in gas permeability - has a separation factor higher than possible with a conventional separation cell with a single kind of membrane. The performance of such separation cells and of cascades constituted thereof are analyzed theoretically and measured experimentally for different conditions of operation, to determine the applicability of the concept to the separation of rare gases from gaseous waste out of nuclear plants. Theoretical considerations indicate that, in a cascade composed of symmetric separation cells, the separation performance can be improved by recycling part of the effluent from a cell back through the same cell (recycling cascade). It is shown that its performance is better than with the arrangement of diverting another effluent several stages upstream. With the recycling cascade, the symmetric separation recycling rate is determined by the depletion separation and enrichment separation factors relevant to the respective membranes. The separation performance of a 9-stage recycling cascade composed of separation cells with silicone rubber tubular membranes and cellulose acetate tubular membranes is derived for a case of Kr separation from N 2 -Kr mixture. The experimental data coincide well with the analytical results. From both the experimental and the analytical results, it is found that the attainable separation coefficient per stage of the cascade comes to average approximately 0.97. (auth.)

  14. Contribution to the understanding of ion-gas reactions in ICP-MS collision reaction cells: application to the resolution of isobaric and polyatomic interferences

    International Nuclear Information System (INIS)

    Quemet, A.

    2012-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) emerged as the most essential technique in inorganic analytical chemistry thanks to its numerous assets, particularly its flexibility, its sensitivity and its reproducibility. As part of the elementary and isotopic analysis of irradiated fuel and transmutation target, the analyst is faced with a complex mass spectrum, due to the presence of many radionuclides. ICP-MS can not differentiate ions with the same mass, which induces isobaric and polyatomic interferences when the ions at the same mass are different chemical species. Last generations of ICP-MS have introduced collision reaction cells. It can in situ reduce these isobaric or polyatomic interferences. The cell is a multipole (quadrupole, hexapole or octupole) device filled with a collision and/or reaction gas. The gas molecules collide or possibly react with the ion beam, which eliminates or reduces interferences. Such resolution of interferences is based on the difference of chemical behaviours between the analyte and the interfering species: the choice of the gas is crucial. A better understanding of the 'ion - gas' reaction should help choosing the reacting gases. Three ICP-MS, with the different cell geometries, were used for this study: Perkin Elmer Elan DRC e (quadrupole), Thermo Fischer X serie II (hexapole) and Agilent Technologies 7700x (octupole). The effects of the cell geometry on different experimental parameters and on the resolution of the 56 Fe + / 40 Ar 16 O + polyatomic interferences were examined to measure iron at trace or ultra-trace level. This preliminary study was applied to measure iron as impurities in uranium oxide, the method was then validated with a Certified Reference Material. The reactivities of transition metals (Zr, Ru, Pd, Ag, Cd, Sn), lanthanides (La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb) and actinides (U, Np, Pu, Am and Cm), elements of interest in the nuclear field, are studied with numerous gases (O 2 , CO, CO 2 , N 2

  15. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    Science.gov (United States)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  16. Ammonia-based quantum computer

    International Nuclear Information System (INIS)

    Ferguson, Andrew J.; Cain, Paul A.; Williams, David A.; Briggs, G. Andrew D.

    2002-01-01

    We propose a scheme for quantum computation using two eigenstates of ammonia or similar molecules. Individual ammonia molecules are confined inside fullerenes and used as two-level qubit systems. Interaction between these ammonia qubits takes place via the electric dipole moments, and in particular we show how a controlled-NOT gate could be implemented. After computation the qubit is measured with a single-electron electrometer sensitive enough to differentiate between the dipole moments of different states. We also discuss a possible implementation based on a quantum cellular automaton

  17. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2004-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2004 time period.

  18. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2005 time period.

  19. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Richard G. Herman

    2004-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 30, 2004 time period.

  20. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    Science.gov (United States)

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  1. Operation of real landfill gas fueled solid oxide fuel cell (SOFC) using internal dry reforming

    DEFF Research Database (Denmark)

    Langnickel, Hendrik; Hagen, Anke

    2017-01-01

    Biomass is one renewable energy source, which is independent from solar radiation and wind effect. Solid oxide fuel cells (SOFC’s) are able to convert landfill gas derived from landfill directly into electricity and heat with a high efficiency. In the present work a planar 16cm2 SOFC cell...

  2. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    Science.gov (United States)

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  4. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    Release of ammonia into the International Space Station (ISS) cabin atmosphere can occur if the water/ammonia barrier breach of the active thermal control system (ATCS) interface heat exchanger (IFHX) happens. After IFHX breach liquid ammonia is introduced into the water-filled internal thermal control system (ITCS) and then to the cabin environment through a ruptured gas trap. Once the liquid water/ammonia mixture exits ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin air that results in rapid deterioration of the cabin conditions. The goal of the study is to assess ammonia propagation in the Station after IFHX breach to plan the operation procedure. A Computational Fluid Dynamics (CFD) model for accurate prediction of airflow and ammonia transport within each of the modules in the ISS cabin was developed. CFD data on ammonia content in the cabin aisle way of the ISS and, in particular, in the Russian On- Orbit Segment during the period of 15 minutes after gas trap rupture are presented for four scenarios of rupture response. Localized effects of ammonia dispersion and risk mitigation are discussed.

  5. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wada, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 116-8551 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA), Tokaimura 319-1100 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ito, Y. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kubo, T.; Matsuo, Y. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Naimi, S. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nakamura, S. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Noto, T. [Faculty of Engineering, Nagoya University, Nagoya 464-8603 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Schury, P. [Department of Physics, Tsukuba University, Tsukuba 305-8577 (Japan); RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shinozuka, T. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); and others

    2013-01-15

    A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN’s fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa–10{sup −3} Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.

  6. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    Science.gov (United States)

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2017-12-01

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N 2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N 2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N 2 O production under conditions of high inorganic ammonia (NH 3 ) input, but result mainly from the activity of AOA when NH 3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N 2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N 2 O production. In unamended soils, ammonia oxidation and N 2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N 2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N 2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N 2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N 2 O emissions from fertilised agricultural soils. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Effects of Copper Exchange Levels on Complexation of Ammonia in ...

    African Journals Online (AJOL)

    Above five copper atoms per unit cell, the major complex becomes [Cu(NH3)4]2+ and it is least interacting with the zeolite framework walls. The [Cu(NH3)4]2+ complex which was formed at higher copper levels per unit cell was most favoured by the presence of maximal amount of ammonia. Keywords: Cation Exchange ...

  8. Synthesis of fertilizers nitrogen and 15N-enriched. Pt. I. Production of enriched 15N-anhydrous ammonia

    International Nuclear Information System (INIS)

    Bendassolli, J.A.; Mortatti, J.; Trivelin, P.C.O.; Victoria, R.L.

    1988-01-01

    The results of 15 N-anhydrous ammonia production through reaction between 15 N-enriched ammonium sulphate and sodium hidroxide are reported. Influence of the reaction temperature, carrier gas flow, reaction time and mass of ammonium sulphate on the production of anhydrous ammonia were studied. Analyses for the cost of production of 5% atoms in 15 N-enriched anhydrous ammonia were made. (M.A.C.) [pt

  9. Review of methods for determination of ammonia volatilization in farmland

    Science.gov (United States)

    Yang, J.; Jiao, Y.; Yang, W. Z.; Gu, P.; Bai, S. G.; Liu, L. J.

    2018-02-01

    Ammonia is one of the most abundant alkaline trace gases in the atmosphere, which is one of the important factors affecting atmospheric quality. Excessive application of nitrogen fertilizer is the main source of global ammonia emissions, which not only exacerbate greenhouse gas emissions, but also leads to eutrophication of water bodies. In this paper, the basic principle, the operation process, the advantages and disadvantages, and the previous research results of the method are summarized in detail, including the enclosure method, the venting method, the continuous airflow enclosure method, the wind tunnel method and the micro-meteorological method. So as to provide a theoretical basis for selecting the appropriate method for determination of ammonia volatilization.

  10. Dynamics of gas cell coalescence during baking expansion of leavened dough.

    Science.gov (United States)

    Miś, Antoni; Nawrocka, Agnieszka; Lamorski, Krzysztof; Dziki, Dariusz

    2018-01-01

    The investigation of the dynamics of gas cell coalescence, i.e. a phenomenon that deteriorates the homogeneity of the cellular structure of bread crumb, was carried out performing simultaneously measurements of the dough volume, pressure, and viscosity. It was demonstrated that, during the baking expansion of chemically leavened wheat flour dough, the maximum growth rate of the gas cell radius determined from the ratio of pressure exerted by the expanded dough to its viscosity was on average four-fold lower than that calculated from volume changes in the gas phase of the dough. Such a high discrepancy was interpreted as a result of the course of coalescence, and a formula for determination of its rate was developed. The coalescence rate in the initial baking expansion phase had negative values, indicating nucleation of newly formed gas cells, which increased the number of gas cells even by 8%. In the next baking expansion phase, the coalescence rate started to exhibit positive values, reflecting dominance of the coalescence phenomenon over nucleation. The maximum coalescence rates indicate that, during the period of the most intensive dough expansion, the number of gas cells decreased by 2-3% within one second. At the end of the formation of bread crumb, the number of the gas cells declined by 55-67% in comparison with the initial value. The correctness of the results was positively verified using X-ray micro-computed tomography. The developed method can be a useful tool for more profound exploration of the coalescence phenomenon at various stages of evolution of the cellular structure and its determinants, which may contribute to future development of more effective methods for improving the texture and sensory quality of bread crumb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Calcium in the mechanism of ammonia-induced astrocyte swelling.

    Science.gov (United States)

    Jayakumar, Arumugam R; Rama Rao, Kakulavarapu V; Tong, Xiaoying Y; Norenberg, Michael D

    2009-05-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,-N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA). We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS), and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pre-treatment of cultures with 7-nitroindazole, apocyanin, and quinacrine, respective inhibitors of cNOS, NOX, and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX, and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling.

  12. Haber Process for Ammonia Synthesis

    Indian Academy of Sciences (India)

    C in order to obtain even a small percentage of ammonia. For this temperature range, however, no catalyst was available. By increasing the pressure to 75 bar the equilibrium conditions improved, but even at this pressure, and an operating.

  13. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    Science.gov (United States)

    Duchesne, Stephanie M.; Sweterlitsch, Jeffrey J.; Son, Chang H.; Perry Jay L.

    2012-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  14. Interannual variability of ammonia concentrations over the United States: sources and implications

    Directory of Open Access Journals (Sweden)

    L. D. Schiferl

    2016-09-01

    Full Text Available The variability of atmospheric ammonia (NH3, emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5 concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem and identify which processes control the variability of these concentrations over a 5-year period (2008–2012. We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA. Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 % as compared to reductions in SO2 and NOx emissions imposed by regulation (32 % over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.

  15. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  16. Simulation of gas and water management strategies in PEM fuel cells for UAV power

    Science.gov (United States)

    Wade, Nasir; Smith, Sonya

    2008-11-01

    Proton exchange membrane fuel cells (PEMFC) a involve a number of complex fluid phenomena that are not well understood. The focus of this research is to design a fuel cell that addresses the issues of gas and water management for the power requirements for an Unmanned Arial Vehicle (UAV). Often in conventional stack design, PEM fuel cells are connected electrically in series to create the desired voltage and feed from a common fuel or oxidant stream. This method of fueling, often leads to an uneven distribution of fluid within the stack, causing issues such as cell flooding, dehydration of membrane and inevitably poor fuel cell performance. Generally, fuel cell designers and developers incorporate higher stoichiometric gas flow rates and use flow field designs with high pressure drops in order to counter this phenomenon, ensuring even gas distribution. This method, although effective for water removal, leads to added cost and higher levels of wasted fuel. Using a simulation based approach we demonstrate the feasibility and effectiveness of an individual fuel and oxidant flow distribution, integrated with an individual sequential exhaust technique for a 6-8 cell stack which outputs 300-500 Watts of power. Using varied exhaust configurations the most optimal active gas management strategy will be outlined and recommended to give the best stack performance.

  17. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  18. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik [Aarhus Univ. (Denmark). Center for Energy Materials, Center for Materials Crystallography; Filinchuk, Yaroslav [European Synchrotron Radiation Facility, Grenoble (France). Swiss-Norwegian Beam Lines; Cerenius, Yngve [Lund Univ. (Sweden). MAX-lab; Gray, Evan MacA.; Webb, Colin J. [Griffith Univ., Nathan, Brisbane (Australia). Queensland Micro- and Nanotechnology Centre

    2010-12-15

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al{sub 2}O{sub 3}) capillary, or a quartz (SiO{sub 2}) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be {proportional_to}300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to {proportional_to}100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  19. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    International Nuclear Information System (INIS)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik; Filinchuk, Yaroslav; Cerenius, Yngve; Gray, Evan MacA.; Webb, Colin J.

    2010-01-01

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al 2 O 3 ) capillary, or a quartz (SiO 2 ) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be ∝300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to ∝100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  20. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  1. Effect of Slotted Anode on Gas Bubble Behaviors in Aluminum Reduction Cell

    Science.gov (United States)

    Sun, Meijia; Li, Baokuan; Li, Linmin; Wang, Qiang; Peng, Jianping; Wang, Yaowu; Cheung, Sherman C. P.

    2017-12-01

    In the aluminum reduction cells, gas bubbles are generated at the bottom of the anode which eventually reduces the effective current contact area and the system efficiency. To encourage the removal of gas bubbles, slotted anode has been proposed and increasingly adopted by some industrial aluminum reduction cells. Nonetheless, the exact gas bubble removal mechanisms are yet to be fully understood. A three-dimensional (3D) transient, multiphase flow mathematical model coupled with magnetohydrodynamics has been developed to investigate the effect of slotted anode on the gas bubble movement. The Eulerian volume of fluid approach is applied to track the electrolyte (bath)-molten aluminum (metal) interface. Meanwhile, the Lagrangian discrete particle model is employed to handle the dynamics of gas bubbles with considerations of the buoyancy force, drag force, virtual mass force, and pressure gradient force. The gas bubble coalescence process is also taken into account based on the O'Rourke's algorithm. The two-way coupling between discrete bubbles and fluids is achieved by the inter-phase momentum exchange. Numerical predictions are validated against the anode current variation in an industrial test. Comparing the results using slotted anode with the traditional one, the time-averaged gas bubble removal rate increases from 36 to 63 pct; confirming that the slotted anode provides more escaping ways and shortens the trajectories for gas bubbles. Furthermore, the slotted anode also reduces gas bubble's residence time and the probability of coalescence. Moreover, the bubble layer thickness in aluminum cell with slotted anode is reduced about 3.5 mm (17.4 pct), so the resistance can be cut down for the sake of energy saving and the metal surface fluctuation amplitude is significantly reduced for the stable operation due to the slighter perturbation with smaller bubbles.

  2. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  3. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  4. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

    International Nuclear Information System (INIS)

    Paramadayalan, Thiyagarajan; Pant, Atul

    2013-01-01

    A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip

  5. Carbon-free H2production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3catalyst.

    Science.gov (United States)

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  6. The Laser Ion Source Trap (LIST) coupled to a gas cell catcher

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)], E-mail: tetsu@riken.jp; Cocolios, T.E.; Gentens, J.; Huyse, M.; Ivanov, O.; Kudryavtsev, Yu.; Pauwels, D.; Van den Bergh, P.; Van Duppen, P. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-09-01

    The proof of principle of the Laser Ion Source Trap (LIST) coupled to a gas cell catcher system has been demonstrated at the Leuven Isotope Separator On Line (LISOL). The experiments were carried out by using the modified gas cell-based laser ion source and the SextuPole Ion Guide (SPIG). Element-selective resonance laser ionization of neutral atoms was taking place inside the cold jet expanding out of the gas cell catcher. The laser path was oriented in longitudinal as well as transverse geometries with respect to the atoms flow. The enhancement of beam purity and the feasibility for in-source laser spectroscopy were investigated in off-line and on-line conditions.

  7. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  8. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  9. Fuel cell power supply with oxidant and fuel gas switching

    Science.gov (United States)

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  10. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    Science.gov (United States)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  11. On-board ammonia generation and exhaust after treatment system using same

    Science.gov (United States)

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  12. [Spectroscopic study on the high voltage fast pulsed discharge of nitrogen, ammonia or their mixture].

    Science.gov (United States)

    Liu, Z P; Wang, P N; Yang, W D; Zheng, J B; Li, F M

    2001-10-01

    The emission spectra from the pulsed discharge plasma of nitrogen, ammonia or their mixture were measured. In the discharge of pure nitrogen gas, as the pressure increased, the discharge volume decreased and more dissociation of nitrogen molecules occurred due to the higher energy density. In the discharge of ammonia, N,N+ and NH+ were observed, but no NH2 and NH3 were detected, indicating that ammonia, which has the lower dissociation and ionization energies as compared to nitrogen, was highly dissociated. The discharge of the mixture of N2 and NH3 was also studied. The dependence of the dissociation of nitrogen on the ratio of nitrogen to ammonia was investigated by emission spectra. The optimal ratio for nitrogen dissociation was obtained. The advantage of using the mixture of nitrogen and ammonia in the synthesis of nitrides was discussed.

  13. A comparative kinetic study of SNCR process using ammonia

    Directory of Open Access Journals (Sweden)

    M. Tayyeb Javed

    2008-03-01

    Full Text Available The paper presents comparative kinetic modelling of nitrogen oxides (NOx removal from flue gases by selective non-catalytic reduction process using ammonia as reducing agent. The computer code SENKIN is used in this study with the three published chemical kinetic mechanisms; Zanoelo, Kilpinen and Skreiberg. Kinetic modeling was performed for an isothermal plug flow reactor at atmospheric pressure so as to compare it with the experimental results. A 500 ppm NOx background in the flue gas is considered and kept constant throughout the investigation. The ammonia performance was modeled in the range of 750 to 1250 ºC using the molar ratios NH3/NOx from 0.25 to 3.0 and residence times up to 1.5 seconds. The modeling using all the mechanisms exhibits and confirms a temperature window of NOx reduction with ammonia. It was observed that 80% of NOx reduction efficiency could be achieved if the flue gas is given 300 msec to react with ammonia, while it is passing through a section within a temperature range of 910 to 1060 ºC (Kilpinen mechanism or within a temperature range of 925 to 1030 ºC (Zanoelo mechanism or within a temperature range of 890 to 1090 ºC (Skreiberg mechanism.

  14. Development of a gas cell-based laser ion source for RIKEN PALIS

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T., E-mail: tetsu@riken.jp; Wada, M. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T. [Nagoya University, Faculty of Engineering (Japan); Iimura, H. [Japan Atomic Energy Agency (JAEA) (Japan); Matsuo, Y.; Kubo, T. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Shinozuka, T.; Wakui, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Mita, H. [Tsukuba University, Department of Physics (Japan); Naimi, S. [RIKEN, SLOWRI Team, Nishina Center for Accelerator-Based Science (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Itou, Y.; Schury, P. [Tsukuba University, Department of Physics (Japan); Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. [High Energy Accelerator Research Organization (KEK) (Japan); and others

    2013-04-15

    We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).

  15. Apoptotic cell death in rat lung following mustard gas inhalation.

    Science.gov (United States)

    Andres, Devon K; Keyser, Brian M; Melber, Ashley A; Benton, Betty J; Hamilton, Tracey A; Kniffin, Denise M; Martens, Margaret E; Ray, Radharaman

    2017-06-01

    To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3, and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 h after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased fivefold between 6 and 24 h, decreasing to the unexposed-control level at 48 h. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked ( P < 0.01) at 24 h; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 h. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L and mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. At 24 h after SM exposure, sFas-L increased significantly in both BALF cells ( P < 0.01) and BALF ( P < 0.05). However, mFas-L increased only in BALF cells between 24 and 48 h ( P < 0.1 and P < 0.001, respectively). Fas-R increased only in BALF cells by 6 h ( P < 0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspase-3 and -9 antibodies and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as early as 6 h in the proximal trachea and bronchi, but not before 48 h in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.

  16. Ammonia emissions in tunnel-ventilated broiler houses

    Directory of Open Access Journals (Sweden)

    KAO Lima

    2011-12-01

    Full Text Available Gas production in broiler houses and their emissions are closely related to the microclimate established inside the house according to air temperature, humidity, and velocity. Therefore, the internal house environment is influenced by building typology and ventilation system. The objective of the present study was to evaluate ammonia emission rates in broiler houses equipped with different ventilation systems (negative or positive pressure and litter conditions (new or built-up. The environment of six commercial broiler houses was evaluated internal and external NH3 concentrations. Ventilation rates were recorded to estimate ammonia emission rates. The efficiency of circulation and exhaust fans was assessed, and higher ventilation rates were determined in negative-pressure houses due to the higher flow of the fans. Houses with new litter increased ammonia emission rates along the rearing period, indicating the relationship between gas emissions, bird age and ventilation rates, and presented a typical curve of NH3 emission increase. Negative-pressure houses with built-up litter presented higher emission rates during the first rearing week due to the high NH3 concentration during the brooding period, when the ventilation rates required to maintain chick thermal comfort are low. Although the results of the present study indicate an advantage of the positive-pressure systems as to gas emissions, further research is needed reduce gas emissions in broiler houses with negative-pressure systems.

  17. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants

    Science.gov (United States)

    Jablonski, G.; Hamm, J. R.; Alvin, M. A.; Wenglarz, R. A.; Patel, P.

    1982-10-01

    Coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants are listed. Those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed are characterized. An analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC was developed. An analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals was developed. The candidate gasifier/cleanup systems those most suitable for MCFC-based power plants are discussed. A reference wet cleanup system, parametric analyses of the coal gasifiers and gas cleanup systems, efficiency, investment, cost of electricity, operability, and environmental effect rankings, and a final report are discussed.

  18. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  19. Ammonia synthesis by means of plasma over MgO catalyst

    International Nuclear Information System (INIS)

    Sugiyama, K.; Akazawa, K.; Matsuda, T.; Miura, H.; Oshima, M.

    1986-01-01

    Ammonia synthesis from H 2 -N 2 mixed gas was studied at room temperature in a glow-discharge plasma in the presence of metals or metal oxides. Magnesia (Mg0) and calcia (CaO), which are oxides with solid basicity, revealed catalytic activity in the plasma synthesis of ammonia, although they are catalytically inactive in industrial ammonia synthesis. The acid oxides (Al 2 0 3 W0 3 , and Si0 2 -Al 2 0 3 ) lead to the consumption of the reactant, i.e., the H2-N2 mixed gas. No ammonia was isolated. Metal catalysts showed higher activity than the above basic oxides. They have, however, different activities. The reaction was faster over the active materials than over sodium chloride (NaCl) or glass wool or in a blank reactor without any catalyst

  20. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping.

    Science.gov (United States)

    Yabu, Hironori; Sakai, Chikako; Fujiwara, Tomoko; Nishio, Naomichi; Nakashimada, Yutaka

    2011-03-01

    To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle.

    Science.gov (United States)

    Abouelenien, Fatma; Fujiwara, Wataru; Namba, Yuzaburo; Kosseva, Maria; Nishio, Naomichi; Nakashimada, Yutaka

    2010-08-01

    This study demonstrates methane fermentation that was carried out along with ammonia striping to avoid ammonia accumulation that significantly inhibited methane production. Ammonia was successfully removed by means of recycling of biogas followed by gas washing in sulfuric acid to capture ammonia, when chicken manure was anaerobically digested for 4 days at 55 degrees C and at an initial pH of 8-9. By using this method, 80% of total nitrogen in chicken manure was converted to ammonia and 82% of the produced ammonia was removed. A bench scale reactor equipped with an ammonia-stripping unit for methane production from chicken manure was developed and operated in repeated batch mode. At an initial pH of 8 and at 55 degrees C, 195 and 157 ml g-VS(-1) of methane was successfully produced from the treated chicken manure and the mixture of treated chicken manure and raw chicken manure in the ratio of 1:1, respectively. In this method, ammonia concentration was maintained at a level lower than 2g-N kg-wet sludge(-1) in the reactor. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. A Langmuir-Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor.

    Science.gov (United States)

    Armenise, S; García-Bordejé, E; Valverde, J L; Romeo, E; Monzón, A

    2013-08-07

    The increasing interest in ammonia decomposition is due to the fact that this compound can be used advantageously as a hydrogen carrier, allowing the development of single-step hydrogen generation systems. With the aim of developing efficient reactors for ammonia decomposition, e.g. for fuel cell applications, it is imperative to investigate the kinetics and reaction mechanism in depth. The main goal of this work is to develop reliable kinetic models that are able to predict the performance obtained using integral reactors, e.g. monoliths. In this case, an almost complete NH3 conversion is obtained, with a high H2 concentration at the exit of the reactor. The operating conditions, mainly the gas composition, are very different along the reactor. In addition, the temperatures needed to attain such large conversions are usually high. The kinetic models developed in this contribution are based on the Langmuir isotherm, considering that all the adsorbed species can be kinetically relevant, that the slow step or steps can be partially reversible, and that the surface can be considered as energetically uniform, i.e. ideal. Among other conclusions, the results obtained indicate that the variable kinetic orders and apparent activation energies frequently reported in the literature can be direct consequences of the data analysis and can therefore also be explained without considering any change in the controlling step with the reaction temperature or in the hydrogen or ammonia concentration.

  3. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  4. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  5. Fuel cells: new technology of natural gas for energetical building; Pilas de combustible: nueva tecnologia de gas natural para edificios energeticamente autoabastecidos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2000-07-01

    Fuel Cells have emerged in the last decade as one of the most promising new and sustainable natural gas technologies for meeting the energy needs of all the economy sectors into the 21st century. Fuel Cells are an environmentally clean, quiet, and highly efficient method for generating electricity and heat from natural gas. A fuel cell is an electrochemical device that converts the chemical energy of a fuel directly to usable energy (electricity and heat) without combustion. For this reason, the application and use of the fuel cell technology may be the most important technological advancement of the next century. At the beginning of the 2000 year Sociedad de Gas de Euskadi, s. a. started a demonstration project in favour of the high-temperature planar solid oxide fuel cell (SOFC) for domestic micro-CHP utilization. This type is certainly most exacting from the materials standpoint, and it offers the advantage of uncomplicated fuel pretreatment. (Author)

  6. Safety features in operation of ammonia based heavy water plants (Paper No. 4.11)

    International Nuclear Information System (INIS)

    Jain, S.M.

    1992-01-01

    Ammonia based heavy water plants uses ammonia-hydrogen exchange process for production of heavy water. These plants have to handle large quantities of synthesis gas and ammonia on a continuous basis. The safety aspects has to be considered in great detail while designing, fabricating, and in the selection of equipment and in the operation and maintenance of these plants. Though these plants poses many technical problems and criticalities, it was possible to overcome these technical problems and to control the criticalities and to operate the plants safely. (author)

  7. Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

    DEFF Research Database (Denmark)

    Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory

    2015-01-01

    The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing ...

  8. Numerical studies on liquid water flooding in gas channels used inpolymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, CZ.; Hassanizadeh, S.M.; Rensink, D.

    2012-01-01

    Water management plays an important role in the development of low-temperature polymer electrolyte fuel cells (PEFCs). The lack of a macroscopic gas channel (GC) flooding model constrains the current predictions of PEFC modeling under severe flooding situations. In this work, we have extended our

  9. Development of active, and stable water-gas-shift reaction catalysts for fuel cell applications

    NARCIS (Netherlands)

    Azzam, K.G.H.; Babich, Igor V.; Seshan, Kulathu Iyer; Lefferts, Leon

    2006-01-01

    Water-gas-shift (WGS) reaction CO + H2O = CO2 + H2, is a key step in the generation of H2 for fuel cells. Noble metal-based catalysts are promising single stage WGS catalysts because they less sensitive than LTS catalysts (Cu based) and more active than the HTS (Ni) catalysts. High activity in CO

  10. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    Science.gov (United States)

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  11. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  12. First detection of ammonia (NH3) in the upper troposphere

    Science.gov (United States)

    Höpfner, Michael; Volkamer, Rainer; Grabowski, Udo; Grutter de la Mora, Michel; Orphal, Johannes; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    Ammonia (NH3) is the major alkaline trace gas in the troposphere. Neutralization of atmospheric acids, like HNO3 and H2SO4, leads to formation of ammonium nitrate and ammonium sulfate aerosols. Further, there are indications that NH3 may enhance nucleation of sulfuric acid aerosols by stabilization of sulfuric acid clusters. By far the largest source of ammonia is agricultural food production. Major global emissions are located in S-E Asia as e.g. shown by satellite nadir observations. Besides its importance with respect to air quality issues, an increase of ammonia emissions in the 21st century might lead to a significant climate radiative impact through aerosol formation. In spite of its significance, there is a lack of observational information on the global distribution of NH3 in the mid- and upper troposphere. Observational evidence, however, would be important for testing e.g. model results on the fate of ammonia from its source regions on ground to altitudes up to the tropopause. In this contribution we will show, to our knowledge, the first unequivocal detection of ammonia in the upper troposphere. This result has been achieved through analysis of infrared limb-emission observations performed with the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on board the Envisat satellite from 2002-2012. On a global scale, enhanced values of ammonia have been measured in the upper tropospheric region influenced by the Asian monsoon. We will present a quantitative analysis of the retrieved concentrations of NH3 including an error assessment and further retrieval diagnostics. The results will be discussed with respect to the variability of NH3 locally within the Asian monsoon region's upper troposphere and at different years. Further, we will show comparisons between global distributions of NH3 from published model simulations and our observational dataset from MIPAS.

  13. Anhydrous ammonia burns case report and review of the literature.

    Science.gov (United States)

    Amshel, C E; Fealk, M H; Phillips, B J; Caruso, D M

    2000-08-01

    Chemical burns are associated with significant morbidity, especially anhydrous ammonia burns. Anhydrous ammonia is a colorless, pungent gas that is stored and transported under pressure in liquid form. A 28 year-old patient suffered 45% total body surface area of second and third degree burns as well as inhalational injury from an anhydrous ammonia explosion. Along with fluid resuscitation, the patient's body was scrubbed every 6 h with sterile water for the first 48 h to decrease the skin pH from 10 to 6-8. He subsequently underwent a total of seven wound debridements; initially with allograft and then autograft. On post burn day 45, he was discharged. The injuries associated with anhydrous ammonia burns are specific to the effects of ammonium hydroxide. Severity of symptoms and tissue damage produced is directly related to the concentration of hydroxyl ions. Liquefactive necrosis results in superficial to full-thickness tissue loss. The affinity of anhydrous ammonia and its byproducts for mucous membranes can result in hemoptysis, pharyngitis, pulmonary edema, and bronchiectasis. Ocular sequelae include iritis, glaucoma, cataracts, and retinal atrophy. The desirability of treating anhydrous ammonia burns immediately cannot be overemphasized. Clothing must be removed quickly, and irrigation with water initiated at the scene and continued for the first 24 h. Resuscitative measures should be started as well as early debridement of nonviable skin. Patients with significant facial or pharyngeal burns should be intubated, and the eyes irrigated until a conjunctivae sac pH below 8.5 is achieved. Although health care professionals need to be prepared to treat chemical burns, educating the public, especially those workers in the agricultural and industrial setting, should be the first line of prevention.

  14. Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

    Science.gov (United States)

    Molinas, Sara M; Soria, Leandro R; Marrone, Julieta; Danielli, Mauro; Trumper, Laura; Marinelli, Raúl A

    2015-08-01

    It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p ammonia in response to acidosis.

  15. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  16. Phenol recovery with liquid ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Heilman

    1943-08-03

    This report covers the results of a phenol recovery plant at Ludwigshafen which had recently suffered a severe explosion. From a Gelsenberg hydrogenation middle oil with 18 percent phenol, an 86 to 96 percent phenol fraction was recovered. Because the occurring neutral oil was phenol-free and because with the process a phenol loss was impossible, it was assumed that the yield was quantitative. With regard to the working process, the middle oil was fed into the upper section of a column four feet high, in which liquid ammonia from below climbed upward. The ammonia thereby absorbed the phenol quantitatively, and the ammonium phenolate solution absorbed a certain amount of neutral oil. The loaded ammonia went over the top of the column while at the foot of the column the phenol-free neutral oil collected and was drawn off. The ammonium phenolate solution was then washed with light gasoline in a second column. For this, the ammonia was fed into the upper, the light gasoline into the lower part of the column. The light gasoline absorbed almost quantitatively the neutral oil which was molecularly or actually colloidally dissolved in the ammonium phenolate solution, and even a small amount of the phenol and ammonia. Thickening in concentration, the light gasoline was fed into a storage tank where it was freed of its dissolved components by atmospheric distillation and recycled into the process. The ammonium phenolate solution which before the gasoline wash left behind a vaporization residue with about 40 percent phenol afterwards produced a raw phenol of 86 to 96 percent pure phenol. Because of technical difficulties, the concentration of the washed ammonium phenolate solution could not be determined. It was gathered at the bottom of the second column and fed into a storage tank where the phenol was freed by pressure distillation. The ammonia was then recycled into the process.

  17. Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell

    Science.gov (United States)

    Kaufman, Arthur; Werth, John

    1986-01-01

    A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.

  18. Effectiveness of common shelter-in-place techniques in reducing ammonia exposure following accidental release.

    Science.gov (United States)

    Tarkington, Brett; Harris, Angela J; Barton, Paul S; Chandler, Ben; Goad, Phillip T

    2009-04-01

    Shelter-in-place strategies such as remaining indoors; breathing through a damp cloth; sealing cracks in windows and doors using towels, duct tape, or plastic sheeting; and running a shower are often recommended by emergency response officials to protect against accidental or intentional release of hazardous airborne chemicals and biologicals. Similar recommendations have been made to and used by community members exposed to anhydrous ammonia after catastrophic release of ammonia gas due to a derailment or other accidents. Such incidents have resulted in fatalities and serious injury to exposed individuals; however, other individuals within the same area have escaped injury and, in many cases, sustained no injuries as a result of sheltering-in-place. Although there are some studies that have evaluated the effectiveness of remaining in the home or breathing through a damp cloth to reduce exposure to various agents, there have been no studies that directly address the efficacy of running the shower in reducing exposure to ammonia gas. The present study was designed to simulate sheltering-in-place inside a typical bathroom with the shower running. The effectiveness of breathing through a damp cloth was also evaluated using a CPR mannequin placed inside a chamber built to represent a typical household bathroom. Ammonia gas at 300 or 1000 ppm was added to the chamber until the concentration peaked and stabilized, then the shower was turned on and the ammonia gas concentration was continuously monitored. In the mannequin studies, using a damp cloth reduced exposure to ammonia gas by 2- to 18-fold. Turning on the shower was even more effective at reducing ammonia levels. After 27 min, the ammonia concentration in the chamber was reduced to 2% of the initial concentration, even though gas was being continuously added to the chamber. These results indicate that use of shelter-in-place strategies substantially reduces ammonia exposure and that by combining shelter

  19. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    International Nuclear Information System (INIS)

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-01-01

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10 −11 /day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10 −22 m 2 s −1  Pa −1 at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases

  20. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas J.; Hafner, Sasha D.

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in...... sections with 30-32 pigs with or without daily adjustment of slurry pH to below 6. Ammonia losses from reference sections with untreated slurry were between 9.5 and 12.4% of N excreted, and from sections with acidified slurry between 3.1 and 6.2%. Acidification reduced total emissions of NH3 by 66 and 71...

  1. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  2. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex...... have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics....

  3. Ammonia-water Rankine cycle

    International Nuclear Information System (INIS)

    Bo Hanliang; Ma Changwen; Wu Shaorong

    1997-01-01

    On characteristics of heating source and cooling source in nuclear heating reactor cooperation, the authors advance a new kind of power cycle in which a multicomponent mixture as the work fluid, ammonia-water Rankine cycle, describe its running principle, and compare it with steam Rankine cycle in the same situation. The result is that: the new kind of power cycle, ammonia-water Rankine cycle has higher electricity efficiency; it suits for the situation of heating source and cooling source which offered by nuclear heating reactor cooperation. For low temperature heating source, it maybe has a widely application

  4. Effects of Copper Exchange Levels on Complexation of Ammonia in ...

    African Journals Online (AJOL)

    NJD

    At low copper exchange levels (<5 copper atoms per unit cell), the major complex is [Cu(Ozeo)2(NH3)2]2+ and ... amount of ammonia. KEYWORDS. Cation exchange, catalysis, copper, complexation, copper ammines. 1. .... at a 4 kHz MAS spinning rate on a Bruker AC 300 NMR spectro- meter (Fitchburg, MA, USA) at 7.05 ...

  5. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-30

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reduce hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.

  6. A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Rathbone; Thomas L. Robl

    2001-04-11

    Work completed in this reporting period focused on finalization of the Work and Management Plan, sample acquisition and analysis, evaluation of ammonia measurement methods, and measurement of ammonia loss from mortar. All fly ash samples have been acquired and analyzed for chemical composition and particle fineness. Three non-ammoniated fly ash samples were obtained from power plants that do not inject ammonia for NOx or particulate control, while three ammoniated fly ashes originate from plants that inject ammonia into the flue gas. The fly ash sources were selected based on their marketability as concrete admixtures and ammonia content. Coarse and fine aggregates for mortar and concrete testing have also been secured and have been thoroughly characterized using ASTM methods. Methodologies for the measurement of ammonia in the gaseous and aqueous phase have been carefully considered in the context of their suitability for use in this project. These include ammonia detection tubes, carbon impregnated with sulfuric acid (CISA) tubes, titration, and electrochemical methods. It was concluded that each of these methods is potentially useful for different aspects of the project, depending on the phase and concentration of ammonia to be measured. Preparation of fly ash-containing mortars both with and without ammonia indicated that the ammonia has no significant influence on compressive strength. Finally, measurement of ammonia loss from mortar has begun and the results of several of these experiments are included herein. It has been found that, under the laboratory curing conditions devised, ammonia release from mortar occurs at a relatively rapid rate in the first 24 hours, proceeded by a much slower, essentially linear rate. Furthermore, at the end of the three-week experiments, it was calculated that greater than 80% of the initial ammonia concentration remained within the mortar.

  7. Three-dimensional, gas phase fuel cell with a laccase biocathode

    Science.gov (United States)

    Borole, Abhijeet P.; LaBarge, Samuel; Spott, Benjamin A.

    A fuel cell using an enzymatic biocathode operating in a gas phase mode is reported. The electrode was prepared using a three-dimensional conductive electrode matrix. An enzyme solution containing laccase and a mediator was distributed into a hydrophilic matrix of carbon felt fibers creating a porous gas-flowing electrode. A Pt-based gas diffusion electrode served as the anode. A maximum power density of 9.4 W m -2 (2.9 kW m -3) was obtained with 15 U of enzyme cm -2, with hydrogen as the fuel. Power density was found to be a function of the enzyme loading, air flow rate, volume of the liquid phase and the humidity of the air stream. The ability to use methanol and ethanol as vapors in gas phase was also shown. The introduction of three-dimensionality into the electrode architecture and operation of the fuel cell in a gas phase mode to supply the fuel and the oxidant demonstrates an avenue for improving the power density of EFCs.

  8. Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2013-10-21

    We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.

  9. A compact apparatus for mass selective resonance ionization spectroscopy in a buffer gas cell

    Science.gov (United States)

    Backe, H.; Eberhardt, K.; Feldmann, R.; Hies, M.; Kunz, H.; Lauth, W.; Martin, R.; Schöpe, H.; Schwamb, P.; Sewtz, M.; Thörle, P.; Trautmann, N.; Zauner, S.

    An ultra-sensitive laser spectroscopic method for the investigation of transuranium nuclides has been developed based on resonance ionization in an argon buffer gas cell. This method has been combined with ion-guide extraction and mass selective direct detection of the resonantly ionized atoms. Using argon as a buffer gas, recoils of fusion reactions can be thermalized even at low pressure. The differential pumping system consists of only one roots pump and two turbo molecular pumps. The set-up has been tested with 243Am evaporated from a filament located inside the optical gas cell. Resonance ionization is performed using a two-step excitation with an excimer-dye-laser combination. The ions are transported by a suitable electrical field to the nozzle, and are ejected with the ion-guide gas jet into an electrostatic lens system followed by a quadrupole mass spectrometer and a channeltron detector. The total sensitivity has been measured to be 1.0 × 10 -4. The extraction time for ions based on electric field guidance amounts to 1.5 ms, which is two orders of magnitude faster than the ion-guide gas exchange time of this set-up.

  10. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    International Nuclear Information System (INIS)

    Le, Duy Dam; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Thi My Dung; Dang, Mau Chien

    2016-01-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO 2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection. (paper)

  11. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults

    OpenAIRE

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2015-01-01

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia.

  12. Determination of ammonia in ear-lobe capillary blood is an alternative to arterial blood ammonia

    NARCIS (Netherlands)

    Huizenga, J. R.; Gips, C. H.; Conn, H. O.; Jansen, P. L.

    1995-01-01

    Blood ammonia determination is a laboratory test to diagnose hepatic encephalopathy. Arterial blood is superior to peripheral venous blood ammonia because of ammonia metabolism in muscle. We have compared capillary with arterial whole blood ammonia as capillary sampling is an attractive alternative.

  13. DETERMINATION OF AMMONIA IN EAR-LOBE CAPILLARY BLOOD IS AN ALTERNATIVE TO ARTERIAL BLOOD AMMONIA

    NARCIS (Netherlands)

    HUIZENGA, [No Value; GIPS, CH; CONN, HO; JANSEN, PLM

    1995-01-01

    Blood ammonia determination is a laboratory test to diagnose hepatic encephalopathy. Arterial blood is superior to peripheral venous blood ammonia because of ammonia metabolism in muscle. We have compared capillary with arterial whole blood ammonia as capillary sampling is an attractive alternative.

  14. U^{28+}-intensity record applying a H_{2}-gas stripper cell

    Directory of Open Access Journals (Sweden)

    Winfried Barth

    2015-04-01

    Full Text Available To meet the Facility for Antiproton and Ion Research science requirements higher beam intensity has to be achieved in the present GSI-accelerator complex. For this an advanced upgrade program for the UNILAC is ongoing. Stripping is a key technology for all heavy ion accelerators. For this an extensive research and development program was carried out to optimize for high brilliance heavy ion operation. After upgrade of the supersonic N_{2}-gas jet (2007, implementation of high current foil stripping (2011 and preliminary investigation of H_{2}-gas jet operation (2012, recently (2014 a new H_{2}-gas cell using a pulsed gas regime synchronized with arrival of the beam pulse has been developed. An obviously enhanced stripper gas density as well as a simultaneously reduced gas load for the pumping system result in an increased stripping efficiency, while the beam emittance remains the same. A new record intensity (7.8 emA for ^{238}U^{28+} beams at 1.4  MeV/u has been achieved applying the pulsed high density H_{2} stripper target to a high intensity ^{238}U^{4+} beam from the VARIS ion source with a newly developed extraction system. The experimental results are presented in detail.

  15. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  16. Gas-cell atomic clocks for space: new results and alternative schemes

    Science.gov (United States)

    Affolderbach, C.; Breschi, E.; Schori, C.; Mileti, G.

    2017-11-01

    We present our development activities on compact Rubidium gas-cell atomic frequency standards, for use in space-borne and ground-based applications. We experimentally demonstrate a high-performance laser optically-pumped Rb clock for space applications such as telecommunications, science missions, and satellite navigation systems (e.g. GALILEO). Using a stabilised laser source and optimized gas cells, we reach clock stabilities as low as 1.5·10-12 τ-1/2 up to 103 s and 4·10-14 at 104 s. The results demonstrate the feasibility of a laser-pumped Rb clock reaching power consumption and a total volume around 1 cm3 , at the expense of relaxed frequency stability. Here miniaturized "chip-scale" vapour cells and use of coherent laser interrogation techniques are at the heart of the investigations.

  17. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne

    2011-01-01

    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  18. Modeling of proton exchange membrane fuel cell with variable distance gas flow in anode and cathode

    International Nuclear Information System (INIS)

    Mohd Shahbudin Masdar; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    A number of fundamental studies have been directed towards increasing our understanding of PEM fuel cell and their performance. Mathematical modeling is one of the way and very essential component in the development of this fuel cell. Model validation is presented, the validated model is then used to investigate the behavior of mole fraction of gases, current density, and the performances of stack using polarization curve depending on distance gases flow in channel. The model incorporates a complete cell with both the membrane electrode assembly (MEA) and the serpentine gas distributor channel. Finally, the parametric studies in single stack design are illustrated

  19. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  20. Environmental impacts of energy facilities: fuel cell technology compared with coal and conventional gas technology

    Science.gov (United States)

    Seip, Knut L.; Thorstensen, Bernt; Wang, Hagbarth

    We compare the environmental side effects of power plants based on fuel cell technology with the side effects of conventional electric power plants based on coal and natural gas. The environmental impact of a solid oxide fuel cell (SOFC) plant is very much less than that of a coal-fired plant (a factor of {1}/{300} for air pollution and a factor of {1}/{5} for water pollution). Compared with a conventional gas plant, impact is reduced by between 50 and 98%. Damage to cultural monuments and buildings is negligible from a fuel cell plant. Socioeconomic negative impacts are reduced by about 30% relative to conventional gas plants (aesthetics and noise) whereas employment is unaltered. Impact on health and safety is greatly reduced compared with that from coal-fired plants and is about 70% of that from conventional gas plants. Preliminary results suggest that society's willingness to pay (WTP) for clean air, and thereby better health, matches the cost of installing emission-reducing equipment on conventional power plants. There is probably an additional WTP for other benefits (e.g., decreased risk of global warming). Thus, the utility of very small emissions, lower CO 2 discharges, and other benefits from SOFC generators may compensate for the increased cost incurred in producing electricity by SOFC generators.

  1. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    Science.gov (United States)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  2. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  3. The Green Bank Ammonia Survey of the Gould Belt

    Science.gov (United States)

    Friesen, Rachel; Pineda, Jaime; GAS Team

    2018-01-01

    The past several years have seen a tremendous advancement in our ability to characterize the structure of nearby molecular clouds traced by large-scale continuum surveys. Critical, comparable data on the dense gas kinematics and temperatures are needed to understand the history and future fate of star-forming material. Filling this gap is the Green Bank Ammonia Survey (GAS), an ambitious legacy survey for the Green Bank Telescope to observe key molecular tracers of dense gas within all Gould Belt clouds visible from the northern hemisphere. I will present the latest science from GAS, whose goals are to 1) evaluate the stability of dense gas structures as a function of scale, 2) track the dissipation of turbulence and evolution of angular momentum in filaments and cores, and 3) quantitatively test predictions of models of core and filament formation via mass flows and accretion.

  4. 46 CFR 154.1760 - Liquid ammonia.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  5. 27 CFR 21.96 - Ammonia, aqueous.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  6. Synthesis of ammonia with microwave plasma

    International Nuclear Information System (INIS)

    Xu Wenguo; Yu Aimin; Liu Jun; Jin Qinhan

    1991-01-01

    THe synthesis of ammonia absorbed on 13X zeolite with the aid of microwave plasma is described. The ammonia molecule absorbed on 13X zeolite as ammonium ions were detected by IR spectroscopy. The results obtained show that the ammonia synthesis is facilitated by the surface reactions of NH x (x = 1, 2) radicals adsorbed on zeolite with hydrogen atoms

  7. Basic System Description for Coal Gas/Fuel Cell/Cogeneration Project,

    Science.gov (United States)

    1985-01-29

    vanadium and ADA acting as an intermediary oxidant. Because the Stretford process cannot remove COS, a hydrolysis step is required to convert COS to H2S...phase oxidation Stretford Sulfur Removal Process is used for the removal of H2S to the required level. The shifted gas stream is contacted in a venturi...polished anode gas is then sent to the fuel cell. In the Stretford process , there is a by-product fixation of H2S into thiosulfate. To avoid the

  8. Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions

    CERN Document Server

    Huyse, M; Kudryavtsev, Yuri A; Van Duppen, P

    2002-01-01

    The possibility to use a gas cell filled by noble gas (He or Ar) for thermalizing, storing and transporting radioactive ions is explored by studying experimentally ion - electron recombination of stable Ni, resonantly ionized by laser light. Combined with a literature study on ionization chambers, especially developed for high-intensity applications, conclusions are drawn on the maximum intensity of the incoming ion beam. A practical limit is encountered when the space-charge induced voltage fully counteract the applied voltage on the electrodes collecting the electrons.

  9. Repowering of an Existing Power Plant by Means of Gas Turbine and Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    and less specific CO2 emissions. Usually, a repowering is performed adding one or more gas turbines to an existing steam cycle which was built decades ago. Thus, traditional repowering results in combine d cycles (CC). High temperature fuel cells (such as SOFC) could also be used as a topping cycle....... This means the facilities at the station can be started up within minutes if operational irregularities occur in the high voltage electricity grid or problems arise at other power stations. Nowadays this station is repowered with two gas turbines but the current study is about the original steam plant before...

  10. Particle-in-cell modeling of gas-confined barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Levko, Dmitry; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-04-15

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  11. Particle-in-cell modeling of gas-confined barrier discharge

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  12. Particle-in-cell modeling of gas-confined barrier discharge

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  13. Changes of ammonia, urea contents and transaminase activity in the body during aerial exposure and ammonia loading in Chinese loach Paramisgurnus dabryanus.

    Science.gov (United States)

    Zhang, Yun-Long; Zhang, Hai-Long; Wang, Ling-Yu; Gu, Bei-Yi; Fan, Qi-Xue

    2017-04-01

    The Paramisgurnus dabryanus was exposed to 30 mmol L -1 NH 4 Cl solution and air to assessing the change of body ammonia and urea contents and the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST). After 48 h of ammonia exposure, ammonia concentration in the plasma, brain, liver and muscle were 3.3-fold, 5.6-fold, 3.5-fold and 4.2-fold, respectively, those of the control values. Plasma, brain, liver and muscle ammonia concentrations increased to 2.2-fold, 3.3-fold, 2.5-fold and 2.9-fold, respectively, those of control values in response to 48 h of aerial exposure. Within the given treatment (ammonia or aerial exposure), there was no change in plasma, brain and liver urea concentrations between exposure durations. The plasma ALT activity was significantly affected by exposure time during aerial exposure, while the liver ALT activity was not affected by ammonia or aerial exposure. Exposure to NH 4 Cl or air had no effect on either plasma or liver AST activity. Our results suggested that P. dabryanus could accumulate quite high level of internal ammonia because of the high ammonia tolerance in its cells and tissues, and NH 3 volatilization would be a possible ammonia detoxification strategy in P. dabryanus. Urea synthesis was not an effective mechanism to deal with environmental or internal ammonia problem. The significant increase of ALT activity in plasma during aerial exposure, indicating that alanine synthesis through certain amino acid catabolism may be subsistent in P. dabryanus.

  14. Hydrogen production using ammonia borane

    Science.gov (United States)

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  15. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...

  16. by thiocyanates in liquid ammonia

    African Journals Online (AJOL)

    ABSTRACT. Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both ν(CN) and ν(CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  17. Haber Process for Ammonia Synthesis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Haber Process for Ammonia Synthesis. Jayant M Modak. Volume 16 Issue 12 December 2011 pp 1159-1167. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/016/12/1159-1167. Keywords.

  18. Haber Process for Ammonia Synthesis

    Indian Academy of Sciences (India)

    Before synthetic nitrogen fixation, wastes and manures of various types or their decomposition products, and ammonium sulfate, which is a by-product from the coking of coal, were the primary sources of agricultural nitrogen. Chilean saltpetre, saltpetre from hu- man and animal urine, and later ammonia recovered from coke.

  19. Effects of ammonia from livestock farming on lichen photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, Luca [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pirintsos, Stergios Arg.; Kotzabasis, Kiriakos [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pisani, Tommaso [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Navakoudis, Eleni [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Loppi, Stefano, E-mail: loppi@unisi.i [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy)

    2010-06-15

    This study investigated if atmospheric ammonia (NH{sub 3}) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 mug/m{sup 3} (at a sheep farm), ca. 15 mug/m{sup 3} (60 m from the sheep farm) and ca. 2 mug/m{sup 3} (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH{sub 3} is susceptible to this pollutant in the gas-phase. The parameter PI{sub ABS}, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH{sub 3} than the F{sub V}/F{sub M} ratio, one of the most commonly used stress indicators. - Ammonia from livestock farming affects lichen photosynthesis.

  20. Predicting catalysis: understanding ammonia synthesis from first-principles calculations.

    Science.gov (United States)

    Hellman, A; Baerends, E J; Biczysko, M; Bligaard, T; Christensen, C H; Clary, D C; Dahl, S; van Harrevelt, R; Honkala, K; Jonsson, H; Kroes, G J; Luppi, M; Manthe, U; Nørskov, J K; Olsen, R A; Rossmeisl, J; Skúlason, E; Tautermann, C S; Varandas, A J C; Vincent, J K

    2006-09-14

    Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N(2) dissociation, H(2) dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.

  1. Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies

    Science.gov (United States)

    Lunghi, P.; Bove, R.; Desideri, U.

    Landfill-gas (LFG) is produced as result of the biological reaction of municipal solid waste (MSW). This gas contains about 50% of methane, therefore it cannot be released into the atmosphere as it is because of its greenhouse effect consequences. The high percentage of methane encouraged researchers to find solutions to recover the related energy content for electric energy production. The most common technologies used at the present time are internal combustion reciprocating engines and gas turbines. High conversion efficiency guaranteed by fuel cells (FCs) enable to enhance the energy recovery process and to reduce emissions to air, such as NO x and CO. In any case, in order to investigate the environmental advantages associated with the electric energy generation using fuel cells, it is imperative to consider the whole "life cycle" of the system, "from cradle-to-grave". In fact, fuel cells are considered to be zero-emission devices, but, for example, emissions associated with their manufacture or for hydrogen production must be considered in order to evaluate all impacts on the environment. In the present work a molten carbonate fuel cell (MCFC) system for LFG recovery is considered and a life cycle assessment (LCA) is conducted for an evaluation of environmental consequences and to provide a guide for further environmental impact reduction.

  2. Implications of polymer electrolyte fuel cell exposure to synchrotron radiation on gas diffusion layer water distribution

    Science.gov (United States)

    Eller, Jens; Roth, Jörg; Marone, Federica; Stampanoni, Marco; Wokaun, Alexander; Büchi, Felix N.

    2014-01-01

    Synchrotron radiation (SR) based imaging of polymer electrolyte fuel cells (PEFC), both radiography and tomography, is an attractive tool for the visualization of water in the gas diffusion layer as it provides temporal and spatial resolutions one order of magnitude superior to neutron imaging. Here we report on the degradation of cell performance and changes in GDL water saturation after SR irradiation of about 43% of a cell's active area. Fast X-ray tomographic microscopy (XTM) scans of 11 s duration are used to compare the GDL saturation before and after a 5 min irradiation period of the imaged section. The cell voltage and the water saturation decreased clearly during and after the exposure. Estimates of the current density of the SR exposed and non exposed cell domains underline the effect of irradiation.

  3. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, C.; Wepfer, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  4. Genealogy of gas cells for low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Michiharu, E-mail: mw@riken.jp

    2013-12-15

    Highlights: • In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. • The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. • Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique. -- Abstract: In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique.

  5. A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehraeen, Shareghe [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; McKeown, Joseph T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Deshmukh, Pushkarraj V. [E.A. Fischione Instruments, Inc., Export, PA (United States); Evans, James E. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Abellan, Patricia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Xu, Pinghong [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science; Reed, Bryan W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Condensed Matter and Materials Division; Taheri, Mitra L. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science & Engineering; Fischione, Paul E. [E.A. Fischione Instruments, Inc., Export, PA (United States); Browning, Nigel D. [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Chemical and Materials Science Division; Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    2013-03-04

    We report that the advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

  6. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  7. A recoverable gas-cell diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 95440 (United States); Bernstein, L. A.; Bibber, K. van; Goldblum, B. L. [University of California, Berkeley, California 94720 (United States); Siem, S. [University of Oslo, N-0316 Oslo (Norway); Wiedeking, M. [iThemba LABS, Somerset West 7129 (South Africa)

    2016-11-15

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  8. A recoverable gas-cell diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B

    2016-11-01

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  9. Enhanced electrokinetic remediation of fluorine-contaminated soil by applying an ammonia continuous circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shufa; Zhou, Ming; Zhang, Shuangyan [Henan University of Science and Technology, Luoyang (China)

    2016-02-15

    The objective of this research was to investigate the effects of ammonia continuous circulation enhanced electrokinetic remediation of fluorine contaminated soil and to analyze its influence on soil pH after remediation. An experimental study was carried out in self-made electrokinetic apparatus. The voltage gradient was set at 1.0V/cm and ammonia water with different concentrations was used as electrolyte which circulated in series. Comparative studies were made by using deionized water as electrolyte which circulated separately in one experiment and continuously in another. According to the experiment the continuous circulation of ammonia water increased the current value during the remediation process and maintained current through the soil cell stabler, which not only increased fluorine migration but also reduced energy consumption. Among the given ammonia concentrations (0, 0.01, 0.1 and 0.2mol/L) the removal rate increased with ammonia concentration. 0.2mol/L had the highest current (26.8mA), and the removal rate amounted up to 57.3%. By using ammonia circulation enhanced electrokinetic technology, the difference between pH values of cathode soil and anode soil became smaller. Ammonia continuous circulation enhanced electrokinetics can effectively remediate fluorine contaminated soil and the residual ammonia in the soil can also improve soil fertility.

  10. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  11. Baseline ambient gaseous ammonia concentrations in the Four Corners area and eastern Oklahoma, USA.

    Science.gov (United States)

    Sather, Mark E; Mathew, Johnson; Nguyen, Nghia; Lay, John; Golod, George; Vet, Robert; Cotie, Joseph; Hertel, Terry; Aaboe, Erik; Callison, Ryan; Adam, Jacque; Keese, Danielle; Freise, Jeremy; Hathcoat, April; Sakizzie, Brenda; King, Michael; Lee, Chris; Oliva, Sylvia; San Miguel, George; Crow, Leon; Geasland, Frank

    2008-11-01

    Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.S. and will be useful to scientists involved in present and future visibility modeling exercises. Three week integrated passive ammonia samples were taken at five sites in the Four Corners area and two sites in eastern Oklahoma from December, 2006 through December, 2007 (January, 2008 for two sites). Results show significantly higher regional background ammonia concentrations in eastern Oklahoma (1.8 parts per billion (ppb) arithmetic mean) compared to the Four Corners area (0.2 ppb arithmetic mean). Annual mean ammonia concentrations for all Four Corners area sites for the 2007 study ranged from 0.2 ppb to 1.5 ppb. Peak ambient ammonia concentrations occurred in the spring and summer in both areas. The passive samplers deployed at the Stilwell, Oklahoma site compared favorably with other passive samplers and a continuous ammonia monitoring instrument.

  12. Performance of a parallel plate volume cell prototype for a fast iron/gas calorimeter

    International Nuclear Information System (INIS)

    Bizzeti, A.; Civinini, C.; D'alessandro, R.; Ferrando, A.

    1993-01-01

    We present the first test of the application of the parallel plate chamber principles for the design of a very fast and radiation-hard iron/gas sampling calorimeter, suitable for very forward regions in detectors for LBC; based on the use of thick iron plates as electrodes. We have built a one cell prototype consisting of three parallel thick iron plates (117 mn each). Results on efficiencies and mean collected charge for minimum ionizing particles with different gases are presented. (Author)

  13. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  14. Advance of ammonia synthesis technology and its prospect

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Masanao (Mitsui Toatsu Chemicals, Inc., Tokyo (Japan))

    1989-05-10

    A lot of advanced large-sized plants for ammonia synthesis have been constructed by the development of ICI-Kellogg process based on naphtha steam reforming. The transitions of the process are described as follows: Concerning the reforming of hydrocarbons, 25CR - 20Ni centrifugally cast tube for high temperature and high pressure use was developed for the reformer tubes. On the CO conversion, the CO content could be reduced from 3% to 0.3% due to the adoption of LTS catalyst. As for CO{sub 2} removal from the feed gases, a Catacarb process has advantages in its low construction cost and non-toxicity absorbent. As for CO removal, reductions of the construction cost and the power consumption were achieved through a methanation process. In the ammonia synthesis, the construction cost and the power consumption were also reduced by use of a steam turbine gas compressor in place of a motor driven compressor. As for future prospect, ammonia plants use coal as a substitute for natural gas are expected in some coal-rich areas due to the success of high pressure coal gasification. 15 refs., 3 figs., 5 tabs.

  15. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  16. Low power DC arcjet operation with hydrogen/nitrogen/ammonia mixtures

    Science.gov (United States)

    Hardy, Terry L.; Curran, Francis M.

    1987-01-01

    The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.

  17. Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate.

    Science.gov (United States)

    Nie, Hong; Jacobi, H Fabian; Strach, Katrin; Xu, Chunming; Zhou, Hongjun; Liebetrau, Jan

    2015-02-01

    The effects of ammonia concentration on the performance and stability of mono-fermentation of chicken manure were investigated in a lab-scale continuous stirred tank reactor at 40 °C. Technical stripping was performed to remove ammonia from the liquid fraction of digestate, and the entire product was recycled to the fermenter to control ammonia concentration in the fermenter. Organic loading rate (OLR) of 5.3 gVS/(L d) was achieved with an average free ammonia nitrogen (FAN) concentration of 0.77 g/L and a specific gas yield of 0.39 L/gVS. When OLR was increased to 6.0 gVS/(L d), stable operation could be obtained with an average FAN concentration of 0.86 g/L and a specific gas yield of 0.27 L/gVS. Mono-fermentation of chicken manure was successfully carried out at high ammonia concentrations. Controlled recirculation of treated liquid fraction of digestate could be a solution in large-scale application for both: to avoid ammonia inhibition and minimize digestate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phase matching of high-order harmonics in a semi-infinite gas cell

    International Nuclear Information System (INIS)

    Steingrube, Daniel S.; Vockerodt, Tobias; Schulz, Emilia; Morgner, Uwe; Kovacev, Milutin

    2009-01-01

    Phase matching of high-order harmonic generation is investigated experimentally for various parameters in a semi-infinite gas-cell (SIGC) geometry. The optimized harmonic yield is identified using two different noble gases (Xe and He) and its parameter dependence is studied in a systematic way. Beside the straightforward setup of the SIGC, this geometry promises a high photon flux due to a large interaction region. Moreover, since the experimental parameters within this cell are known accurately, direct comparison to simulations is performed. Spectral splitting and blueshift of high-order harmonics are observed.

  19. Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy.

    Science.gov (United States)

    Kanzaki, Ryu; Naito, Hisamichi; Kise, Kazuyoshi; Takara, Kazuhiro; Eino, Daisuke; Minami, Masato; Shintani, Yasushi; Funaki, Soichiro; Kawamura, Tomohiro; Kimura, Toru; Okumura, Meinoshin; Takakura, Nobuyuki

    2017-09-06

    Alterations to the tumor stromal microenvironment induced by chemotherapy could influence the behavior of cancer cells. In the tumor stromal microenvironment, cancer-associated fibroblasts (CAFs) play an important role. Because the receptor tyrosine kinase Axl and its ligand Gas6 could be involved in promoting non-small cell lung cancer (NSCLC), we investigated the role of Gas6 secreted by CAFs during chemotherapy in NSCLC. In a murine model, we found that Gas6 expression by CAFs was upregulated following cisplatin treatment. Gas6 expression might be influenced by intratumoral hypoperfusion during chemotherapy, and it increased after serum starvation in a human lung CAF line, LCAF hTERT . Gas6 is associated with LCAF hTERT cell growth. Recombinant Gas6 promoted H1299 migration, and conditioned medium (CM) from LCAF hTERT cells activated Axl in H1299 cells and promoted migration. Silencing Gas6 in LCAF hTERT reduced the Axl activation and H1299 cell migration induced by CM from LCAF hTERT . In clinical samples, stromal Gas6 expression increased after chemotherapy. Five-year disease-free survival rates for patients with tumor Axl- and stromal Gas6-positive tumors (n = 37) was significantly worse than for the double negative group (n = 12) (21.9% vs 51.3%, p = 0.04). Based on these findings, it is presumed that Gas6 derived from CAFs promotes migration of Axl-expressing lung cancer cells during chemotherapy and is involved in poor clinical outcome.

  20. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    Science.gov (United States)

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  1. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor

    Science.gov (United States)

    Lewicki, Rafał; Kosterev, Anatoliy A.; Thomazy, David M.; Risby, Terence H.; Solga, Steven; Schwartz, Timothy B.; Tittel, Frank K.

    2011-01-01

    A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited for real time breath analysis, due to the fast gas exchange inside a compact QEPAS gas cell. An air-cooled DFB-QCL was designed to target the interference-free NH3 absorption line located at 967.35 cm-1 (λ~10.34 μm). The laser is operated at 17.5 °C, emitting ~ 24 mW of optical power at the selected wavelength. A 1σ minimum detectable concentration of ammonia for the line-locked NH3 sensor is ~ 6 ppb with 1 sec time resolution. The NH3 sensor, packaged in a 12"x14"x10" housing, is currently installed at a medical breath research center in Bethlehem, PA and tested as an instrument for non-invasive verification of liver and kidney disorders based on human breath samples.

  2. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer...... respectively. A clear effect of humidification was observed for 2 G cells with a fast transient upon humidification followed by an ongoing long term passivation/degradation during humidification. Removal of humidification resulted in a partial regain of the cell voltage prior to humidification....... The humidification effect was found to be dependent on both the degree of humidification and the cathode polarization. No significant effect of humidification was found at OCV which rules out the possibility of a traditional poisoning effect with a blocking of active sites. Post-mortem high resolution FEG...

  3. Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2013-01-01

    In this study porous cell stacks for electrochemical flue gas purification were fabricated using tape casting and lamination followed by sintering. Two different mixtures of pore formers were used; either a mixture of two types of graphite or a mixture of graphite with polymethyl methacrylate micro-particles....... It was shown that the porous cell stacks fabricated with polymethyl methacrylate had a higher porosity but a similar back pressure compared to the porous cell stacks fabricated with only graphite as a pore former. This was due to a high back pressure of the electrolyte layer. The porous cell stacks fabricated...... with polymethyl methacrylate as a pore former seem to be well suited for i.e. caption of soot particles. Furthermore, the back pressure of the electrode layer was significantly reduced when using polymethyl methacrylate pore formers. However, a better interconnectivity of the pores formed by the polymethyl...

  4. Computational study of ammonia adsorption on the perfect and rippled graphene sheet

    International Nuclear Information System (INIS)

    Seyed-Talebi, Seyedeh Mozhgan; Beheshtian, Javad

    2013-01-01

    Adsorption of an ammonia molecule onto perfect and rippled graphene is studied using molecular mechanics calculations. The most stable orientation of an ammonia molecule and equilibrium distance of this molecule over graphene surface (motivated by the recent realization of graphene sensors to detect individual gas molecules) is determined using DFT calculation. This result is in agreement with the predicted molecular mechanics calculation result. It also has been found that (i) the ammonia molecule is weakly adsorbed onto the graphene sheet; (ii) the periodic nature of the potential energy stored between ammonia and perfect graphene is altered due to the sinusoidal ripples; and (iii) the effect of amplitude and wavelength of the one-dimensional created ripple on different energy modes is reported

  5. Lethal concentration (CL50 of un-ionized ammonia for pejerrey larvae in acute exposure

    Directory of Open Access Journals (Sweden)

    Piedras Sérgio Renato Noguez

    2006-01-01

    Full Text Available Ammonia results from decomposition of effluents organic matter, e.g. feed wastes and fish faeces. Its un-ionized form can be toxic because diffuses easily through fish respiratory membranes, damaging gill epithelium and impairing gas exchanges. The objective of this work was determining the 96-hour CL50 of un-ionized ammonia for newly hatched pejerrey Odontesthes bonariensis larvae. Trials were set up completely randomized design, with three different concentration of un-ionized ammonia (0.57, 0.94, and 1.45 mg L-1 NH3-N and a control treatment (n = 3. Experimental units were 20-L, aerated aquaria stocked with 20 larvae (average weight 3.9 mg. Pejerrey larvae exposed to un-ionized ammonia during 96 hours present 50% mortality at 0.71 mg L-1 NH3-N.

  6. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2012-12-01

    Full Text Available Titanium dioxide-polyaniline/polyamide 6 (TiO2-PANI/PA6 composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO2-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO2-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO2-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO2 had a great influence on both the morphology and the sensing property of TiO2-PANI/PA6 composite nanofibers.

  7. Unabated adenovirus replication following activation of the cGAS/STING-dependent antiviral response in human cells.

    Science.gov (United States)

    Lam, Eric; Falck-Pedersen, Erik

    2014-12-01

    The cGAS/STING DNA sensing complex has recently been established as a predominant pathogen recognition receptor (PRR) for DNA-directed type I interferon (IFN) innate immune activation. Using replication-defective adenovirus vectors and replication-competent wild-type adenovirus, we have modeled the influence of the cGAS/STING cascade in permissive human cell lines (A549, HeLa, ARPE19, and THP1). Wild-type adenovirus induced efficient early activation of the cGAS/STING cascade in a cell-specific manner. In all responsive cell lines, cGAS/STING short hairpin RNA (shRNA) knockdown resulted in a loss of TBK1 and interferon response factor 3 (IRF3) activation, a lack of beta interferon transcript induction, loss of interferon-dependent STAT1 activation, and diminished induction of interferon-stimulated genes (ISGs). Adenoviruses that infect through the coxsackievirus-adenovirus receptor (CAR) (Ad2 and Ad5) and the CD46 (Ad35) and desmoglein-2 (Ad7) viral receptors all induce the cGAS/STING/TBK1/IRF3 cascade. The magnitude of the IRF3/IFN/ISG antiviral response was strongly influenced by serotype, with Ad35>Ad7>Ad2. For each serotype, no enhancement of viral DNA replication or virus production occurred in cGAS or STING shRNA-targeted cell line pools. We found no replication advantage in permissive cell lines that do not trigger the cGAS/STING cascade following infection. The cGAS/STING/TBK1/IRF3 cascade was not a direct target of viral antihost strategies, and we found no evidence that Ad stimulation of the cGAS/STING DNA response had an impact on viral replication efficiency. This study shows for the first time that the cGAS DNA sensor directs a dominant IRF3/IFN/ISG antiviral response to adenovirus in human cell lines. Activation of cGAS occurs with viruses that infect through different high-affinity receptors (CAR, CD46, and desmoglein-2), and the magnitude of the cGAS/STING DNA response cascade is influenced by serotype-specific functions. Furthermore, activation of

  8. Nitric oxide gas phase release in human small airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Suresh Vinod

    2009-01-01

    Full Text Available Abstract Background Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin. However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12 and A549 cells (model cell line of alveolar type II cells in culture would enhance NO gas phase release. Methods Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL or cytomix (10 ng/mL for each cytokine. Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer. Results In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2 more slowly (30 to 48 hours, and does not alter NO release in A549 cells. Conclusion We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2 and location (large vs small airway

  9. An optrode for photometric detection of ammonia in air

    Science.gov (United States)

    Buzanovskii, V. A.

    2017-10-01

    A scheme of constructing an LED optrode for photometric detection of ammonia in air is considered. The components of the device are (1) a glass plate coated with a film of polydimethylsiloxane with an ion-coupled cation of brilliant-green dye, (2) an LED emitting at a wavelength of 655 nm, and (3) a metal housing. The nominal static conversion function, sensitivity, and relative measurement error of the device are analyzed on the basis of mathematical modeling. The obtained results allow one to design an LED optrode capable of carrying out control for automated technological processes, solving problems in the area of security, etc. The device provides the ability to create photometric gas analyzers of ammonia with small overall dimensions, power consumption, and cost.

  10. AMMONOX-Ammonia for enhancing biogas yield & reducing NOx

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Kristensen, P.G.; Paamand, K.

    2013-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. However......, biogas plants digesting liquid manure alone are not economically viable due to the relatively low organic content of the manure, usually 3-5%.Thus, their economical profitable operation relies partly on increasing the methane yield from manure, and especially of its solid fraction, usually called...... of innovative ammonia recovery technology and c) the coupling of the excess ammonia obtained from manure with the catalytic elimination of NOx emissions when the biogas is used for subsequent electricity generation with gas engines....

  11. Ammonia sensing properties of silver nanocomposite with polypyrrole

    Science.gov (United States)

    Karmakar, N. S.; Kothari, D. C.; Bhat, N. V.

    2013-02-01

    Silver-polypyrrole nanocomposite thin film was prepared by a novel method. UV-Vis spectroscopic studies confirmed the presence of silver nanoparticles and also polymerization of pyrrole surrounding the silver nanoparticles. All the important X-ray diffraction peaks corresponding to silver were present in the composites. The silver nanoparticles and its composites with polypyrrole were observed by SEM and TEM. Electrical conductivity measurements were carried out using two probe method and it was found that the conductivity of nanocomposites is 10-5 S/cm. It was found that functionalized silver nanoparticles can act as efficient gas sensor for ammonia. The present result of the increase in conductivity with ammonia exposure is in contrast with the previously reported results of the decrease in conductivity.

  12. Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia

    International Nuclear Information System (INIS)

    Cho, Hang-Kyu; Lim, Jong Sung

    2015-01-01

    In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that 200 .deg. C was the optimal temperature, because thermal degradation of PPD occurred above 250 .deg. C. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis

  13. Operation experience with elevated ammonia

    International Nuclear Information System (INIS)

    Vankova, Katerina; Kysela, Jan; Malac, Miroslav; Petrecky, Igor; Svarc, Vladimir

    2011-01-01

    The 10 VVER units in the Czech and Slovak Republics are all in very good water chemistry and radiation condition, yet questions have arisen regarding the optimization of cycle chemistry and improved operation in these units. To address these issues, a comprehensive experimental program for different water chemistries of the primary circuit was carried out at the Rez Nuclear Research Institute, Czech Republic, with the goal of judging the influence of various water chemistries on radiation build-up. Four types of water chemistries were compared: standard VVER water chemistry (in common use), direct hydrogen dosing without ammonia, standard VVER water chemistry with elevated ammonia levels, and zinc dosing to standard VVER water chemistry. The test results showed that the types of water chemistry other than the common one have benefits for the operation of the nuclear power plant (NPP) primary circuit. Operation experience with elevated ammonia at NPP Dukovany Units 3 and 4 is presented which validates the experimental results, demonstrating improved corrosion product volume activity. (orig.)

  14. Planar waveguide sensor of ammonia

    Science.gov (United States)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  15. Exergy analysis of industrial ammonia synthesis

    International Nuclear Information System (INIS)

    Kirova-Yordanova, Zornitza

    2004-01-01

    Exergy consumption of ammonia production plants depends strongly on the ammonia synthesis loop design. Due to the thermodynamically limited low degree of conversion of hydrogen-nitrogen mixture to ammonia, industrial ammonia synthesis is implemented as recycle process (so-called 'ammonia synthesis loop'). Significant quantities of reactants are recycled back to reactor, after the removal of ammonia at low temperatures. Modern ammonia synthesis plants use well-developed heat- and cold recovery to improve the reaction heat utilisation and to reduce the refrigeration costs. In this work, the exergy method is applied to estimate the effect of the most important process parameters on the exergy efficiency of industrial ammonia synthesis. A specific approach, including suitable definitions of the system boundaries and process parameters, is proposed. Exergy efficiency indexes are discussed in order to make the results applicable to ammonia synthesis loops of various designs. The dependence of the exergy losses on properly selected independent process parameters is studied. Some results from detailed exergy analysis of the most commonly used ammonia synthesis loop design configurations at a wide range of selected parameters values are shown

  16. Subclinical doses of the nerve gas sarin impair T cell responses through the autonomic nervous system.

    Science.gov (United States)

    Kalra, Roma; Singh, Shashi P; Razani-Boroujerdi, Seddigheh; Langley, Raymond J; Blackwell, Walter B; Henderson, Rogene F; Sopori, Mohan L

    2002-10-15

    The nerve gas sarin is a potent cholinergic agent, and exposure to high doses may cause neurotoxicity and death. Subclinical exposures to sarin have been postulated to contribute to the Gulf War syndrome; however, the biological effects of subclinical exposure are largely unknown. In this communication, evidence shows that subclinical doses (0.2 and 0.4 mg/m(3)) of sarin administered by inhalation to F344 rats for 1 h/day for 5 or 10 days inhibited the anti-sheep red blood cell antibody-forming cell response of spleen cells without affecting the distribution of lymphocyte subpopulations in the spleen. Moreover, sarin suppressed T cell responses, including the concanavalin A (Con A) and the anti-alphabeta-T cell receptor (TCR) antibody-induced T cell proliferation and the rise in the intracellular calcium following TCR ligation. These concentrations of sarin altered regional but not total brain acetylcholinesterase activity. Interestingly, serum corticosterone levels of the sarin-treated animals were dramatically lower than the control animals, indicating that sarin-induced immunosuppression did not result from the activation of the hypothalamus-pituitary-adrenal (HPA) axis. Pretreatment of animals with the ganglionic blocker chlorisondamine abrogated the inhibitory effects of sarin on spleen cell proliferation in response to Con A and anti-TCR antibodies. These results suggest that the effects of sarin on T cell responsiveness are mediated via the autonomic nervous system and are independent of the HPA axis.

  17. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    Science.gov (United States)

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  18. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...

  19. Effect of design and operation of modern ammonia plants on the performance of integrated heavy water plants (Paper No. 2.1)

    International Nuclear Information System (INIS)

    Kumar, Manoj; Haldar, T.K.; Gupta, S.K.; Ramamurty, C.B.

    1992-01-01

    The heavy water plant being parasitic in nature, its design, operation and performance is affected to a great extent by the design, performance and operation of the ammonia plant. Some of the factors which affect the performance of heavy water plant such as on-stream hours and capacity utilisation of the ammonia plant, deuterium concentration (D/D+H) in feed synthesis gas, operating pressure of synthesis loop of ammonia plant, composition of feed synthesis gas, and level of oxygenated impurities in feed synthesis gas are described in this paper. (author). 3 tabs., 4 figs

  20. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode