WorldWideScience

Sample records for ammonia borane compound

  1. The tetragonal-to-orthorhombic phase transformation in ammonia borane and in its deuterium substituted compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Oriele, E-mail: oriele.palumbo@roma1.infn.it [Sapienza Universita di Roma, Dipartimento di Fisica, Piazzale A. Moro 2, I-00185 Roma (Italy); ISC-CNR, Sapienza Universita di Roma, P.le A. Moro 2, I-00185 Roma (Italy); Paolone, Annalisa [Sapienza Universita di Roma, Dipartimento di Fisica, Piazzale A. Moro 2, I-00185 Roma (Italy); ISC-CNR, Sapienza Universita di Roma, P.le A. Moro 2, I-00185 Roma (Italy); Rspoli, Pasquale; Cantelli, Rosario [Sapienza Universita di Roma, Dipartimento di Fisica, Piazzale A. Moro 2, I-00185 Roma (Italy); Autrey, Tom [Pacific Northwest National Laboratory, 908 Battelle Blvd., Richland, WA 99352 (United States); Navarra, Maria Assunta [Sapienza Universita di Roma, Dipartimento di Chimica, Piazzale A. Moro 2, I-00185 Roma (Italy)

    2011-09-15

    Research highlights: > The structural phase transition occurring in ammonia borane is studied. > The real temperature hysteresis between cooling and heating is small (0.4 K). > The transition is of first order, as heat exchange is detected. > The time constants of the transformations are measured. > Partial deuteration induces the slowing down of the kinetics of the transition. - Abstract: The tetragonal to orthorhombic phase transition occurring in ammonia borane has been characterized by means of anelastic spectroscopy and differential scanning calorimetry. The transformation is of first-order, as appreciable latent heat is developed during the phase conversion; however, the transition has also a second-order character, as demonstrated by a dramatic modulus softening starting well above the transformation temperature; a physical mechanism to account for the transformation is proposed. The direct step-by-step monitoring of the dynamic Young modulus allowed us to observe that the real temperature hysteresis between cooling and heating is rather small ({approx}0.4 K), and the complete transformation evolves in a fraction of Kelvin with presence of etero-phase fluctuations. A comparison between the present deuterium substituted compounds and previous results in hydrogenated samples provided information about the effect of partial and selective deuteration on both the time constants and the width of the phase transformation.

  2. Hydrogen production using ammonia borane

    Science.gov (United States)

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  3. Regeneration of ammonia borane from polyborazylene

    Science.gov (United States)

    Sutton, Andrew; Gordon, John C; Ott, Kevin C; Burrell, Anthony K

    2013-02-05

    Method of producing ammonia borane, comprising providing a reagent comprising a dehydrogenated material in a suitable solvent; and combining the reagent with a reducing agent comprising hydrazine, a hydrazine derivative, or combinations thereof, in a reaction which produces a mixture comprising ammonia borane.

  4. Method for releasing hydrogen from ammonia borane

    Science.gov (United States)

    Varma, Arvind; Diwan, Moiz; Shafirovich, Evgeny; Hwang, Hyun-Tae; Al-Kukhun, Ahmad

    2013-02-19

    A method of releasing hydrogen from ammonia borane is disclosed. The method comprises heating an aqueous ammonia borane solution to between about 80-135.degree. C. at between about 14.7 and 200 pounds per square inch absolute (psia) to release hydrogen by hydrothermolysis.

  5. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    OpenAIRE

    Tetsuo Umegaki; Qiang Xu; Yoshiyuki Kojima

    2015-01-01

    Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based ...

  6. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-07-01

    Full Text Available Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  7. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  8. Hydrazine borane-induced destabilization of ammonia borane, and vice versa

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Jean-Fabien; Moussa, Georges [IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095 Montpellier (France); Demirci, Umit B., E-mail: umit.demirci@um2.fr [IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095 Montpellier (France); Toche, François; Chiriac, Rodica [Université Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Miele, Philippe [IEM (Institut Europeen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Universite Montpellier 2, Place E. Bataillon, F-34095 Montpellier (France)

    2014-08-15

    Graphical abstract: - Highlights: • Hydrazine borane and ammoniaborane (mole ratio 1:1) destabilize each other. • This is characterized by a melting point at ∼30 °C and decomposition into hydrazine. • Also, some hydrogen H{sub 2} is “explosively” liberated at around 90 °C. • The mixture can be however stabilized into a potential hydrogen storage material. • This hydrogen storage material dehydrogenates up to 300 °C to form boron nitride. - Abstract: In the field of solid-state chemical hydrogen storage, ammonia borane NH{sub 3}BH{sub 3} has been widely studied while hydrazine borane N{sub 2}H{sub 4}BH{sub 3} can be considered as a “novel” material. In the present work, we investigated the behaviour of these boranes when mixed together in a mole ratio of 1:1. Hydrazine borane and ammonia borane destabilize each other. Though stable at 20–25 °C, the mixture melts at ∼30 °C and then undergoes significant decomposition, with desorption of hydrogen H{sub 2} and hydrazine N{sub 2}H{sub 4} from 67 °C. This is explained by the fact that the presence of hydrazine borane disrupts the H{sup δ+}⋯H{sup δ−} network of ammonia borane, and vice versa; the mixture is then much less stable than the pristine boranes. The mixture can nevertheless be stabilized (by heat- or vacuum-treatment and thus extraction of evolving hydrogen and hydrazine), making the as-obtained solid a potential chemical hydrogen storage material. Over the range 25–300 °C, it is able to release ca. 11.4 wt% of almost pure H{sub 2}. Furthermore forms boron nitride as the solid residue, at temperatures as low as 300 °C.

  9. Regeneration of ammonia borane spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew David [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory

    2009-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one appealing material, ammonia borane (H{sub 3}N-BH{sub 3}, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H{sub 2} can be readily released in contrast to the loss of H{sub 2} from C{sub 2}H{sub 6} which is substantially endothermic. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H{sub 2} storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H{sub 2} released from AB and up to 2.5 equiv. of H{sub 2} can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product

  10. Process for synthesis of ammonia borane for bulk hydrogen storage

    Science.gov (United States)

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  11. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  12. Catalysts for Dehydrogenation of ammonia boranes

    Energy Technology Data Exchange (ETDEWEB)

    Heinekey, Dennis M.

    2014-12-19

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  13. Rotational dynamics in ammonia borane: Evidence of strong isotope effects

    Energy Technology Data Exchange (ETDEWEB)

    Cantelli, Rosario; Paolone, Annalisa; Palumbo, Oriele; Leardini, F.; Autrey, Thomas; Karkamkar, Abhijeet J.; Luedtke, Avery T.

    2013-12-15

    This work reports anelastic spectroscopy measurements on the partially deuterated (ND3BH3 and NH3BD3) and perdeuterated (ND3BD3) ammonia borane (NH3BH3) compounds. The relaxations previously reported in NH3BH3 are observed in all the samples, and are ascribed to the rotational and torsional dynamics of NH(D)3BH(D)3 complexes. A new thermally activated peak appears at 70 K (for a vibration frequency of 1 kHz) in the spectrum of NH3BD3 and ND3BD3. The peak is practically a single-time Debye process, indicating absence of interaction between the relaxing units, and has a strikingly high intensity. A secondary relaxation process is also detected around 55 K. The anelastic spectrum of the ND3BH3 only displays this less intense process at 55 K. The analysis of the peaks supplies information about the dynamics of the relaxing species, and the obtained results provide indications on the effect of partial and selective deuteration on the hydrogen (deuterium) dynamics.

  14. An Investigation of the Structural Phase Transition of Ammonia Borane

    Energy Technology Data Exchange (ETDEWEB)

    Paolone, Annalisa; Palumbo, Oriele; Rispoli, Pasquale; Cantelli, Rosario; Autrey, Thomas

    2010-09-25

    A detailed anelastic spectroscopy study of the structural phase transition of ammonia borane was conducted for the first time. The transformation from the tetragonal high temperature phase into the orthorhombic low temperature one is detected on cooling around 220K by a huge drop of the elastic modulus and a spike of the elastic energy dissipation.We find clear indications of a hysteresis, which led us to conclude that the transition is of first-order. The kinetics of the transitionwas investigated in detail. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  15. Compositions containing borane or carborane cage compounds and related applications

    Science.gov (United States)

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  16. Compositions containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  17. Compositions containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  18. Polymers containing borane or carborane cage compounds and related applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  19. Characterization of ammonia borane for chemical propulsion applications

    Science.gov (United States)

    Weismiller, Michael

    Ammonia borane (NH3BH3; AB), which has a hydrogen content of 19.6% by weight, has been studied recently as a potential means of hydrogen storage for use in fuel cell applications. Its gaseous decomposition products have a very low molecular weight, which makes AB attractive in a propulsion application, since specific impulse is inversely related to the molecular weight of the products. AB also contains boron, which is a fuel of interest for solid propellants because of its high energy density per unit volume. Although boron particles are difficult to ignite due to their passivation layer, the boron molecularly bound in AB may react more readily. The concept of fuel depots in low-earth orbit has been proposed for use in deep space exploration. These would require propellants that are easily storable for long periods of time. AB is a solid at standard temperature and pressure and would not suffer from mass loss due to boil-off like cryogenic hydrogen. The goal of this work is to evaluate AB as a viable fuel in chemical propulsion. Many studies have examined AB decomposition at slow heating rates, but in a propellant, AB will experience rapid heating. Since heating rate has been shown to affect the thermolysis pathways in energetic materials, AB thermolysis was studied at high heating rates using molecular dynamics simulations with a ReaxFF reactive force field and experimental studies with a confined rapid thermolysis set-up using time-of-flight mass spectrometry and FTIR absorption spectroscopy diagnostics. Experimental results showed the formation of NH3, H2NBH2, H2, and at later times, c-(N3B3H6) in the gas phase, while polymer formation was observed in the condensed phase. Molecular dynamics simulations provided an atomistic description of the reactions which likely form these compounds. Another subject which required investigation was the reaction of AB in oxidizing environments, as there were no previous studies in the literature. Oxygen bond descriptions were

  20. Polymers containing borane or carborane cage compounds and related applications

    Science.gov (United States)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2012-06-05

    Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.

  1. A Three-Stage Mechanistic Model for Ammonia Borane Dehydrogenation by Shvo’s Catalyst

    OpenAIRE

    Lu, Zhiyao; Conley, Brian L.; Williams, Travis J.

    2012-01-01

    We propose a mechanistic model for three-stage dehydrogenation of ammonia borane (AB) catalyzed by Shvo’s cyclopentadienone-ligated ruthenium complex. We provide evidence for a plausible mechanism for catalyst deactivation, the transition from fast catalysis to slow catalysis, and relate those findings to the invention of a second-generation catalyst that does not suffer from the same deactivation chemistry.

  2. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    Science.gov (United States)

    Yao, Qilu; Lu, Zhang-Hui; Yang, Kangkang; Chen, Xiangshu; Zhu, Meihua

    2015-10-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniformly dispersed in the mesopores of SBA-15. The as-synthesized Ru@SBA-15 nanocomposites (NCs) display exceptional catalytic activity for hydrogen generation by the hydrolysis of ammonia borane (NH3BH3, AB) and hydrazine borane (N2H4BH3, HB) at room temperature with the turnover frequency (TOF) value of 316 and 706 mol H2 (mol Ru min)-1, respectively, relatively high values reported so far for the same reaction. The activation energies (Ea) for the hydrolysis of AB and HB catalyzed by Ru@SBA-15 NCs are measured to be 34.8 ± 2 and 41.3 ± 2 kJ mol-1, respectively. Moreover, Ru@SBA-15 NCs also show satisfied durable stability for the hydrolytic dehydrogenation of AB and HB, respectively.

  3. Dihydrogen Phosphate Stabilized Ruthenium(0 Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature

    Directory of Open Access Journals (Sweden)

    Feyyaz Durap

    2015-07-01

    Full Text Available Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0 nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 ± 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF value of 80 min−1 in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0 nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain ~80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature.

  4. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.

    Science.gov (United States)

    Peng, Cheng-Yun; Kang, Lei; Cao, Shuang; Chen, Yong; Lin, Zhe-Shuai; Fu, Wen-Fu

    2015-12-21

    Ammonia-borane (AB) is a promising chemical hydrogen-storage material. However, the development of real-time, efficient, controllable, and safe methods for hydrogen release under mild conditions is a challenge in the large-scale use of hydrogen as a long-term solution for future energy security. A new class of low-cost catalytic system is presented that uses nanostructured Ni2 P as catalyst, which exhibits excellent catalytic activity and high sustainability toward hydrolysis of ammonia-borane with the initial turnover frequency of 40.4 mol(H2)  mol(Ni2P) (-1)  min(-1) under air atmosphere and at ambient temperature. This value is higher than those reported for noble-metal-free catalysts, and the obtained Arrhenius activation energy (Ea =44.6 kJ mol(-1) ) for the hydrolysis reaction is comparable to Ru-based bimetallic catalysts. A clearly mechanistic analysis of the hydrolytic reaction of AB based on experimental results and a density functional theory calculation is presented. PMID:26545954

  5. Temperature Dependence of the Infrared Spectrum of Ammonia Borane: Librations, Rotations, and Molecular Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Paolone, Annalisa; Teocoli, F.; Sanna, S.; Palumbo, Oriele; Autrey, Thomas

    2013-01-17

    The absorbance of solid ammonia borane (AB) was measured in the energy range between 30 and 5000 cm(-1) and in the temperature range between 10 and 300 K. The intramolecular vibrations and their evolution through the structural phase transition around T-t approximate to 220 K fairly agree with previous measurements performed by means of Raman spectroscopy. In addition, we observed new vibrations centered in the far-infrared range, which can be tentatively ascribed to rotations and librations. The number of such modes does not agree with the calculations based on the group theory for both the tetragonal and the orthorhombic crystal structure of AB. We suggest that such a discrepancy is due to local reduction of the crystal symmetry compared to the one reported by X-ray diffraction and used to compute the number of IR active modes.

  6. RuCu nanoparticles supported on graphene: A highly efficient catalyst for hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Nan; Hu, Kai [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Luo, Wei, E-mail: wluo@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123 (China); Cheng, Gongzhen, E-mail: gzcheng@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-03-25

    Graphical abstract: Well dispersed RuCu/graphene nanoparticles exerted satisfied catalytic activity and recycle stability towards the hydrolysis of ammonia borane. Highlights: • One-step in situ synthesis of graphene supported RuCu NPs. • The catalysts exhibit excellent catalytic activity toward hydrolysis of AB. • Graphene supported NPs exhibit the highest catalytic activity. -- Abstract: Well dispersed RuCu nanoparticles (NPs) supported on graphene were in situ synthesized by a one-step co-reduction of aqueous solution of ruthenium (III) chloride, cupric (II) chloride, and graphite oxide (GO) with ammonia borane (AB) under ambient condition. The nature of the NPs was fully characterized by TEM, HRTEM, XRD, energy dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The as-synthesized NPs exhibit much higher catalytic activity for hydrolytic dehydrogenation of AB than the monometallic Ru and Cu, bimetallic RuCu/graphene reduced by NaBH{sub 4}, and graphene free RuCu counterparts. Additionally, the as-synthesized NPs supported on graphene exhibit higher catalytic activity than the catalysts with other conventional supports, such as SiO{sub 2}, γ-Al{sub 2}O{sub 3}, and carbon black. The activity of Ru{sub 1}Cu{sub 7.5}/graphene NPs in terms of turnover frequency (TOF) is 135 mol H{sub 2} min{sup −1} (mol Ru){sup −1}, which is higher than Ru/graphene, and most reported Ru-based or other noble metal-based NPs for the catalytic hydrolysis of AB. The activation energy for hydrolysis of AB in the presence of Ru{sub 1}Cu{sub 7.5}/graphene NPs was determined as 30.59 kJ mol{sup −1}, which is lower than most of the reported catalysts. Furthermore, the as-prepared NPs exert satisfied durable stability for the hydrolytic dehydrogenation of AB.

  7. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  8. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    International Nuclear Information System (INIS)

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H2 (mol cat)−1 min−1 and maximum hydrogen generation rate of 10,680 L H2 min−1 (mol cat)−1. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H2 (mol cat)−1 min−1 for hydrolysis of AB. • Maximum HG rate is 9680 L H2 min−1 (mol cat)−1 for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol−1 for the hydrolysis of AB

  9. Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiuhua [Florida Intl Univ., Miami, FL (United States)

    2015-08-14

    The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phase to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.

  10. Cobalt-Nickel-Boron Supported over Polypyrrole-Derived Activated Carbon for Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Yongjin Zou

    2016-07-01

    Full Text Available In this study, polypyrrole (PPy nanofibers were used to synthesize a super-activated carbon material. A highly-dispersed Co-Ni-B catalyst was supported on PPy nanofiber-derived activated carbon (PAC by chemical reduction. The Co-Ni-B/PAC hybrid catalyst exhibited excellent catalytic performance for the decomposition of ammonia borane (AB in an aqueous alkaline solution at room temperature. The size of the metal particles, morphology of Co-Ni-B/PAC, and catalytic activity of the supported catalyst were investigated. Ni-B, Co-B, and Co-Ni-B catalysts were also synthesized in the absence of PAC under similar conditions for comparison. The maximum hydrogen generation rate (1451.2 mL−1·min−1·g−1 at 25 °C was obtained with Co-Ni-B/PAC. Kinetic studies indicated that the hydrolysis reaction of AB was first order with respect to Co-Ni-B/PAC, and the activation energy was 30.2 kJ·mol−1. Even after ten recycling experiments, the catalyst showed good stability owing to the synergistic effect of Co-Ni-B and PAC.

  11. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles

    Science.gov (United States)

    Seo, Jung-Eun; Kim, Yujong; Kim, Yongmin; Kim, Kibeom; Lee, Jin Hee; Lee, Dae Hyung; Kim, Yeongcheon; Shin, Seock Jae; Kim, Dong-Min; Kim, Sung-Yug; Kim, Taegyu; Yoon, Chang Won; Nam, Suk Woo

    2014-05-01

    An advanced ammonia borane (AB)-based H2 power-pack is designed to continually drive an unmanned aerial vehicle (UAV) for 57 min using a 200-We polymer electrolyte membrane fuel cell (PEMFC). In a flight test with the UAV platform integrated with the developed power-pack, pure hydrogen with an average flow rate of 3.8 L(H2) min-1 is generated by autothermal H2-release from AB with tetraethylene glycol dimethylether (T4EGDE) as a promoter. During take-off, a hybridized power management system (PMS) consisting of the fuel cell and an auxiliary lithium-ion battery supplies 500 We at full power simultaneously, while the fuel cell alone provides 150-200 We and further recharges the auxiliary battery upon cruising. Gaseous byproducts identified by in situ Fourier transform infrared (FT-IR) spectroscopy during AB dehydrogenation are sequestrated using a mixed absorbent in an H2 purification system. In addition, a real-time monitoring system is employed to determine the remaining filter capacity of the purifier at a ground control system for rapidly responding unpredictable circumstances during flight. Separate experiments are conducted to screen potential materials and methods for enhancing filter capacity in the current H2 refining system. A prospective reactor concept for long-term fuel cell applications is proposed based on the results.

  12. PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Rakap, Murat, E-mail: mrtrakap@gmail.com

    2015-11-15

    Herein, the utilization of poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles (3.4 ± 1.4 nm) as highly efficient catalysts in the hydrolysis of ammonia borane for hydrogen generation is reported. They are prepared by co-reduction of ruthenium and rhodium metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy-energy dispersive X-ray spectroscopy, ultraviolet–visible spectroscopy, and X-ray photoelectron spectroscopy. They are durable and highly efficient catalysts for hydrogen generation from the hydrolysis of ammonia borane even at very low concentrations and temperature, providing average turnover frequency of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} and maximum hydrogen generation rate of 10,680 L H{sub 2} min{sup −1} (mol cat){sup −1}. Poly(N-vinyl-2-pyrrolidone)-protected ruthenium–rhodium nanoparticles also provide activation energy of 47.4 ± 2.1 kJ/mol for the hydrolysis of ammonia borane. - Highlights: • Ru-Rh@PVP NPs provide a TOF of 386 mol H{sub 2} (mol cat){sup −1} min{sup −1} for hydrolysis of AB. • Maximum HG rate is 9680 L H{sub 2} min{sup −1} (mol cat){sup −1} for the hydrolysis of AB. • Activation energy is 47.4 ± 2.1 kJ mol{sup −1} for the hydrolysis of AB.

  13. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  14. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-01

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane. PMID:27302302

  15. Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives.

    Science.gov (United States)

    Huang, Shi; Qi, Xiujuan; Liu, Tianlin; Wang, Kangcai; Zhang, Wenquan; Li, Jianlin; Zhang, Qinghua

    2016-07-11

    Currently, toxic and volatile hydrazine derivatives are still the main fuel choices for liquid bipropellants, especially in some traditional rocket propulsion systems. Therefore, the search for safer hypergolic fuels as replacements for hydrazine derivatives has been one of the most challenging tasks. In this study, six imidazolylidene-borane compounds with zwitterionic structure have been synthesized and characterized, and their hypergolic reactivity has been studied. As expected, these compounds exhibited fast spontaneous combustion upon contact with white fuming nitric acid (WFNA). Among them, compound 5 showed excellent integrated properties including wide liquid operating range (-70-160 °C), superior loading density (0.99 g cm(-3) ), ultrafast ignition delay times with WFNA (15 ms), and high specific impulse (303.5 s), suggesting promising application potential as safer hypergolic fuels in liquid bipropellant formulations.

  16. Use of an accelerometer and a microphone as gas detectors in the online quantitative detection of hydrogen released from ammonia borane by gas chromatography.

    Science.gov (United States)

    He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang

    2013-03-19

    The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C.

  17. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.

    Science.gov (United States)

    Akbayrak, Serdar; Ozkar, Saim

    2012-11-01

    Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min⁻¹. The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H₂ per mole of NH₃BH₃ and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 ± 0.1 °C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E(a) = 33 ± 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively. PMID:23113804

  18. Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane

    Science.gov (United States)

    Tong, Yan; Lu, Xiaofeng; Sun, Weining; Nie, Guangdi; Yang, Liu; Wang, Ce

    2014-09-01

    A high-performance hydrogen generation system based on the electrospun polyacrylonitrile (PAN)/Ag/Pd composite nanofibers, which were prepared by microwave reducing the electrospun PAN/AgNO3 nanofibers and followed by a replacement reaction has been demonstrated. The morphology of the as-prepared PAN/Ag/Pd composite nanofibers and the metal nanoparticles on the fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. It has been demonstrated that the obtained PAN/Ag/Pd composite nanofibers possess fine morphology and high catalytic activities for H2 generation from aqueous solution of ammonia borane (NH3BH3, AB). The H2 generation test exhibited that the catalyst had excellent catalytic activity (with turnover frequency (TOF) of 377.2 mol H2 h-1 (mol Pd)-1), good recycle stability and easy-separation from the reaction system. This new kind of nanofibers possesses great potential application for the new clean energy development.

  19. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  20. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  1. Core-shell structured nanospheres with mesoporous silica shell and Ni core as a stable catalyst for hydrolytic dehydrogenation of ammonia borane

    Institute of Scientific and Technical Information of China (English)

    Hua; Liu; Changyan; Cao; Ping; Li; Yu; Yu; Weiguo; Song

    2014-01-01

    Core-shell structured nanospheres with mesoporous silica shell and Ni core(denoted as Ni@meso-SiO2) are prepared through a three-step process. Monodispersed Ni precursors are first prepared, and then coated with mesoporous SiO2. Final Ni@meso-SiO2spheres are obtained after calcination. The products are characterized by X-ray powder diffraction, transmission electron microscopy and N2adsorption-desorption methods. These spheres have a high surface area and are well dispersed in water, showing a high catalytic activity with a TOF value of 18.5,and outstanding stability in hydrolytic dehydrogenation of ammonia borane at room temperature.

  2. Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.

    Science.gov (United States)

    Khalily, Mohammad Aref; Eren, Hamit; Akbayrak, Serdar; Susapto, Hepi Hari; Biyikli, Necmi; Özkar, Saim; Guler, Mustafa O

    2016-09-26

    Three-dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self-assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt-TiO2 nano-network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom-level thickness precision. The 3D peptide-TiO2 nano-network was further decorated with highly monodisperse Pt nanoparticles by using ozone-assisted ALD. The 3D TiO2 nano-network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia-borane, generating three equivalents of H2 . PMID:27595770

  3. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane

    Science.gov (United States)

    Zhao, Binhua; Liu, Jinyin; Zhou, Litao; Long, Dan; Feng, Kun; Sun, Xuhui; Zhong, Jun

    2016-01-01

    Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) to form the M-GO hybrids by a facile way. The hybrids showed good catalytic activities in the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3), which were significantly enhanced when compared to the metal nanoparticles or GO alone. The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). The distribution of metal elements was clearly imaged with identical electronic structure. Moreover, an interfacial interaction between metal and GO was observed with the peak intensity proportional to the catalytic performance in the hydrolysis of AB. The results provide new insight into the enhanced performance of the M-GO hybrids and may help for the design of advanced catalysts.

  4. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane

    Science.gov (United States)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-05-01

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j

  5. 氨硼烷低温和室温结构的第一性原理计算%First-principles Study of Structure of Ammonia Borane

    Institute of Scientific and Technical Information of China (English)

    刘超仁; 胡青苗; 王平

    2011-01-01

    Two kinds of crystal structures (Pmn21 and P42cm) of (ammonia borane) are studied using first-principles plane wave pseudopotential method based on density functional theory in this paper. It was found that the Pmn21 structure is energetically more stable than the P42cm structure at 0 K.This agrees well with the experimental observation, that lower temperature phase is the Pmn21 structure whereas the room temperature phase is P42cm structure. The structure difference between Pmn21 and P42cm phases manifests itself mainly by the variation of intermolecular bond length whereas the intramolecular bond length remains almost unchanged. Electronic state of density was calculated to identify the bonding nature of ammonia borane. The XRD and FTIR patterns of the P42cm structure were calculated, results agree well with the experimental results of AB at room temperature.%采用第-性原理平面波赝暖势方法研究了两种氨硼烷结构(Pmn21及P42cm)的晶格参数、电子结构以及动力学性质.结果表明,Pmn21结构的能量低于P42cm结构,与实验观测结果相符,即低温相为Pmn21结构而室温相为P42cm结构.Pmn21到P42cm相变所引起的结构变化主要体现为氨硼烷分子间双氢键键长显著增加,而分子内部化学键键长变化不大.根据电子态密度分析了氨硼烷的成键状态.氨硼烷室温相的XRD图谱和FTIR图谱的理论预测结果与实验结果符合得较好.

  6. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  7. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units. PMID:22356554

  8. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  9. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  10. Reduction of Nitroarenes into Aryl Amines and N-Aryl hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Dimitrios Andreou

    2016-03-01

    Full Text Available In this study, we report the fabrication of mesoporous assemblies of silver and TiO2 nanoparticles (Ag/MTA and demonstrate their catalytic efficiency for the selective reduction of nitroarenes. The Ag/TiO2 assemblies, which show large surface areas (119–128 m2·g−1 and narrow-sized mesopores (ca. 7.1–7.4 nm, perform as highly active catalysts for the reduction of nitroarenes, giving the corresponding aryl amines and N-aryl hydroxylamines with NaBH4 and ammonia-borane (NH3BH3, respectively, in moderate to high yields, even in large scale reactions (up to 5 mmol. Kinetic studies indicate that nitroarenes substituted with electron-withdrawing groups reduced faster than those with electron-donating groups. The measured positive ρ values from the formal Hammett-type kinetic analysis of X-substituted nitroarenes are consistent with the proposed mechanism that include the formation of possible [Ag]-H hybrid species, which are responsible for the reduction process. Because of the high observed chemo selectivities and the clean reaction processes, the present catalytic systems, i.e., Ag/MTA-NaBH4 and Ag/MTA-NH3BH3, show promise for the efficient synthesis of aryl amines and N-aryl hydroxylamines at industrial levels.

  11. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    Science.gov (United States)

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.

  12. Numerical Sequence of Borane Series

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2014-09-01

    Full Text Available A table of hydroborane families has been created. The table links boranes of different families(homologous series and members of the same family based on k number. The table is useful deducing straight away whether a borane( molecular formula is closo, nido or arachno or something else. The table also indicates that boranes are formed according to natural periodic function (arithmetical progression. The empirical formula utilized is extremely versatile, simple and based on the principle of Nobel gas configuration. It could be used in both simple and complex boranes and carboranes. The closo members which portray characteristic shapes also have characteristic k1 numbers.

  13. In situ Synchrotron X-ray Thermodiffraction of Boranes

    Directory of Open Access Journals (Sweden)

    Pascal G. Yot

    2016-01-01

    Full Text Available Boranes of low molecular weight are crystalline materials that have been much investigated over the past decade in the field of chemical hydrogen storage. In the present work, six of them have been selected to be studied by in situ synchrotron X-ray thermodiffraction. The selected boranes are ammonia borane NH3BH3 (AB, hydrazine borane N2H4BH3 (HB, hydrazine bisborane N2H4(BH32 (HBB, lithium LiN2H3BH3 (LiHB and sodium NaN2H3BH3 (NaHB hydrazinidoboranes, and sodium triborane NaB3H8 (STB. They are first investigated separately over a wide range of temperature (80–300 K, and subsequently compared. Differences in crystal structures, the existence of phase transition, evolutions of unit cell parameters and volumes, and variation of coefficients of thermal expansion can be observed. With respect to AB, HB and HBB, the differences are mainly explained in terms of molecule size, conformation and motion (degree of freedom of the chemical groups (NH3, N2H4, BH3. With respect to LiHB, NaHB and STB, the differences are explained by a stabilization effect favored by the alkali cations via M···H interactions with four to five borane anions. The main results are presented and discussed herein.

  14. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    Science.gov (United States)

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency. PMID:21090317

  15. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  16. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji;

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  17. Phenolics and Flavonoids Compounds, Phenylanine Ammonia Lyase and Antioxidant Activity Responses to Elevated CO2 in Labisia pumila (Myrisinaceae)

    OpenAIRE

    Jaafar, Hawa Z. E.; Ehsan Karimi; Mohd Hafiz Ibrahim

    2012-01-01

    A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO2 (400, 800 and 1,200 µmol·mol−1) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed ...

  18. Shock compression data for liquids. III. Substituted methane compounds, ethylene glycol, glycerol, and ammonia

    International Nuclear Information System (INIS)

    Hugoniot data are presented for the liquid forms of the substituted methanes: dichloromethane, dibromomethane, di-iodomethane, and chloroform: ethylene glycol, glycerol, and ammonia. High explosive techniques were used to cover the range of dynamic pressures of 0.7 to 82.0 GPa. Chloroform transforms to a new form at 25.0 GPa pressure. Di-iodomethane data indicate a low pressure transition at 2.3 GPa and a second transition at a pressure greater than 66.0 GPa. The shock velocity--particle velocity (U/sub s/--U/sub p/) data for these two liquids are best represented by a linear relationship over the various forms. The U/sub s/--U/sub p/ data for dichloromethane, dibromomethane, ethylene glycol, and glycerol are best fit by a quadratic expression in U/sub p/. Ammonia U/sub s/--U/sub p/ data fit a linear relationship. Only dibromonethane and ammonia U/sub s/--U/sub p/ curves extrapolate to the known sound speed. The others intercept at values that are 13% to 33% higher than the measured sound speed, indicative of low pressure transitions

  19. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    Science.gov (United States)

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  20. A study on multifunction heat pipe type high efficient adsorption refrigerator using compound adsorbent-ammonia

    Institute of Scientific and Technical Information of China (English)

    LU Zisheng; WANG Ruzhu; WANG Liwei; CHEN Chuanjuan

    2006-01-01

    A multifunction heat pipe adsorption refrigerator is designed, which uses solidified compound adsorbent of CaCl2 and activated carbon as adsorbent. Two work conditions, ice-maker driven by the exhaust heat from diesel engine and air-condi- tioning powered by solar energy, are studied. SCP (specific cooling power) and COP (coefficient of per- formance) for different conditions are analyzed. The optimum average SCP and COP for the refrigerator powered by waste heat of diesel engine are 770.4 W/kg and 0.39 at about -20℃ evaporating tem- perature. The optimum average SCP and COP for the refrigerator powered by solar energy are 524.2 W/kg and 0.27 at about 5.6℃ evaporating tempera- ture.

  1. Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO₂ in Labisia pumila (Myrisinaceae).

    Science.gov (United States)

    Jaafar, Hawa Z E; Ibrahim, Mohd Hafiz; Karimi, Ehsan

    2012-01-01

    A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO₂ (400, 800 and 1,200 μmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO₂ concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO₂ levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO₂ (1,200 μmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO₂ conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g⁻¹ DW) and pumila (25 μg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO₂ enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO₂ levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO₂ enrichment conditions. PMID:22634843

  2. 氨释放物在植物保护中的应用%Use of Ammonia-releasing Compounds for Plant Protection

    Institute of Scientific and Technical Information of China (English)

    陈卉; 叶勇; 杨剑

    2011-01-01

    In recent years, many studies found that a reasonable application of ammonia releasing compounds not only provided necessary plant nutrients,but also had a good control effect on plant diseases and weeds. This paper reviews the use of ammonia releasing compounds for controlling root-knot nematodes, pathogenic fungi and weeds and explores its relevant mechanisms.%近年来很多研究发现,合理地施用氨释放物不仅能够为植物提供必需的营养元素,而且对植物病害、杂草有很好的防治作用.鉴此,综述了氨释放物在植物保护中防治根结线虫、病原真菌和杂草方面的研究应用状况,并探讨了其相关机制.

  3. The structure study of boron carbonitride films obtained by use of trimethylamine borane complex

    CERN Document Server

    Kosinova, M L; Fainer, N I; Maximovski, E A; Kuznetsov, F A

    2001-01-01

    Diffraction of synchrotron radiation (SR) was used to investigate crystalline structure and phase composition of thin films (1500-5000 A) of boron carbonitride. These films were synthesized by plasma-enhanced chemical vapor deposition using nontraditional volatile single source precursor trimethylamine borane complex (CH sub 3) sub 3 N centre dot BH sub 3 and its mixture with ammonia. The effect of the gas ratio and substrate temperature on chemical and phase composition as well as the structure of the films were investigated. The XRD peculiarities of texture films and ways of increasing sensibility of measurements were considered. A possibility of the information density rise of the thin film XRD was shown due to application of different methods for recording diffraction patterns.

  4. Lanthanide(II) complexes of a phosphine-borane-stabilised carbanion.

    Science.gov (United States)

    Izod, Keith; Clegg, William; Harrington, Ross W

    2010-08-01

    The reaction between two equivalents of the potassium salt [(Me(3)Si)(2){Me(2)P(BH(3))}C]K (4) and SmI(2)(THF)(2) in refluxing THF yields the dialkylsamarium(II) compounds [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF) (5a) or [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF)(3) (5b), depending on the crystallisation conditions, in good yield as air- and moisture-sensitive crystalline solids. X-ray crystallography shows that, whereas both alkyl ligands chelate the samarium(II) ion in 5a, in 5b one alkyl ligand chelates the metal centre and one binds the metal only through its borane hydrogen atoms. The reaction between YbI(2) and two equivalents of 4 in refluxing benzene yields the solvent-free dialkylytterbium(II) compound [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Yb (8). In contrast to 5a and 5b, compound 8 reacts rapidly with THF to give the free phosphine-borane (Me(3)Si)(2){Me(2)P(BH(3))}CH as the only identifiable product. PMID:20480086

  5. Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Romain Moury

    2015-04-01

    Full Text Available Hydrazine borane N2H4BH3 and alkali derivatives (i.e., lithium, sodium and potassium hydrazinidoboranes MN2H3BH3 with M = Li, Na and K have been considered as potential chemical hydrogen storage materials. They belong to the family of boron- and nitrogen-based materials and the present article aims at providing a timely review while focusing on fundamentals so that their effective potential in the field could be appreciated. It stands out that, on the one hand, hydrazine borane, in aqueous solution, would be suitable for full dehydrogenation in hydrolytic conditions; the most attractive feature is the possibility to dehydrogenate, in addition to the BH3 group, the N2H4 moiety in the presence of an active and selective metal-based catalyst but for which further improvements are still necessary. However, the thermolytic dehydrogenation of hydrazine borane should be avoided because of the evolution of significant amounts of hydrazine and the formation of a shock-sensitive solid residue upon heating at >300 °C. On the other hand, the alkali hydrazinidoboranes, obtained by reaction of hydrazine borane with alkali hydrides, would be more suitable to thermolytic dehydrogenation, with improved properties in comparison to the parent borane. All of these aspects are surveyed herein and put into perspective.

  6. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    OpenAIRE

    Qilu Yao; Zhang-Hui Lu; Kangkang Yang; Xiangshu Chen; Meihua Zhu

    2015-01-01

    Ultrafine ruthenium nanoparticles (NPs) within the mesopores of the SBA-15 have been successfully prepared by using a “double solvents” method, in which n-hexane is used as a hydrophobic solvent and RuCl3 aqueous solution is used as a hydrophilic solvent. After the impregnation and reduction processes, the samples were characterized by XRD, TEM, EDX, XPS, N2 adsorption-desorption, and ICP techniques. The TEM images show that small sized Ru NPs with an average size of 3.0 ± 0.8 nm are uniforml...

  7. Borane-catalyzed cracking of C-C bonds in coal; Boran-katalysierte C-C-Bindungungsspaltung in Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Narangerel, J.; Haenel, M.W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-09-01

    Coal, especially coking coal, was reacted with hydrogen at comparatively mild reaction conditions (150-280 degrees centigrade, 20 MPa hydrogen pressure) in the presence of catalysts consisting of borange reagents and certain transition metal halides to obtaine more than 80 percent of pyridine-soluble products. The influence of the degree of coalification, catalyst and temperature on the borane-catalyzed hydrogenolysis of C-C bonds in coal was investigated. (orig.) [Deutsch] Steinkohlen, insbesondere im Inkohlungsbereich der Fettkohlen (Kokskohlen), werden in Gegenwart von Katalysatoren aus Boran-Reagentien und bestimmten Uebergangsmetallhalogeniden mit Wasserstoff bei vergleichsweise milden Reaktionsbedingungen (250-280 C, 20 MPa Wasserstoffdruck) in zu ueber 80% pyridinloesliche Produkte umgewandelt. Der Einfluss von Inkohlungsgrad, Katalysator und Temperatur auf die Boran-katalysierte C-C-Bindungshydrogenolyse in Kohle wurde untersucht. (orig.)

  8. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    Science.gov (United States)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and

  9. 无氨复合凝胶的制备及其胶凝特性%Synthesis of Ammonia-free Compound Gel and Its Gelation Characterization

    Institute of Scientific and Technical Information of China (English)

    于水军; 贾博宇; 兀帅东

    2011-01-01

    In order to improve fire extinguishing properties and thermal stability of gel, the gelation characteristics of ammonia-free compound gel were investigated by photoelectric analysis.The gelling time of ammonia-free compound gel was measured by photoelectric method and the effect of temperature on gelling time of compound gel was analyzed and the thermal stability of plain gel and compound gel were compared with each other in different environments.The results show that the gelling time of compound gel shortens rapidly with temperature increasing and the influence of environmental temperature on the gelling time has a relationship with the mass fraction of compound gel, the degree of influence is that 6% gelatinizing agent>8% gelatinizing agent>10% gelatinizing agent.Adding gelling agent composed of varied complex Lewis acid to Na2SiO3·nH2O solution could counteract the charge of the micelle silicate, damage the fusion membrane of the micelle silicate, and promote colloidal particle coagulation in order to convert into full of flexibility.Because the composite gelling agent is crushing polyhedron, the increases of specific surface area and water absorption improve the thermal stability of the gel.%为了提高凝胶的防灭火性能及热稳定性,用光电分析法研究了新型无氨复合凝胶的胶凝特性.采用光电法测出无氨复合凝胶的成胶时间,分析温度对复合凝胶成胶时间影响,并在同环境下对比了普通凝胶和复合凝胶的热稳定性.结果表明,复合凝胶的成胶时间随环境温度的升高而缩短,且环境温度对成胶时间的影响程度与复合胶凝剂的质量分数有关,影响程度为:6%的胶凝剂>8%的胶凝剂>10%的胶凝剂.NaSiO·nHO溶液中添加含有多种Lewis酸的复合胶凝剂后,中和了硅酸胶团的电荷,破坏硅酸胶团的融合膜,促使胶粒发生沉聚而转变为有弹性的凝胶,并且复合胶凝剂的粒度为破碎多面体,进而增加了比表面

  10. DFT investigation on dihydrogen-bonded amine-borane complexes.

    Science.gov (United States)

    Yan, Shihai; Zou, Hongmei; Kang, Wukui; Sun, Lixiang

    2016-01-01

    The DFT method has been employed in the exploration on dihydrogen-bonded amine-borane complexes, with a special emphasis on the dimerization and substituent group effect. Stable dihydrogen bonded complexes can be generated from these amine-borane monomers with the appearance of NH(δ+)…H(δ-)B interactions. The binding energy decreases gradually with the increase of the steric effect of the substituents. The substituent group number mainly varies the C-N bond length. The dimerization generates close H…H and influences predominantly the N-B distance. The effect of dimerization on IR and vibrational circular dichroism (VCD) spectra is stronger than that of the number of substituent groups, which leads to distinct NBO charge variation on α-C. Both the substituent group number and dimerization enhance the chemical shift difference between hydrogen atoms covalently bonded to N and B, Δδ H-H, which can be hired as an index for structural determination. It is proposed that amine-borane complexes with more substituent groups in higher degree of polymerization are potentially interesting materials for hydrogen storage. Graphical Abstract Both the number of substituent group and dimerization enhance the chemical shift difference of hydrogen atoms covalently bonded on N and B, Δδ H-H, which can be employed as an index for the structural determination.

  11. Polyhedral Boranes: A Versatile Building Block for Nanoporous Materials

    Science.gov (United States)

    Clingerman, Daniel Jon

    The studies described in this dissertation examine several new concepts related to polyhedral boranes and their applications towards the synthesis of novel nanoporous materials. The unique thermal and chemical robustness, rigidity, quasi-spherical geometry, and high boron content of polyhedral boranes are explored to generate materials not possible with typical organic synthons. Aside from the fundamental synthetic work, this work was also aimed at solving larger global issues such as energy storage and new routes to therapeutics. Chapter 2 highlights the discovery of the first highly porous carborane-based metal-organic framework, where the spherical nature of the carborane increases volumetric surface area without reducing pore volume. Chapter 3 examines the first tritopic carborane-based ligand and the stabilizing effect the rigid, sterically bulky carboranyl groups have on highly porous topologies not stable with typical organic ligands. Chapters 4 and 5 describe the use of polyhedral borane-based ligands as a means to influence and generate unexpected topologies. Lastly, chapter 6 explores using a simple carborane-based ligand that harnesses the power of coordination-driven assembly to rapidly generate a high boron-containing supramolecular cuboctahedron.

  12. Determination of ammonia and primary amine compounds and Kjeldahl nitrogen in water samples with a modified Roth's fluorimetric method.

    Science.gov (United States)

    Lloret, S Meseguer; Andrés, J Verdú; Legua, C Molins; Falcó, P Campíns

    2005-02-28

    A method for the simultaneous determination of primary amino groups and ammonium ion has been proposed. The method is based in solution derivatization with o-Phthaldialdehyde/N-acetyl-cisteine (OPA/NAC) and fluorescence measurement of the formed isoindols. Analytical characteristics and description of the developed procedure have been provided. The calibration graphs for ammonium (up to 1.44mgL(-1) of N) and methylamine as primary amino model compound (up to 0.282mgL(-1) of N), were obtained. Bivariate and multivariate calibration models have been tested. The limits of detection were 0.07mgL(-1) of N and 0.004mgL(-1) of N for ammonium and amine, respectively. The procedure was first applied directly to standard solutions containing ammonium and amines and secondly to digested solutions by Kjeldahl method. The results obtained allowed to establish the best digestion conditions in order to perform the total amine conversion into ammonium. This procedure has been also applied to real samples (irrigation ditch, residual and fountain waters) and the concentrations of primary amine groups and ammonium have been evaluated. The results obtained after Kjeldahl digestion allowed to estimate the total Kjeldahl N contained in the samples. The samples were also analysed by Nessler method and similar results were obtained.

  13. Difluoro[2-(quinolin-2-ylphenolato]borane

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2011-05-01

    Full Text Available The title compound, C15H10BF2NO, was synthesized by the reaction of 2-(quinolin-2-ylphenol and boron trifluoride etherate. The quinoline ring system and the benzene ring are twisted, making a dihedral angle of 8.3 (2°. In the crystal, π–π interactions between the aromatic rings [centroid–centroid distance = 3.638 (9 Å] link the molecules into chains propagating in [100].

  14. Efficient synthesis of 1,3,5-oxygenated synthons from dimethyl 3-oxoglutarate: first use of borane-dimethyl sulfide complex as a regioselective reducing agent of 3-oxygenated glutarate derivatives

    International Nuclear Information System (INIS)

    The selective reduction of dimethyl 3-oxoglutarate was accomplished in different levels. A high yielding sodium borohydride reduction of the keto group is fully described leading to dimethyl 3-hydroxyglutarate. When borane-dimethyl sulfide (BMS) complex was used, a diol or a triol compound can be obtained by selective or total reduction of 3-hydroxy- or 3-oxoglutarate, respectively, allowing an efficient and practical route to 1,3,5-oxygenated compounds. (author)

  15. Efficient synthesis of 1,3,5-oxygenated synthons from dimethyl 3-oxoglutarate: first use of borane-dimethyl sulfide complex as a regioselective reducing agent of 3-oxygenated glutarate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riatto, Valeria B.; Carneiro, Maria N.M.; Victor, Mauricio M., E-mail: mmvictor@ufba.b [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Carvalho, Venilia B. [Centro Universitario FIB, Salvador, BA (Brazil). Inst. de Ciencias da Saude

    2011-07-01

    The selective reduction of dimethyl 3-oxoglutarate was accomplished in different levels. A high yielding sodium borohydride reduction of the keto group is fully described leading to dimethyl 3-hydroxyglutarate. When borane-dimethyl sulfide (BMS) complex was used, a diol or a triol compound can be obtained by selective or total reduction of 3-hydroxy- or 3-oxoglutarate, respectively, allowing an efficient and practical route to 1,3,5-oxygenated compounds. (author)

  16. Phenolics and Flavonoids Compounds, Phenylanine Ammonia Lyase and Antioxidant Activity Responses to Elevated CO2 in Labisia pumila (Myrisinaceae

    Directory of Open Access Journals (Sweden)

    Hawa Z.E. Jaafar

    2012-05-01

    Full Text Available A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO2 (400, 800 and 1,200 µmol·mol−1 on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO2 concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO2 levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO2 (1,200 µmol·mol−1 exposure, gallic acid increased tremendously, especially in var. alata and pumila (101–111%, whilst a large quercetin increase was noted in var. lanceolata (260%, followed closely by alata (201%. Kaempferol, although detected under ambient CO2 conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100% and pumila (298~433%. Meanwhile, pyragallol and rutin were only seen in var. alata (810 µg·g−1 DW and pumila (25 µg·g−1 DW, respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO2 enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO2 levels implying the possible improvement of health-promoting quality of Malaysian L. pumila

  17. Electroless copper plating using dimethylamine borane as reductant

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Shengtao Zhang; Robert Dryfe

    2012-01-01

    Electroless copper plating was studied using dimethylamine borane (DMAB) as reductant and 1,5,8,12-tetraazadodecane as additive and triethanolamine (TEA) as buffer.The effects of pH,temperature and concentrations of reactants and additives on the anodic oxidation of DMAB and the cathodic reduction of copper ion were investigated.Experimental results indicate that high pH values (10-12.5) promote the oxidation of DMAB,and suppress the reduction of the copper ion,while high bath temperatures (55-70℃)accelerate both anodic oxidation and cathodic reduction.Increase of the Cu2+ and DMAB concentrations can improve the deposition rate of copper plating.Results for a dual-chelating-agent system indicate that 1,5,8,12-tetraazadodecane plays an important role in chelation,while the main effect of TEA is adsorption on copper surfaces to inhibit DMAB oxidation and to promote deposition.

  18. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    Science.gov (United States)

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  19. Kinetics of electroless deposition: the copper-dimethylamine borane system.

    Science.gov (United States)

    Plana, Daniela; Campbell, Andrew I; Patole, Samson N; Shul, Galyna; Dryfe, Robert A W

    2010-06-15

    A kinetic study of the electroless deposition of copper on gold, using dimethylamine borane (DMAB) as a reducing agent, has been carried out. The copper deposition rate in the electroless bath was determined to be 50 nm min(-1), through electrochemical stripping of the copper deposits as well as from direct measurements of the film thickness using atomic force microscopy (AFM). Comparison with a galvanic cell setup, where the two half-reactions were physically separated, yielded a lower deposition rate of 30 nm min(-1). An important kinetic effect of the surface on the oxidation of the reducing agent, and thus on the overall process, was therefore revealed. The efficiency of the process was measured over time, revealing the contribution of side reactions in the cathodic half-cell, particularly during the initial stages of the electroless process.

  20. Tetraammineplatinum(II dichloride ammonia tetrasolvate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2014-07-01

    Full Text Available The title compound, [Pt(NH34]Cl2·4NH3, was crystallized in liquid ammonia from the salt PtCl2. The platinum cation is coordinated by four ammonia molecules, forming a square-planar complex. The chloride anions are surrounded by nine ammonia molecules, either bound within the platinum complex or solvent molecules. The solvent ammonia molecules are packed in such a way that an extended network of N—H...N and N—H...Cl hydrogen bonds is formed. The structure is isotypic with [Pd(NH34]Cl2·4NH3 [Grassl & Korber (2014. Acta Cryst. E70, i32].

  1. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane

    OpenAIRE

    Qilu Yao; Zhang-Hui Lu; Zhujun Zhang; Xiangshu Chen; Yaqian Lan

    2014-01-01

    Ultrafine copper nanoparticles (Cu NPs) within porous silica nanospheres (Cu@SiO2) were prepared via a simple one-pot synthetic route in a reverse micelle system and characterized by SEM, TEM, EDX, XRD, N2 adsorption-desorption, CO-TPD, XPS, and ICP methods. The characterized results show that ultrafine Cu NPs with diameter of around 2 nm are effectively embedded in the center of well-proportioned spherical SiO2 NPs of about 25 nm in diameter. Compared to commercial SiO2 supported Cu NPs, SiO...

  2. Syntheses and structures of dimeric sodium and potassium complexes of 2,6-diisopropyl-anilidophosphine borane ligand

    Indian Academy of Sciences (India)

    Kishor Naktode; Jayeeta Bhattacharjee; Anirban Chakrabarti; Tarun K Panda

    2015-02-01

    We report here the syntheses and structural studies of dimeric sodium and potassium complexes of composition [Na(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2 (2) and [K(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2(3). The sodium complex 2 was readily prepared by the reaction of sodium bis(trimethylsilyl)amide with 2,6-diisopropylanilidophosphine-borane ligand [2,6-iPr2C6H3NHP(BH3)Ph2] (1-H) at ambient temperature. The potassium complex 3 was prepared by two synthetic routes: in the first method, the ligand 1-H was made to react with potassium hydride at room temperature to afford the corresponding potassium complex. The potassium bis(trimethylsilyl)amides were made to react with protic ligand 1-H in the second method to eliminate the volatile bis(trimethyl)silyl amine. Solid-state structures of both the new complexes were established by single crystal X-ray diffraction analysis. In the molecular structures of complexes 2, the sodium metal is coordinated by the anilido nitrogen (1) and borane group (1) attached to the phosphorus atom of ligand 1. In contrast, for compound 2, ligand 1 displays 6-arene interaction from 2,6-diisopopylphenyl ring with potassium atom along with 3 interaction of BH3 group due to larger ionic radius of potassium ion.

  3. When is a Nanoparticle a Cluster? An Operando EXAFS Study of Amine Borane Dehydrocoupling by Rh4-6 Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Linehan, John C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Balasubramanian, Mahalingam [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Yongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szymczak, Nathaniel K. [Univ. of Oregon, Eugene, OR (United States)

    2007-09-07

    X-ray absorption fine structure (XAFS) is used to determine the structure of the rhodium cluster present during the catalyzed dehydrocoupling of amine boranes under operando conditions. Analysis of the in-situ XAFS spectra using a series of amine boranes (NH3BH3, R2NHB3 and RNH2BH3 where R = methyl, isopropyl, tert-butyl and cyclohexyl) and rhodium catalyst precursor compounds ((including chloro-(1,5-cyclooctadiene)rhodium (I) dimer, bis(1,5- cyclooctadiene)rhodium (I) trifluoromethanesulfonate, chlorodicarbonylrhodium (I) dimer, dichloro(pentamethylcylcopentadienyl) rhodium (III) dimer, hexarhodium hexadecacarbonyl, and tetrarhodium dodecacarbonyl) strongly suggest that the active catalyst species for this reaction is a homogeneous rhodium complex. Rhodium clusters containing four or six rhodium atoms (Rh4-6) bound to amine boranes are observed as the major (>98%) rhodium containing species during and after the catalyzed anaerobic dehydrocoupling. During the later stages of the reaction, a non-metallic rhodium complex precipitate forms in which individual Rh4-6 clusters likely form polymer chains ligated by the reaction products that have two or more ligating sites. The best FEFF fits of the XAFS data show that the major rhodium species (80%) has each rhodium atom directly bound to three rhodium atoms with an observed bond distance of 2.73 Å and to two boron atoms at 2.095 Å. A minor (20%) rhodium species has each rhodium atom bound to four rhodium atoms with a bond distance of about 2.73 Å and a single rhodium atom at a non-bonding distance of 3.88 Å. No metallic rhodium was observed at any time during the anaerobic reaction.

  4. Ni→B Interactions in Nickel Phosphino-Alkynyl-Borane Complexes

    NARCIS (Netherlands)

    Zhao, Xiaoxi; Otten, Edwin; Song, Datong; Stephan, Douglas W.

    2010-01-01

    The Ni complexes [{tBu2PC≡CB(C6F5)2}Ni(cod)] and [({tBu2PC≡CB(C6F5)2}Ni(NCMe))2] derived from the reaction between the phosphino-alkynyl-borane tBu2PC≡CB(C6F5)2 and [Ni(cod)2] exhibit an unprecedented metal–alkyne interaction in which the borane substituent bends towards the metal affording a Ni→B d

  5. Ammonia production, excretion, toxicity, and defense in fish: A Review

    Directory of Open Access Journals (Sweden)

    Alex Y K Ip

    2010-10-01

    Full Text Available Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+ transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia-tolerance, respectively.

  6. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha;

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in...... generally high. It was concluded that the contribution from floors to NH3 emissions was effect on N2O emissions was observed. The effect...

  7. 氧化铁改性石英砂的复合挂膜与氨氮去除试验研究%EXPERIMENTAL STUDY ON COMPOUND FORMATION AND REMOVAL AMMONIA NITROGEN USING IRON OXIDE COATED SANDS

    Institute of Scientific and Technical Information of China (English)

    李冬梅; 刘贝; 庞治星; 刘培涛; 刘雄威; 李绍秀

    2012-01-01

    采用自制的氧化铁改性石英砂滤料(简称“改性砂”),对生物改性砂联合处理微污染物氨氮的复合挂膜启动性能以及滤料表面形态进行了试验研究,并与生物普通砂联用效果进行对比.结果表明,生物普通砂和生物改性砂在挂膜初期的生物量分别为15.46、13.79 nmol/g(n(P)/m(滤料)),稳定运行期分别为18.75、20.09 nmol/g;挂膜初期,生物普通砂与生物改性砂对质量浓度为1~2 mg/L氨氮的去除效果分别达到92%和95%;挂膜稳定期,前者对氨氮的去除效果约60%,后者稳定在80%左右;在不同氨氮质量浓度(0.5~4 mg/L)下,生物普通砂对氨氮去除率从60%上升至80%,生物改性砂的去除率从70%增至95%;过滤前后2种滤料表面形态均发生变化,生物改性砂表面孔隙更小,结构更加复杂多孔,表面粗糙程度进一步增加,对氨氮去除率高.%A homemade iron oxide cCoated sands filters with biological was used to remove ammonia nitrogen from contaminated source water, the process of compound formation start-up and the surface morphology of the two filters was carried out, and contrasted with the effect of biological-raw sands. The results were shown as follows: The biomass of the biological- raw sand filter, and biological-iron oxide coated sand filter were 15.46 and 13.79 nmol/g in the initial of formation, 18.75 and 20.09 nmol/g in the stable of formation. Removal of ammonia nitrogen with concentration among 1.0-2.0 mg/L using biological-raw sands and biological-iron oxide coated sands were 92% to 95% in the initial of formation, In the stable of formation, removal ammonia nitrogen using biological-raw sands stable about 60%, and removal ammonia nitrogen using biological-iron oxide coated sands stable about 80%. In different concentrations of ammonia nitrogen among 0.5~4.0 mg/L, removal efficiency of biological-raw sands from 60% rose to 80%, biological- iron oxide coated sands from 70% rose to

  8. Synthesis and Application of New Chiral Ligands for the Asymmetric Borane Reduction of Prochiral Ketones

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates and (thio)-phosphinamides have been examined as catalysts for the reduction of propiophenone by various boranes. Up to 95% e.e. can be obtained with the phosphorus derivatives.

  9. A New Homogeneous Catalyst for the Dehydrogenation of Dimethylamine Borane Starting with Ruthenium(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Ebru Ünel Barın

    2015-06-01

    Full Text Available The catalytic activity of ruthenium(III acetylacetonate was investigated for the first time in the dehydrogenation of dimethylamine borane. During catalytic reaction, a new ruthenium(II species is formed in situ from the reduction of ruthenium(III and characterized using UV-Visible, Fourier transform infrared (FTIR, 1H NMR, and mass spectroscopy. The most likely structure suggested for the ruthenium(II species is mer-[Ru(N2Me43(acacH]. Mercury poisoning experiment indicates that the catalytic dehydrogenation of dimethylamine-borane is homogeneous catalysis. The kinetics of the catalytic dehydrogenation of dimethylamine borane starting with Ru(acac3 were studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first-order with respect to catalyst concentration and zero-order regarding the substrate concentration. Evaluation of the kinetic data provides the activation parameters for the dehydrogenation reaction: the activation energy Ea = 85 ± 2 kJ·mol−1, the enthalpy of activation ∆H# = 82 ± 2 kJ·mol−1 and the entropy of activation; ∆S# = −85 ± 5 J·mol−1·K−1. The ruthenium(II catalyst formed from the reduction of ruthenium(III acetylacetonate provides 1700 turnovers over 100 hours in hydrogen generation from the dehydrogenation of dimethylamine borane before deactivation at 60 °C.

  10. Amino olefin nickel(I) and nickel(0) complexes as dehydrogenation catalysts for amine boranes

    NARCIS (Netherlands)

    M. Vogt; B. de Bruin; H. Berke; M. Trincado; H. Grützmacher

    2011-01-01

    A rare paramagnetic organometallic nickel(I) olefin complex can be isolated using the ligand bis(5H-dibenzo[a,d]cyclohepten-5-yl)amine. This complex and related nickel(0) hydride complexes show very high catalytic activity in the dehydrogenation of dimethylamino borane with release of one equivalent

  11. WOOD COLOR CHANGES BY AMMONIA FUMING

    Directory of Open Access Journals (Sweden)

    Josip Miklečić,

    2012-06-01

    Full Text Available This paper studies the influence of ammonia gas on wood color changes in response to an increasing demand for dark colored wood specimens. The darker wood color in ammonia fuming is accomplished through chemical reactions between ammonia gas and wood compounds. We exposed oak, maple, spruce, and larch wood samples to ammonia gas for 16 days. During fuming, the color changes were studied using CIE L*a*b* parameters. After fuming, the changes in extractives content, tannin, and nitrogen content were analyzed. The chemical changes of wood and residues of wood extractives after fuming were analyzed by FTIR spectroscopy. Oak wood reacted intensively with ammonia gas in a very short time, and the darkening was prominent for all the investigated wood species. It was established that tannin had no major influence on color changes of maple and larch wood in the ammonia-fuming process. The FTIR spectra of fumed wood indicated involvement of carbonyl groups, and the FTIR spectra of wood extractives indicated involvement of carbonyl, aromatic, and alcohol groups in reaction with ammonia gas.

  12. Hydrogen release from dialkylamine-boranes promoted by Mg and Ca complexes: a DFT analysis of the reaction mechanism.

    Science.gov (United States)

    Butera, Valeria; Russo, Nino; Sicilia, Emilia

    2014-05-12

    Mg and Ca β-diketiminato silylamides [HC{(Me)CN(2,6-iPr2C6H3)}2M(THF)n{N(SiMe3)2}] (M = Mg, n = 0; M = Ca, n = 1) were studied as precatalysts for the dehydrogenation/dehydrocoupling of secondary amine-boranes R2HNBH3 . By reaction with equimolar quantities of amine-boranes, the corresponding amidoborane derivatives are formed, which further react to yield dehydrogenation products such as the cyclic dimer [BH2-NMe2]2. DFT was used here to explore the mechanistic alternatives proposed on the basis of the experimental findings for both Mg and Ca amidoboranes. The influence of the steric demand of amine-boranes on the course of the reaction was examined by performing calculations on the dehydrogenation of dimethylamine-borane (DMAB), pyrrolidine-borane (PB), and diisopropylamine-borane. In spite of the analogies in the catalytic activity of Mg- and Ca-based complexes in the dehydrocoupling of amine-boranes, our theoretical analysis confirmed the experimentally observed lower reactivity of Ca complexes. Differences in catalytic activity of Mg- and Ca-based complexes were examined and rationalized. As a consequence of the increase in ionic radius on going from Mg(2+) to Ca(2+), the dehydrogenation mechanism changes and formation of a key metal hydride intermediate becomes inaccessible. Dimerization is likely to occur off-metal in solution for DMAB and PB, whereas steric hindrance of iPr2NHBH3 hampers formation of the cyclic dimer. The reported results are of particular interest because, although amine-borane dehydrogenation is now well established, mechanistic insight is still lacking for many systems. PMID:24700384

  13. Transformation of ammonia i biological airfilters

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Sørensen, Karen; Andersen, Mathias;

    2007-01-01

    Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide emi...... removal without too much energy consumption, waste water production, green house gas emission, or suppression of the filters odor removal efficiency.......Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide...

  14. 有机物影响天然沸石吸附氨氮的实验研究%Study on Ammonia Adsorption into Natural Zeolites in the Presence of Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    陈辅强

    2011-01-01

    为了研究在各种有机污染物存在的条件下对沸石去除氨氮能力的影响,以此来确定沸石对含有不同有机污染物废水的适用范围.本文通过静态和动态吸附实验,了解了腐殖酸、柠檬酸、淀粉和苯酚对沸石吸附氨氮的影响.实验表明,溶液中不同的有机物对沸石去除氨氮有不同的影响,沸石去除氨氮量有不同程度的下降.%Ammonia adsorption from simulated wastewater by natural zeolites in the presence of organic contaminants was investigated. The results showed that the presence of different organic compounds (including humic acid, citric acid, phenol and farina) slacked the uptake of ammonium ion onto the zeolites. The removal efficiencies decreased.

  15. Dynamic Behavior of N-Heterocyclic Carbene Boranes: Boron-Carbene Bonds in B,B-Disubstituted N,N-Dimethylimidazol-2-ylidene Boranes Have Substantial Rotation Barriers.

    Science.gov (United States)

    Damodaran, Krishnan; Li, Xiben; Pan, Xiangcheng; Curran, Dennis P

    2015-05-01

    Dynamic NMR spectroscopy has been used to measure rotation barriers in five B,B-disubstituted 1,3-dimethylimidazol-2-ylidene boranes. The barriers are attributed to the sp(2)-sp(3) bond between C(1) of the N-heterocyclic carbene ring and the boron atom. Bonds to boron atoms bearing a thexyl (1,1,2-trimethylpropyl) group show especially high barriers, ranging from 75-86 kJ mol(-1). 2-Isopropyl-1,3,5-trimethylbenzene is used as a comparable to help understand the nature and magnitude of the barriers. PMID:25843519

  16. Influence of mass recovery on the performance of a heat pipe type ammonia sorption refrigeration system using CaCl2/activated carbon as compound adsorbent

    International Nuclear Information System (INIS)

    The performance analyses of a sorption refrigeration system with different mass recovery processes are presented, in which compound adsorbent of CaCl2 and activated carbon is used to improve the mass and heat transfer performances of sorption bed. The heating, cooling and heat recovery processes between two sorption beds were performed by multifunction heat pipes without additional power consumption. The experimental Clapeyron diagrams showed that the cycles with mass recovery (MR), with heat and mass recoveries (HMR), and with mass and heat recoveries (MHR), have better thermodynamic performances when compared with the sorption cycle without mass recovery (MR0). The implementary order of mass recovery and heat recovery has strong influence on the efficacy of mass recovery while it has little influence on the efficacy of heat recovery. In sorption cycles with HMR and with MHR, the hot beds can be pre-cooled and cold beds can be pre-heated effectively during the switching process, and heat consumption from external heat source during desorption phase is thereby reduced. Mass recovery can enlarge cycled refrigerant mass due to the transfer of refrigerant gas between two sorption beds during mass recovery process. In comparison with sorption cycle with MR0, sorption cycles with MR, with HMR, and with MHR can generally improve the coefficient of performance (COP) and specific cooling power (SCP) by more than 20% and 16%, respectively. Especially, sorption cycle with MHR has the highest performance among different mass recovery processes due to the fact that MHR has the advantages of MR and HMR, and it can improve the COP by 46.7% when compared with the cycle with MR0

  17. Ammonia in the environment: From ancient times to the present

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A.; Erisman, J.W.; Dentener, F.; Moller, D. [Centre for Ecology and Hydrology, Penicuik (United Kingdom). Edinburgh Research Station

    2008-12-15

    Recent research on atmospheric ammonia has made good progress in quantifying sources/sinks and environmental impacts. This paper reviews the achievements and places them in their historical context. It considers the role of ammonia in the development of agricultural science and air chemistry, showing how these arose out of foundations in 18th century chemistry and medieval alchemy, and then identifies the original environmental sources from which the ancients obtained ammonia. Ammonia is revealed as a compound of key human interest through the centuries, with a central role played by sal ammoniac in alchemy and the emergence of modern science. The review highlights how recent environmental research has emphasized volatilization sources of ammonia. Conversely, the historical records emphasize the role of high-temperature sources, including dung burning, coal burning, naturally burning coal seams and volcanoes. Present estimates of ammonia emissions from these sources are based on few measurements, which should be a future priority.

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. Assessing Ammonia Treatment Options

    Science.gov (United States)

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  20. Method for forming ammonia

    Science.gov (United States)

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  1. Smallpox inoculation (variolation) in East Africa with special reference to the practice among the Boran and Gabra of Northern Kenya.

    Science.gov (United States)

    Imperato, Pascal James; Imperato, Gavin H

    2014-12-01

    Smallpox inoculation (variolation) was widely reported in sub-Sahara Africa before, during, and after the colonial era. The infective smallpox materials and techniques used, as well as the anatomical sites for inoculation, varied widely among different ethnic groups. The practice among the Boran and Gabra pastoralists of northern Kenya resembled that which was prevalent in a number of areas of Ethiopia. This is not surprising as the Boran also live in southern Ethiopia, and Gabra herdsmen frequently cross the border into this region. The Boran and Gabra technique for smallpox inoculation consisted of taking infective material from the vesicles or pustules of those with active smallpox, and scraping it into the skin on the dorsum of the lower forearm. Although the intent was to cause a local reaction and at most a mild form of smallpox, severe cases of the disease not infrequently resulted. Also, variolated individuals were capable of infecting others with smallpox, thereby augmenting outbreaks and sustaining them. The limited known reports of smallpox inoculation among the Boran and Gabra are presented in this communication. The expansion of vaccination with effective heat stable vaccines, the development of medical and public health infrastructures, and educational programs all contributed to the eventual disappearance of the practice among the Boran and Gabra. PMID:25100176

  2. Reactor for removing ammonia

    Science.gov (United States)

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  3. Ammonia Clouds on Jupiter

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  4. Amine- and dimeric amino-borane complexes of the {Rh(P(i)Pr3)2}+ fragment and their relevance to the transition-metal-mediated dehydrocoupling of amine-boranes.

    Science.gov (United States)

    Chaplin, Adrian B; Weller, Andrew S

    2010-02-01

    Complexes formed between {Rh(P(i)Pr(3))(2)}(+) or {Rh(H)(2)(P(i)Pr(3))(2)}(+) fragments and the amine- and dimeric amino-borane sigma ligands H(3)B.NMe(3) and [H(2)BNMe(2)](2) have been prepared and their solution and solid-state structures determined: [Rh(P(i)Pr(3))(2)(eta(2)-H(3)B.NMe(3))][BAr(F)(4)] (1), [Rh(P(i)Pr(3))(2){eta(2)-(H(2)BNMe(2))(2)}][BAr(F)(4)] (2), [Rh(H)(2)(P(i)Pr(3))(2)(eta(2)-H(3)B.NMe(3))][BAr(F)(4)] (3), and [Rh(H)(2)(P(i)Pr(3))(2){eta(2)-(H(2)BNMe(2))(2)}][BAr(F)(4)] (4) [Ar(F) = C(6)H(3)(CF(3))(2)]. The last compound was only observed in the solid state, as in solution it dissociates to give [Rh(H)(2)(P(i)Pr(3))(2)][BAr(F)(4)] and [H(2)BNMe(2)](2) due to steric pressure between the ligand and the metal fragment. The structures and reactivities of these new complexes are compared with the previously reported tri-isobutyl congeners. On the basis of (11)B and (1)H NMR spectroscopy in solution and the Rh...B distances measured in the solid state, the P(i)Pr(3) complexes show tighter interactions with the sigma ligands compared to the P(i)Bu(3) complexes for the Rh(I) species and a greater stability toward H(2) loss for the Rh(III) salts. For the Rh(I) species (1 and 2), this is suggested to be due to electronic factors associated with the bending of the ML(2) fragment. For the Rh(III) complexes (3 and 4), the underlying reasons for increased stability toward H(2) loss are not as clear, but steric factors are suggested to influence the relative stability toward a loss of dihydrogen, although other factors, such as supporting agostic interactions, might also play a part. These tighter interactions and a slower H(2) loss are reflected in a catalyst that turns over more slowly in the dehydrocoupling of H(3)B.NHMe(2) to give the dimeric amino-borane [H(2)BNMe(2)](2), when compared with the P(i)Bu(3)-ligated catalyst (ToF 4 h(-1), c.f., 15 h(-1), respectively). The addition of excess MeCN to 1, 2, or 3 results in the displacement of the sigma

  5. Electron transport and nonlinear optical properties of substituted aryldimesityl boranes: a DFT study.

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Pandith

    Full Text Available A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1. The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system.

  6. Catalyst-free dehydrocoupling of amines, alcohols, and thiols with pinacol borane and 9-borabicyclononane (9-BBN).

    Science.gov (United States)

    Romero, Erik A; Peltier, Jesse L; Jazzar, Rodolphe; Bertrand, Guy

    2016-08-18

    Contrary to recent reports, the dehydrocoupling of pinacol borane and 9-borabicyclononane with a variety of amines, alcohols and thiols can be achieved under mild conditions without catalyst. This process involves the formation of Lewis acid-base adducts featuring a hydridic B-H in close proximity to an acidic Nu-H. PMID:27498971

  7. Towards chiral diamines as chiral catalytic precursors for the borane-mediated enantioselective reduction of prochiral ketones

    Indian Academy of Sciences (India)

    Deevi Basavaiah; Utpal Das; Suparna Roy

    2009-11-01

    Two chiral diamines (3)-3-anilinomethyl-1,2,3,4-tetrahydroisoquinoline (1) and (2)-2-anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones thus providing the resulting secondary alcohols in good enantiomeric purities (up to 81% ).

  8. Relations Between Stabilities and Structures of Closo Borane Dianions

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2006-01-01

    An effective method to investigate the stabilities of a series of new closo-BnHn2-(n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and ▲E per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.

  9. Respiratory ammonia output and blood ammonia concentration during incremental exercise

    NARCIS (Netherlands)

    Ament, W; Huizenga, [No Value; Kort, E; van der Mark, TW; Grevink, RG; Verkerke, GJ

    1999-01-01

    The aim of this study was to investigate whether the increase of ammonia concentration and lactate concentration in blood was accompanied by an increased expiration of ammonia during graded exercise. Eleven healthy subjects performed an incremental cycle ergometer test. Blood ammonia, blood lactate

  10. Liberation of ammonia by cyanobacteria

    International Nuclear Information System (INIS)

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog 14C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism

  11. Superovulation, collection and transfer of embryos and demi-embryos from Boran(Bos indicus ) cows and heifers.

    Science.gov (United States)

    Jordt, T; Lorenzini, E

    1988-08-01

    Twenty-three Boran(Bos indicus ) cows and heifers were superovulated with pregnant mare serum gonadotropin (PMSG); a total of four embryos and 4.1 +/- 0.3 (mean +/- SEM) ova per ova-producing donor resulted. Follicle stimulating hormone (FSH-P) was then used to superovulate 49 Boran cows for a total of 106 superovulations, of which 63 (59.4%) produced an average of 3.7 +/- 0.4 (mean +/- SEM) embryos. The embryo production was not influenced by either the season or the number of times(one to five) the cows were superovulated. A higher pregnancy rate was obtained when the selection of Boran recipients was based on their plasma-progesterone values (overall 52.5%, single embryos 63.3%, twin demi-embryos 45.8%) than when they were selected by palpation per rectum only (overall 43.8%, single embryos 50%, twin demi-embryos 36.4%). The twinning rate of twin demiembryos was 62.5%, whereas only single calves were born after transfer of two embryos per recipient. No pregnancies were produced following transfer of twin demi-embryos without zonae pellucidae. Transferring single demi-embryos gave a low pregnancy rate (13.3%). Twelve donor Boran cows (21 superovulations) bred with their fathers resulted in a high rate of early embryonic death; additionally, only 20.9% (overall) of the recipients became pregnant. Estrus synchronization of Boran cows with a progesterone releasing intravaginal device (PRID) for a short period (7 d) combined with one injection of prostaglandin (Day 6) produced a larger number of good quality recipients (70.5%) than using double prostaglandin injections (60%). PMID:16726476

  12. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols

    Science.gov (United States)

    Backes, Anna M.; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-02-01

    In central Europe, ammonium sulphate and ammonium nitrate make up a large fraction of fine particles which pose a threat to human health. Most studies on air pollution through particulate matter investigate the influence of emission reductions of sulphur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. Emission scenarios have been created on the basis of the improved ammonia emission parameterization implemented in the SMOKE for Europe and CMAQ model systems described in part I of this study. This includes emissions based on future European legislation (the National Emission Ceilings) as well as a dynamic evaluation of the influence of different agricultural sectors (e.g. animal husbandry) on particle formation. The study compares the concentrations of NH3, NH4+, NO3 -, sulphur compounds and the total concentration of particles in winter and summer for a political-, technical- and behavioural scenario. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of the total PM2.5 concentrations in northwest Europe. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year. This leads to the conclusion that a reduction of the ammonia emissions from the agricultural sector related to animal husbandry could be more efficient than the reduction from other sectors due to its larger share in winter ammonia emissions.

  13. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment.

    Science.gov (United States)

    Junier, Pilar; Molina, Verónica; Dorador, Cristina; Hadas, Ora; Kim, Ok-Sun; Junier, Thomas; Witzel, Jean-Paul; Imhoff, Johannes F

    2010-01-01

    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.

  14. Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.

    Science.gov (United States)

    Koput, Jacek

    2015-11-15

    The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679

  15. Ammonia in the environment: From ancient times to the present

    International Nuclear Information System (INIS)

    Recent research on atmospheric ammonia has made good progress in quantifying sources/sinks and environmental impacts. This paper reviews the achievements and places them in their historical context. It considers the role of ammonia in the development of agricultural science and air chemistry, showing how these arose out of foundations in 18th century chemistry and medieval alchemy, and then identifies the original environmental sources from which the ancients obtained ammonia. Ammonia is revealed as a compound of key human interest through the centuries, with a central role played by sal ammoniac in alchemy and the emergence of modern science. The review highlights how recent environmental research has emphasized volatilization sources of ammonia. Conversely, the historical records emphasize the role of high-temperature sources, including dung burning, coal burning, naturally burning coal seams and volcanoes. Present estimates of ammonia emissions from these sources are based on few measurements, which should be a future priority. - Past ammonia applications reveal new emphases in biospheric transformations

  16. Computational Search for Improved Ammonia Storage Materials

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Vegge, Tejs;

    . In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature, storage capacity and the price of the elements. The search space includes all alkaline earth, 3d and 4d metals in combination with chloride...

  17. Evaluation of F1 calves sired by Brahman, Boran, and Tuli bulls for birth, growth, size, and carcass characteristics.

    Science.gov (United States)

    Herring, A D; Sanders, J O; Knutson, R E; Lunt, D K

    1996-05-01

    Birth (n = 308), weaning (n = 291), feedlot and carcass (n = 142), and yearling heifer traits (n = 139) were evaluated in F1 calves sired by Brahman (BR), Boran (BO), and Tuli (TU) bulls and born to multiparous Hereford and Angus cows. Calves sired by BR were heaviest (P Brahman crosses had larger (P Carcasses of BR crosses were heavier (P Brahman F1 heifers had larger (P carcass quality traits, but not for carcass yield traits, among these three breeds.

  18. Evaluation of F1 calves sired by Brahman, Boran, and Tuli bulls for birth, growth, size, and carcass characteristics.

    Science.gov (United States)

    Herring, A D; Sanders, J O; Knutson, R E; Lunt, D K

    1996-05-01

    Birth (n = 308), weaning (n = 291), feedlot and carcass (n = 142), and yearling heifer traits (n = 139) were evaluated in F1 calves sired by Brahman (BR), Boran (BO), and Tuli (TU) bulls and born to multiparous Hereford and Angus cows. Calves sired by BR were heaviest (P Brahman crosses had larger (P Brahman F1 heifers had larger (P carcass quality traits, but not for carcass yield traits, among these three breeds.

  19. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...... technology is adopted quicker and that the farm has the right location. It is concluded that the new application process so far has not lived up to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely...

  20. Tritylamine as an Ammonia Surrogate in the Ugi Tetrazole Synthesis

    NARCIS (Netherlands)

    Zhao, Ting; Boltjes, Andre; Herdtweck, Eberhardt; Doemling, Alexander

    2013-01-01

    The role of tritylamine is introduced as a convenient ammonia substitute in the Ugi tetrazole synthesis. Fifteen examples and their mild cleavage products are described In satisfactory to good yields. N-Unsubstituted alpha-aminotetrazoles are important compounds with annotated biological activities,

  1. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M. [University of Tennessee, Department of Chemistry (United States); Eastwood, Eric [Honeywell Kansas City Plant (United States); Lee, Mark E. [University of Missouri (United States); Bowen, Daniel E. [Honeywell Kansas City Plant (United States); Dadmun, M. D., E-mail: dad@utk.edu [University of Tennessee, Department of Chemistry (United States)

    2012-11-15

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A{sub 2}. A{sub 2} obtained from these measurements was then used to calculate {chi}, the solute-solvent interaction parameter, and the Hildebrand solubility parameter, {delta}, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a {chi} less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, {chi}, and {delta}. For instance, lower values of {chi} correspond to a smaller radius of gyration (R{sub g}). A list of suitable solvents based on {delta} is also presented.

  2. Quantifying the thermodynamic interactions of polyhedral boranes in solution to guide nanocomposite fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, M [The University of Tennessee; Eastwood, Eric Allen [ORNL; LeeJr, Mark E [University of Missouri; BowenIII, Daniel E [Honeywell, Inc.; Dadmun, Mark D [ORNL

    2012-01-01

    The solubility of boron containing nanoparticles in a variety of solvents is quantified using static light scattering in conjunction with refractometry. Four polyhedral boranes were tested in this work, using refractometry to obtain dn/dc, while static light scattering quantifies A2. A2 obtained from these measurements was then used to calculate v, the solute solvent interaction parameter, and the ildebrand solubility parameter, d, which provides a quantifiable method to identify good solvents. Of the nanoparticles studied, 1,3-di-o-carboranylpropane is thermodynamically stable in toluene, with a v less than 0.5, a solubility limit of 2.47 mg/mL, and all solutions remaining clear with no visible particle settling. For all of the particles tested, there was good correlation between the physical observations of the solutions, v, and d. For instance, lower values of v correspond to a smaller radius of gyration (Rg). A list of suitable solvents based on d is also presented.

  3. Lattice dynamics of ammonia

    International Nuclear Information System (INIS)

    The frequencies of selected intermolecular modes of vibration and libration in a single crystal of deuterated ammonia (ND3) have been measured by the technique of coherent inelastic neutron scattering, at temperatures of 20 and 95K. The results are compared with the previous optical measurements at the Γ point, and with calculations based on two different models for the intermolecular potential function. A detailed assessment of these data leads to a set of mode frequencies for the Γ, R, and M points. The elastic constants are calculated from the measured acoustic mode dispersion curves propagating along the three major symmetry directions. The existing intermolecular force models are in good qualitative agreement with experiment, but significant discrepancies remain to be resolved by future theoretical refinements. (author)

  4. A Study of Life-type Processes in Liquid Ammonia

    OpenAIRE

    Griffin, Joseph

    2015-01-01

    Liquid ammonia (LNH3) has a number of properties similar to water, such as the ability to dissolve a diverse range of chemical compounds and, based on the variety of chemical reactions in this non-aqueous solvent, speculation has arisen about the possibility of life processes in liquid ammonia. "Life" is difficult to define, but the general consensus is that it is comprised of a variety of individual process that could be regarded as "processes of life", some of which can be modelled withi...

  5. Ammonia Ice Clouds on Jupiter

    Science.gov (United States)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  6. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  7. 21 CFR 573.180 - Anhydrous ammonia.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food... Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly...: (1)(i) The food additive anhydrous ammonia is applied as a component of an aqueous premix...

  8. Bridging η2 -BO in B2(BO)3(-) and B3(BO)3(-) clusters: boronyl analogs of boranes.

    Science.gov (United States)

    Zhai, Hua-Jin; Guo, Jin-Chang; Li, Si-Dian; Wang, Lai-Sheng

    2011-10-01

    Anion photoelectron spectroscopy and theoretical calculations are combined to probe the structures and chemical bonding of two boron-rich oxide clusters, B(5)O(3)(-) and B(6)O(3)(-), which are shown to be appropriately formulated as B(2)(BO)(3)(-) and B(3)(BO)(3)(-), respectively. The anion clusters are found to each possess a bridging η(2)-BO group, as well as two terminal BO groups and are analogs of B(2)H(3)(-) and B(3)H(3)(-). This finding advances the boronyl chemistry and helps establish the isolobal analogy between boron-rich oxide clusters and boranes. PMID:21954002

  9. Solubility of ammonia in rainwater

    OpenAIRE

    G. P. Ayers; Gras, J. L.; Adriaansen, A.; Gillett, R. W.

    2011-01-01

    Partitioning of ammonia between the gaseous and rainwater phases has been investigated at theAustralian Baseline Air Pollution Station during in-situ experiments in which rainwater andammonia gas were sampled concurrently. The relationship between ammonia concentrations inthe gaseous and aqueous phases did not follow either traditional solubility theory based onHenry’s Law, or a recent modified theory that includes secondary equilibria between dissolvedammonia and carbon dioxide.DOI: 10.1111/...

  10. Eficiência microbiana, fluxo de compostos nitrogenados no abomaso, amônia e pH ruminais, em bovinos recebendo dietas contendo feno de capim-tifton 85 de diferentes idades de rebrota Microbial efficiency, abomasal nitrogen compounds flow, ruminal ammonia and ruminal pH in cattle fed diets containing tifton 85 bermudagrass hays at different regrowth ages

    Directory of Open Access Journals (Sweden)

    Karina Guimarães Ribeiro

    2001-04-01

    Full Text Available Avaliaram-se a eficiência de síntese microbiana, o fluxo de compostos nitrogenados no abomaso, o balanço de compostos nitrogenados, a taxa de passagem da digesta ruminal, a concentração de amônia e o pH ruminais, em bovinos recebendo rações contendo feno de capim-tifton 85 de diferentes idades de rebrota. Utilizaram-se quatro animais zebu, com peso médio de 340 kg, fistulados no rúmen e abomaso, distribuídos em um delineamento em quadrado latino 4 x 4. Todas as rações continham 60% de volumoso e 40% de concentrado. O volumoso foi constituído de feno de capim-tifton 85 de 28, 35, 42 e 56 dias de idade e o concentrado continha fubá de milho e mistura mineral. Os microorganismos ruminais foram quantificados utilizando-se as bases purinas como indicador. O pH e N-amoniacal foram mensurados, no fluido ruminal, antes e 2; 4 e 6 horas após o fornecimento da ração. A taxa de passagem foi determinada pelo modelo unicompartimental, utilizando-se o óxido crômico como indicador. As eficiências de síntese microbiana não foram influenciadas pela idade do feno na ração, apresentando valores médios de 31,32 g Nbact/kg MODR; 30,74 g Nbact/kg CHODR; 337,4 g MSbact/kg CHODR; e 12,5 g PBbact/100 g NDT. Estimaram-se máximos fluxos de compostos nitrogenados totais, amoniacais e não-amoniacais, de 119,0; 9,76; e 109,6 g/dia, com a inclusão de feno com 39,7; 37,6; e 39,9 dias de idade, respectivamente, e fluxo de compostos nitrogenados bacterianos de 80,54 g/dia, em média. O balanço de nitrogênio, a taxa de passagem, as concentrações de amônia e o pH ruminais também não foram influenciados pela idade do feno na ração, encontrando-se valores de 30,67 g/dia; 3,2%/h; 9,7 mg/100mL (máximo às 1,38h e 6,08 (mínimo às 6,64h, respectivamente.The microbial efficiency synthesis, the abomasum nitrogen compounds flow, the nitrogen compounds balance, the passage rate of ruminal digest, the ruminal ammonia concentration and ruminal pH in

  11. Global Seabird Ammonia Emissions

    Science.gov (United States)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  12. A rationally designed amino-borane complex in a metal organic framework: A novel reusable hydrogen storage and size-selective reduction material

    KAUST Repository

    Wang, Xinbo

    2015-01-01

    A novel amino-borane complex inside a stable metal organic framework was synthesized for the first time. It releases hydrogen at a temperature of 78 °C with no volatile contaminants and can be well reused. Its application as a size-selective reduction material in organic synthesis was also demonstrated. © The Royal Society of Chemistry 2015.

  13. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  14. Trypanotolerance in N’Dama x Boran crosses under natural trypanosome challenge: effect of test-year environment, gender, and breed composition

    Directory of Open Access Journals (Sweden)

    Orenge Caleb O

    2012-10-01

    Full Text Available Abstract Background Trypanosomosis, a protozoal disease affecting livestock, transmitted by Glossina (tsetse flies is a major constraint to agricultural production in Sub-Saharan Africa. It is accepted that utilization of the native trypanotolerance exhibited in some of the African cattle breeds to improve trypanotolerance of more productive but susceptible breeds, will offer a cost effective and sustainable solution to the problem. The success of this approach is based on the premise that quantitative trait loci previously identified under relatively controlled situations confer useful trypanotolerance under natural field situations. As part of a study to authenticate this hypothesis, a population of 192 cattle, consisting of six batches of N’Dama and Kenya-Boran backcross animals [(N’Dama x Kenya-Boran x Kenya-Boran] born over the period 2002 to 2006 was constructed. Some of the batches also included pure Kenya-Boran cattle, or N’Dama x Kenya- Boran F1 animals. Each batch was exposed as yearlings to natural field trypanosomosis challenge over a period of about one year; the entire challenge period extending from December 2003 to June 2007. Performance of the animals was evaluated by weekly or biweekly measurements of body weight, packed blood cell volume (PCV, parasitemia score, and number of trypanocide treatments. From these basic data, 49 phenotypes were constructed reflecting dynamics of body weight, packed cell volume (PCV and parasitemia under challenge. Results Females were distinctly more trypanotolerant than males. F1, backcross and pure Kenya- Boran animals ranked in that order with respect to trypanotolerance. Overall batch effects were highly significant (p Conclusions The results show that trypanotolerance derived from the N’Dama is expressed under field conditions; and that the trait is primarily additive in nature, being expressed in heterozygous condition and in a three-quarters Boran genetic background. The results

  15. Degradation of spent craft brewer’s yeast by caprine rumen hyper ammonia-producing bacteria

    Science.gov (United States)

    Spent brewer’s yeast has long been included in ruminant diets as a protein supplement. However, modern craft beers often include more hops (Humulus lupulus L.) compounds than traditional recipes. These compounds include alpha and beta-acids, which are antimicrobial to the rumen hyper ammonia-produci...

  16. Assessment of Changes in Microbial Community Structure during Operation of an Ammonia Biofilter with Molecular Tools

    OpenAIRE

    Sakano, Y.; Kerkhof, L.

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotro...

  17. Assessment of global atmospheric ammonia using IASI infrared satellite observations

    OpenAIRE

    M. Van Damme

    2015-01-01

    ENGLISH:The natural nitrogen cycle has been and is significantly perturbed by anthropogenic emissions of reactive nitrogen (Nr) compounds into the atmosphere, resulting from our production of energy and food. In the last century global ammonia (NH3) emissions have doubled and represent nowadays more than half of total the Nr emissions. NH3 is also the principal atmospheric base in the atmosphere and rapidly forms aerosols by reaction with acids. It is therefore a species of high relevance for...

  18. Utilization of urea, ammonia, nitrite, and nitrate by crop plants in a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Huffaker, R. C.; Rains, D. W.; Qualset, C. O.

    1982-01-01

    The utilization of nitrogen compounds by crop plants is studied. The selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots are discussed.

  19. Emissions, sinks and gas to particle conversion of amines and ammonia

    Science.gov (United States)

    Lee, S.

    2015-12-01

    Nitrogen-containing base compounds, amines and ammonia, play important roles in formation of secondary aerosols in the atmosphere, but their sources, sinks and atmospheric transformation processes are not well understood. Also, there are very limited analytical methods that are capable of measuring pptv or sub-pptv level of amines and ammonia. We have developed a chemical ionization mass spectrometer (CIMS) that can detect amines and ammonia at the pptv and sub-pptv level with a 1 min of integration time. Here, we report ambient measurements of amines and ammonia made in a moderately polluted continental site (Kent, Ohio) and in a rural Southeastern U.S. forest (Centreville, Alabama). Our finding indicate that there are much more abundant gas phase amines (C1-C6) and ammonia in the polluted site than in the rural forest, highlighting the importance of constraining anthropogenic emission sources of amines. At both locations, concentrations of these base compounds show clear temperature dependence, indicating strong gas-to-particle conversion processes. Compared to ammonia, amines can partition into aerosol phases even more effectively due to lower saturation vapor pressures. Measurements in the clean rural forest show that transported biomass burning plumes are the major source of amines. These nitrogen-containing compounds effectively undergo wet deposition in the atmosphere due to high solubilities.

  20. DETERMINATION OF AMMONIA IN EAR-LOBE CAPILLARY BLOOD IS AN ALTERNATIVE TO ARTERIAL BLOOD AMMONIA

    NARCIS (Netherlands)

    HUIZENGA, [No Value; GIPS, CH; CONN, HO; JANSEN, PLM

    1995-01-01

    Blood ammonia determination is a laboratory test to diagnose hepatic encephalopathy. Arterial blood is superior to peripheral venous blood ammonia because of ammonia metabolism in muscle. We have compared capillary with arterial whole blood ammonia as capillary sampling is an attractive alternative.

  1. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  2. 46 CFR 154.1760 - Liquid ammonia.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo...

  3. 27 CFR 21.96 - Ammonia, aqueous.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent...

  4. Parameter Optimization on Experimental Study to Reduce Ammonia Escape in CO2 Absorption by Ammonia Scrubbing

    Institute of Scientific and Technical Information of China (English)

    Hao Leng; Jianmin Gao; Mingyue He; Min Xie; Qian Du; Rui Sun; Shaohua Wu

    2016-01-01

    In order to research ammonia escape in CO2 absorption by ammonia scrubbing, ammonia escape was studied in CO2 absorption process using the bubbling reactor in different conditions as gas flow rate, CO2 ratio, absorbent temperature and ammonia concentration and quantity of escaped ammonia was measured by chemical titration. The results indicated that, the amount of ammonia escape can be around 20% of original amount in 90 min and the escaped amount will increase with the rise of gas flow rate, absorbent temperature, concentration of ammonia while decrease as CO2 ratio goes up. Through the analysis of the law of ammonia escape, at the same time, combined with ammonia escape and the influence of the relationship between the CO2 absorption efficiency, reducing ammonia escape working condition parameter optimization is given.

  5. Inhibiting Wet Oxidation of Ammonia

    Science.gov (United States)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  6. Forthcoming Oversupply for Synthetic Ammonia

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhantong

    2007-01-01

    @@ Stable output increase The total capacity of synthetic ammonia in China is 52.0 million t/a today.There are around 540 producers mainly located in Shandong, Shanxi, Hebei,Henan, Jiangsu and Sichuan provinces.The cumulative capacity in Shandong province ranks the highest, accounting for 14.6% of the national total.

  7. Ammonia in power plant emission

    Science.gov (United States)

    Hammerich, Mads; Henningsen, J. O.; Olafsson, Ari

    1990-08-01

    Ammonia monitoring is needed in most schemes for denitrification of power plant emission. In the PALAMON system we use a 500 MHz tunable, single mode, single line, CO2 laser as light source for a low pressure, high temperature, photoacoustic cell. With this cell we can resolve the sR(5,O) line of the ammonia spectrum, and suppress the interfering C02(9R30) absorption line down to a lppm NH3 detection limit. The validity of the measured ammonia concentrations is strongly dependent on details of the sampling system and on the reliability of the calibration routines. In particular calibration with certified mixtures of NH3:N2 has proved insufficient due to the multiple and long time constants caused by adsorption of ammonia to different materials in the system. Presence of water vapor in the gas greatly reduces these time constants. Therefore a number of methods for simple production of moist calibration gases from macroscopic amounts of NH3 are applied. The calibrations are translated to response from an easily managable absorber in order to allow automated recalibration of the photoacoustic response. Data from a field test of the system, and calibration data will be presented.

  8. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    OpenAIRE

    Nakagawa, Tatsunori; Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopu...

  9. Highly sensitive NH3 detection based on organic field-effect transistors with tris(pentafluorophenyl)borane as receptor.

    Science.gov (United States)

    Huang, Weiguo; Besar, Kalpana; LeCover, Rachel; Rule, Ana María; Breysse, Patrick N; Katz, Howard E

    2012-09-12

    We have increased organic field-effect transistor (OFET) NH(3) response using tris(pentafluorophenyl)borane (TPFB) as a receptor. OFETs with this additive could detect concentrations of 450 ppb v/v, with a limit of detection of 350 ppb, the highest sensitivity reported to date for semiconductor films; in comparison, when triphenylmethane (TPM) or triphenylborane (TFB) was used as an additive, no obvious improvement in the sensitivity was observed. These OFETs also showed considerable selectivity with respect to common organic vapors and stability toward storage. Furthermore, excellent memory of exposure was achieved by keeping the exposed devices in a sealed container stored at -30 °C, the first such capability demonstrated with OFETs. PMID:22934620

  10. Dihydrogen activation by frustrated carbene-borane Lewis pairs: an experimental and theoretical study of carbene variation.

    Science.gov (United States)

    Kronig, Sabrina; Theuergarten, Eileen; Holschumacher, Dirk; Bannenberg, Thomas; Daniliuc, Constantin G; Jones, Peter G; Tamm, Matthias

    2011-08-01

    A variety of Lewis acid-base pairs consisting of tris(pentafluorophenyl)borane, B(C(6)F(5))(3), in combination with sterically demanding five- and six-membered N-heterocyclic carbenes (NHCs) of the imidazolin-2-ylidene, imidazolidin-2-ylidene, and tetrahydropyrimidin-2-ylidene types were investigated with respect to their potential to act as frustrated Lewis pairs (FLP) by reaction with dihydrogen (H(2)) and tetrahydrofuran (THF). A sufficient degree of "frustration" was usually established by introduction of a 1,3-di-tert-butyl or 1,3-diadamantyl carbene substitution pattern, which allows an unquenched acid-base reactivity and thus leads to heterolytic dihydrogen activation and ring-opening of THF. In contrast, 1,3-bis(2,6-diisopropylphenyl)-substituted carbenes showed ambiguous behavior, and the corresponding five-membered imidazolin-2-ylidene formed a stable carbene-B(C(6)F(5))(3) adduct, whereas fast C-F activation and formation of a zwitterionic pyrimidinium-fluoroborate was observed for the six-membered tetrahydropyrimidin-2-ylidene. A stable adduct was also isolated for the combination of the acyclic carbene bis(diisopropylamino)methylene with B(C(6)F(5))(3), and consequently no reactivity toward H(2) and THF was observed. To rationalize the reactivity of the carbene-borane Lewis pairs, the thermodynamics of adduct formation with B(C(6)F(5))(3) were calculated for 10 different carbenes; the stability (or instability) of these adducts can be used as a good measure of the degree of "frustration".

  11. Ammonia as efficient fuel for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Fuerte, A.; Valenzuela, R.X.; Escudero, M.J. [CIEMAT, Departamento de Energia, Av. Complutense 22, 28040 Madrid (Spain); Daza, L. [CIEMAT, Departamento de Energia, Av. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-07-01

    Ammonia is a possible candidate as the fuel for SOFCs. In this work, the influence on the performance of a tubular SOFC running on ammonia is studied. Analysis of open circuit voltages (OCVs) on the cell indicated the oxidation of ammonia within a SOFC is a two-stage process: decomposition of the inlet ammonia into nitrogen and hydrogen, followed by oxidation of hydrogen to water. For comparison, cell was also tested with hydrogen as the fuel and air as oxidant at different temperatures showing a similar behaviour. The performance of the cell tested under various conditions shows the high potential of ammonia as fuel for SOFCs. (author)

  12. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet;

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  13. Basics of ammonia slip measurement at the flue gas exit of boilers; Grundlagen zur Ammoniak-Schlupfmessung am Kesselende

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Sascha [IBK-Verfahrenstechnik, Bad Berka (Germany); Krueger, Joerg [VWT Ing.-Buero, Schwandorf (Germany); Karau, Friedrich [Industrieberatung Karau, Wetzlar (Germany)

    2013-09-01

    When using SNCR in WtE-, biomass- and RDF combustion plants, it is not only the reduction rate of nitrogen oxide in the flue gas which is important to control but also the adherence to the limiting values for ammonia slip. Ammonia concentration in the flue gas upstream of stack is of course always in the operators' focus as limiting values have to be hold. Measuring ammonia in the flue gas downstream of boiler is not trivial due to behaviour of ammonia which occurs in bonded state (compounds) in significant amounts also at flue gas temperatures above 400 C. Ammonia compounds can occur on one hand as chemical compounds e.g. to chlorine as ammonium chlorine (chemical bonding) and on the other hand they can occur bonded to surfaces (physically adsorbed). Basic additives of the dry and quasi dry flue gas treatment cause the fractional release of bounded ammonia, therefore, after flue gas treatment, the ammonia slip can be partially measured. (orig.)

  14. Expression of trypanotolerance in N’Dama x Boran crosses under field challenge in relation to N’Dama genome content

    OpenAIRE

    Orenge Caleb; Munga Leonard; Kimwele Charles; Kemp Steve; Korol Abraham; Gibson John; Hanotte Olivier; Soller Morris

    2011-01-01

    Abstract Background Animal trypanosomosis in sub-Saharan Africa is a major obstacle to livestock based agriculture. Control relies on drugs with increasing incidence of multiple-drug resistance. A previous mapping experiment in an F2 population derived from the indigenous trypanotolerant N’Dama cattle crossed to susceptible (Kenya)-Boran cattle under controlled challenge, uncovered a number of trypanotolerance QTL (T-QTL). The present study was to determine expression of N’Dama trypanotoleran...

  15. Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review

    OpenAIRE

    Yuen K Ip; Chew, Shit F.

    2010-01-01

    Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH 4 + transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia thr...

  16. Fiber-Optic Ammonia Sensors

    Science.gov (United States)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  17. Planar waveguide sensor of ammonia

    Science.gov (United States)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  18. Ammonia Process by Pressure Swing Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  19. Ammonia emission from crop residues : quantification of ammonia volatilization based on crop residue properties

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.

    2012-01-01

    This paper gives an overview of available literature data on ammonia volatilization from crop residues. From these data, a relation is derived for the ammonia emission depending on the N-content of crop residue.

  20. Autotrophic ammonia oxidation by soil thaumarchaea

    OpenAIRE

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, bu...

  1. Effect of digestion time on anaerobic digestion with high ammonia concentration

    Science.gov (United States)

    Oktavitri, Nur Indradewi; Purnobasuki, Hery; Kuncoro, Eko Prasetyo; Purnamasari, Indah; Semma Hadinnata, P.

    2016-03-01

    Anaerobic digestion was developed to treat high concentration organic compound efficiently in certain Digestion Time (DT). High ammonia concentration could influenced removal organic compound in digestion. This bench scale study investigated the effect of digestion time on anaerobic batch reactor with high ammonia concentration. Total Ammonia Nitrogen (TAN) concentration was adjusted 4000 and 5000 mg/1, Digestion time was ranged from 0-26 d, operation temperature was ranged from 28-29°C, inoculum was collected from slaughter house sludge. The degradation of Chemical Oxygen Demand (COD) correlated with digestion time. The concentration of TAN from synthetic wastewater contain 5000 mg/1 of TAN more fluctuated than those use 4000 mg/1 of TAN. However, the biogas production from wastewater contained 4000 mg/1 of TAN gradually increased until 24 d of DT. The reactor contain 5000 mg/1 of TAN only growth until 12 d and steady state at over 12 d of digestion time.

  2. Cylinder supplied ammonia scrubber testing in IDMS

    International Nuclear Information System (INIS)

    This report summarizes the results of the off-line testing the Integrated DWPF Melter System (IDMS) ammonia scrubbers using ammonia supplied from cylinders. Three additional tests with ammonia are planned to verify the data collected during off-line testing. Operation of the ammonia scrubber during IDMS SRAT and SME processing will be completed during the next IDMS run. The Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) scrubbers were successful in removing ammonia from the vapor stream to achieve ammonia vapor concentrations far below the 10 ppM vapor exit design basis. In most of the tests, the ammonia concentration in the vapor exit was lower than the detection limit of the analyzers so results are generally reported as <0.05 parts per million (ppM). During SRAT scrubber testing, the ammonia concentration was no higher than 2 ppM and during SME testing the ammonia concentration was no higher than 0.05 m

  3. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH(4) (+) in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea...

  4. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...... to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely 2020 NEC ceiling....

  5. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics........ In contrast to the biological process, the industrial process requires high temperatures and pressures to proceed, and an explanation of this important difference is discussed. The possibility of a metal surface catalyzed process running at low temperatures and pressures is addressed, and DFT calculations...

  6. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol.

    Science.gov (United States)

    Bobermin, Larissa Daniele; Hansel, Gisele; Scherer, Emilene B S; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-12-01

    Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.

  7. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    OpenAIRE

    Alam, M. S.; Ren, G. D.; Lu, L.; Y. Zheng; Peng, X.H.; Jia, Z. J.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion...

  8. Effect of communities of ammonia-oxidizing bacteria on degradation of 17-alpha-ethynylestradiol by nitrifying activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Limpiyakorn, T.; Sermwaraphan, P.; Kurisu, F.

    2009-07-01

    An endocrine disrupting compound, 17-alpha-ethynylestradiol (EE2), is a synthetic estrogen used as a key ingredient in oral contraceptives pill. this persistent organic pollutant, no biodegradable by most microorganisms, is discharged via municipal waste streams to natural receiving waters. Recently, it was found that ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) enriched with high ammonium loads can degrade EE2 via co-metabolism during ammonia oxidation. (Author)

  9. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    Science.gov (United States)

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content.

  10. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    Science.gov (United States)

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. PMID:26967337

  11. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    Science.gov (United States)

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens). PMID

  12. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota.

    Science.gov (United States)

    Weber, Eva B; Lehtovirta-Morley, Laura E; Prosser, James I; Gubry-Rangin, Cécile

    2015-03-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  13. Atmospheric behaviour of ammonia and ammonium.

    NARCIS (Netherlands)

    Asman, W.A.J.

    1987-01-01

    1.4.1 Scope of this thesisA few models for ammonia and ammonium exist. Russell et al. (1983) made a multi-layer Lagrangian transport model describing the transport and formation of ammonium nitrate aerosol for California. They did not take reactions of ammonia and sulphuric acid into account, nor we

  14. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere and str...

  15. Ammonia and hydrogen sulfide removal using biochar

    Science.gov (United States)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  16. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  17. Ammonia Sensor Using Wavelength Modulation Spectroscopy

    KAUST Repository

    Farooq, Aamir

    2015-09-01

    An ammonia sensor can include a laser detector configured to provide stable sample readings. The sensor can implement a method including processing the recorded intensity of the laser beam to determine a first harmonic component and a second harmonic component and the amount of ammonia in the sample.

  18. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults.

    Science.gov (United States)

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2015-12-01

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L(-1) (interquartile range (IQR), 3-18) versus 46 μmol L(-1) (IQR, 23-66) for cirrhotic participants. Median breath ammonia was 379 pmol mL(-1) CO2 (IQR, 265-765) for healthy versus 350 pmol mL(-1) CO2 (IQR, 180-1013) for cirrhotic participants. CV was 17  ±  6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia.

  19. Amines and Ammonia Measured in the Southeastern U.S. Forest during the 2013 SOAS Field Campaign

    Science.gov (United States)

    Lee, S.; You, Y.; Sierra-Hernández, M.; Baumann, K.; Fry, J.; Allen, H.; Draper, D. C.; Edgerton, E.

    2013-12-01

    Amines and ammonia play critical roles in new particle formation, via acid-base reactions at the initial stage of aerosol nucleation. Nitrogen base compounds are important for SOA formation, via formation of salts and condensation of amine photo-oxidation products; they also contribute to the formation of brown organic aerosols. Amines and ammonia can change the acidity and physical state of aerosols to further affect SOA yields. During the Southern Oxidant and Aerosol Study (SOAS) campaign in Centerville, Alabama from June 1 to July 15, 2013, amines and ammonia were simultaneously measured with a chemical ionization mass spectrometer (CIMS) by Kent State University [Yu and Lee, 2012: Environ. Chem. 9, 190-201]. The sensitivity of the CIMS was in the range of 5-10 Hz ion signals for 1 pptv of a base compound, which ultimately allows for the fast-time response detection (less than 1 minute) of ammonia and amines at the pptv level. Additionally, ammonia was also detected with another two independent methods, MARGA (Measuring AeRosols and Gases) by Reed College, and chemiluminescence by ARA. Ammonia concentrations measured by CIMS, MARGA and chemiluminescence were at the ppbv and sub-ppbv level. Over the 6 weeks of the SOAS field study, these three ammonia instruments consistently showed very similar time variations and agreed reasonably well. The CIMS also detected various C1 through C6 amines at the pptv and tens pptv level. Trimethylamine (C3 amine) and ammonia showed similar diurnal trends, temperature and wind direction dependences for most days, implying common natural emission sources of these two base compounds at this forest site. On the other hand, methylamine (C1) and dimethylamine (C2) were much lower than trimethylamine and they did not show clear diurnal variations and temperature dependences. During the brief episode of local biomass burning, concentrations of C3 through C6 amines and ammonia increased rapidly, while methylamine and dimethylamine were

  20. Low-cost anodes for ammonia electrooxidation

    Science.gov (United States)

    Selverston, Steven M.

    This research focused on the development of low-cost electrodes for the electrochemical oxidation of ammonia to nitrogen, a reaction that has possible applications in hydrogen generation, direct ammonia fuel cells, water treatment, and sensors. Statistical design of experiments was used to help develop an efficient and scalable process for electrodeposition of platinum with a specific electrochemical surface area of over 25 m2 /g. Catalyst surface area and activity were evaluated using cyclic voltammetry, and the material microstructure and morphology were investigated using x-ray diffraction and scanning electron microscopy. The synthesized electrodes were found to be active toward the ammonia electrooxidation reaction, particularly when supporting electrolyte was added. However, supporting electrolyte was not required in order to oxidize the ammonia. As proof of concept, a homemade direct ammonia fuel cell employing a commercial anion exchange membrane was tested at room temperature with gravity-fed fuel and without supporting electrolyte. At room temperature, with passive reactant supply and using dissolved oxygen at the cathode, the cell produced about one quarter the power of a direct methanol fuel cell that used active transport of humidified oxygen and preheated (50 °C) methanol. With continued development of the membrane, cathode and membrane electrode assembly, the passive direct ammonia fuel cell using anion exchange membrane could have performance similar to the equivalent direct methanol fuel cell, and it could benefit from many advantages of ammonia over methanol such as lower cost, higher energy density, and reduced greenhouse gas emissions.

  1. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  2. Ammonia synthesis using magnetic induction method (MIM)

    Science.gov (United States)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  3. Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: a possible link between colon mucosa and liver ureagenesis.

    Science.gov (United States)

    Eklou-Lawson, Mamy; Bernard, Françoise; Neveux, Nathalie; Chaumontet, Catherine; Bos, Cécile; Davila-Gay, Anne-Marie; Tomé, Daniel; Cynober, Luc; Blachier, François

    2009-10-01

    The highest ammonia concentration in the body is found in the colon lumen and although there is evidence that this metabolite can be absorbed through the colonic epithelium, there is little information on the capacity of the colonic mucosa to transfer and metabolize this compound. In the present study, we used a model of conscious pig with a canula implanted into the proximal colon to inject endoluminally increasing amounts of ammonium chloride and to measure during 5 h the kinetics of ammonia and amino acid concentration changes in the portal and arterial blood. By injecting as a single dose from 1 to 5 g ammonia into the colonic lumen, a dose-related increase in ammonia concentration in the portal blood was recorded. Ammonia concentration remained unchanged in the arterial blood except for the highest dose tested, i.e. 5 g which thus apparently exceeds the hepatic ureagenesis capacity. By calculating the apparent net ammonia absorption, it was determined that the pig colonic epithelium has the capacity to absorb 4 g ammonia. Ammonia absorption through the colonic epithelium was concomitant with increase of L-glutamine and L-arginine concentrations in the portal blood. This coincided with the expression of both glutamate dehydrogenase and glutamine synthetase in isolated colonic epithelial cells. Since L-glutamine and L-arginine are known to represent activators for liver ureagenesis, we propose that increased portal concentrations of these amino acids following increased ammonia colonic luminal concentration represent a metabolic link between colon mucosa and liver urea biosynthesis.

  4. Influence of Biopolym Granulat effects on reductionof ammonia concentration in stables of intensive farm animals breeding

    Directory of Open Access Journals (Sweden)

    Bohuslav Čermák

    2014-11-01

    Full Text Available The living environment distress is connected currently not only with industrial production but also agriculture is biggest producer of toxic gas – ammonia (NH3 .Emissions of that gas originate mainly in the farm animals breeding and generate within storage and handling with farmyard manure, slurry, poultry excrements and litter. Agriculture influences considerably landscape. has impact on basic effect on soil, water and air. In assessing experiment the preparation Biopolym Granulat rumen metabolism and N-balance was found positive effects in terms of increased ammonia nitrogen, the number of ciliates and the reduction of N-compounds in feces. Confirmed the impact on the ammonia content in well-ventilated dairy stable. The economic evaluation depends on the exercise price of milk.

  5. THE EVOLUTION OF BIOCHEMICAL OXIDATION OF AMMONIA IONS IN SMALL RIVERS WATER

    Directory of Open Access Journals (Sweden)

    Elena Mosanu

    2010-06-01

    Full Text Available Nitrification is the oxidation of ammonia to nitrate, via nitrite and it occupies a central position within the global nitrogen cycle. Nitrifying bacteria are the organisms capable of converting the most reduced form of nitrogen, ammonia, to the most oxidized form, nitrate, but their activity is influenced by pollution level. Starting with the assumption that pollution of small internal water courses in the Republic of Moldova remained severe (phenols, detergents and copper regularly exceed the MACs the work presented in the paper discusses the evolution of ammonia ions nitrification in the water of river Prut tributaries and its correlation with the content of pollutants in water: surface-active substances, Cu, BOD5, COD and other compounds.

  6. Molecular Characterization of Soil Ammonia-Oxidizing Bacteria Based on the Genes Encoding Ammonia Monooxygenase

    OpenAIRE

    Alzerreca, Jose Javier

    1999-01-01

    Ammonia-oxidizing bacteria (AOB) are chemolithotrophs that oxidize ammonia/ammonium to nitrite in a two-step process to obtain energy for survival. AOB are difficult to isolate from the environment and iso lated strains may not represent the diversity in soil. A genetic database and molecular tools were developed based on the ammonia monooxygenase (AMO) encoding genes that can be used to assess the diversity of AOB that exist in soil and aquatic environments without the isolation of pure cult...

  7. INDUCCIÓN DE FENILALANINA AMONIO LIASA Y VARIACIÓN EN EL CONTENIDO DE COMPUESTOS FENÓLICOS EN FRUTOS DE LULO (Solanum quitoense Lam INFECTADOS CON Colletotrichum acutatum. Induction of phenylalanine ammonia lyase and variation in phenolic compounds content in Lulo fruits (Solanum quitoense Lam infected by Colletotrichum acutatum

    Directory of Open Access Journals (Sweden)

    MAIRA ANDREA ARRIETA-GUEVARA

    Full Text Available Se evaluó la dinámica de la actividad fenilalanina amonio liasa (PAL en corteza de frutos de lulo (Solanum quitoense Lam con el fin de determinar su participación en respuestas bioquímicas hacia Colletotrichum acutatum. Se establecieron como mejores condiciones para la extracción de la enzima, buffer ácido bórico-borato de sodio 0.1M pH 8.8, 1% SDS, 3% PVPP y para medir la actividad, sustrato L-fenilalanina 5 mM , pH 8,0, 20°C , 30 ΜL de extracto y 45 min. Se realizó un ensayo in vivo usando frutos en tres estados de madurez, los cuales fueron inoculados con el patógeno o tratados con agua estéril. A cinco tiempos (hpi = horas post-infección se determinó la actividad PAL y el contenido total de fenoles, encontrándose que hay una respuesta diferencial de la enzima por efecto del patógeno y por el estado de madurez. Para frutos en el estado pintón se obtuvo el mayor aumento de PAL, el que perduró hasta 48 hpi, al compararlo con los controles y con los otros dos estados de madurez. Este aumento mostró relación con un marcado incremento en el contenido total de fenoles y con el desarrollo más tardío de síntomas característicos de antracnosis, observado para los frutos pintones. Estos resultados permiten postular, una posible relación positiva entre inducción de PAL, aumento de fenólicos y respuesta de tolerancia a C. acutatum. Para lulos en estado verde y maduro se observó aumento de PAL a 12 y 24 hpi que coincidió también con incremento en el contenido de fenoles totales, aunque para estos dos últimos estados dicho contenido disminuyó significativamente a tiempos mayores.Phenylalanine ammonia lyase (PAL activity induction was evaluated in lulo fruits to determine the role of this enzyme in biochemical responses towards the pathogen Colletotrichum acutatum. We studied the experimental conditions to obtain the enzyme, using lulo peel, and found that the best conditions for extraction were buffer of boric acid

  8. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  9. Physiological plasticity of the thermophilic ammonia oxidizing archaeon Nitrosocaldus yellowstonii in response to a changing environment

    Science.gov (United States)

    Jewell, T.; Johnson, A.; Gelsinger, D.; de la Torre, J. R.

    2012-12-01

    Our understanding of nitrogen biogeochemical cycling in high temperature environments underwent a dramatic revision with the discovery of ammonia oxidizing archaea (AOA). The importance of AOA to the global nitrogen cycle came to light when recent studies of marine AOA demonstrated the dominance of these organisms in the ocean microbiome and their role as producers of the greenhouse gas nitrous oxide (N2O). Understanding how AOA respond to fluctuating environments is crucial to fully comprehending their contribution to global biogeochemical cycling and climate change. In this study we use the thermophilic AOA Nitrosocaldus yellowstonii strain HL72 to explore the physiological plasticity of energy metabolism in these organisms. Previous studies have shown that HL72 grows autotrophically by aerobically oxidizing ammonia (NH3) to nitrite (NO2-). Unlike studies of marine AOA, we find that HL72 can grow over a wide ammonia concentration range (0.25 - 10 mM NH4Cl) with comparable generation times when in the presence of 0.25 to 4 mM NH4Cl. However, preliminary data indicate that amoA, the alpha subunit of ammonia monooxygenase (AMO), is upregulated at low ammonia concentrations (urea transporter. Urea ((NH2)2CO) is an organic compound ubiquitous to aquatic and soil habitats that, when hydrolyzed, forms NH3 and CO2. We examined urea as an alternate source of ammonia for the ammonia oxidation pathway. HL72 grows over a wide range of urea concentrations (0.25 - 10 mM) at rates comparable to growth on ammonia. In a substrate competition experiment HL72 preferentially consumed NH3 from NH4Cl when both substrates were provided in equal molar concentrations. However, the urease alpha subunit ureC was expressed in both the presence and absence of urea. One consequence of urea hydrolysis is consumption of intracellular protons during the reaction. As ammonia oxidation produces H+, leading to a decrease in pH, the hydrolysis of urea prior to ammonia oxidation may help alleviate

  10. Phase behaviour and thermoelastic properties of ammonia hydrate and ice polymorphs from 0 - 2 GPa

    Science.gov (United States)

    Fortes, A. D.; Wood, I. G.; Vocadlo, L.

    2008-12-01

    Ammonia remains amongst the most plausible planetary "antifreeze" agents, and its physical properties in hydrate compounds under the appropriate conditions (roughly 0 - 5 GPa, 100 - 300 K) must be known in order for it to be accommodated in planetary models. The pressure melting curve, and the expected polymorphism of the stoichiometric ammonia hydrates have implications for the internal structure of large icy moons like Titan, leading to phase layering and the possible persistence of deep subsurface oceans, the latter being sites of high astrobiological potential. Aqueous ammonia is also a candidate substance involved in cryomagmatism on Titan, and again the melting behaviour, and densities of liquids and solids, in the ammonia-water system must be known to model properly the partial melting and propagation of magma. We describe the results of a series of powder neutron diffraction experiments over the range 0 - 2.0 GPa, 150 - 280 K which were carried out with the objective of determining the phase behaviour and thermoelastic properties of ammonia dihydrate. In addition to the low-pressure cubic crystalline phase, ADH I, we have identified two closely related monoclinic polymorphs of ammonia dihydrate (ADH IIa and IIb) in the range 0.45 - 0.60 GPa (at 175 K), and have determined that this phase dissociates to a mixture of ammonia monohydrate phase II and ice II when warmed to ~190 K, which in turn melts at a binary eutectic at ~196 K; AMH II has a large (Z = 16) orthorhombic unit cell. Above 0.60 GPa, an orthorhombic polymorph of ammonia dihydrate, which we have referred to previously as ADH IV, persists to pressures > 3 GPa, and appears to be the liquidus phase over this whole pressure range. We have observed this phase co- existing with both ice II and ice VI. Here we describe the most plausible synthesis of the high-pressure phase diagram which explains our observations, and provide measurements of the densities, thermal expansion, bulk moduli, and crystal

  11. Ammonia measurement with a pH electrode in the ammonia/urea-SCR process

    Science.gov (United States)

    Kröcher, Oliver; Elsener, Martin

    2007-03-01

    The selective catalytic reduction of nitrogen oxides with ammonia (ammonia SCR) and urea (urea SCR), respectively, is a widespread process to clean flue and diesel exhaust gases due to its simplicity and efficiency. The main challenge of the process is to minimize the ammonia emissions downstream of the SCR catalyst. We found that ammonia emissions of >10 ppm can reliably be detected with a simple pH electrode in the presence of CO2, SOx, NOx, and moderately weak organic acids. 10-20 ppm of ammonia in the exhaust gas are sufficient to neutralize the acids and to increase the pH value from 3 to 6. On this basis a continuous measuring method for ammonia was developed, which was used to control the dosage of urea in the SCR process. While keeping the ammonia emissions after the SCR catalyst at 5-30 ppm an average NOx removal efficiency (DeNOx) of >95% were achieved at a diesel test rig. The method can also be applied for exhaust gases with higher acid contents, if a basic pre-filter is added adsorbing the acidic exhaust components. Compared to water as absorption solution, more precise ammonia measurements are possible, if a 0.1 M NH4Cl absorption solution is applied, whose pH value is changing as a Nernst function of the ammonia concentration.

  12. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones. PMID:25797330

  13. Assimilation of ammonia in Paracoccus denitrificans.

    Science.gov (United States)

    Mikes, V; Chválová, H; Mátlová, L

    1991-01-01

    Two pathways serve for assimilation of ammonia in Paracoccus denitrificans. Glutamate dehydrogenase (NADP+) catalyzes the assimilation at a high NH4+ concentration. If nitrate serves as the nitrogen source, glutamate is synthesized by glutamate-ammonia ligase and glutamate synthase (NADPH). At a very low NH4+ concentration, all three enzymes are synthesized simultaneously. No direct relationship exists between glutamate dehydrogenase (NADP+) and glutamate-ammonia ligase in P. denitrificans, while the glutamate synthase (NADPH) activity changes in parallel with that of the latter enzyme. Ammonia does not influence the induction or repression of glutamate dehydrogenase (NADP+). The inner concentration of metabolites indicates a possible repression of glutamate dehydrogenase (NADP+) by the high concentration of glutamine or its metabolic products as in the case when NH4+ is formed by assimilative nitrate reduction. No direct effect of the intermediates of nitrate assimilation on the synthesis of glutamate dehydrogenase (NADP+) was observed. PMID:1688163

  14. Ammonia transformation in a biotrickling air filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Nielsen, Marie Louise; Andersen, Mathias;

    2007-01-01

    measurements and model was obtained by using conventional substrate and inhibition kinetics of ammonium and nitrite oxidizing bacteria. Highest rates of ammonia removal were observed in the central section of the filter. Near the air outlet and water inlet the process was ammonia limited, while high nitrous...... acid concentrations almost excluded any biological activity near the air inlet and water outlet. Nitrous acid inhibition also stabilized pH at 6.5-7 all through the filter. Being sensitive to both ammonia and nitrous acid the nitrite oxidation process occurred mainly in the filter sections near the air...... outlet / water inlet, and only 8% of the nitrite was turned into nitrate. Water supply only exceeded evaporation by 20% but modelling indicated that additional watering would have limited effect on filter efficiency. The filter was also robust to varying loading, as a 4-fold increase in ammonia inlet...

  15. Ultrafast dynamics of electrons in ammonia.

    Science.gov (United States)

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron. PMID:25493716

  16. Ammonia Affects Astroglial Proliferation in Culture.

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    Full Text Available Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis.

  17. Sanitisation of faecal sludge by ammonia

    OpenAIRE

    Fidjeland, Jörgen

    2015-01-01

    Faecal sludge contains valuable plant nutrients and can be used as a fertiliser in agriculture, instead of being emitted as a pollutant. As this involves a risk of pathogen transmission, it is crucial to inactivate the pathogens in faecal sludge. One treatment alternative is ammonia sanitisation, as uncharged ammonia (NH₃) inactivates pathogens. The aim of this thesis was to study how the pathogen inactivation depends on treatment factors, mainly NH₃ concentration, temperature and storage tim...

  18. Study of Ammonia Emissions in a Ventilated Pig Pen

    OpenAIRE

    Rong, Li

    2011-01-01

    Pig productions cause a wide emission of odors, such as ammonia (NH3), hydrogen sulfide (H2S), and methane (CH4). Ammonia is one of the most important emissions for evaluating the air quality either in animal buildings or atmospheric environment. In studies of ammonia emission from animal buildings reported in literature, little effort has been made to investigate the accuracy of current Henry’s law constant for modeling ammonia mass transfer process and study ammonia emissions in a full scal...

  19. On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber

    CERN Document Server

    Bianchi, F; Mathot, S; Baltensperger, U

    2012-01-01

    A new instrument for the on-line determination of ammonia was developed. Since ammonia is a rather sticky compound, sampling losses were minimised with a new sam- pling device where the ammonia was transferred to the liq- uid phase only 5 mm after the inlet tip. The liquid phase was then analyzed by long pathlength absorption spectrophotom- etry using the Berthelot reaction with phenol and hypochlo- rite as reagents. The measurements were made during the CLOUD3 campaign at CERN where the influence of ammo- nia on the nucleation rate was studied. At stable conditions the detection limit reached with this instrument was 35 pptv (air flow rate of 2 l min − 1 , liquid flow rate of 0.3 ml min − 1 ), although occasionally the instrument was affected by back- ground problems. The range of mixing ratios during this campaign was varied from the background contamination ( < 35 pptv) up to around 2 ppbv. The measured ammonia concentration was correlated with the rate of ammonia in- jected into the chamber, but wi...

  20. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    Science.gov (United States)

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-01

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation. PMID:27046099

  1. Corrosion inhibitor for aqueous ammonia absorption system

    Science.gov (United States)

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  2. Using ammonia as a sustainable fuel

    Science.gov (United States)

    Zamfirescu, C.; Dincer, I.

    In this study, ammonia is identified as a sustainable fuel for mobile and remote applications. Similar to hydrogen, ammonia is a synthetic product that can be obtained either from fossil fuels, biomass, or other renewable sources. Some advantages of ammonia with respect to hydrogen are less expensive cost per unit of stored energy, higher volumetric energy density that is comparable with that of gasoline, easier production, handling and distribution with the existent infrastructure, and better commercial viability. Here, the possible ways to use ammonia as a sustainable fuel in internal combustion engines and fuel-cells are discussed and analysed based on some thermodynamic performance models through efficiency and effectiveness parameters. The refrigeration effect of ammonia, which is another advantage, is also included in the efficiency calculations. The study suggests that the most efficient system is based on fuel-cells which provide simultaneously power, heating and cooling and its only exhaust consists of water and nitrogen. If the cooling effect is taken into consideration, the system's effectiveness reaches 46% implying that a medium size car ranges over 500 km with 50 l fuel at a cost below 2 per 100 km. The cooling power represents about 7.2% from the engine power, being thus a valuable side benefit of ammonia's presence on-board.

  3. Livestock wastewater treatment: ammonia removal

    International Nuclear Information System (INIS)

    Livestock wastewater contains high concentration of ammonia. Removal of this inorganic species of nitrogen could be achieved through nitrification and de-nitrification. Nitrification process was conducted in the laboratory using activated sludge process with HRT of three and five days. After wastewater undergone nitrification process at Livestock Wastewater Treatment Plant the concentration of influent for N-NH4+ reduced from 400 mg/l to 0 mg/l and concentration of N-NO3- increased from 11 mg/l to 300 mg/l. Nitrification using lab-scale activated sludge process also recorded similar result. Concentration of N-NH4+ reduced from 400 mg/l to 2 mg/l and 380 mg/l to 1.1 mg/l for HRT=5 days and HRT=3 days respectively. N-NO3- was increased from 11 mg/l to 398 mg/l and 14 mg/l to 394 mg/l for HRT=5 days and HRT=3 days, respectively. However changes of N-NH4+ and N=NO3- were not observed using gamma irradiation. The combination of gamma irradiation with activated sludge process indicated difference and its contribution is still investigated

  4. Aqua ammonia 15 N obtaining and application with vainness for sugar-cane fertilization

    International Nuclear Information System (INIS)

    Nitrogen compounds marked with the isotope 15 N are continuously being used in agronomic studies and, when associated to the isotopic dilution technique, they constitute an important tool in clarifying the N cycle. At the Centro de Energia Nuclear na Agricultura (CENA/USP), it was obtained ( 15 NH4)2SO4 enhanced at 3,5% of 15 N atoms, by means of the ionic exchange chromatography technique, which made possible to produce aqua ammonia (15 NH3aq). Four repetitions were taken to the aqua ammonia production process to use the nitrogen compound in the field experiment. In each process 150g of ammonium sulfate enhanced at 3,5% of 15 N atoms was used, obtaining 31,0 ± 1,6 g of aqua ammonia on the average (80% yield), with the same enhancement. The incidence of isotopic dilution has not been observed during the procedure, what made the use of such methodology possible. After obtaining the aqua ammonia 15 N through this procedure, it was added to the vinasse (an equivalent to 50 m3 ha-1 ) in doses that corresponded to 70 kg ha-1 of N-NH3aq. The mixture was applied to the sugar-cane straw on the soil's surface, aimed to the crop's fertilization. The compound's isotopic composition was analyzed by means of a spectrometer of masses ANCA-SL Europe Scientific, while the total-N volatilized, by the micro-Kjeldahl. Method. In accordance to the low NH3 (6,4 ± 1,9 kg ha-1 ) volatilization results, it could be concluded that the application of vinasse and aqua ammonia mixture to the straw on the soil's surface was efficient, due to the vinasse's acid character, which allowed the NH3, in presence of the ion H+, to stay in the NH4+ form in solution. (author)

  5. Complex-compound low-temperature TES system

    Energy Technology Data Exchange (ETDEWEB)

    Rockenfeller, U. [Rocky Research, Boulder City, NV (United States)

    1989-03-01

    Development of a complex-compound low-temperature TES system is described herein from basic chemical principles through current bench scale system development. Important application engineering issues and an economic outlook are addressed as well. The system described uses adsorption reactions between solid metal inorganic salts and ammonia refrigerant. It is the coordinative nature of these reactions that allows for storage of ammonia refrigerant within the solid salt crystals that function as a chemical compressor during on peak periods (substituting the mechanical compressor) and release ammonia during off peak periods while a mechanical vapor compression system provides the necessary reactor pressure and heat.

  6. Aqueous ammonia process for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Darde, V.; Thomsen, K.; Stenby, E.H. (Technical Univ. of Denmark, Dept. of Chemical and Biochemical Engineering, Kgs. Lyngby (Denmark)); Well, W.J.M. van (DONG Energy Power, Chemical and Materials Dept (Denmark))

    2009-09-15

    This work deals with the study of a post combustion carbon dioxide capture process using aqueous solutions of ammonia as solvent. Amine solutions have been commonly used for the commercial production of CO{sub 2}. The main disadvantage related to the use of amine solutions is the high energy consumption (3.5 - 4 GJ/ton CO{sub 2}) and the high degradation rate of the amines. The heat of absorption of carbon dioxide by ammonia is significantly lower than for alkanolamines. Hence, this process shows good perspectives. However, a scientific understanding of the processes is required. In order to simulate and optimize the process, a thermodynamic model for the system is required. The properties of the NH{sub 3}-CO{sub 2}-H{sub 2}O system were previously modeled using the Extended UNIQUAC electrolyte model in the temperature range from 0 to 110 deg. C, the pressure range from 0 to 100 bars and for a molality of ammonia up to approximately 80. In this work, the validity of this model was extended up to 150 deg. C. Also additional data for the enthalpy of partial evaporation and speciation data were used. The equilibrium composition and enthalpy of the different streams of the process have been studied, based on the information from a patent. The results show that solid phases consisting of ammonium carbonate compounds are formed in the absorber. It also shows that the pure CO{sub 2} stream that leaves the stripper is pressurized. The energy requirements in the absorber and in the desorber have been studied. An energy consumption in the desorber lower than 2 GJ/ton CO{sub 2} can be reached. (au)

  7. Development of compound layer during nitriding and nitrocarburising

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    2010-01-01

    The development of the compound layer during gaseous nitriding and nitrocarburising of Fe-based material is described. The first nucleation of the compound layer at the surface depends on the competition between dissociation of ammonia and the removal nitrogen from the surface by solid state...

  8. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    Science.gov (United States)

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater.

  9. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  10. Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels

    Directory of Open Access Journals (Sweden)

    Takeharu Hasegawa

    2010-03-01

    Full Text Available From the viewpoints of securing a stable supply of energy and protecting our global environment in the future, the integrated gasification combined cycle (IGCC power generation of various gasifying methods has been introduced in the world. Gasified fuels are chiefly characterized by the gasifying agents and the synthetic gas cleanup methods and can be divided into four types. The calorific value of the gasified fuel varies according to the gasifying agents and feedstocks of various resources, and ammonia originating from nitrogenous compounds in the feedstocks depends on the synthetic gas clean-up methods. In particular, air-blown gasified fuels provide low calorific fuel of 4 MJ/m3 and it is necessary to stabilize combustion. In contrast, the flame temperature of oxygen-blown gasified fuel of medium calorie between approximately 9–13 MJ/m3 is much higher, so control of thermal-NOx emissions is necessary. Moreover, to improve the thermal efficiency of IGCC, hot/dry type synthetic gas clean-up is needed. However, ammonia in the fuel is not removed and is supplied into the gas turbine where fuel-NOx is formed in the combustor. For these reasons, suitable combustion technology for each gasified fuel is important. This paper outlines combustion technologies and combustor designs of the high temperature gas turbine for various IGCCs. Additionally, this paper confirms that further decreases in fuel-NOx emissions can be achieved by removing ammonia from gasified fuels through the application of selective, non-catalytic denitration. From these basic considerations, the performance of specifically designed combustors for each IGCC proved the proposed methods to be sufficiently effective. The combustors were able to achieve strong results, decreasing thermal-NOx emissions to 10 ppm (corrected at 16% oxygen or less, and fuel-NOx emissions by 60% or more, under conditions where ammonia concentration per fuel heating value in unit volume was 2.4 × 102 ppm

  11. Tris[(1,4,7,10,13,16-hexaoxacyclooctadecanerubidium] heptaantimonide–ammonia (1/4

    Directory of Open Access Journals (Sweden)

    Fabian Mutzbauer

    2011-11-01

    Full Text Available The crystal structure of the title compound, [Rb(C12H24O6]3[Sb7]·4NH3, fills the gap between the already known Zintl anion ammoniates {[Cs(18-crown-6]3Sb7}2·9NH3 [Wiesler (2007. Dissertation, Universität Regensburg, Germany] and [K(18-crown-6]3Sb7·4NH3 [Hanauer (2007. Dissertation, Universität Regensburg, Germany]. As in the two known compounds, the antimony cage anion in this crystal structure is coordinated by three alkali cations. The coordination spheres of each of the cations are saturated by 18-crown-6 molecules. The ammonia molecules of crystallization are situated between the crown ethers. The neutral, molecular [Rb(18-crown-6]3Sb7 units are interconnected by multiple dipole–dipole interactions between ammonia and 18-crown-6.

  12. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas;

    of the current study was to isolate and identify methanogenic cultures tolerant to high ammonia concentrations. A mixed methanogenic population was stepwise exposed to ammonia concentrations (1 to 9.26 g NH4+-N L-1) during an enrichment process with successive batch cultivations. The methanogenic population...... was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to determine...... microbial community composition. The outcome of the enrichment process was a mesophilic aceticlastic methanogenic enriched culture able to withstand high ammonia loads and utilize acetate and form methane stoichiometrically. FISH analysis showed that the methanogens of the enriched culture belonged...

  13. Effect of dietary protein restriction on renal ammonia metabolism.

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Guo, Hui; Verlander, Jill W; Weiner, I David

    2015-06-15

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  14. Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case

    OpenAIRE

    Sanz-Cobena, A.; Lassaletta, L.; Estellés, F.; Del Prado, A; Guardia, G.; Abalos, D.; Aguilera, E.; Pardo, G.; Vallejo, A.; Sutton, M. A.; Garnier, J.; Billen, G

    2014-01-01

    International audience Synthetic nitrogen (N) fertilizer and field application of livestock manure are the major sources of ammonia (NH3) volatilization. This N loss may decrease crop productivity and subsequent deposition promotes environmental problems associated with soil acidification and eutrophication. Mitigation measures may have associated side effects such as decreased crop productivity (e. g. if N fertilizer application is reduced), or the release of other reactive N compounds (e...

  15. Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas;

    2010-01-01

    Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH3) and other volatile compounds during storage. The occurrence of NO2- and NO3- in the crusts indicate the presence of actively metabolizing NH3 oxidizing bacteria (AOB) which may...... varied from nitrifying activity could only be detected in old natural crusts and young straw crust with high O2...

  16. 75 FR 28014 - Petitions Concerning Whether Ammonia or Urea Sold or Distributed and Used for Certain Purposes...

    Science.gov (United States)

    2010-05-19

    ... minimize the production of other by-products of water disinfection by reducing the reactivity of chlorine... use with chlorine in water treatment are in violation of FIFRA. The Nalco petition stated that, in... interim statement that the sale of ammonia-based compounds for use with chlorine in water systems...

  17. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe

    Science.gov (United States)

    Hendriks, C.; Kranenburg, R.; Kuenen, J. J. P.; Van den Bril, B.; Verguts, V.; Schaap, M.

    2016-04-01

    Accurate modelling of mitigation measures for nitrogen deposition and secondary inorganic aerosol (SIA) episodes requires a detailed representation of emission patterns from agriculture. In this study the meteorological influence on the temporal variability of ammonia emissions from livestock housing and application of manure and fertilizer are included in the chemistry transport model LOTOS-EUROS. For manure application, manure transport data from Flanders (Belgium) were used as a proxy to derive the emission variability. Using improved ammonia emission variability strongly improves model performance for ammonia, mainly by a better representation of the spring maximum. The impact on model performance for SIA was negligible as explained by the limited, ammonia rich region in which the emission variability was updated. The contribution of Flemish agriculture to modelled annual mean ammonia and SIA concentrations in Flanders were quantified at respectively 7-8 and 1-2 μg/m3. A scenario study was performed to investigate the effects of reducing ammonia emissions from manure application during PM episodes by 75%, yielding a maximum reduction in modelled SIA levels of 1-3 μg/m3 during episodes. Year-to-year emission variability and a soil module to explicitly model the emission process from manure and fertilizer application are needed to further improve the modelling of the ammonia budget.

  18. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum pr

  19. Aqueous Ammonia soaking of digested manure fibers

    DEFF Research Database (Denmark)

    Mirtsou-Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis;

    2012-01-01

    -scale anaerobic digester to enhance their methane productivity. Soaking in six different reagent concentrations in ammonia (5%, 10%, 15%, 20%, 25%, 32%) was applied for 3 days at 22°C. An overall methane yield increase from 85% to 110% was achieved compared to controls (digested manure fibers where AAS...... in methane yield as the highest concentrations tested; it is anticipated that this will result to an even lower cost for recovery and recycling of ammonia in full-scale. Moreover, the effect of 1, 3, and 5 days AAS treatment on methane production from digested fibers was investigated with 5 and 25% w...

  20. Structure of Ramie Treated by Liquid Ammonia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The morphology and supermolecular structures of the scoured/bleached ramie and scoured/bleached/liquid ammonia treated ramie were studied by means of scanning electron microscope, X-ray diffractometer, reverse gel permeation chromatography, etc. The results indicate that liquid ammonia treatment of the scoured/bleached ramie leads to a smoother surface, a lower crystallinity, partial crystal transformation from cellulose Ⅰ to cellulose Ⅲ, a decrease in the volume and cumulative surface area of the larger micropores and an increase in those of the smaller ones in the fiber.

  1. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van;

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... and pressure up to 100bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2GJ/ton CO2...

  2. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M;

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...... C and pressure up to 100 bars [1]. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The energy requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that an energy requirement for the desorber...

  3. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  4. Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia.

    Science.gov (United States)

    Su, H N; Xu, Y Y; Wang, X; Zhang, K Q; Li, G H

    2016-04-01

    A total of 11 bacterial strains were assayed for bacteria-induced trap formation in the nematode-trapping fungus Arthrobotrys oligospora YMF1·01883 with two-compartmented Petri dish. These strains were identified on the basis of their 16S rRNA gene sequences. Volatile organic compounds (VOCs) of eight isolates were extracted using solid-phase micro-extraction (SPME) and their structures were identified based on gas chromatography-mass spectrometry (GC-MS). At the same time, all isolates were used for quantitative measurement of ammonia by the indophenol blue method. The effects of pure commercial compounds on inducement of trap formation in A. oligospora were tested. Taken together, results demonstrated that the predominant bacterial volatile compound inducing trap formation was ammonia. Meanwhile, ammonia also played a role in other nematode-trapping fungi, including Arthrobotrys guizhouensis YMF1·00014, producing adhesive nets; Dactylellina phymatopaga YMF1·01474, producing adhesive knobs; Dactylellina cionopaga YMF1·01472, producing adhesive columns and Drechslerella brochopaga YMF1·01829, producing constricting rings. PMID:26928264

  5. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...

  6. Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy

    Science.gov (United States)

    Levinský, Petr; Kalvoda, Ladislav; Aubrecht, Jan; Fojtíková, Jaroslava

    2015-01-01

    The kinetic parameters of a chemo-optical transducer layer sensitive to gaseous ammonia are characterized by means of attenuation total reflection method. The tested layer consists of cross-linked polydimethylsiloxane matrix sensitized by quinoline-based organometallic dye showing the selective chemical reaction with ammonia. Upper and lower limits of the ammonia diffusion coefficient and the ammonia-dye reaction constant are derived from the obtained experimental data and compared with other data available in literature and obtained from computer simulations.

  7. Modelling of ammonia emissions from dairy cow houses

    OpenAIRE

    Monteny, G.J.

    2000-01-01

    Dairy cow husbandry contributes to environmental acidification through the emission of ammonia. In-depth knowledge on the processes and variable factors that play a role in the emission of ammonia from dairy cow houses benefits the production of emission data, the development of low emission housing systems, and evaluation of emission levels in a farming system approach. A mechanistic simulation model for the ammonia emission from dairy cow houses was developed to facilitate this.An ammonia p...

  8. Detection of Ammonia in Liquids Using Millimeter Wave Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hilmi Ozturk

    2012-01-01

    Full Text Available Detection of ammonia plays a vital role for counter-bioterrorism applications. Using millimeter wave absorption measurements, ammonia dissolved in water solution is analyzed and compared to water-only solution. The inversion of ammonia molecule results in split rotational spectral lines and transitions of these lines can be detected. Two-port measurements were carried out with vector network analyzer and measurements revealed that ammonia presence can be identified, especially between 30–35 GHz.

  9. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.; Hoogveld, H.L.

    2002-01-01

    Ammonia-starved cells of Nitrosomonas europaea are able to preserve a high level of ammonia-oxidizing activity in the absence of ammonium. However, when the nitrite-oxidizing cells that form part of the natural nitrifying community do not keep pace with the ammonia-oxidizing cells, nitrite accumulat

  10. Werkwijze voor het behandelen van ammonia-houdend afvalwater

    NARCIS (Netherlands)

    Loosdrecht, M.C.M.; Jetten, M.S.M.

    1998-01-01

    Treatment of ammonia-comprising waste water comprises: (a) subjecting the waste water to a nitrification treatment using a nitrifying microorganism and adding oxygen, to give a solution comprising an oxidation product of ammonia, and (b) converting the oxidation product of ammonia into nitrogen usin

  11. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  12. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...... ammonia tolerant methanogen in a CSTR reactor could completely alleviate the ammonia inhibitory effect. Furthermore, it was found that bioaugmentation with the enriched culture resulted in 25% higher methane production compared to when the bioaugmentation was achieved with pure methanogenic strains....... The bioaugmentation was performed without pausing the continuous operation of the CSTR reactor and without excluding the ammonia-rich substrate from the feedstock. Thus, bioaugmentation with mixed methanogenic cultures could potentially support the development of an efficient and cost-effective biomethanation process...

  13. Treatment of nickel-ammonia complex ion-containing ammonia nitrogen wastewater

    Institute of Scientific and Technical Information of China (English)

    MIN Xiao-bo; ZHOU Min; CHAI Li-yuan; WANG Yun-yan; SHU Yu-de

    2009-01-01

    Air stripping was adopted to treat nickel ammonia complex ion-containing wastewater in order to remove nickel and ammonia simultaneously in one technological process. The relationship among pH, the concentration of nickel ammonia complex ion and total ammonia concentration was analyzed theoretically. Influence of pH value, water temperature, airflow rate and time on air stripping was studied in detail by static experiment in laboratory. The results show that at pH 11, temperature of 60 ℃ and airflow rate of 0.12 m~3/h, NH_3 and Ni~(2+) concentrations remained in wastewater are less than 2 and 0.2 mg/L, respectively, after blowing for 75 min, which reaches the standard of the state discharge. When the tail gas is absorbed by 0.5 mol/L H_2SO_4 in order to avoid the secondary pollution, the absorption rate can achieve 70%.

  14. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  15. USDA-EPA Collaborative Ammonia Research

    Science.gov (United States)

    In 2014, a work group was formed between USDA and EPA to facilitate information exchange on ammonia emissions from agriculture, air quality impacts and emission mitigation options and to identify opportunities for collaboration. This document provides background on the work grou...

  16. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  17. Footprints on Ammonia Concentrations from Environmental Regulations

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Ellermann, Thomas; Hertel, Ole;

    2008-01-01

    Releases of ammonia (NH3) to the atmosphere contribute significantly to the desposition of nitrogen to both terrestrial and aquatic ecosystems. This is the background for the national NH3 emission ceilings in Europe. However, in some countries the national legislation aims not only to meet theese...

  18. Ammonia in comet P/Halley

    Science.gov (United States)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  19. A porous SiC ammonia sensor

    NARCIS (Netherlands)

    Connolly, E.J.; Timmer, B.H.; Pham, H.T.M.; Groeneweg, J.; Sarro, P.M.; Olthuis, W.; French, P.J.

    2005-01-01

    When used as the dielectric in a capacitive sensing arrangement, porous SiC has been found to be extremely sensitive to the presence of ammonia (NH3) gas. The exact sensing method is still not clear, but NH3 levels as low as 0.5 ppm could be detected. We report the fabrication and preliminary charac

  20. Fiber Optic Detection of Ammonia Gas

    Directory of Open Access Journals (Sweden)

    L. Kalvoda

    2006-01-01

    Full Text Available Bathochromic shifts accompanying the formation of several bivalent metallic complexes containing 5-(4’-dimethylaminophenylimino quinolin-8-one (L1, and 7-chlore-5(4’-diethylamino-2-methylphenylimino quinolin-8-one (L2 ligands in ethanol solutions were evaluated by VIS-NIR spectroscopy. The [L1-Cu-L1] sulphide complex was selected as a reagent for further tests on optical fibres. Samples of multimode siloxane-clad fused-silica fibre were sensitized by diffusing an ethanol/chloroform solution of the dye into the cladding polymer, and tested by VIS-NIR optical spectroscopy (12 cm long fibre sections, and optical time domain reflectometry (OTDR; 20 ns laser pulses, wavelength 850 nm, 120 m long fibre sensitized within the interval 104–110 m. A well-resolved absorption band of the reagent could be identified in the absorption spectra of the fibres. After exposure to dry ammonia/nitrogen gas with increasing ammonia concentration (0–4000 ppm, the short fibre samples showed subsequent decay of NIR optical absorption; saturation was observed for higher ammonia levels. The concentration resolution r ? 50 ppm and forward response time t90 ? 30 sec were obtained within the interval 0–1000 ppm. The OTDR courses showed an enhancement of the back-scattered light intensity coming from the sensitized region after diffusion of the initial reagent, and decay after exposure to concentrated ammonia/nitrogen gas (10000 ppm.

  1. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.

    Directory of Open Access Journals (Sweden)

    Steven J Hallam

    2006-04-01

    Full Text Available Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.

  2. Study of an ammonia-based wet scrubbing process in a continuous flow system

    Energy Technology Data Exchange (ETDEWEB)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  3. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    Science.gov (United States)

    Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  4. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, Y.; Kerkhof, L. [Rutgers--the State Univ., New Brunswick, NJ (United States)

    1998-12-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  5. Ammonia downstream from HH 80 North

    Science.gov (United States)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  6. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  7. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Science.gov (United States)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  8. Ammonia regeneration for a combined lime/ammonia spray dryer for SO[sub 2] control

    Energy Technology Data Exchange (ETDEWEB)

    Xinjian, Yang (Cincinnati Univ., OH (United States). Dept. of Civil and Environmental Engineering)

    1992-12-23

    A research project designed to study the feasibility of ammonia regeneration for a combined lime/ammonia FGD process was conducted at the University of Cincinnati. The major objective for this project was to regenerate ammonia from a combined ammonia/calcium hydroxide spray dryer FGD byproduct for reuse which would reduce the operating cost of this FGD process. This final report covers the six phases of the project: (1) generation of original feedstock, (2) batch regeneration studies, (3) continuous regeneration studies, (4) waste characteristic analysis, (5) pilot scale demonstration and (6) economic analysis. This research has shown that regeneration of ammonia is feasible at a reasonable cost. The effects on Ohio coal use from the results of this research could be substantial, depending on the Phase II application of FGD systems for controlling SO[sub 2] emissions. In conclusion, experiments in this study have shown that ammonia recovery efficiencies greater than 90% are technically and economically feasible. In addition, the sludge produced from the regeneration process is stable and will meet existing Federal standards.

  9. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam;

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety-Schmidt-determined cerebral...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P

  10. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    Science.gov (United States)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2016-09-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  11. Study of Ammonia Emissions in a Ventilated Pig Pen

    DEFF Research Database (Denmark)

    Rong, Li

    reported in literature, little effort has been made to investigate the accuracy of current Henry’s law constant for modeling ammonia mass transfer process and study ammonia emissions in a full scale pig pen from fluid dynamics by CFD simulations. This will be the main objectives of this study. The ammonia...... the accuracy of Henry’s law constants to determine the ammonia concentration in the air through the air-liquid interface. None of the present Henry’s law constant models provide a respectable agreement between simulated and measured results. A simplified model to determine the ammonia concentration in the air...... through the air-liquid interface is suggested from vapor-liquid equilibrium properties of ammonia water. Furthermore, the effects of airflow and temperature on ammonia mass transfer coefficient are also analyzed under different concentration boundary conditions determined by various Henry’s law constant...

  12. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  13. Spin-state chemistry of deuterated ammonia

    Science.gov (United States)

    Sipilä, O.; Harju, J.; Caselli, P.; Schlemmer, S.

    2015-09-01

    Aims: We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods: We applied symmetry rules in the context of the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. New reaction sets for both gas-phase and grain-surface chemistry were generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms, using the predetermined branching ratios. Both a single-point and a modified Bonnor-Ebert model were considered to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results: We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to variations in the density, but present strong temperature dependence. We derive high peak values (~0.1) for the deuterium fraction in ammonia, in agreement with previous (gas-phase) models. The deuterium fractionation is strongest at high density, corresponding to a high degree of depletion, and also presents temperature dependence. We find that in the temperature range 5 K to 20 K, the deuterium fractionation peaks at ~15 K, while most of the ortho/para (and meta/para for ND3) ratios present a minimum at 10 K (ortho/para NH2D has instead a maximum at this temperature). Conclusions: Owing to the density and temperature dependence found in the abundances and spin-state ratios of ammonia and its isotopologs, it is evident that observations of ammonia and its deuterated forms can provide important constraints on the physical structure of molecular clouds. Appendix A is available in

  14. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    Science.gov (United States)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-12-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of ∼ 10-3-10-2, decreasing significantly to concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.

  15. Ammonia sensing using lossy mode resonances in a tapered optical fibre coated with porphyrin-incorporated titanium dioxide

    Science.gov (United States)

    Tiwari, Divya; Mullaney, Kevin; Korposh, Serhiy; James, Stephen W.; Lee, Seung-Woo; Tatam, Ralph P.

    2016-05-01

    The development of an ammonia sensor, formed by the deposition of a functionalised titanium dioxide film onto a tapered optical fibre is presented. The titanium dioxide coating allows the coupling of light from the fundamental core mode to a lossy mode supported by the coating, thus creating lossy mode resonance (LMR) in the transmission spectrum. The porphyrin compound that was used to functionalise the coating was removed from the titanium dioxide coating upon exposure to ammonia, causing a change in the refractive index of the coating and a concomitant shift in the central wavelength of the lossy mode resonance. Concentrations of ammonia as small as 1ppm was detected with a response time of less than 1min.

  16. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    Directory of Open Access Journals (Sweden)

    Karthikeyan Thiyagarajan

    Full Text Available Phenylalanine Ammonia Lyase (PAL gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum. The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.

  17. Multi-component removal in flue gas by aqua ammonia

    Science.gov (United States)

    Yeh, James T.; Pennline, Henry W.

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  18. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    Science.gov (United States)

    Thiyagarajan, Karthikeyan; Vitali, Fabio; Tolaini, Valentina; Galeffi, Patrizia; Cantale, Cristina; Vikram, Prashant; Singh, Sukhwinder; De Rossi, Patrizia; Nobili, Chiara; Procacci, Silvia; Del Fiore, Antonella; Antonini, Alessandro; Presenti, Ombretta; Brunori, Andrea

    2016-01-01

    Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value. PMID:26990297

  19. Thin Film Synthesis of Nickel Containing Compounds

    OpenAIRE

    Lindahl, Erik

    2009-01-01

    Most electrical, magnetic or optical devices are today based on several, usually extremely thin layers of different materials.  In this thesis chemical synthesis processes have been developed for growth of less stable and metastable layers, and even multilayers, of nickel containing compounds. A chemical vapor deposition (CVD) method for deposition of metastable Ni3N has been developed.  The deposition process employs ammonia as nitrogen precursor. An atomic layer deposition (ALD) process for...

  20. Operation summary of ammonia synthesis ammonia storage safety%合成氨氨库安全运行总结

    Institute of Scientific and Technical Information of China (English)

    周荷珍; 张志翠

    2014-01-01

    介绍了氨对人体健康的危害及急救措施、氨罐的操作、汽车氨罐卸氨的原理及具体操作、氨吸收塔的操作,指出只有对氨库实行科学管理和精心操作,才能保证氨库的长期安全稳定运行。%The paper introduces damage from ammonia on human health and emergency measures, ammonia tank operation, the principle of car unloading ammonia ammonia tank and the specific operation, ammonia absorption tower operation, points out that only the ammonia base of scientific management and careful operation, in order to ensure the long-term safe and stable operation of ammonia storage.

  1. Was early Mars warmed by ammonia?

    Science.gov (United States)

    Kasting, J. F.; Brown, L. L.; Acord, J. M.; Pollack, J. B.

    1992-01-01

    Runoff channels and valley networks present on ancient, heavily cratered Martian terrain suggests that the climate of Mars was originally warm and wet. One explanation for the formation of these channels is that the surface was warmed by the greenhouse effect of a dense, CO2 atmosphere. However, recent work shows that this theory is not consistent for the early period of the solar system. One way to increase the surface temperature predicted is to assume that other greenhouse gases were present in Mars' atmosphere in addition to CO2 and H2O. This possible gas is ammonia, NH3. If ammonia was present in sufficient quantities, it could have raised the surface temperature to 273 K. An adequate source would have been volcanic outgassing if the NH3 produced was shielded from photolysis by an ultraviolet light absorber.

  2. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix;

    2015-01-01

    is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one......This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  3. Spin-state chemistry of deuterated ammonia

    OpenAIRE

    Sipilä, O.; Harju, J.; Caselli, P.; Schlemmer, S.

    2015-01-01

    Aims. We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods. We apply symmetry rules in the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. Reaction sets for b...

  4. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... and straightforward control of the carburizing and nitriding potentials is in principle possible. The nitrocarburising response of unalloyed (ARMCO) Fe was investigated in a thermobalance during controlled nitrocarburising at 580°C. The “cases” obtained on nitrocarburised iron were characterized by reflected light...

  5. Manufacture of Catalyst Systems for Ammonia Conversion

    Institute of Scientific and Technical Information of China (English)

    GAKH S.V.; SAVENKOV D.A.

    2012-01-01

    Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC ‘Supermetal’" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSpreciseTM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single- and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.

  6. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  7. Ammonia volatilization from sows on grassland

    Science.gov (United States)

    Sommer, S. G.; Søgaard, H. T.; Møller, H. B.; Morsing, S.

    According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH 3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH 3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH 3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH 3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH 3-N m -2 day -1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH 3 concentration in the boundary layer and wind speed. The NH 3 in the boundary layer was in equilibrium with NH 3 in soil solution. Gross NH 3 volatilization was in the range 0.07-2.1 kg NH 3-N ha -1 day -1 from a pasture with 24 sows ha -1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1-2 days before measurements. Annual ammonia loss was 4.8 kg NH 3-N sow -1.

  8. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  9. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.

  10. Tubular biotricking filter for reduction of odour and ammonia from live stock facilities

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Andersen, Mathias

    2007-01-01

    -current flow, fresh water supply without recirculation, high air velocity and a special filter material that distributes the water underneath the biofilm with the help of capillary action. In this way the filter is able to reduce contaminants that are hardly soluble in water. The filter has been tested...... at three different pig facilities for treating ammonia and malodours compounds. The capacity was up to 12.000 m3. h-1 with a specific gas flow of 4.000  m3. h-1 pr. m3 of filter material. Nitrogen mass balances were made for all facilities and showing good correlation between incoming ammonia...... between 80 and 100 %. Hardly water soluble components like methanethiol, dimethyl sulfide and methane was reduced by 7-9 %. In relation to the greenhouse effect the degradation of methane fully compensate the nitrous oxide emission from the filters. These results were achieved with a pressure drop...

  11. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  12. Ammonia biofiltration and community analysis of ammonia-oxidizing bacteria in biofilters.

    Science.gov (United States)

    Jun, Yin; Wenfeng, Xu

    2009-09-01

    Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20-100 mg m(-3). Removal efficiencies of BFC and BFS were in the range of 97-99% and 95-99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH(3) in the resultant acidity. Nitrate was the dominant product of NH(3) transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.

  13. The use of anhydrous ammonia for bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Zytner, R.G.; Hallman, M.; Gimenez, B.F.; Jennings, R.; Leek, K. [Guelph Univ., ON (Canada). Faculty of Graduate Studies

    2002-07-01

    Soils contaminated with hydrocarbons can be effectively treated using bioventing remediation technology, an ideal method for removing residual contamination left by soil vapour extraction (SVE). Bioventing uses low or intermitted air flow rates to produce oxygen-rich conditions in the vadose zone, thereby promoting the formation of micro-organisms that can mineralize the hydrocarbons if enough nutrients are present. There is concern regarding the use of nutrients (the addition of nitrogen) to the subsurface because current applications methods cannot uniformly disperse nitrogen throughout the entire subsurface. Two research studies are being conducted using gasoline contaminated soil to address this concern. The first phase of the study focuses on how to best deliver nitrogen to the subsurface. Injecting anhydrous ammonia into the contaminated surface was one suggestion for stimulating the growth of hydrocarbon degraders. SVE extraction well models indicated this was an effective and safe way to disperse nitrogen. The second phase of the study involved the use of respirometers to compare total petroleum hydrocarbon (TPH) degradation with nitrogen additions in the form of NH{sub 4}Cl or anhydrous ammonia. The respirometers were run for about 1 month after which time it was determined that the use of anhydrous ammonia is an effective method to promote bioventing.

  14. Spin-state chemistry of deuterated ammonia

    CERN Document Server

    Sipilä, O; Caselli, P; Schlemmer, S

    2015-01-01

    Aims. We aim to develop a chemical model that contains a consistent description of spin-state chemistry in reactions involving chemical species with multiple deuterons. We apply the model to the specific case of deuterated ammonia, to derive values for the various spin-state ratios. Methods. We apply symmetry rules in the complete scrambling assumption to calculate branching ratio tables for reactions between chemical species that include multiple protons and/or deuterons. Reaction sets for both gas-phase and grain-surface chemistry are generated using an automated routine that forms all possible spin-state variants of any given reaction with up to six H/D atoms. Single-point and modified Bonnor-Ebert models are used to study the density and temperature dependence of ammonia and its isotopologs, and the associated spin-state ratios. Results. We find that the spin-state ratios of the ammonia isotopologs are, at late times, very different from their statistical values. The ratios are rather insensitive to varia...

  15. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  16. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    . The bioaugmentation was performed without pausing the continuous operation of the CSTR reactor and without excluding the ammonia-rich substrate from the feedstock. Thus, bioaugmentation with mixed methanogenic cultures could potentially support the development of an efficient and cost-effective biomethanation process...... of a pure culture, to be used as bioaugmentation inoculum, poses technical difficulties due to the required sterile conditions and the special growing media. On the contrary acclimatized enrichment methanogenic cultures have lower requirements to sterility. In the present study, we used an enriched ammonia...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  17. Optimization of biomethanation focusing on high ammonia loaded processes

    DEFF Research Database (Denmark)

    Wang, Han

    , could theoretically mitigate the ammonia inhibition problem (Angelidaki et al., 1999). Therefore, the effect of co-digestion of cattle manure with lipids (i.e. glycerol trioleate (GTO)) under high ammonia levels (5 g NH4+-N·L-1) in anaerobic continuous stirred tank (CSTR) reactors (RGTO) was assessed......” was observed, which caused a deterioration of the inhibition effect in anaerobic digestion process. On contrary, the reactor where glucose was co-digested demonstrated higher tolerance to ammonia toxicity compared with the reactor where GTO was used. Secondly, the problem of ammonia inhibition during...... in continuous reactors. Furthermore, bioaugmentation with an ammonia tolerant methanogen to alleviate ammonia toxicity could be applied for improving the efficiency of biomethanation process in full-scale continuous reactors. Finally, an innovative method, where hydrogen is injected in the anaerobic reactor...

  18. Ammonia/Hydrogen Mixtures in an SI-Engine

    DEFF Research Database (Denmark)

    Mørch, Christian Sandersen; Bjerre, Andreas; Gøttrup, Morten Piil;

    2011-01-01

    In recent years there has been increasing focus on using metal ammine complexes for ammonia storage. In this paper a fuel system for ammonia fuelled internal combustion engines using metal ammine complexes as ammonia storage is analyzed. The use of ammonia/hydrogen mixtures as an SI-engine fuel...... is investigated in the same context. Ammonia and hydrogen were introduced into the intake manifold of a CFR-engine. Series of experiments with varying excess air ratio and different ammonia to hydrogen ratios was conducted. This showed that a fuel mixture with 10 vol.% hydrogen performs best with respect...... to efficiency and power. A comparison with gasoline was made, which showed efficiencies and power increased due to the possibility of a higher compression ratio. The system analysis showed that it is possible to cover a major part of the necessary heat using the exhaust heat. It is proposed to reduce the high...

  19. Surface/atmosphere exchange of ammonia over grazed pasture.

    OpenAIRE

    Plantaz, M.A.H.G.

    1998-01-01

    This thesis deals with the exchange of ammonia between the atmosphere and grazed pasture in an area of intensive livestock breeding. The term exchange is used because gaseous ammonia can be taken up (dry deposition) as well as released (emission) by this type of surface.Ammonia exchange fluxes over the grass pasture of a research farm for dairy cattle breeding at Zegveld (the Netherlands) were measured continuously from July 1992 until July 1994. The main objective was to investigate the long...

  20. Removal of Ammonia from Air, using Three Iranian Natural Zeolites

    OpenAIRE

    H. Asilian; SB Mortazavi; Kazemian, H; S Phaghiehzadeh; Sj Shahtaheri; Salem, M.

    2004-01-01

    Ammonia in air can be hazardous to human and animal life and should be removed from the environment. Recently the removal of environmental pollutants such as ammonia by means of natural and modified zeolites has attracted a lot of attention and interests. In this study the capability of three Iranian natural zeolites (Clinoptilolite) in point of view of removal of ammonia from air was investigated. Through this research, different zeolites from various regions of Iran including Semnan, Meyane...

  1. Mathematical Model of Ammonia Handling in the Rat Renal Medulla

    OpenAIRE

    Noiret, Lorette; Baigent, Stephen; Jalan, Rajiv; Thomas, S. Randall

    2015-01-01

    The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein ...

  2. Options and Costs of Controlling Ammonia Emissions in Europe

    OpenAIRE

    Klaassen, G.

    1994-01-01

    Ammonia emissions contribute to acidification in Europe. The major emission sources are livestock and fertilizer use. This study presents the costs of controlling ammonia emissions in 33 regions in Europe. Abatement options include low nitrogen feed, stable adaptations, covering manure storage, cleaning stable air, and low ammonia applications of manure. Cost estimates are based on country- and technology-specific data. The structure of livestock population and fertilizer use mean that th...

  3. 46 CFR 98.25-5 - How anhydrous ammonia may be carried.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false How anhydrous ammonia may be carried. 98.25-5 Section 98... Anhydrous Ammonia in Bulk § 98.25-5 How anhydrous ammonia may be carried. (a) Anhydrous ammonia shall be..., except as otherwise provided in paragraph (b) of this section. (b) When anhydrous ammonia is to...

  4. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  5. Ammonia pollution characteristics of centralized drinking water sources in China

    Institute of Scientific and Technical Information of China (English)

    Qing Fu; Binghui Zheng; Xingru Zhao; Lijing Wang; Changming Liu

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009.The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces,5 autonomous regions and 4 municipalities were investigated.The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater.The levels of ammonia concentration in river sources gradually decreased from 2005 t0 2008,while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources.The proportion of the type of drinking water sources is different in different regions.In river drinking water sources,the ammonia level was varied in different regions and changed seasonally.The highest value and wide range of annual ammonia was found in South East region,while the lowest value was found in Southwest region.In lake/reservoir drinking water sources,the ammonia levels were not varied obviously in different regions.In underground drinking water sources,the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions.In the drinking water sources with higher ammonia levels,there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  6. Oxydesulfurization of a Turkish hard lignite with ammonia solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey). Chemical and Metallurgical Engineering Faculty

    1996-09-01

    In this study the desulfurization of a high pyritic and high organic sulfur lignite taken from the Gediz area (western Turkey) was investigated by the oxydesulfurization method using ammonia solutions. The influence of such parameters as the concentration of ammonia solution, partial pressure of oxygen, temperature, and reaction time were studied. The ranges of these parameters were selected as 0--10 M concentration of ammonia solution, 0--1.5 MPa partial pressure of oxygen, 403--473 K temperature, and 10--60 min reaction time. It was concluded that the use of ammonia solution as an extraction solution increased the efficiency of the oxydesulfurization process.

  7. Inorganic-organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries

    Science.gov (United States)

    Aydın, Hamide; Şenel, Mehmet; Erdemi, Hamit; Baykal, Abdülhadi; Tülü, Metin; Ata, Ali; Bozkurt, Ayhan

    In this study, poly(vinyl alcohol) (PVA) was modified with poly(ethylene glycol) monomethyl ether (PEGME) using borane-tetrahydrofuran (BH 3/THF) complex. Molecular weights of both PVA and PEGME were varied prior to reaction. Boron containing comb-branched copolymers were produced and abbreviated as PVA1PEGMEX and PVA2PEGMEX. Then polymer electrolytes were successfully prepared by doping of the host matrix with CF 3SO 3Li at several stoichiomeric ratios with respect to EO to Li. The materials were characterized via nuclear magnetic resonance (1H NMR and 11B NMR), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and differential scanning calorimeter (DSC). The ionic conductivity of these novel polymer electrolytes were studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. Such electrolytes possess satisfactory ambient temperature ionic conductivity (>10 -4 S cm -1). Cyclic voltammetry results illustrated that the electrochemical stability domain extends over 4 V.

  8. Body composition and energy utilization by steers of diverse genotypes fed a high-concentrate diet during the finishing period: II. Angus, Boran, Brahman, Hereford, and Tuli sires.

    Science.gov (United States)

    Ferrell, C L; Jenkins, T G

    1998-02-01

    Objectives of the study were to determine the influence of Angus (A), Boran (BO), Brahman (BR), Hereford (H), or Tuli (T) sires on body composition, composition of gain, and energy utilization of crossbred steers during the finishing period. Beginning at 300 kg, 96 steers were adjusted to a high-corn diet and individual feeding. Steers were assigned, by sire breed, to be killed as an initial slaughter group or fed either a limited amount or ad libitum for 140 d then killed. Organ weights, carcass traits, and body composition were evaluated. The statistical model included sire breed (S), treatment (Trt), and the S x Trt interaction. Ad libitum feed intake was least for BO- and T-, intermediate for BR- and H-, and greatest for A-sired steers. Rates of weight, fat, and energy gains were similar for A-, H-, and BR-sired steers but less (P .12). Rates of water, fat, and protein gain increased linearly with increased rate of BW gain, but relationships differed (P < .05) among sire breeds. Linear regression analyses indicated energy requirements for maintenance and efficiency of energy use for energy gain differed (P < .05) among sire breeds. Evaluation by nonlinear regression indicated that heat production increased exponentially and energy gain increased asymptotically as feed intake increased above maintenance.

  9. Body composition and energy utilization by steers of diverse genotypes fed a high-concentrate diet during the finishing period: II. Angus, Boran, Brahman, Hereford, and Tuli sires.

    Science.gov (United States)

    Ferrell, C L; Jenkins, T G

    1998-02-01

    Objectives of the study were to determine the influence of Angus (A), Boran (BO), Brahman (BR), Hereford (H), or Tuli (T) sires on body composition, composition of gain, and energy utilization of crossbred steers during the finishing period. Beginning at 300 kg, 96 steers were adjusted to a high-corn diet and individual feeding. Steers were assigned, by sire breed, to be killed as an initial slaughter group or fed either a limited amount or ad libitum for 140 d then killed. Organ weights, carcass traits, and body composition were evaluated. The statistical model included sire breed (S), treatment (Trt), and the S x Trt interaction. Ad libitum feed intake was least for BO- and T-, intermediate for BR- and H-, and greatest for A-sired steers. Rates of weight, fat, and energy gains were similar for A-, H-, and BR-sired steers but less (P .12). Rates of water, fat, and protein gain increased linearly with increased rate of BW gain, but relationships differed (P < .05) among sire breeds. Linear regression analyses indicated energy requirements for maintenance and efficiency of energy use for energy gain differed (P < .05) among sire breeds. Evaluation by nonlinear regression indicated that heat production increased exponentially and energy gain increased asymptotically as feed intake increased above maintenance. PMID:9498376

  10. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  11. Ammonia and urea excretion in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N.

    Science.gov (United States)

    Ren, Qin; Pan, Luqing; Zhao, Qun; Si, Lingjun

    2015-09-01

    In the present study of the swimming crab Portunus trituberculatus exposed to 0, 1, and 5 mg L(-1) NH4Cl, the effects of ammonia exposure on ammonia and urea content in hemolymph; activity of H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) (NKA) in gills; mRNA expression levels of the crustacean Rh-like ammonia transporter (Rh), K(+) Channel, Na(+)/K(+)/2Cl(-) co-transporter (NKCC), Na(+)/H(+)-exchanger (NHE), urea transporter (UT) and vesicle associated membrane protein (VAMP) in gills were investigated. The ultrastructure of gills was also evaluated. All these results in this study showed a dose-dependent effect with ammonia exposure concentration. The data displayed a significant increase in hemolymph ammonia and urea concentrations under ammonia exposure. The up-regulation of Rh mRNA together with up-regulation of K(+)-channel mRNA, NKA activity, down-regulation of NKCC and NHE mRNA suggested a coordinated protective response to maintain a relatively low ammonia concentration in the body fluids during ambient ammonia exposure. The up-regulation of VAMP, H(+)-ATPase activity along with the ultrastructure of gills suggested a mechanism of exocytotic ammonia excretion that may exit in the gill of P. trituberculatus. An increased production of urea and the up-regulated expression of UT suggested that the crab can detoxify elevated ammonia levels in the body fluids into urea when pathways of ammonia excretion are decreased after long term ammonia exposure.

  12. Ammonia synthesis from first principles calculations

    DEFF Research Database (Denmark)

    Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis;

    2005-01-01

    . When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...

  13. Enantiomeric excesses of chiral amines in ammonia-rich carbonaceous meteorites

    Science.gov (United States)

    Pizzarello, Sandra; Yarnes, Christopher T.

    2016-06-01

    Chiral homogeneity is essential to the structure and function of terrestrial biopolymers but the origin of this "homochirality" is poorly understood and remains one of the many unknowns surrounding the origins of life. Several amino acids extracted from Carbonaceous Chondrite meteorites display L-enantiomeric excesses (ee) and their findings have encouraged suggestions that an input of non-racemic meteoritic compounds to early Earth might have led to terrestrial homochirality. Motivated by occasional indications of possible ee in other classes of soluble meteoritic compounds, we have undertaken a systematic study of the chiral distribution of amines in Renazzo-type (CR) meteorites, where they are the second most abundant organic molecular species and ammonia is by far the most abundant single molecule. We report here the first time finding of L-ee for two chiral amines in several pristine CR meteorites from Antarctica and outline a proposal by which the compounds possibly formed from the same ketone precursors as some of the chiral amino acids. This would occur during a warm hydrous stage of the asteroidal parent body, via a reductive amination process in the presence of a large abundance of ammonia, where the precursors' adsorption upon mineral phases possessing asymmetry offered the opportunity for chiral induction. Because the precursor ketones are achiral, the proposal underscores the likelihood of diverse asymmetric influences and processes in cosmochemistry.

  14. Polybenzimidazole compounds

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  15. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Water radiolysis in presence of N2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO2- and NO3-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N2O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  16. Nitrogen Compounds in Radiation Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sims, H.E. [NNL Sellafield (United Kingdom); Dey, G.R. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vaudey, C.E.; Peaucelle, C. [Institut de Physique Nucleaire de Lyon - IPNL, 69 - Lyon (France); Boucher, J.L. [Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS 45 rue des Saints Peres, 75270 Paris cedex 06, Univ Paris 5, 75 (France); Toulhoat, N. [Institut de Physique Nucleaire de Lyon (France); Commissariat a l' Energie Atomique CEA/DEN, Centre de Saclay (France); Bererd, N. [Institut de Physique Nucleaire de Lyon (France); IUT Departement Chimie, Universite Claude Bernard Lyon 1 (France); Koppenol, W.H. [Department of Chemistry and Applied Biosciences, ETH Zurich (Switzerland); Janata, E. [Helmholtz-Zentrum fuer Materialien und Energie, Solar Energy Research, Berlin (Germany); Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C. [Laboratoire de Speciation des Radionucleides et des Molecules, DEN/DPC/Service d' Etude du Comportement des Radionucleides, CEA Saclay, 91 - Gif sur yvette (France)

    2009-07-01

    Water radiolysis in presence of N{sub 2} is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N{sub 2} and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO{sub 2}- and NO{sub 3}-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N{sub 2}O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  17. Biofilter Treating Ammonia Gas Using Agricultural Residues Media

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available Problem statement: Agricultural residues such as manure and sugarcane bagasse are wastes from agro-industry which has low value and requires some sustainable waste management method. In this research, a mixture of manure fertilizer and sugarcane bagasse is used as a biofilter media for an ammonia gas removal application. The aim of this research is to study the ammonia gas removal efficiency of such media. Approach: The experiments were conducted in laboratory-scale biofilters. Two inlet ammonia gas concentrations were used which are 500 and 1,000 ppm. Three ratios of manure fertilizer and sugarcane bagasse were studied including 1:3, 1:5 and 1:7 by volume. All experiments were conducted for a period of 40 days. Two Empty Bed Retention Time (EBRT of these experiments were used which is 39s and 78s. The moisture content of the biofilter media was maintained at 45-60% by adding water. Results: The maximum ammonia gas removal efficiency at 89.93% is observed from the following conditions: 500 ppm of the inlet ammonia gas concentration, the manure fertilizer and sugarcane bagasse mixture ratio of 1:5 and the EBRT of 78s. The important factors of the ammonia gas removal in biofiltration process are the inlet ammonia gas concentration and the EBRT. Conclusion: The experimental results showed that the mixture of manure fertilizer and sugarcane bagasse is an effective biofilter media for ammonia gas removal applications. However, the biofilter is more effective at low inlet ammonia gas concentration, while the ratio of manure fertilizer and sugarcane bagasse has no significant effect on the ammonia gas removal efficiency. Therefore, using both residues as biofilter media for ammonia gas removal application is an alternative sustainable way to such manage argo-industry waste.

  18. Emergency planning and the acute toxic potency of inhaled ammonia.

    Science.gov (United States)

    Michaels, R A

    1999-08-01

    Ammonia is present in agriculture and commerce in many if not most communities. This report evaluates the toxic potency of ammonia, based on three types of data: anecdotal data, in some cases predating World War 1, reconstructions of contemporary industrial accidents, and animal bioassays. Standards and guidelines for human exposure have been driven largely by the anecdotal data, suggesting that ammonia at 5,000-10,000 parts per million, volume/volume (ppm-v), might be lethal within 5-10 min. However, contemporary accident reconstructions suggest that ammonia lethality requires higher concentrations. For example, 33,737 ppm-v was a 5-min zero-mortality value in a major ammonia release in 1973 in South Africa. Comparisons of secondary reports of ammonia lethality with original sources revealed discrepancies in contemporary sources, apparently resulting from failure to examine old documents or accurately translate foreign documents. The present investigation revealed that contemporary accident reconstructions yield ammonia lethality levels comparable to those in dozens of reports of animal bioassays, after adjustment of concentrations to human equivalent concentrations via U.S. Environmental Protection Agency (EPA) procedures. Ammonia levels potentially causing irreversible injury or impairing the ability of exposed people to escape from further exposure or from coincident perils similarly have been biased downwardly in contemporary sources. The EPA has identified ammonia as one of 366 extremely hazardous substances subject to community right-to-know provisions of the Superfund Act and emergency planning provisions of the Clean Air Act. The Clean Air Act defines emergency planning zones (EPZs) around industrial facilities exceeding a threshold quantity of ammonia on-site. This study suggests that EPZ areas around ammonia facilities can be reduced, thereby also reducing emergency planning costs, which will vary roughly with the EPZ radius squared.

  19. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  20. Understanding emissions of ammonia from buildings and application of fertilizers: an example from Poland

    Science.gov (United States)

    Werner, M.; Ambelas Skjøth, C.; Kryza, M.; Dore, A. J.

    2015-01-01

    regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate-dependent emissions (e.g. biogenic volatile organic compounds). Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general, even in areas with limited information about the location of the agricultural fields, livestock and agricultural production methods such as Poland.

  1. A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Torsten [Department of Medical Sciences/Occupational and Environmental Medicine, Uppsala University, University Hospital, SE-751 85 Uppsala (Sweden)

    2010-03-15

    A case of suspected indoor ammonia contamination from concrete was investigated in an airline company office in Beijing. A standardized questionnaire on indoor environment perceptions, medical symptoms and psychosocial work environment was distributed to all staff, and compared with a reference group of office workers from the same company in Stockholm. Temperature, relative humidity, formaldehyde, volatile organic compounds (VOC), ammonia, and carbon dioxide were measured both in Beijing and Stockholm. In Beijing mould and bacteria were also measured. Totally 95% (N = 14) participated. The Beijing staff reported a higher rate of complaints regarding poor work satisfaction, and work stress as compared to the Stockholm reference group. In the total material (N = 203) the psychosocial environment was related to general symptoms (headache and tiredness) but not odour perception or mucous membrane symptoms. Controlling for age, smoking habits, and psychosocial work environment the Beijing staff had more complaints on unpleasant odour and mucous membrane symptoms. An increased indoor concentration of ammonia (3-6 ppm) and benzene (26.8 {mu}g/m{sup 3}) was measured in the indoor air in the Beijing office, as compared to the office in Stockholm (<0.1 ppm ammonia and 0.4 {mu}g/m{sup 3} benzene). The ammonia contamination in the Beijing office was confirmed, the probable source being additives in the concrete. The ammonia level was well below the Swedish threshold limit values (TLV) (25 ppm). In addition the exposure to benzene, an indicator of traffic exhaust pollution was high both indoors and outdoors in Beijing, possible related to increased levels of odour complaints and mucous membrane irritation. (author)

  2. Quantitative assessment of urea, glucose and ammonia changes in human dental plaque and saliva following rinsing with urea and glucose.

    Science.gov (United States)

    Singer, D L; Kleinberg, I

    1983-01-01

    The rates of three processes associated with the rise and fall in plaque pH, that normally occur following a urea rinse, were determined: (i) disappearance of urea from plaque, (ii) disappearance of urea from saliva and (iii) formation and disappearance from plaque of the ammonia produced by the plaque bacteria from the urea. Also examined were two processes associated with the fall and rise in pH following a glucose rinse: the disappearance of glucose from plaque and from saliva. Entry into plaque of either urea or glucose during rinsing was immediate; the subsequent disappearance of both from the plaque was slow and followed first-order kinetics. The ammonia formation and urea-disappearance results suggested that clearance of urea from the plaque occurred mainly by bacterial degradation and not by diffusion out of the plaque. The rate constants for ammonia formation and for its subsequent disappearance from the plaque made it clear why a rapid rise and a slow subsequent fall in the pH occurs after urea rinsing. The rate constants enabled calculation of the ammonia produced as a percentage of the urea utilized. Only 16-26 per cent of the urea was recovered as ammonia and the remainder of the urea-N was stored probably as NH2 moieties of certain amino acids. Such storage may enable the plaque bacteria to maintain the pH at an elevated level for an extended period of time by bacterial production of ammonia from these stored compounds after the urea ceases to be available as a source of substrate. PMID:6580848

  3. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causesswelling and efficient delignification of biomass at high temperatures. The ARPprocess solubilizes abou...

  4. Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    Science.gov (United States)

    Phenylalanine Ammonia Lyase (PAL) catalyzes the first step in the phenylpropanoid pathway in plants, controlling biosynthesis of a variety of structural and defense compounds including monolignols that polymerize into lignin. Gaps remain in our understanding of how genetic alterations to this pathwa...

  5. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  6. Ammonia Masers in W51: Interferometric Studies

    Science.gov (United States)

    Wilson, Thomas L.; Clarke, T. E.; Boboltz, D. A.; Henkel, C.; Mauersberger, R.; Wootten, H. A.; Broullet, N.; Baudry, A.; Despois, D.

    2014-01-01

    The galactic continuum sources W51D and W51e1e2 have been long recognized as remarkable centers of ammonia maser phenomena in the centimeter wavelength range. Henkel et al. (2013 A&A 549, A90) have measured 19 masers, of which 13 are newly found for W51-IRS2, otherwise known as W51D. These arise from inversion-rotation transitions. The single dish data were taken with the Effelsberg 100-m radio telescope of the MPIfR with an angular resolution of 43 arc seconds. The conclusion that these lines were caused by maser action is based on: (1) time variability, and (2) narrow linewidths. In addition, some lines showed systematic velocity variations. High brightness temperatures and compact sizes are needed to conclusively prove maser action. We have measured a sub-set of these ammonia lines with the C array of the Jansky-Very Large Array of the National Radio Astronomy Observatory in June 2013 with an angular resolution of better than 1 arc second. Source sizes, positions, excitation models and reasons why W51 shows such a plethora of masers will be presented.

  7. Modelling of ammonia emissions from dairy cow houses

    NARCIS (Netherlands)

    Monteny, G.J.

    2000-01-01

    Dairy cow husbandry contributes to environmental acidification through the emission of ammonia. In-depth knowledge on the processes and variable factors that play a role in the emission of ammonia from dairy cow houses benefits the production of emission data, the development of low emission housing

  8. Observations of ammonia in galactic H II regions

    Science.gov (United States)

    Vilas Boas, J. W. S.; Scalise, E., Jr.; Monteiro Do Vale, J. L.

    1988-02-01

    This paper presents the first results for the (J,K) = (1,1) and (2,2) ammonia transitions observed in the direction of some southern galactic H II regions, selected among the strongest H2CO emitters. Some physical parameters derived for each individual source, including several new sources of ammonia lines, are presented.

  9. Crystal Structure of an Ammonia-Permeable Aquaporin.

    Science.gov (United States)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  10. Crystal Structure of an Ammonia-Permeable Aquaporin.

    Directory of Open Access Journals (Sweden)

    Andreas Kirscht

    2016-03-01

    Full Text Available Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  11. Crystal Structure of an Ammonia-Permeable Aquaporin

    DEFF Research Database (Denmark)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick;

    2016-01-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report th...

  12. Molecular physiology of the Rh ammonia transport proteins

    Science.gov (United States)

    Weiner, I. David; Verlander, Jill W.

    2013-01-01

    Purpose of review Recent studies have identified a new family of ammonia-specific transporters, Rh glycoproteins, which enable NH3-specific transport. The purpose of this review is to summarize recent evidence regarding the role of Rh glycoproteins in renal ammonia transport. Recent findings The Rh glycoproteins, RhAG/Rhag, RhBG/Rhbg and RhCG/Rhcg, transport ammonia in the form of molecular NH3, although there is some evidence suggesting the possibility of NH4+ transport. RhAG/Rhag is expressed only in erythrocytes, and not in the kidney. Rhbg and Rhcg are expressed in distal nephron sites, from the distal convoluted tubule through the inner medullary collecting duct, with basolateral Rhbg expression and both apical and basolateral Rhcg expression. Whether Rhbg contributes to renal ammonia transport remains controversial. Rhcg expression parallels ammonia excretion in multiple experimental models and genetic deletion studies, both global and collecting duct-specific, demonstrate a critical role for Rhcg in both basal and acidosis-stimulated renal ammonia excretion. X-ray crystallography has defined critical structural elements in Rh glycoprotein-mediated ammonia transport. Finally, Rh glycoproteins may also function as CO2 transporters. Summary No longer can NH3 transport be considered to occur only through diffusive NH3 movement. Transporter-mediated NH3 movement is fundamental to ammonia metabolism. PMID:20539225

  13. Dissociation and Mass Transfer Coefficients for Ammonia Volatilization Models

    Science.gov (United States)

    Process-based models are being used to predict ammonia emissions from manure sources, but their accuracy has not been fully evaluated for cattle manure. Laboratory trials were conducted to measure the dissociation and mass transfer coefficients for ammonia volatilization from media of buffered ammon...

  14. Crystal Structure of an Ammonia-Permeable Aquaporin.

    Science.gov (United States)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  15. An infrared spectroscopy method to detect ammonia in gastric juice.

    Science.gov (United States)

    Giovannozzi, Andrea M; Pennecchi, Francesca; Muller, Paul; Balma Tivola, Paolo; Roncari, Silvia; Rossi, Andrea M

    2015-11-01

    Ammonia in gastric juice is considered a potential biomarker for Helicobacter pylori infection and as a factor contributing to gastric mucosal injury. High ammonia concentrations are also found in patients with chronic renal failure, peptic ulcer disease, and chronic gastritis. Rapid and specific methods for ammonia detection are urgently required by the medical community. Here we present a method to detect ammonia directly in gastric juice based on Fourier transform infrared spectroscopy. The ammonia dissolved in biological liquid samples as ammonium ion was released in air as a gas by the shifting of the pH equilibrium of the ammonium/ammonia reaction and was detected in line by a Fourier transform infrared spectroscopy system equipped with a gas cell for the quantification. The method developed provided high sensitivity and selectivity in ammonia detection both in pure standard solutions and in a simulated gastric juice matrix over the range of diagnostic concentrations tested. Preliminary analyses were also performed on real gastric juice samples from patients with gastric mucosal injury and with symptoms of H. pylori infection, and the results were in agreement with the clinicopathology information. The whole analysis, performed in less than 10 min, can be directly applied on the sample without extraction procedures and it ensures high specificity of detection because of the ammonia fingerprint absorption bands in the infrared spectrum. This method could be easily used with endoscopy instrumentation to provide information in real time and would enable the endoscopist to improve and integrate gastroscopic examinations.

  16. Method of treating ammonia-comprising waste water

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.M.; Jetten, M.S.M.

    1998-01-01

    The invention relates to a method of treating ammonia-comprising waste water in which the bicarbonate ion is the counter ion of the ammonium ion present in the waste water. According to the invention half the ammonium is converted into nitrite, yielding an ammonia- and nitrite-containing solution, a

  17. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    Science.gov (United States)

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program.

  18. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S; Liu, Qingsong; Zhang, Xin

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.

  19. Bioluminescent bioreporter integrated circuit devices and methods for detecting ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2007-04-24

    Monolithic bioelectronic devices for the detection of ammonia includes a microorganism that metabolizes ammonia and which harbors a lux gene fused with a heterologous promoter gene stably incorporated into the chromosome of the microorganism and an Optical Application Specific Integrated Circuit (OASIC). The microorganism is generally a bacterium.

  20. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    Science.gov (United States)

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program. PMID:26468514

  1. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...

  2. New technology for ammonia recovery from poultry litter

    Science.gov (United States)

    Abatement of gaseous ammonia in poultry houses is beneficial to both improve health/productivity of the birds and to reduce emissions into the environment surrounding the production facility. Current ammonia abatement technologies from poultry houses can be classified into four broad categories: 1) ...

  3. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  4. Understanding emissions of ammonia from buildings and application of fertilizers: an example from Poland

    Directory of Open Access Journals (Sweden)

    M. Werner

    2015-01-01

    To incorporate the national regulations, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages, and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with the NWP calculations from the Weather Research and Forecasting model (WRF-ARW. The model was used to calculate four emission scenarios with high spatial (5 km × 5 km and temporal resolution (3 h for the entire year 2010. In the four scenarios, we have compared the Europe-wide default model settings against (1 a scenario that focuses on emission from agricultural buildings, (2 the existing emission method used in WRF-Chem in Poland, and (3 a scenario that takes into account Polish infrastructure and agricultural regulations. The ammonia emission was implemented into the CTM FRAME and modelled ammonia concentrations was compared with measurements. The results suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained on the national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate-dependent emissions (e.g. biogenic volatile organic compounds. Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general, even in areas with limited information about the location of the agricultural fields, livestock and agricultural production methods such as Poland.

  5. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  6. Scavenging of ammonia by raindrops in Saturn's great storm clouds

    Science.gov (United States)

    Delitsky, M. L.; Baines, Kevin

    2016-10-01

    Observations of the great Saturn storms of 2010-2011 by Cassini instruments showed a very large depletion in atmospheric ammonia. While dynamics will play a role, the very high solubility of ammonia in water may be another important contributor to ammonia depletion in storms. Ammonia exists in Earth's atmosphere and rainstorms dissolve ammonia to a great degree, leaving almost no NH3 in the atmosphere. Studies by Elperin et al (2011, 2013) show that scavenging of ammonia is greatest as a rainstorm starts and lessens as raindrops fall, tapering off to almost zero by the time the rain reaches the ground (Elperin et al 2009). Ammonia is reaching saturation as it dissolves in the aqueous solution. As concentration increases, NH3 is then converted to aqueous species (NH3)x.(H2O)y (Max and Chapados 2013).Ammonia has the highest solubility in water compared to all other gases in the Saturn atmosphere. The Henry's Law constant for NH3 in water is 60 M/atm at 25 C. For H2S, it is 0.001 M/atm. In Saturn storms, it is "raining UP": As water-laden storm clouds convectively rise, ammonia gas will be scavenged and go into solution to a great degree, whilst all the other gases remain mostly in the gas phase. Aqueous ammonia acts as an antifreeze: if ammonia is dissolved in water cloud droplets to the limit of its solubility, as water droplets rise, they can stay liquid (and continue to scavenge NH3) to well below their normal freezing point of 0 Celsius (273 K). The freezing point for a 30 wt % water-ammonia solution is ~189 K. The pressure level where T = 189 K is at 2.8 bars. The normal freezing point of water occurs at the 9 bar pressure level in Saturn's atmosphere. 2.8 bars occurs at the -51 km altitude (below the 1 bar level). 9 bars is at the -130 km level: a difference of 79 km. A water droplet containing 30 wt% NH3 can move upwards from 9 bars to 2.8 bars (79 km) and still remain liquid, only freezing above that altitude. Calculations by the E-AIM model show that ammonia

  7. Hydrolyzabilities of different corn stover fractions after aqueous ammonia pretreatment.

    Science.gov (United States)

    Sun, Zongping; Ge, Xiaoyan; Xin, Donglin; Zhang, Junhua

    2014-02-01

    The effect of aqueous ammonia pretreatment on the hydrolysis of different corn stover fractions (rind, husk, leaf, and pith) by xylanase (XYL) with cellulases (CELs) was evaluated. The aqueous ammonia pretreatment had excellent delignification ability (above 66%) for different corn stover fractions. The corn rind exhibited the lowest susceptibility to aqueous ammonia pretreatment. The pretreated rind showed the lowest hydrolyzability by CEL and XYL, which was supported by a high content of crystalline cellulose in the hydrolyzed residues of rind, as confirmed by X-ray diffraction (XRD). With the addition of 1 mg XYL/g dry matter, a high glucose yield (above 90%) could be obtained from the pretreated rind by CEL. The results revealed that a high hydrolyzate yield of corn rind after aqueous ammonia pretreatment could be obtained with 1 mg xylanase/g dry matter, showing that aqueous ammonia pretreatment and xylanase addition to cellulases have great potential for the efficient hydrolysis of corn stover without previous fractionation.

  8. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. PMID:26530809

  9. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus......, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were assessed under 0...

  10. Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins.

    Science.gov (United States)

    Seredych, Mykola; Ania, Conchi; Bandosz, Teresa J

    2016-03-15

    Phenolic-formaldehyde resins aged at 85, 90 and 95°C were used as ammonia adsorbents at dynamic conditions in dry and moist air. To avoid pressure drops 10% bentonite was added as a binder. The initial and hybrid materials (before and after ammonia adsorption) were extensively characterized from the point of view of their porosity and surface chemistry. The results showed that the addition of the binder had various effects on materials' properties depending on the chemistry of their surface groups. When the phenolic acidic groups were predominant, the largest increase in surface acidity upon the addition of the binder was found. It was linked to the exfoliation of bentonite by polar moieties of the resins, which made acidic groups from aluminosilicate layers available for ammonia adsorption. On this sample, a relatively high amount of ammonia was strongly adsorbed in dry conditions. Insensitivity to moisture is a significant asset of ammonia adsorbents.

  11. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %.

  12. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory

    Science.gov (United States)

    Backes, Anna; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Nitrogen input from agricultural ammonia emissions into the environment causes numerous environmental and health problems. The purpose of this study is to present and evaluate an improved ammonia emission inventory based on a dynamical temporal parameterization suitable to compare and assess ammonia abatement strategies. The setup of the dynamical time profile (DTP) consists of individual temporal profiles for ammonia emissions, calculated for each model grid cell, depending on temperature, crop type, fertilizer and manure application, as well as on local legislation. It is based on the method of Skjøth et al., 2004 and Gyldenkærne et al., 2005. The method has been modified to cover the study area and to improve the performance of the emission model. To compare the results of the dynamical approach with the results of the static time profile (STP) the ammonia emission parameterizations have been implemented in the SMOKE for Europe emission model. Furthermore, the influence on secondary aerosol formation in the North Sea region and possible changes triggered through the use of a modified temporal distribution of ammonia emissions were analysed with the CMAQ chemistry transport model. The results were evaluated with observations of the European Monitoring and Evaluation Programme (EMEP). The correlation coefficient of NH3 improved significantly for 12 out of 16 EMEP measurement stations and an improvement in predicting the Normalized Mean Error can be seen for particulate NH4+ and NO3-. The prediction of the 95th percentile of the daily average concentrations has improved for NH3, NH4+ and NO3-. The NH3 concentration modelled with the STP is 157% higher in winter, and about 22% lower in early summer than the one modelled with the new DTP. Consequently, the influence of the DTP on the formation of secondary aerosols is particularly noticeable in winter, when the PM2.5 concentration is 25% lower in comparison to the use of STP for temporal disaggregation. Besides

  13. 吡啶硼烷改性对沥青性能及组成的影响%INFLUENCE OF PYRIDINE-BORANE MODIFICATION ON THE PROPERTIES AND COMPONENT OF PITCHES

    Institute of Scientific and Technical Information of China (English)

    张丽芳; 宋进仁; 要立中; 刘朗

    2001-01-01

    以吡啶硼烷为添加剂对煤焦油沥青进行改性,考察了工艺条件(硼添加量,反应温度,反应时间)对改性沥青软化点、残炭值及其族组成的影响。发现吡啶硼烷参与并促进了沥青分子的反应,其结果是随着硼添加量的增加,改性沥青的软化点、残炭值提高,TS组份的含量降低,而PI组份的含量增加。在同一反应条件下,体系有无吡啶硼烷,所得结果有显著差别。吡啶硼烷改性系列的软化点、残炭值及PI组份的含量均明显高于纯沥青系列。%Coal tar pitch was modified by adding pyridine-borane. The effectof reaction conditions on the properties and components of modified pitches was investigated. It was found that pyridine-borane participate in and accelerated the reaction among molecules, but changed the component and structure of pitches. The softening points, carbon yields and PI fraction content increased with the increasing of boron addition and reaction temperature, while TS fraction content of pitches decreased. Compared with the pure pitches, pyridine-borane modified pitches had higher softening points, carbon yields and PI fraction content at the same reaction conditions.

  14. The Fate of Ammonia and Hydrogen Cyanide during Flameless Combustion of Low Calorific Value Gases

    Directory of Open Access Journals (Sweden)

    Günther Scheffknecht

    2012-02-01

    Full Text Available

  1. Ammonia Thermometry of Star Forming Galaxies

    CERN Document Server

    Mangum, Jeffrey G; Henkel, Christian; Menten, Karl M; MacGregor, Meredith; Svoboda, Brian E; Schinnerer, Eva

    2013-01-01

    With a goal toward deriving the physical conditions in external galaxies, we present a study of the ammonia (NH$_3$) emission and absorption in a sample of star forming systems. Using the unique sensitivities to kinetic temperature afforded by the excitation characteristics of several inversion transitions of NH$_3$, we have continued our characterization of the dense gas in star forming galaxies by measuring the kinetic temperature in a sample of 23 galaxies and one galaxy offset position selected for their high infrared luminosity. We derive kinetic temperatures toward 13 galaxies, 9 of which possess multiple kinetic temperature and/or velocity components. Eight of these galaxies exhibit kinetic temperatures $>100$ K, which are in many cases at least a factor of two larger than kinetic temperatures derived previously. Furthermore, the derived kinetic temperatures in our galaxy sample, which are in many cases at least a factor of two larger than derived dust temperatures, point to a problem with the common a...

  2. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  3. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink;

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...... of fossil fuels, are main drivers for the currently increasing research and development efforts. However. significant technological breakthroughs are necessary for making a hydrogen economy feasible. In particular, it is necessary to develop appropriate hydrogen storage and transportation technologies....... Recently, metal ammine salts were proposed as safe, reversible. high-density and low-cost hydrogen carriers. Here, we discuss how this development could provide a platform for using ammonia as a fuel for the hydrogen economy, We do that by comparing various possible hydrogen carriers with respect to energy...

  4. Lithium insertion into boron containing carbons prepared by co-pyrolysis of coal-tar pitch and borane-pyridine complex

    Energy Technology Data Exchange (ETDEWEB)

    Machnikowski, J.; Frackowiak, E.; Kierzek, K.; Waszak, D.; Benoit, R.; Beguin, F. [Wroclaw University of Technology, Wroclaw (Poland)

    2004-03-01

    Carbon materials of boron content ranging from 0.6 to 4 wt.% were synthesized by co-pyrolysis of QI-free coal-tar pitch with the borane-pyridine complex. The growing amount of boron introduced into the carbonaceous material is associated with an increase in nitrogen content and a progressive degradation of structural and textural ordering. The structural variations of the boron-doped materials on heat treatment up to 2500{sup o}C were monitored using X-ray diffraction and X-ray photoelectron spectroscopy. The intrinsic boron acts effectively as a catalyst of graphitization above 2100{sup o}C. The carbonaceous material with boron content of about 1.5 wt% shows the highest degree of structural ordering after thermal treatment. A high amount of oxygen was found in the graphitized boronated carbons, proving that the incorporated boron induces a strong chemisorption activity of the material when exposed to air. For a series of cokes calcined at 1000 {sup o}C, the most striking effect of increasing the boron content is an increase of irreversible capacity X-irr from 0.2 to 0.7. The reversible capacity (X-rev) amounts to about 1, with a slight tendency to decrease with the boron content. Upon increasing the temperature up to 2500{sup o}C, X-irr decreases to about 0.1 in the graphitic carbons, while X-rev reaches a minimum of 0.4-0.5 at 1700{sup o}C and next increases to a value close to 1 at 2500{sup o}C. In the boron doped graphite, X-irr has a slight tendency to increase with the boron content, due to the simultaneous presence of nitrogen in these materials and their strong affinity for oxygen from the atmosphere.

  5. Paecilomyces variotii: A Fungus Capable of Removing Ammonia Nitrogen and Inhibiting Ammonia Emission from Manure

    Science.gov (United States)

    Liu, Zhiyun; Liu, Guohua; Cai, Huiyi; Shi, Pengjun; Chang, Wenhuan; Zhang, Shu; Zheng, Aijuan; Xie, Qing; Ma, Jianshuang

    2016-01-01

    Ammonia (NH3) emissions from animal manure are a significant environmental and public concern. Despite the numerous studies regarding NH3 emissions from manure, few of them have considered microbial nitrification approaches, especially fungal nitrification. In this study, a filamentous fungus was isolated from chicken manure and was used for nitrification. The species was Paecilomyces variotii by morphological characteristics and 18S rDNA gene sequencing. It played the biggest role in the removal of ammonium at pH 4.0–7.0, C/N ratio of 10–40, temperature of 25–37°C, shaking speed of 150 rpm, and with glucose as the available carbon source. Further analysis revealed that all ammonium was removed when the initial ammonium concentration was less than 100 mg/L; 40% ammonium was removed when the initial ammonium concentration was 1100 mg/L. The results showed that the concentration of ammonia from chicken manure with strain Paecilomyces variotii was significantly lower than that in the control group. We concluded that Paecilomyces variotii has good potential for future applications in in situ ammonium removal as well as ammonia emissions control from poultry manure. PMID:27348533

  6. Effect of ammonia stress on nitrogen metabolism of Ceratophyllum demersum.

    Science.gov (United States)

    Gao, Jingqing; Li, Linshuai; Hu, Zhiyuan; Yue, Hui; Zhang, Ruiqin; Xiong, Zhiting

    2016-01-01

    The objective of the present study was to determine the effect of total ammonia N concentration and pH on N metabolism of Ceratophyllum demersum and to evaluate stress as a result of inorganic N enrichment in the water column on submerged macrophytes. Carefully controlled pH values distinguished between the effects of un-ionized NH3 and ionized NH4(+). The results showed that the most obvious consequence of ammonia addition was an overall increase in ammonia content and decrease in nitrate content in all tissues of fertilized plants. The activities of nitrate reductase and glutamine synthetase were inhibited by long-term ammonia addition. At the same time, ammonia addition significantly decreased soluble protein content and increased free amino acid content in all treatments. Another clear effect of ammonia addition was a decrease in carbon reserves. Therefore, the authors concluded that increased ammonia availability could affect plant survival and lead to a decline in C. demersum proliferation through a decrease in their carbon reserves. This interaction between N and C metabolism helps to explain changes in benthic vegetation as a result of steadily increasing coastal water eutrophication.

  7. Direct Measurements of the Surface-Atmosphere Exchange of Ammonia

    Science.gov (United States)

    Tevlin, A.; Murphy, J. G.; Wentworth, G.; Gregoire, P.

    2012-12-01

    As the dominant atmospheric base, ammonia plays an important role in the formation and growth of inorganic aerosols. Surface-atmosphere exchange of ammonia has been observed to occur as a bidirectional flux governed by the relative magnitudes of atmospheric gas phase concentration and a temperature-dependent surface compensation point. In order to better characterise the links between gas-particle and surface-atmosphere exchanges, more direct measurements of these exchanges are necessary. Eddy Covariance (EC) can provide the most direct surface-atmosphere flux measurements, but its requirement for high frequency data combined with the reactive nature of ammonia have limited its application for this species. In order to address this lack, an investigation into the instrumental sensitivity and time response requirements for EC ammonia flux measurements was carried out using a Quantum Cascade-Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) capable of measuring ammonia concentration at 10 Hz. Time response was additionally improved through the use of a heated sample line and custom glass inlet, and the system was deployed over a short grass field in rural Ontario. The ammonia measurements were used along with three dimensional sonic anemometer wind speed data to calculate EC ammonia fluxes. When combined with simultaneous measurements of the inorganic composition of gas and particle phases made by Ambient Ion Monitor - Ion Chromatography (AIM-IC), these flux measurements can provide insight into the links between gas-particle and surface-atmosphere exchange.

  8. Mathematical Model of Ammonia Handling in the Rat Renal Medulla.

    Directory of Open Access Journals (Sweden)

    Lorette Noiret

    Full Text Available The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and [Formula: see text], and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts.

  9. Safety assessment of ammonia as a transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F.; Lundtang paulsen, Jette

    2005-02-01

    This report describes the safety study performed as part of the EU supported project 'Ammonia Cracking for Clean Electric Power Technology' The study addresses the following activities: safety of operation of the ammonia-powered vehicle under normal and accident (collision) conditions, safety of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of other existing or alternative fuels. The conclusion is that the hazards in relation to ammonia need to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle - Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system - Road transport of ammonia to refuelling stations in refrigerated form - Sufficient safety zones between refuelling stations and residential or otherwise public areas. When these measures are applied, the use of ammonia as a transport fuel wouldnt cause more risks than currently used fuels (using current practice). (au)

  10. SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    Science.gov (United States)

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.

  11. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-01-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time within our experimental conditions. The percentages of active ice nuclei were 2 to 9 times higher at 90% RHw and 2 to 13 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 12°C higher than for unexposed montmorillonite particles at 90% RHw and 10°C higher at 100% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 7°C warmer than unexposed montmorillonite at 100% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  12. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  13. Fast responsive, optical trace level ammonia sensor for environmental monitoring

    OpenAIRE

    Abel Tobias; Ungerböck Birgit; Klimant Ingo; Mayr Torsten

    2012-01-01

    Abstract Background Ammonia is a ubiquitous chemical substance which is created in technical and biological processes and harmful to many different organisms. One specific problem is the toxicity of ammonia in fish at levels of 25 μg/l - a very common issue in today’s aqua culture. In this study we report a development of a fast responsive, optical ammonia sensor for trace concentrations. Results Different hydrogels have been investigated as host polymers for a pH based sensing mechanism base...

  14. Safety assessment of ammonia as a transport fuel

    DEFF Research Database (Denmark)

    Duijm, N.J.; Markert, Frank; Paulsen, Jette Lundtang

    2005-01-01

    of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of otherexisting or alternative fuels. The conclusion is that the hazards in relation to ammonia need...... to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle -Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system. - Road...

  15. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  16. A spatial ammonia emission inventory for pig farming

    Science.gov (United States)

    Rebolledo, Boris; Gil, Antonia; Pallarés, Javier

    2013-01-01

    Atmospheric emissions of ammonia (NH3) from the agricultural sector have become a significant environmental and public concern as they have impacts on human health and ecosystems. This work proposes an improved methodology in order to identify administrative regions with high NH3 emissions from pig farming and calculates an ammonia density map (kg NH3-N ha-1), based on the number of pigs and available agricultural land, terrain slopes, groundwater bodies, soil permeability, zones sensitive to nitrate pollution and surface water buffer zones. The methodology has been used to construct a general tool for locating ammonia emissions from pig farming when detailed information of livestock farms is not available.

  17. Detection of Widespread Hot Ammonia in the Galactic Center

    OpenAIRE

    Mills, Elisabeth A. C.; Morris, Mark R.

    2013-01-01

    We present the detection of metastable inversion lines of ammonia from energy levels high above the ground state. We detect these lines in both emission and absorption toward fifteen of seventeen positions in the central 300 parsecs of the Galaxy. In total, we observe seven metastable transitions of ammonia: (8,8), (9,9), (10,10), (11,11), (12,12), (13,13) and (15,15), with energies (in Kelvins) ranging from 680 to 2200 K. We also map emission from ammonia (8,8) and (9,9) in two clouds in the...

  18. Organic Compounds

    Science.gov (United States)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  19. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  20. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  1. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation.

  2. Using fundamental advanced thermodynamics to model CO{sub 2} capture using aqueous ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Darde, V. [Denmark Technical Univ., Roskilde (Denmark). Dept. of Chemical and Biochemical Engineering; Dong Energy Power, Fredericia (Denmark). Chemical and Materials Dept.; Thomsen, K.; Stenby, E.H. [Denmark Technical Univ., Roskilde (Denmark). Dept. of Chemical and Biochemical Engineering; Van Well, W.J.M. [Dong Energy Power, Fredericia (Denmark). Chemical and Materials Dept.

    2009-07-01

    The post combustion carbon dioxide (CO{sub 2}) capture process was studied using aqueous solutions of ammonia as solvent rather than amine solutions. The post combustion technique can be used in existing power plants because it does not alter the combustion at the power plant. There are 2 variants of the capture process using aqueous ammonia, whereby the first absorbs the CO{sub 2} at low temperature and the second absorbs CO{sub 2} at ambient temperature. The heat of absorption of CO{sub 2} by ammonia is much lower than for alkanolamines. Degradation problems can also be avoided by using ammonia, and a high carbon dioxide capacity can be achieved. A thermodynamic model for the system was developed to simulate and optimize the process. The properties of the NH{sub 3}-CO{sub 2}-H{sub 2}O system were previously modeled using the Extended UNIQUAC electrolyte model. The speciation and the solid-liquid equilibrium were examined using the extended UNIQUAC equations, while the activity coefficients of the species in the gas phase were calculated with the Soave-Redlich-Kwong (SRK) equation of state. In this study, the temperature range of interest for a CO{sub 2} capture process using aqueous ammonia was from 0 to 150 degrees C. Data for the enthalpy of evaporation, speciation, heat of dilution and heat capacity of NH{sub 3}-CO{sub 2}-H{sub 2}O mixtures were also used in order to calculate the enthalpy of the different streams of the process. About 60 parameters were considered. The model results showed that solid phases consisting of ammonium carbonate compounds form in the absorber. The pure CO{sub 2} stream that leaves the stripper is pressurized, resulting in energy savings compared to conventional processes that require a compression of CO{sub 2} before its transport and use. The energy requirements in the absorber and in the desorber were also studied. 2 refs.

  3. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus;

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  4. Ammonia removal from an aqueous solution and method for the production of a fertilizer material

    NARCIS (Netherlands)

    Kelder, E.M.; Ursem, W.N.J.; Roos, R.A.; Marijnissen, J.C.M.

    2011-01-01

    The invention provides method for the removal of ammonia from air and converting the ammonia in a fertilizer material, comprising (a) contacting at least part of the air with an aqueous liquid, wherein the aqueous liquid is a solvent for ammonia, to provide an ammonia containing aqueous liquid,and(b

  5. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  6. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica

    Science.gov (United States)

    Voytek, M.A.; Priscu, J.C.; Ward, B.B.

    1999-01-01

    Marked differences in the concentrations of major ions and cations, macronutrient chemistry and general trophic status exist among the lakes of the McMurdo dry valleys in Antarctica. These differences have been attributed to both variations in stream inputs and in situ lake processes (Priscu, 1995; Lizotte et al., 1996, Spigel and Priscu, 1996). This study examines the role of nitrifying bacteria in nitrogen transformations in these lakes. Applying two polymerase chain reaction (PCR) assays targeting the 16S rRNA genes of ammonia-oxidizing bacteria and the active site of the ammonia monooxygenase gene (amoA), the distribution of ammonia-oxidizers was examined in six Antarctic lakes: Lake Bonney, Lake Hoare, Lake Fryxell and Lake Joyce in the Taylor Valley, Lake Miers in the the Miers Valley and Lake Vanda in the Wright Valley. Using a two stage amplification procedure, ammonia-oxidizers from both the beta and gamma- subclasses of the Proteobacteria were detected and their relative abundances were determined in samples collected from all sites. Ammonia-oxidizers were detected in all lakes sampled. Members of the gamma subclass were only present in the saline lakes. In general, nitrifiers were most abundant at depths above the pycnocline and were usually associated with lower concentrations of NH4 and elevated concentrations of NO3 or NO2. The distribution of nitrifiers suggests that the primary N2O peak observed in most of the lakes was produced via nitrification. Preliminary data on the rate of nitrification (Priscu et al., 1996) support the occurrence of nitrification and the presence of nitrifiers at the depth intervals where nitrifiers were detected. In all lakes, except Lake Miers, the data indicate that nitrifying bacteria have an important role in the vertical distribution of nitrogen compounds in these systems.

  7. Study on austenitic nitrocarburizing without compound layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Univ. of Petroleum, Dongying, Shandong (China); Kong, C.; Qiao, Y. [Shandong Polytechnic Univ., Jinan, Shandong (China)

    1995-12-31

    This paper presents an advanced austenitic nitrocarburizing process. Medium-carbon steel was used in austenitic nitrocarburizing with methanol/ammonia atmospheres. A particular hardened case without compound layer was obtained at 680 C processing temperature and a moderate nitrogen potential level and for steel 45 nitrocarburized, there is a fine-grain region beneath the austenite case. The forming and developing mechanism of the fine-grain region was analyzed and the microhardness profiles of the layer before and after ageing were determined. Having the advantages of shorter processing time and a superior hardened case, this treatment is expected to supersede the conventional ferritic nitrocarburizing process in many wear resistance applications.

  8. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai - 400076 (India); Srinivasa, R. S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  9. Ammonia-water system : Part I. Thermodynamic properties

    International Nuclear Information System (INIS)

    The various thermodynamic properties which have direct bearing on design calculations and separation factor calculations for gaseous ammonia water system have been calculated and compiled in tabular form for easy reference. (auth.)

  10. IRIS Toxicological Review of Ammonia - Noncancer Inhalation (Final Report)

    Science.gov (United States)

    The U.S. Environmental Protection Agency's (USEPA) has finalized the Integrated Risk Information System (IRIS) Assessment of Ammonia (Noncancer Inhalation). This assessment addresses the potential noncancer human health effects from long-term inhalation exposure to ammon...

  11. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.;

    2006-01-01

    Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations....... Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully...

  12. Ammonia concentration in an animal radon exposure facility

    International Nuclear Information System (INIS)

    An experimental and dosimetric study on lung tumour induction by inhalation of radon daughters under indoor conditions has been started with the aim of analysing the various factors which determine the risk due to this inhalation. In the experimental part of the study, WAG/Rij rats will be exposed daily for a period of about 18 months in an exposure chamber to a relatively low concentration of radon daughter products. In chronic exposure chambers, ammonia is produced by the action of urease-positive bacteria in urine and faeces. There are reports showing that, in such exposure chambers, the ammonia concentrations will rise beyond acceptable levels. The ammonia concentration as a function of time has therefore been studied, as has means of reducing this concentration. The results demonstrate that, with the addition of Aqualloy granules the ammonia concentration can be reduced over a long period of time to a level for which no cooperative action with the radon exposure is expected. (Auth.)

  13. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    Science.gov (United States)

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  14. Review of Options for Ammonia/Ammonium Management

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-06

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processes and provides reasoning to not consider those processes further for this application.

  15. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N......, the total incubation periods of hydrogenotrophic methanogens were significantly shorter compared to the SAO bacteria incubation periods. Thus, it seems that hydrogenotrophic methanogens could be equally, if not more, tolerant to high ammonia levels compared to SAO bacteria.......Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...

  16. Lignin solubilisation and gentle fractionation in liquid ammonia

    OpenAIRE

    Strassberger, Z.; Prinsen, P.; Klis, van der, M.; Es, van, B; Tanase, S.; Rothenberg, G.

    2014-01-01

    We present a simple method for solubilising lignin using liquid ammonia. Unlike water, which requires harsh conditions, ammonia can solubilise technical lignins, in particular kraft lignin. A commercial pine wood Kraft lignin (Indulin AT) was solubilized instantaneously at room temperature and 7–11 bars autogeneous pressure, while a commercial mixed wheat straw/Sarkanda grass soda lignin (Protobind™ 1000) was solubilized within 3 h at ambient temperature, and 30 min at. 85 °C. Hydroxide salts...

  17. Accelerated DFT-Based Design of Materials for Ammonia Storage

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Bialy, Agata; Blanchard, Didier;

    2015-01-01

    Future energy carriers are needed in order to lower the CO2 emissions resulting from the burning of fossil fuels. One possible energy carrier is ammonia, which can be stored safely and reversibly in metal halide ammines; however, the release often occurs in multiple steps at too high temperatures...... materials is the first known high-capacity ternary metal halide ammine, which we have subsequently synthesized and confirmed the ammonia storage properties using temperature-programmed desorption (TPD)....

  18. Isotopic Discrimination of Some Solutes in Liquid Ammonia

    Science.gov (United States)

    Taube, H.; Viste, A.

    1966-01-01

    The nitrogen isotopic discrimination of some salts and metals, studies in liquid ammonia solution at -50�C, decreases in magnitude in the order Pb{sup ++}, Ca{sup ++}, Li{sup +}, AG{sup +}, Na{sup +}, Li, K{sup +}, Na, K. The isotopic discrimination appears to provide qualitative information about the strength of the cation-solvent interaction in liquid ammonia.

  19. Ammonia corrodes solar modules; Salmiakgeist greift Module an

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Katrin

    2011-07-01

    Ammonia is an aggressive gas produced in animal shelters, which may cause corrosion of solar modules. Various institutions, e.g. DLG and TUeV Rheinland, therefore offer an ammonia test for solar modules. The TUeV Rheinland recently commissioned a walk-in test chamber and now issues an official seal of approval, while the DLG doubts the practical value of the test.

  20. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James Joshua; Coleman, Gerald N.

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  1. Ammonia concentration modeling based on retained gas sampler data

    Energy Technology Data Exchange (ETDEWEB)

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

  2. Global Ecological Pattern of Ammonia-Oxidizing Archaea

    OpenAIRE

    Huiluo Cao; Jean-Christophe Auguet; Ji-Dong Gu

    2013-01-01

    BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We condu...

  3. HISTIDINE BIOTRANSFORMATION MEDIATED BY L-HISTIDINE-AMMONIA-LYASE

    OpenAIRE

    Borisova, G.; Bessonova, O.

    2013-01-01

    Kinetics of the metabolism of the heterocyclic amino acid histidine exposed to the L-histidine ammonia-lyase enzyme has been investigated and the technology of extraction of histidine biotransformation products (urocanic acid and ammonia) from casein hydrolyzates enabling the subsequent use of these hydrolyzates as a milk protein concentrate for the production of specialized dietary products for the nutrition of histidinemia patients has been developed.

  4. Thaumarchaeal Ammonia Oxidation in an Acidic Forest Peat Soil Is Not Influenced by Ammonium Amendment▿ †

    OpenAIRE

    Stopnišek, Nejc; Gubry-Rangin, Cécile; Höfferle, Špela; Nicol, Graeme W.; Mandič-Mulec, Ines; Prosser, James I.

    2010-01-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils...

  5. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  6. Optimality in the zonation of ammonia detoxification in rodent liver.

    Science.gov (United States)

    Bartl, Martin; Pfaff, Michael; Ghallab, Ahmed; Driesch, Dominik; Henkel, Sebastian G; Hengstler, Jan G; Schuster, Stefan; Kaleta, Christoph; Gebhardt, Rolf; Zellmer, Sebastian; Li, Pu

    2015-11-01

    The rodent liver eliminates toxic ammonia. In mammals, three enzymes (or enzyme systems) are involved in this process: glutaminase, glutamine synthetase and the urea cycle enzymes, represented by carbamoyl phosphate synthetase. The distribution of these enzymes for optimal ammonia detoxification was determined by numerical optimization. This in silico approach predicted that the enzymes have to be zonated in order to achieve maximal removal of toxic ammonia and minimal changes in glutamine concentration. Using 13 compartments, representing hepatocytes, the following predictions were generated: glutamine synthetase is active only within a narrow pericentral zone. Glutaminase and carbamoyl phosphate synthetase are located in the periportal zone in a non-homogeneous distribution. This correlates well with the paradoxical observation that in a first step glutamine-bound ammonia is released (by glutaminase) although one of the functions of the liver is detoxification by ammonia fixation. The in silico approach correctly predicted the in vivo enzyme distributions also for non-physiological conditions (e.g. starvation) and during regeneration after tetrachloromethane (CCl4) intoxication. Metabolite concentrations of glutamine, ammonia and urea in each compartment, representing individual hepatocytes, were predicted. Finally, a sensitivity analysis showed a striking robustness of the results. These bioinformatics predictions were validated experimentally by immunohistochemistry and are supported by the literature. In summary, optimization approaches like the one applied can provide valuable explanations and high-quality predictions for in vivo enzyme and metabolite distributions in tissues and can reveal unknown metabolic functions.

  7. Interorgan ammonia metabolism in health and disease: a surgeon's view.

    Science.gov (United States)

    Souba, W W

    1987-01-01

    Ammonia is a toxic molecule that is the principal by-product of amino acid metabolism. Although the transport of ammonia in a nontoxic form protects the brain against high circulating levels, the interorgan transport of this molecule and the orchestration between tissues that has evolved is related primarily to the fact that the nitrogen molecule is an essential molecule for the maintenance of the body's nutrition economy and overall metabolic homeostasis. Efficient handling and disposal of ammonia requires a cooperative effort between tissues in order to maintain nitrogen homeostasis. The liver is the central organ of ammonia metabolism, but other organs also play a key role in the interorgan exchange of this molecule. Alterations in ammonia metabolism occur during critical illness. These changes are adaptive and are designed to maintain metabolic homeostasis. Interorgan cooperation in ammonia metabolism is necessary to insure the proper integration of the metabolic processes which contribute to and are essential for survival during critical illness. An understanding of these processes improves our knowledge of metabolic regulation and will lead to a rational approach to the nutritional and metabolic support provided to critically ill patients. PMID:3323556

  8. Triply deuterated ammonia in NGC 1333

    CERN Document Server

    Van der Tak, F F S; Müller, H S P; Lis, D C; Phillips, T G; Gerin, M; Roueff, E

    2002-01-01

    The Caltech Submillimeter Observatory has detected triply deuterated ammonia, ND3, through its 10a-00s transition near 310 GHz. Emission is found in the NGC 1333 region, both towards IRAS 4A and a position to the South-East where DCO+ peaks. In both cases, the hyperfine ratio indicates that the emission is optically thin. Column densities of ND3 are 3--6 x 10^11 cm^-2 for T_ex=10 K and twice as high for T_ex=5 K. Using a Monte Carlo radiative transfer code and a model of the structure of the IRAS source with temperature and density gradients, the estimated ND3 abundance is 3.2 x 10^-12 if ND3/H2 is constant throughout the envelope. In the more likely case that ND3/H2D+ is constant, ND3/H2 peaks in the cold outer parts of the source at a value of 1.0 x 10^-11. To reproduce the observed NH3/ND3 abundance ratio of ~1000, grain surface chemistry requires an atomic D/H ratio of ~0.15 in the gas phase, >10 times higher than in recent chemical models. More likely, the deuteration of NH3 occurs by ion-molecule reacti...

  9. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  10. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition.

    Science.gov (United States)

    Gao, Shumei; Zhao, Mingxing; Chen, Yang; Yu, Meijuan; Ruan, Wenquan

    2015-12-01

    The anaerobic digestion (AD) of protein-rich substrates is generally inhibited by ammonia. In this study, ammonia-tolerant acclimation was exposed to a stepwise in situ ammonia stress during the continuous AD of solid residual kitchen waste by using a continuous stirred tank reactor with a 50 L active volume. The reactor worked well during the acclimation process, with an average daily biogas production of 58 L/d, an effluent soluble chemical oxygen demand of 7238 mg/L, a volatile fatty acid (VFA) content of 578 mg/L, and a VFA/alkalinity ratio of less than 0.4. Moreover, ammonia stress enhanced the activity of Coenzyme F420. The results of high-throughput 16S rDNA sequencing showed that ammonia stress increased the relative abundance of Firmicutes bacteria and hydrogenotrophic methanogens but decreased the abundance of acetotrophic methanogens. This microbial community shift was proposed to be an in situ response strategy for ammonia stress adaptation.

  11. Ammonia regeneration for a combined lime/ammonia spray dryer for SO{sub 2} control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Xinjian, Yang [Cincinnati Univ., OH (United States). Dept. of Civil and Environmental Engineering

    1992-12-23

    A research project designed to study the feasibility of ammonia regeneration for a combined lime/ammonia FGD process was conducted at the University of Cincinnati. The major objective for this project was to regenerate ammonia from a combined ammonia/calcium hydroxide spray dryer FGD byproduct for reuse which would reduce the operating cost of this FGD process. This final report covers the six phases of the project: (1) generation of original feedstock, (2) batch regeneration studies, (3) continuous regeneration studies, (4) waste characteristic analysis, (5) pilot scale demonstration and (6) economic analysis. This research has shown that regeneration of ammonia is feasible at a reasonable cost. The effects on Ohio coal use from the results of this research could be substantial, depending on the Phase II application of FGD systems for controlling SO{sub 2} emissions. In conclusion, experiments in this study have shown that ammonia recovery efficiencies greater than 90% are technically and economically feasible. In addition, the sludge produced from the regeneration process is stable and will meet existing Federal standards.

  12. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  13. Forced convection of ammonia. 2. part.: gaseous ammonia - very high wall temperatures (1000 to 3000 K)

    International Nuclear Information System (INIS)

    Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (di = 2.8 mm, de = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm2. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors)

  14. UF6 and UF4 in liquid ammonia: [UF7(NH3)]3- and [UF4(NH3)4].

    Science.gov (United States)

    Kraus, Florian; Baer, Sebastian A

    2009-08-17

    From the reaction of uranium hexafluoride UF6 with dry liquid ammonia, the [UF7(NH3)]3- anion and the [UF4(NH3)4] molecule were isolated and identified for the first time. They are found in signal-green crystals of trisammonium monoammine heptafluorouranate(IV) ammonia (1:1; [NH4]3[UF7(NH3)].NH3) and emerald-green crystals of tetraammine tetrafluorouranium(IV) ammonia (1:1; [UF4(NH3)4].NH3). [NH4]3[UF7(NH3)].NH3 features discrete [UF7(NH3)]3- anions with a coordination geometry similar to a bicapped trigonal prism, hitherto unknown for U(IV) compounds. The emerald-green [UF4(NH3)4].NH3 contains discrete tetraammine tetrafluorouranium(IV) [UF4(NH3)4] molecules. [UF4(NH3)4].NH3 is not stable at room temperature and forms pastel-green [UF4(NH3)4] as a powder that is surprisingly stable up to 147 degrees C. The compounds are the first structurally characterized ammonia complexes of uranium fluorides.

  15. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  16. The Search for Ammonia in Martian Soils with Curiosity's SAM Instrument

    Science.gov (United States)

    Wray, James J.; Archer, P. D.; Brinckerhoff, W. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; McKay, C. P.; Navarro-Gonzalez, R.; Steele, A.; Webster, C. R.

    2013-01-01

    Nitrogen is the second or third most abundant constituent of the Martian atmosphere [1,2]. It is a bioessential element, a component of all amino acids and nucleic acids that make up proteins, DNA and RNA, so assessing its availability is a key part of Curiosity's mission to characterize Martian habitability. In oxidizing desert environments it is found in nitrate salts that co-occur with perchlorates [e.g., 3], inferred to be widespread in Mars soils [4-6]. A Mars nitrogen cycle has been proposed [7], yet prior missions have not constrained the state of surface N. Here we explore Curiosity's ability to detect N compounds using data from the rover's first solid sample. Companion abstracts describe evidence for nitrates [8] and for nitriles (C(triple bond)N) [9]; we focus here on nonnitrile, reduced-N compounds as inferred from bonded N-H. The simplest such compound is ammonia (NH3), found in many carbonaceous chondrite meteorites in NH4(+) salts and organic compounds [e.g., 10].

  17. Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers.

    Directory of Open Access Journals (Sweden)

    Antoni Fernàndez-Guerra

    Full Text Available Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene. In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic for most of the habitats indicated γ(AOA > γ(AOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia

  18. Emission, transmission, deposition and environmental effects of ammonia from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, J.W. [ECN Clean Fossil Fuels, Petten (Netherlands); Dammgen, U. [Federal Agricultural Research Centre, Institute of Agroecology, Braunschweig (Germany)

    2005-05-01

    Air pollution in Europe has been regarded as a severe problem for several decades, the adverse effects being: the influence on the physical properties of the atmosphere itself, in particular its energy balance (global warming), and visibility; the influence on atmospheric chemistry (formation and destruction of both ground level and stratospheric ozone); the input of chemicals into terrestrial and aquatic ecosystems causing acidification and eutrophication leading to forest decline as well as changes in ecosystem structure and function; the effects on human health and welfare (the respiratory system). Since the sulfur dioxide problem seems to have been solved to a large extent in most countries in Western Europe, atmospheric nitrogen compounds are considered a major source of acidification. As most natural and near-natural ecosystems have developed with nitrogen as a limiting factor, increased inputs of reactive atmospheric nitrogen cause changes in their structure, function and nutrient dynamics. These effects are attributed to surplus nutrition (eutrophication) of the respective systems as the result of increased nitrogen inputs. At first it seemed logical to connect them with sources similar to those for sulfur (power plants, combustion engines, domestic heating); however, it soon became clear that reduced nitrogen (ammonia and ammonium in particulates) also plays a major role. This review is to collate the present state of knowledge with regard to ammonia emissions, its atmospheric transport and chemistry as well as its deposition and the resulting effects. It restricts itself to a description of the situation in Europe.

  19. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot

    Science.gov (United States)

    Carlson, R. W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-08-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  20. Ammonia and ethylene biomarkers in the respiration of the people with schizophrenia using photoacoustic spectroscopy

    Science.gov (United States)

    Popa, Cristina; Petrus, Mioara; Bratu, Ana Maria

    2015-05-01

    Oxidative stress has become an exciting area of schizophrenia (SCZ) research, and provides ample opportunities and hope for a better understanding of its pathophysiology, which may lead to new treatment strategies. The first objective of the present study was to analyze the oxidative stress markers in breath samples of patients with SCZ before and after the treatment with Levomepromazine. The second objective was to analyze the deficiency of amino acids marker in breath samples of patients with SCZ before and after the treatment. Exhaled breath was collected from 15 SCZ patients and 19 healthy controls; subsequently, CO2 laser photoacoustic spectroscopy was used to assess the exhaled breath compounds of the study subjects. One of the main breath biomarkers of the oxidative stress is ethylene, while one of the main breath biomarkers of the amino acids deficiency is ammonia. The breath biomarkers in the exhalation of SCZ patients exhibited significant differences from the breath biomarkers in the exhalation of healthy controls. Analysis of breath ethylene and breath ammonia provides a related model of SCZ exhalation that could represent an effective and convenient screening method for this intellectual disability.

  1. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiters Great Red Spot

    Science.gov (United States)

    Carlson, Robert W.; Baines, Kevin H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-01-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3 ) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2 ). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  2. Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge.

    Science.gov (United States)

    Margot, Jonas; Lochmatter, Samuel; Barry, D A; Holliger, Christof

    2016-01-01

    Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l(-1) in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs. PMID:26877039

  3. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  4. Mobility Spectrometer Studies on Hydrazine and Ammonia Detection

    Science.gov (United States)

    Niu, William; Eiceman, Gary; Szumlas, Andrew; Lewis, John

    2011-01-01

    An airborne vapor analyzer for detecting sub- to low- parts-per-million (ppm) hydrazine in the presence of higher concentration levels of ammonia has been under development for the Orion program. The detector is based on ambient pressure ionization and ion mobility characterization. The detector encompasses: 1) a membrane inlet to exclude particulate and aerosols from the analyzer inlet; 2) a method to separate hydrazine from ammonia which would otherwise lead to loss of calibration and quantitative accuracy for the hydrazine determination; and 3) response and quantitative determinations for both hydrazine and ammonia. Laboratory studies were made to explore some of these features including mobility measurements mindful of power, size, and weight issues. The study recommended the use of a mobility spectrometer of traditional design with a reagent gas and equipped with an inlet transfer line of bonded phase fused silica tube. The inlet transfer line provided gas phase separation of neutrals of ammonia from hydrazine at 50 C simplifying significantly the ionization chemistry that underlies response in a mobility spectrometer. Performance of the analyzer was acceptable between ranges of 30 to 80 C for both the pre-fractionation column and the drift tube. An inlet comprised of a combined membrane with valve-less injector allowed high speed quantitative determination of ammonia and hydrazine without cross reactivity from common metabolites such as alcohols, esters, and aldehydes. Preliminary test results and some of the design features are discussed.

  5. Fast responsive, optical trace level ammonia sensor for environmental monitoring

    Directory of Open Access Journals (Sweden)

    Abel Tobias

    2012-10-01

    Full Text Available Abstract Background Ammonia is a ubiquitous chemical substance which is created in technical and biological processes and harmful to many different organisms. One specific problem is the toxicity of ammonia in fish at levels of 25 μg/l - a very common issue in today’s aqua culture. In this study we report a development of a fast responsive, optical ammonia sensor for trace concentrations. Results Different hydrogels have been investigated as host polymers for a pH based sensing mechanism based on fluorescent dyes. A porous hydrophobic fluoropolymer membrane was used as an ion barrier cover layer to achieve a good ammonia permeability. The sensor’s sensitivity towards ammonia as well as crosssensitivity towards pH-value and salinity, and the temperature dependency have been determined. Two different methods to reference fluorescence signals have been employed to eliminate intensity-based measurement drawbacks. Conclusion The presented sensor features high sensitivity and a fast response even at concentrations near 1 ppb. No cross sensitivity towards pH and salinity could be observed and temperature dependency was determined as compensateable. Both referencing approaches prove themselves to be able to provide a simple use of the sensor for in-field applications.

  6. Amine substitution into sulfuric acid – ammonia clusters

    Directory of Open Access Journals (Sweden)

    O. Kupiainen

    2011-11-01

    Full Text Available The substitution of ammonia by dimethylamine in sulfuric acid – ammonia – dimethylamine clusters was studied using a collision and evaporation dynamics model. Quantum chemical formation free energies were computed using B3LYP/CBSB7 for geometries and frequencies and RI-CC2/aug-cc-pV(T+dZ for electronic energies. We first demonstrate the good performance of our method by a comparison with an experimental study investigating base substitution in positively charged clusters, and then continue by simulating base exchange in neutral clusters, which cannot be measured directly. Collisions of a dimethylamine molecule with an ammonia containing positively charged cluster result in the instantaneous evaporation of an ammonia molecule, while the dimethylamine molecule remains in the cluster. According to our simulations, a similar base exchange can take place in neutral clusters, although the overall process is more complicated. Neutral sulfuric acid – ammonia clusters are significantly less stable than their positively charged counterparts, resulting in a competition between cluster evaporation and base exchange.

  7. Ammonia modification of oxide-free Si(111) surfaces

    Science.gov (United States)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  8. Removal of Ammonia from Air, using Three Iranian Natural Zeolites

    Directory of Open Access Journals (Sweden)

    H Asilian

    2004-06-01

    Full Text Available Ammonia in air can be hazardous to human and animal life and should be removed from the environment. Recently the removal of environmental pollutants such as ammonia by means of natural and modified zeolites has attracted a lot of attention and interests. In this study the capability of three Iranian natural zeolites (Clinoptilolite in point of view of removal of ammonia from air was investigated. Through this research, different zeolites from various regions of Iran including Semnan, Meyaneh, and Firoozkooh resources were considered to be studied. These samples of zeolites were ground and granulized into 425 µm to 4 mm and were utilized in dynamic sorption experiments. Curves of sorption were plotted and breakthrough and saturated points of zeolite samples were obtained. The adsorption capacities at different ammonia concentrations, temperatures, and flow – rates were also calculated. Results obtained showed that, the natural Iranian zeolite (Clinoptilolite was identified to be more efficient adsorbent than the others to remove ammonia from the air. In the same conditions, the obtained breakthrough time for clinoptilolite sample of Meyaneh was longer than the others ( 135min , while, the adsorption capacity of Semnan clinoptilolite was higher than adsorbents ( 6.30 mg /g (P<0.0001.

  9. Development of Ammonia Gas Sensor Using Optimized Organometallic Reagent

    Directory of Open Access Journals (Sweden)

    J. Aubrecht

    2016-01-01

    Full Text Available Reliable, continuous, and spatially distributed monitoring of dangerous or irritating chemical substances belongs to standard functions of contemporary industrial and public security systems. Fiber-optic-based detection provides feasible platform to fulfill such aims. This paper deals with characterization of ammonia sensing elements based on multimode polysiloxane-clad silica-core optical fibers sensitized with 5-(4′-dioctylamino phenylimino quinoline-8-1 cobalt bromide complex reagent immobilized into the cross-linked polymer matrix from a proper mixture of organic solvents and a radical scavenger contributing to the desired long-term stability of optical properties. The applied sensing mechanism combines optical detection principle with chemical reaction of the reagent and ammonia resulting in changes in the visible near-infrared optical absorption spectrum of the cladding layer, influencing via evanescent optical field interactions the spectral distribution of the guided light intensity. Reaction kinetics of short fiber sections exposed to ammonia/nitrogen mixture of various ammonia concentrations is tested and evaluated. The obtained sensitivity, limit of detection, and forward response time of the prepared sensors amount to 1.52⁎10-5 ppm−1, 31 ppm, and 25 s, respectively. The obtained results are promising for fabrication of distributed fiber-optic sensors applicable to detection and location of ammonia gas leaks in industrial as well as general public premises.

  10. Ammonia disinfection of corn grains intended for ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Magdalena Broda

    2009-12-01

    Full Text Available Background. Bacterial contamination is an ongoing problem for commercial bioethanol plants. It concerns factories using grain and also other raw materials for ethanol fermentation. Bacteria compete with precious yeasts for sugar substrates and micronutrients, secrete lactic and acetic acids, which are toxic for yeast and this competition leads to significant decrease of bioethanol productivity. For this study, bacterial contamination of corn grain was examined. Then the grain was treated by ammonia solution to reduce microbial pollution and after that the microbiological purity of grain was tested one more time. Disinfected and non-disinfected corn grains were ground and fermentation process was performed. Microbiological purity of this process and ethanol yield was checked out. Material and methods. The grain was disinfected by ammonia solution for two weeks. Then the grain was milled and used as a raw material for the ethanol fermentation. The fermentation process was carried out in 500-ml Erlenmeyer flasks. Samples were withdrawn for analysis at 0, 24, 48, 72 hrs. The number of total viable bacteria, lactic acid bacteria, acetic acid bacteria, anaerobic bacteria and the quantity of yeasts and moulds were signified by plate method. Results. Ammonia solution effectively reduces bacterial contamination of corn grain. Mash from grain disinfected by ammonia contains less undesirable microorganisms than mash from crude grain. Moreover, ethanol yield from disinfected grain is at the highest level. Conclusions. The ammonia solution proved to be a good disinfection agent for grain used as a raw material for bioethanol fermentation process.

  11. Net summertime emission of ammonia from corn and triticale fields

    Science.gov (United States)

    Richter, Undine; Smith, Jeremy; Brümmer, Christian

    2016-04-01

    Recent advancements in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we used a quantum cascade laser (QCL) absorption spectrometer to continuously measure high-frequency concentrations of ammonia and the net exchange between an agricultural site and the atmosphere based on the eddy-covariance approach. The footprint was split into two main sectors, one planted with corn (Zea mays) and the other one with triticale. Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 8.1 ppb during the observation period from April to September 2015. While both deposition and emission of ammonia was observed, the total campaign exchange resulted in a loss of 3.3 kg NH3-N ha‑1. Highest average emission fluxes of 65 ng N m‑2 s‑1 were recorded after fertilization at the beginning of the campaign in April and May. Afterwards the exchange of ammonia with the atmosphere decreased considerably, but the site remained on average a consistent source with sporadic lower peaks and an average flux of 13 ng N m‑2 s‑1. While management in the form of fertilization was the main driver for ammonia concentration and exchange at the site, biophysical controls from temperature, wind regime, and surface wetness are also presented.

  12. Simple and inexpensive quantification of ammonia in whole blood.

    Science.gov (United States)

    Ayyub, Omar B; Behrens, Adam M; Heligman, Brian T; Natoli, Mary E; Ayoub, Joseph J; Cunningham, Gary; Summar, Marshall; Kofinas, Peter

    2015-01-01

    Quantification of ammonia in whole blood has applications in the diagnosis and management of many hepatic diseases, including cirrhosis and rare urea cycle disorders, amounting to more than 5 million patients in the United States. Current techniques for ammonia measurement suffer from limited range, poor resolution, false positives or large, complex sensor set-ups. Here we demonstrate a technique utilizing inexpensive reagents and simple methods for quantifying ammonia in 100 μL of whole blood. The sensor comprises a modified form of the indophenol reaction, which resists sources of destructive interference in blood, in conjunction with a cation-exchange membrane. The presented sensing scheme is selective against other amine containing molecules such as amino acids and has a shelf life of at least 50 days. Additionally, the resulting system has high sensitivity and allows for the accurate reliable quantification of ammonia in whole human blood samples at a minimum range of 25 to 500 μM, which is clinically for rare hyperammonemic disorders and liver disease. Furthermore, concentrations of 50 and 100 μM ammonia could be reliably discerned with p = 0.0001. PMID:25936660

  13. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds.

    Science.gov (United States)

    Zhai, Hua-Jin; Chen, Qiang; Bai, Hui; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-19

    groups also dominate the structures and bonding of boron oxide clusters and boron boronyl complexes, in which BO groups occupy terminal, bridging, or face-capping positions. The bridging η(2)-BO groups feature three-center two-electron bonds, akin to the BHB τ bonds in boranes. A close isolobal analogy is thus established between boron oxide clusters and boranes, offering vast opportunities for the rational design of novel boron oxide clusters and compounds. Boron boronyl clusters may also serve as molecular models for mechanistic understanding of the combustion of boron and boranes. An effort to tune the B versus O composition in boron oxide clusters leads to the discovery of boronyl boroxine, D3h B3O3(BO)3, an analogue of boroxine and borazine and a new member of the "inorganic benzene" family. Furthermore, a unique concept of π and σ double conjugation is proposed for the first time to elucidate the structures and bonding in the double-chain nanoribbon boron diboronyl clusters, which appear to be inorganic analogues of polyenes, cumulenes, and polyynes. This Account concludes with a brief outlook for the future directions in this emerging and expanding research field. PMID:24915198

  14. Solvent-assistant self-assembly of an AIE+TICT fluorescent Schiff base for the improved ammonia detection.

    Science.gov (United States)

    Han, Tianyu; Wei, Wei; Yuan, Jing; Duan, Yuai; Li, Yaping; Hu, Liangyu; Dong, Yuping

    2016-04-01

    Solvent-assistant self-assembly of an AIE+TICT fluorescent Schiff base into one-dimensional nanofilaments has been developed. The orientation of the assemblies can be controlled by a simple dewetting process: the filaments are interweaved when the self-assembly process is performed on a horizontal substrate, while tilting the substrate to a tiny angle results in the formation of highly oriented ones with long-range order as verified by microscopic examination. The compound shows remarkable fluorescent response to ammonia gas based on a TICT-LE transition. The self-assembled film presents higher detection sensitivity compared with the non-assembled test paper: the former enables 4.75 times faster response time and 6.86 times lower detection limit than the latter. Furthermore, the former demonstrates better selectivity toward ammonia gas in the presence of various organic amines. The sensing devices also enjoy the advantage of cyclic utilization. The fluorescence of the fumed devices can be converted back into the original state when they are heated at 100 °C for 5 min, as thermal treatment can desorb the ammonia gas that adsorbed in the sensing devices.

  15. Direct microwave-assisted amino acid synthesis by reaction of succinic acid and ammonia in the presence of magnetite

    Science.gov (United States)

    Jiang, Nan; Liu, Dandan; Shi, Weiguang; Hua, Yingjie; Wang, Chongtai; Liu, Xiaoyang

    2013-10-01

    Since the discovery of submarine hot vents in the late 1970s, it has been postulated that submarine hydrothermal environments would be suitable for emergence of life on Earth. To simulate warm spring conditions, we designed a series of microwave-assisted amino acid synthesis involving direct reactions between succinic acid and ammonia in the presence of the magnetite catalyst. These reactions which generated aspartic acid and glycine were carried out under mild temperatures and pressures (90-180 °C, 4-19 bar). We studied this specific reaction inasmuch as succinic acid and ammonia were traditionally identified as prebiotic compounds in primitive deep-sea hydrothermal systems on Earth. The experimental results were discussed in both biochemical and geochemical context to offer a possible route for abiotic amino acid synthesis. With extremely diluted starting materials (0.002 M carboxylic acid and 0.002 M ammonia) and catalyst loading, an obvious temperature dependency was observed in both cases [neither product was detected at 90 °C in comparison with 21.08 μmol L-1 (aspartic acid) and 70.25 umol L-1 (glycine) in 180 °C]. However, an opposite trend presented for reaction time factor, namely a positive correlation for glycine, but a negative one for aspartic acid.

  16. Mitigating ammonia and volatile organic compounds (VOCs) emissions from poultry houses using vegetative environmental buffers

    Science.gov (United States)

    The expansion of the poultry industry due to the growing demand of livestock products is putting considerable stress on the atmospheric environment and is also a public health concern. While many regulators and researchers identify land-applied poultry manure as a source of air pollutants, less is k...

  17. 不同煤焦油沥青与吡啶硼烷反应性能的比较%STUDY OF REACTIVITY BETWEEN DIFFERENT COAL TAR PITCHES AND PYRIDINE-BORANE

    Institute of Scientific and Technical Information of China (English)

    张丽芳; 宋进仁; 要立中; 刘朗

    2001-01-01

    以三种不同的煤焦油沥青为原料,分别与吡啶硼烷反应制备了硼取代中间相沥青。比较了它们的软化点、残炭值、四氢呋喃不溶物(THFI)以及中间相的偏光显微结构。发现煤焦油沥青不同所得结果有显著差别:较高软化点的沥青与吡啶硼烷的反应活性较强,而相同软化点的净化煤焦油沥青与吡啶硼烷具有更强的反应性,所得中间相沥青的软化点、残炭值及四氢呋喃不溶物的含量较高,其偏光显微结构也证实了这一点。%Boron-substituted mesophase pitches were synthesized by co-pyrolysis of different coal tar pitches with pyridine-borane complex.The softing points, coke yields, solubility in tetrahydrofurane (THF) and polarized micrographs were compared. It is found that the results are different. The coal tar pitch with high soffening point after purification had higher reactivity with pyridine-borane, which was proved by the soffening point, coke yield solubitily in THF and polarized microstructure of obtained pitch.

  18. Design Ammonia Gas Detection System by Using Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Dr. Bushra. R. Mhdi

    2013-07-01

    Full Text Available Design study and construction of Ammonia gas detection using a fiber as a sensor to based on evanescent wave sensing technique was investigated. Multi-mode fiber type (PCS with core diameter (600μm and (50cm length used where plastic clad was removed by chemical etching for effective sensing area which coated with sol-gel film to enhance its absorption characteristics to evanescent wave around the optical spectrum emitted from halogen lamp measurements through different temperature rang (25-60oc with and without air using as a carrier to ammonia molecules are investigated. Finally sensing efficiency are monitored to ammonia gas it affected to different temperature and environmental condition are studied and our result are compatible to scientific publishes

  19. Anaerobic digestion of swine manure: Inhibition by ammonia

    DEFF Research Database (Denmark)

    Hansen, Kaare Hvid; Angelidaki, Irini; Ahring, Birgitte Kiær

    1998-01-01

    A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at Four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4/g-VS were obtained at 37, 45, 55...... and 60 degrees C, respectively. The yields were significantly lower than the potential biogas yield of the swine manure used (300 ml-CH4/g-VS). A free ammonia concentration of 1.1 g-N/litre or more was found to cause inhibition in batch cultures at pH 8.0 (reactor pH), and higher free ammonia...

  20. Interactions in the ammonia-deuterium system under pressure

    International Nuclear Information System (INIS)

    We have investigated the NH3-D2 mixture to 50 GPa using micro-Raman spectroscopy. Proton exchange was observed in the mixture, resulting in the formation of deuterated isotopes of ammonia and the formation of HD and H2. We report the changes in the vibrational spectra of the various components of the mixture, which include blueshifts and splitting in the vibration modes of hydrogen. These frequency shifts in the mixture are compared to frequency shifts in mixtures composed of the hydrogen isotopes. The changes not accounted for by interactions between the hydrogen molecules suggest repulsive interactions between the hydrogen and ammonia. The bond length of the hydrogen molecules is calculated using a Morse potential, revealing a bond length shorter than in pure hydrogen. Additionally, a change in slope of the bond length as a function of pressure was observed around ∼10-18 GPa, which is attributed to the reordering Phase IV to V transition in ammonia.

  1. Determination of ammonia in ethylene using ion mobility spectrometry

    Science.gov (United States)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  2. Novel Ru - K/Carbon Nanotubes Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis ( 20.85 ml NH 3 /h/g-cat ) than the Ru-K/fullerenes ( 13.3 ml NH 3 /h/g-cat ) at atmospheric ressure and 623 K. The catalyst had activity even at 473 K, and had the highest activity ( 23.46 ml NH 3 /h/g-cat ) at 643 K. It was suggested that the multi-walled structure favored the electron transfer, the hydrogen-storage and the hydrogen-spill which were favorable to ammonia synthesis.

  3. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    Science.gov (United States)

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  4. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  5. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration

    Science.gov (United States)

    Lehtovirta-Morley, Laura E.; Ross, Jenna; Hink, Linda; Weber, Eva B.; Gubry-Rangin, Cécile; Thion, Cécile; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the ‘Nitrososphaera sister cluster’, has no cultivated isolate. A representative of this cluster, named ‘Candidatus Nitrosocosmicus franklandus’, was isolated from a pH 7.5 arable soil and we propose a new cluster name: ‘Nitrosocosmicus’. While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a ‘sister cluster’, indicating placement within a lineage of the order Nitrososphaerales. ‘Ca. N. franklandus’ is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of ‘Ca. N. franklandus’ with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of ‘Ca. N. franklandus’ suggests potential contributions to nitrification in fertilised soils. PMID:26976843

  6. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration.

    Science.gov (United States)

    Lehtovirta-Morley, Laura E; Ross, Jenna; Hink, Linda; Weber, Eva B; Gubry-Rangin, Cécile; Thion, Cécile; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the 'Nitrososphaera sister cluster', has no cultivated isolate. A representative of this cluster, named 'Candidatus Nitrosocosmicus franklandus', was isolated from a pH 7.5 arable soil and we propose a new cluster name:'Nitrosocosmicus' While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a 'sister cluster', indicating placement within a lineage of the order Nitrososphaerales 'Ca.N. franklandus' is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of 'Ca.N. franklandus' with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of 'Ca.N. franklandus' suggests potential contributions to nitrification in fertilised soils. PMID:26976843

  7. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  8. Control engineering and central supervision for ammonia refrigeration plants; Regelungstechnik und zentrale Leittechnik fuer Ammoniakkaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wendelborn, H. [Danfoss Waerme- und Kaeltetechnik GmbH, Heusenstamm (Germany)

    1996-04-01

    A brief overall view for mechanical and electronic liquid level controllers for flooded evaporators and NH{sub 3} surge drums, evaporator controllers, compound plant controllers and central supervision technology for industrial refrigeration plants will be presented. Using a fresh produce distribution centre with an ammonia refrigeration plant and surge drums as an example the controls operation and the central supervision technology will be described. (orig.) [Deutsch] Es wird eine Uebersicht ueber die mechanische und elektronische Niveauregelung von ueberfluteten Verdampfern und NH{sub 3}-Abscheidern, ueber Kuehlstellenregler, Verbundanlagenregler und ueber zentrale Leittechnik fuer Industriekaelteanlagen gegeben. Anhand eines Frischware-Verteilzentrums, dessen Kaelteanlage mit drei NH{sub 3}-Abscheidern ausgeruestet ist, wird beispielhaft der Regelbetrieb des elektronischen Niveaureglers und der Leittechnik beschrieben. (orig.)

  9. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    Science.gov (United States)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  10. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    Science.gov (United States)

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. PMID:27243932

  11. Extraction of compounds associated with water repellency in sandy soils of different origin

    NARCIS (Netherlands)

    Doerr, S.H.; Llewellyn, C.T.; Douglas, P.; Morley, C.P.; Mainwaring, K.A.; Haskins, C.; Johnsey, L.; Ritsema, C.J.; Stagnitti, F.; Allinson, G.; Ferreira, A.J.D.; Keizer, J.J.; Ziogas, A.K.; Diamantis, J.

    2005-01-01

    After an initial evaluation of several solvents, the efficiency of Soxhlet extractions with isopropanol/ammonia (s.g. 0.88) (70 : 30 v : v; 24 h) in extracting compounds associated with water repellency in sandy soils was examined using a range of repellent and wettable control soils (n = 15 and 4)

  12. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  13. Electrochemically driven extraction and recovery of ammonia from human urine.

    Science.gov (United States)

    Luther, Amanda K; Desloover, Joachim; Fennell, Donna E; Rabaey, Korneel

    2015-12-15

    Human urine contains high concentrations of nitrogen, contributing about 75% of the nitrogen in municipal wastewaters yet only 1% of the volume. Source separation of urine produces an ideal waste stream for nitrogen and phosphorus recovery, reducing downstream costs of nutrient treatment at wastewater treatment facilities. We examined the efficiency and feasibility of ammonia extraction and recovery from synthetic and undiluted human urine using an electrochemical cell (EC). EC processing of synthetic urine produced an ammonium flux of 384 ± 8 g N m(-2) d(-1) with a 61 ± 1% current efficiency at an energy input of 12 kWh kg(-1) N removed. EC processing of real urine displayed similar performance, with an average ammonium flux of 275 ± 5 g N m(-2) d(-1) sustained over 10 days with 55 ± 1% current efficiency for ammonia and at an energy input of 13 kWh kg(-1) N removed. With the incorporation of an ammonia stripping and absorption unit into the real urine system, 57 ± 0.5% of the total nitrogen was recovered as ammonium sulfate. A system configuration additionally incorporating stripping of the influent headspace increased total nitrogen recovery to 79% but led to reduced performance of the EC as the urine ammonium concentration decrease. Direct stripping of ammonia (NH3) from urine with no chemical addition achieved only 12% total nitrogen recovery at hydraulic retention times comparable with the EC systems. Our results demonstrate that ammonia can be extracted via electrochemical means at reasonable energy inputs of approximately 12 kWh kg(-1) N. Considering also that the hydrogen generated is worth 4.3 kWh kg(-1) N, the net electrical input for extraction becomes approximately 8 kWh kg(-1) N if the hydrogen can be used. Critical for further development will be the inclusion of a passive means for ammonia stripping to reduce additional energy inputs.

  14. First detection of ammonia (NH3) in the upper troposphere

    Science.gov (United States)

    Höpfner, Michael; Volkamer, Rainer; Grabowski, Udo; Grutter de la Mora, Michel; Orphal, Johannes; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    Ammonia (NH3) is the major alkaline trace gas in the troposphere. Neutralization of atmospheric acids, like HNO3 and H2SO4, leads to formation of ammonium nitrate and ammonium sulfate aerosols. Further, there are indications that NH3 may enhance nucleation of sulfuric acid aerosols by stabilization of sulfuric acid clusters. By far the largest source of ammonia is agricultural food production. Major global emissions are located in S-E Asia as e.g. shown by satellite nadir observations. Besides its importance with respect to air quality issues, an increase of ammonia emissions in the 21st century might lead to a significant climate radiative impact through aerosol formation. In spite of its significance, there is a lack of observational information on the global distribution of NH3 in the mid- and upper troposphere. Observational evidence, however, would be important for testing e.g. model results on the fate of ammonia from its source regions on ground to altitudes up to the tropopause. In this contribution we will show, to our knowledge, the first unequivocal detection of ammonia in the upper troposphere. This result has been achieved through analysis of infrared limb-emission observations performed with the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument on board the Envisat satellite from 2002-2012. On a global scale, enhanced values of ammonia have been measured in the upper tropospheric region influenced by the Asian monsoon. We will present a quantitative analysis of the retrieved concentrations of NH3 including an error assessment and further retrieval diagnostics. The results will be discussed with respect to the variability of NH3 locally within the Asian monsoon region's upper troposphere and at different years. Further, we will show comparisons between global distributions of NH3 from published model simulations and our observational dataset from MIPAS.

  15. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2015-06-01

    Full Text Available As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34–125 ppb is studied in a smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer and a Quantum Cascade Laser instrument. A large diversity of nitrogen containing organic (NOC fragments was observed which were consistent with the reaction of ammonia with carbonyl containing SOA. The uptake coefficients of NH3 to SOA leading to organonitrogen compounds are reported for the first time and were in the range of ∼ 10-3–10-2, decreasing significantly to -5 after 6 h of reaction. At the end of experiments (∼ 6 h the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt% to the total α–pinene and m-xylene derived SOA, and 4–15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen, and a mechanism for medium or long-range transport and dry/wet deposition of atmospheric nitrogen.

  16. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    Science.gov (United States)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  17. Ammonia-oxidising archaea--physiology, ecology and evolution.

    Science.gov (United States)

    Schleper, Christa; Nicol, Graeme W

    2010-01-01

    Nitrification is a microbially mediated process that plays a central role in the global cycling of nitrogen and is also of economic importance in agriculture and wastewater treatment. The first step in nitrification is performed by ammonia-oxidising microorganisms, which convert ammonia into nitrite ions. Ammonia-oxidising bacteria (AOB) have been known for more than 100 years. However, metagenomic studies and subsequent cultivation efforts have recently demonstrated that microorganisms of the domain archaea are also capable of performing this process. Astonishingly, members of this group of ammonia-oxidising archaea (AOA), which was overlooked for so long, are present in almost every environment on Earth and typically outnumber the known bacterial ammonia oxidisers by orders of magnitudes in common environments such as the marine plankton, soils, sediments and estuaries. Molecular studies indicate that AOA are amongst the most abundant organisms on this planet, adapted to the most common environments, but are also present in those considered extreme, such as hot springs. The ecological distribution and community dynamics of these archaea are currently the subject of intensive study by many research groups who are attempting to understand the physiological diversity and the ecosystem function of these organisms. The cultivation of a single marine isolate and two enrichments from hot terrestrial environments has demonstrated a chemolithoautotrophic mode of growth. Both pure culture-based and environmental studies indicate that at least some AOA have a high substrate affinity for ammonia and are able to grow under extremely oligotrophic conditions. Information from the first available genomes of AOA indicate that their metabolism is fundamentally different from that of their bacterial counterparts, involving a highly copper-dependent system for ammonia oxidation and electron transport, as well as a novel carbon fixation pathway that has recently been discovered in

  18. Efficiency of deodorant materials for ammonia reduction in indoor air

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor;

    2014-01-01

    A comparative study about the removability of ammonia gas in the air by activated carbon fiber (ACF) felt chemically treated with acid and a cotton fabric processed with iron phthalocyanine with copper (Cu) was performed in small-scale experiments. The test rig consisted of a heated plate and its...... proved activated carbon fiber felt with acid to be highly efficient in removing ammonia gas. Air temperature did not have profound effect on ACF performance. However, efficiency of the carbon fiber felt decreased when relative humidity was raised from 20 to 80%....

  19. Thermodynamic Model for the Ammonia-Water System

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    The ammonia-water system is described by the Extended UNIQUAC model, which is an electrolyte model, formed by combining the original UNIQUAC model, the Debye-Hückel law and the Soave-Redlich-Kwong equation of state. The model is limited to temperatures below the critical temperature of ammonia....... Vapor-liquid equilibria are described within the experimental accuracy. The accuracy of enthalpy calculations is better than ±100 J mol-1, and heat capacity calculations deviate less than ±1% from experimental data. The accurate description of the thermal properties is achieved by taking speciation...

  20. Acute and chronic respiratory effects of occupational exposure to ammonia.

    Science.gov (United States)

    Holness, D L; Purdham, J T; Nethercott, J R

    1989-12-01

    In a soda ash plant, 58 workers exposed to mean airborne ammonia levels of 9.2 +/- 1.4 ppm were compared with 31 control workers with a mean exposure of 0.3 +/- 0.1 ppm. There were no differences between the groups in the reporting of respiratory or cutaneous symptoms, sense of smell, baseline lung function, or change in lung function over a work shift at the beginning and end of a workweek. No relationships between level or length of ammonia exposure and lung function results were demonstrated. PMID:2596404

  1. The Kinetics for Electrochemical Removal of Ammonia in Coking Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhenhai; LI Su; GUO Wenqian; FAN Caimei

    2011-01-01

    Electrochemical removal of ammonia is a new and effective method in coking wastewater.The reaction mechanism of ammonia removal was proved by stable polarization curve in this paper.First,the supposing of reaction steps of the electrode were proposed.And then reaction parameter of the electrode was measured by Tafel curve.Finally,the reaction mechanism was determined by quasi-equilibrium approach.The results showed that Cl2+H2O→HOCl+H++Cl was the rate-determining step,the calculated apparent transfer coefficient was uniform to the experimental value.

  2. Lanthanum-Promoted Ru/Sepiolite in Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    Le Zhiping; Lin Jianxin; Yu Xiujin; Huang Yueyu; Wei Kemei

    2005-01-01

    A new kind of Ru supported on sepiolite catalyst with La as promoter for ammonia synthesis was prepared. The effects of reaction conditions on catalytic activity were discussed. The result shows that La is an effective promoter for sepiolite-supported Ru based catalyst. When the load of Ru is 5% (mass fraction), and the molar ratio of La/Ru is 1.5, under the condition of 10 MPa 450 ℃ 20000 h-1, the ammonia synthesis rate is 38.5 mmol NH3·g-1·h-1.

  3. Test and Analysis for Spraying Ammonia in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  4. Photoacoustic spectroscopy for fast and sensitive ammonia detection

    Institute of Scientific and Technical Information of China (English)

    Wang Zhang; Zhiying Wu; Qingxu Yu

    2007-01-01

    A photoacoustic (PA) spectrometer with H-type first longitudinal resonant cells for ammonia detection is developed. A new PA cell structure is designed to accelerate the drift velocity of the sample gas near the cell surface, so that the short response time at the flow rate of 100 sccm (standard cubic centimeter per minute) is achieved. The response time of 5 min and detection limit of 0.86 ppbv is reached for ammonia concentration measurement with a Teflon polytetrafluoroethylene (PTFE) cell. Further improvement could be expected when using a brass cell with a high quality Teflon fluorinated ethylene propylene (FEP) coating.

  5. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  6. Arginine protection against ammonia toxicity in exhausted rat.

    Science.gov (United States)

    Krishna Mohan, P; Indira, K; Rajendra, W

    1987-01-01

    Arginine administration (5 m moles/kg/day) to albino rats for 7 days, revealed that this vital basic amino acid possesses latent potentiality for the accentuation of urea cycle or at least for arginase activity. The mitigation of ammonia toxicity was observed to be more effective in the case of gastrocnemius and red vastus as compared to white vastus. Further, ammonia and lactate levels were also decreased by arginine in blood and thereby delaying the onset of fatigue by preventing ammonotoxemia and lactic acidemia. PMID:3666875

  7. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  8. Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Klerke, Asbjørn; Quaade, Ulrich;

    2006-01-01

    Promoted Ru/C catalysts for decomposition of ammonia are incorporated into micro-fabricated reactors for the first time. With the reported preparation technique, the performance is increased more than two orders of magnitude compared to previously known micro-fabricated reactors for ammonia...... studies of both ammonia synthesis and decomposition, and it is shown how proper promotion can facilitate ammonia decomposition at temperatures below 500 K....

  9. Pengaruh Berbagai Bahan Litter Terhadap Konsentrasi Ammonia Udara Ambient kandang dan Performan Ayam Broiler

    OpenAIRE

    Sulaiman Ibrahim; Allaily Allaily

    2012-01-01

    The effect of different litter materials on ammonia concentration of the air ambient stall and broiler performance ABSTRACT. The study was conducted to observe the effect of ammonia concentration of broiler chicken coop air to the treatment various types of litter. High ammonia concentrations would interfere with performance of broiler chickens and become a problem for the environment. A good litter quality is expected to address the problem of ammonia that occur in the broiler chicken co...

  10. Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants

    OpenAIRE

    Devivaraprasad Reddy, A.; Subrahmanyam, Gangavarapu; Shivani Kallappa, Girisha; Karunasagar, Iddya; Karunasagar, Indrani

    2014-01-01

    Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of t...

  11. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    OpenAIRE

    Horak, Rachel E. A.; Qin, Wei; Schauer, Andy J; Armbrust, E. Virginia; Ingalls, Anitra E; Moffett, James W.; Stahl, David A.; Devol, Allan H.

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcr...

  12. Development of compound layer during nitriding and nitrocarburising; current status and future challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    2011-01-01

    The development of the compound layer during gaseous nitriding and nitrocarburising of Fe based material is described. The first nucleation of the compound layer at the surface depends on the competition between the dissociation of ammonia and the removal of nitrogen from the surface by solid state...... diffusion and desorption or the competition with a carburising reaction. During compound layer growth, the nitriding kinetics is determined by a combination of solid state diffusion of interstitial elements and the kinetics of the surface reactions. Moreover, phase transformations within the compound layer...

  13. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin

    NARCIS (Netherlands)

    Vasconcelos Fernandes, T.; Keesman, K.J.; Zeeman, G.; Lier, van J.B.

    2012-01-01

    Ammonia nitrogen is one of the most common inhibitors in the anaerobic digestion of complex wastes containing high concentrations of ammonia like animal manures, blackwater and waste oil from gastronomy. The inhibiting effect of ammonia on methanogenesis has been well established. In contrast, the k

  14. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.

  15. Gut does not contribute to systemic ammonia release in humans without portosystemic shunting

    NARCIS (Netherlands)

    van de Poll, Marcel C. G.; Ligthart-Melis, Gerdien C.; Damink, Steven W. M. Olde; van Leeuwen, Paul A. M.; Beets-Tan, Regina G. H.; Deutz, Nicolaas E. P.; Wigmore, Stephen J.; Soeters, Peter B.; Dejong, Cornelis H. C.

    2008-01-01

    The gut is classically seen as the main source of circulating ammonia. However, the contribution of the intestines to systemic ammonia production may be limited by hepatic extraction of portal-derived ammonia. Recent data suggest that the kidney may be more important than the gut for systemic ammoni

  16. 40 CFR 418.20 - Applicability; description of the ammonia subcategory.

    Science.gov (United States)

    2010-07-01

    ... ammonia subcategory. 418.20 Section 418.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Ammonia Subcategory § 418.20 Applicability; description of the ammonia subcategory. The provisions of this subpart...

  17. The Full-Scale Implementation of an Innovative Biological Ammonia Treatment Process

    Science.gov (United States)

    Across the United States, high levels of ammonia in drinking water sources can be found, including small communities like Palo, Iowa (approximate population of 1,026). Although ammonia in water does not pose a direct health concern, ammonia nitrification can cause a number of iss...

  18. Investigation into ammonia stress on Cyperus alternifolius and its impact on nutrient removal in microcosm experiments.

    Science.gov (United States)

    Tao, Wendong; Han, Jianqiu; Li, Hanyan

    2015-11-01

    Ammonia stress on plants has been investigated at discrete ammonia concentrations in constructed wetlands. This study introduced a Gaussian model to simulate the kinetics of ammonia stress and investigated reversible and irreversible ammonia stress on Cyperus alternifolius in wetland-like microcosms. Ammonia stress on plant weight increase and oxygen release potential started at weekly ammonia concentrations of 27 and 28 mg N/L, reached 50% inhibition at 178 and 158 mg N/L, and resulted in lethal effects at 311 and 303 mg N/L, respectively. The stress of one-time ammonia concentrations up to 400 mg N/L could be reversible. Ammonia concentrations constantly above 219 mg N/L exerted irreversible stress. In the microcosms with ammonia concentrations above the 50% inhibition levels, plants played a minor role in nitrogen removal. Nitrogen removal performance was not affected considerably by ammonia stress. Orthophosphate removal was suppressed by ammonia stress due to less plant uptake. Design and operation of constructed wetlands should consider wastewater ammonia concentration so that the integrity of constructed wetland ecosystems can be maintained.

  19. Effect of aerial ammonia on porcine infection of the respiratory tract with toxigenic Pasteurella multocida

    DEFF Research Database (Denmark)

    Andreasen, Morten; Bækbo, P.; Nielsen, J.P.

    1999-01-01

    The objective of the experimental study was to examine whether aerial ammonia alone could predispose the respiratory system of pigs to infection with toxigenic Pasteurella multocida type A. Two groups of 5 pigs each were continuously exposed to 50 ppm ammonia and less than 5 ppm ammonia, respecti...

  20. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “

    NARCIS (Netherlands)

    Lehtovirta-Morley, L.E.; Sayavedra-Soto, L.A.; Gallois, N.; Schouten, S.; Stein, L.Y.; Prosser, J.I.; Nicol, G.W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganismsin soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOBand dominate activity in acid soils. The mechanism of amm

  1. Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia.

    Science.gov (United States)

    Montella, Salvatore; Balan, Venkatesh; da Costa Sousa, Leonardo; Gunawan, Christa; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2016-03-01

    The lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods-ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-L-arabinofuranosidase rPoAbf and its evolved variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used

  2. REGENERATION OF AMMONIA SOLUTION FOR CO2 CAPTURE IN POSTCOMBUSTION

    Directory of Open Access Journals (Sweden)

    CAROL TORO

    2014-01-01

    Full Text Available This study investigated enthalpy of solutions and solubility for a NH3/CO2 system. Measurements were performed in a thermoregulated Lewis-type cell reactor, temperatures ranging from 278 to 303 K and mass concentrations from 2 wt% to 5 wt%. Enthalpies of solution of CO2 and solubility have been obtained as function of loading, α (moles CO2/mol NH3. Results show that ammonia solutions concentrations of 3 and 5 wt% promote the formation of ammonium bicarbonate. Beside, ammonia concentration of 2 wt% promotes the formation of ammonium carbonate. Therefore, to use ammonia concentrations of 3 and 5 wt% need less energy that a concentration of 2 wt% to reverse the reaction. Regeneration system was simulated using Aspen plus™ software for a pulverised coal fired power plant (CF in a post-combustion process. Model analysis established that NH3 heat duty is lower than MEA and MDEA ones. The energy consumption reaches 2.83 GJ•t-1 CO2. Regarding heat duty and ammonia losses, 3 wt% NH3 is the suitable concentration to capture CO2.

  3. Redesign of a Phenylalanine Aminomutase into a Phenylalanine Ammonia Lyase

    NARCIS (Netherlands)

    Bartsch, S.; Wybenga, G.G.; Jansen, M.; Heberling, M.M.; Wu, B.; Dijkstra, B.W.; Janssen, D.B.

    2013-01-01

    An aminomutase, naturally catalyzing the interconversion of (S)--phenylalanine and (R)--phenylalanine, was converted into an ammonia lyase catalyzing the nonoxidative deamination of phenylalanine to cinnamic acid by a rational single-point mutation. It could be shown by crystal structures and kineti

  4. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean

    NARCIS (Netherlands)

    Sintes, E.; Ouillon, N.; Herndl, G.J.

    2015-01-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms.Macroecological and biogeographic distribution patterns in marine Archaea, however,have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution(i.e. similar communities in the northernmost

  5. Ammonia as a component of fruit fly attractants.

    Science.gov (United States)

    Abstract Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted to protein baits. Synthetic lures based on the principal components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important Ana...

  6. Ammonia Formulations and Capture of Anastrepha Fruit Flies (Diptera: Tephritidae)

    Science.gov (United States)

    Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted in numbers to protein baits. Synthetic lures based on the principle components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important ...

  7. Low-liquid pretreatment of corn stover with aqueous ammonia.

    Science.gov (United States)

    Li, Xuan; Kim, Tae Hyun

    2011-04-01

    A low-liquid pretreatment method of corn stover using aqueous ammonia was studied to reduce the severity and liquid throughput associated with the pretreatment step for ethanol production. Corn stover was treated at 0.5-50.0 wt.% of ammonia loading, 1:0.2-5.0 (w/w) of solid-to-liquid ratio, 30 °C for 4-12 weeks. The effects of these conditions on the composition and enzyme digestibility of pretreated corn stover were investigated. Pretreatment of corn stover at 30°C for four weeks using 50 wt.% of ammonia loading and 1:5 solid-to-liquid ratio resulted in 55% delignification and 86.5% glucan digestibility with 15 FPU cellulase+30 CBU β-glucosidase/g-glucan. Simultaneous saccharification and fermentation of corn stover treated at 30 °C for four weeks using 50 wt.% ammonia loading and 1:2 solid-to-liquid ratio gave an ethanol yield of 73% of the theoretical maximum based on total carbohydrates (glucan+xylan) present in the untreated material.

  8. ROADSIDE AMMONIA MEASUREMENTS USING OPTICAL REMOTE SENSING INSTRUMENTS

    Science.gov (United States)

    Fine particles less than 2.5 microns in diameter have been identified as a causal agent of excess mortality and other undesirable health impacts. A large part of these airborne particles, generally more than one-half, are formed in the atmosphere by reactions of ammonia with acid...

  9. Radon and ammonia transects across the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in the reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.

  10. Ammonia and nitrous oxide interactions - importance of organic matter management

    DEFF Research Database (Denmark)

    Petersen, Søren O; Sommer, Sven G.

    ), or negative (e.g., direct N2O emissions from soil will potentially increase if losses of NH3 are prevented during storage or field application). Emissions of NH3 and N2O negatively affect N use efficiency and the greenhouse gas (GHG) balance of livestock production. Ammonia and N2O emissions and GHG balances...

  11. Fluxes of ammonia in the coastal marine boundary layer

    DEFF Research Database (Denmark)

    Sørensen, L.L.; Hertel, O.; Skjøth, C.A.;

    2003-01-01

    Concentrations of ammonia in air and ammonium in surface water were measured from a platform in the Southern North Sea close to the Dutch coast. Fluxes were derived from the measurements applying Monin-Obukhov similarity theory and exchange velocities calculated. The fluxes and air concentrations...

  12. Ammonia emissions from cattle urine and dung excreted on pasture

    DEFF Research Database (Denmark)

    Laubach, J; Taghizadeh-Toosi, Arezoo; Gibbs, S J;

    2013-01-01

    Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH3) emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 su...

  13. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    Energy Technology Data Exchange (ETDEWEB)

    Caime, W.J.; Hoeffner, S.L. [RUST - Clemson Technical Center, Anderson, SC (United States)

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  14. Assimilating Remote Ammonia Observations with a Refined Aerosol Thermodynamics Adjoint"

    Science.gov (United States)

    Ammonia emissions parameters in North America can be refined in order to improve the evaluation of modeled concentrations against observations. Here, we seek to do so by developing and applying the GEOS-Chem adjoint nested over North America to conductassimilation of observations...

  15. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Science.gov (United States)

    2010-10-01

    ... copper bearing alloys shall not be used as materials of construction for tanks, pipelines, valves... have close at hand at all times a canister mask approved for ammonia or each person shall carry on his... provide respiratory protection for emergency escape from a contaminated area resulting from cargo...

  16. Priming ammonia lyases and aminomutases for industrial and therapeutic applications

    NARCIS (Netherlands)

    Heberling, Matthew M.; Wu, Bian; Bartsch, Sebastian; Janssen, Dick B.; Truppo, Matthew D.; Turner, Nicholas J.

    2013-01-01

    Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the no

  17. 21 CFR 862.1065 - Ammonia test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ammonia test system. 862.1065 Section 862.1065 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... of severe liver disorders, such as cirrhosis, hepatitis, and Reye's syndrome. (b)...

  18. A comparative kinetic study of SNCR process using ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Javed, M. Tayyeb; Ahmed, Z.; Ibrahim, M. Asim; Irfan, N.

    2008-07-01

    The paper presents comparative kinetic modelling of nitrogen oxides (NOx) removal from flue gases by selective non-catalytic reduction process using ammonia as reducing agent. The computer code SENKIN is used in this study with the three published chemical kinetic mechanisms; Zanoelo, Kilpinen and Skreiberg. Kinetic modeling was performed for an isothermal plug flow reactor at atmospheric pressure so as to compare it with the experimental results. A 500 ppm NOx background in the flue gas is considered and kept constant throughout the investigation. The ammonia performance was modeled in the range of 750 to 1250{sup o}C using the molar ratios NH{sub 3}/NOx from 0.25 to 3.0 and residence times up to 1.5 seconds. The modeling using all the mechanisms exhibits and confirms a temperature window of NOx reduction with ammonia. It was observed that 80% of NOx reduction efficiency could be achieved if the flue gas is given 300 msec to react with ammonia, while it is passing through a section within a temperature range of 910 to 1060{sup o}C (Kilpinen mechanism) or within a temperature range of 925 to 1030{sup o}C (Zanoelo mechanism) or within a temperature range of 890 to 1090{sup o}C (Skreiberg mechanism). 20 refs., 6 figs.

  19. Ammonia recovery from livestock waste using gas permeable membrane technology

    Science.gov (United States)

    This presentation shows new methods and systems being developed for reducing ammonia emissions from livestock waste and recovering concentrated liquid nitrogen that could be sold as fertilizer. These systems use gas-permeable membranes as components of new processes to capture and recover the ammoni...

  20. Equations of State and Phase Diagrams of Ammonia

    Science.gov (United States)

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  1. IRIS Toxicological Review of Ammonia (Interagency Science Consultation Draft)

    Science.gov (United States)

    On June 1, 2012, the draft Toxicological Review of Ammonia and the draft charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House ...

  2. IRIS Toxicological Review of Ammonia (Revised External Review Draft)

    Science.gov (United States)

    In August 2013, EPA submitted a revised draft IRIS assessment of ammonia to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the draft, and ...

  3. RAMPS: The Radio Ammonia Mid-Plane Survey

    Science.gov (United States)

    Jackson, James M.; Hogge, Taylor; Stephens, Ian; Whitaker, John Scott

    2016-01-01

    The Radio Ammonia Mid-Plane Survey (RAMPS) is a new 1.3 cm survey of the Galactic plane that will simultaneously image several 23 GHz ammonia lines [NH3 (1,1), (2,2), (3,3), (4,4), and (5,5)] and the 22.2 GHz water maser line from l = 10o to 40o and b = -0.5o to 0.5o. RAMPS employs the K-band Focal Plane Array receiver on the NRAO Green Bank Telescope. The main goal of RAMPS is to characterize the Galactic population of dense star-forming molecular clumps by measuring the gas temperatures, column densities, radial velocities, and kinematic distances using the ammonia line ratios. I report results from the survey's first 6.4 square degrees and present large-scale NH3 (1,1), (2,2), and (3,3) integrated intensity maps, gas temperature maps, and column density maps. To date over 500 clumps have been identified and characterized. In addition, RAMPS has now detected 619 water maser sites, most of which are detected for the first time. Only 60% of the water masers are associated with detected ammonia emission. We have also discovered a remarkable star forming region with unusually broad NH3 lines (ΔV ~ 25 km/s) and a very rare NH3 (3,3) shock-excited maser. Altough located in the Galactic disk, this clump has characteristics usually found in Galactic Center clouds.

  4. Detection of Widespread Hot Ammonia in the Galactic Center

    CERN Document Server

    Mills, Elisabeth A C

    2013-01-01

    We present the detection of metastable inversion lines of ammonia from energy levels high above the ground state. We detect these lines in both emission and absorption toward fifteen of seventeen positions in the central 300 parsecs of the Galaxy. In total, we observe seven metastable transitions of ammonia: (8,8), (9,9), (10,10), (11,11), (12,12), (13,13) and (15,15), with energies (in Kelvins) ranging from 680 to 2200 K. We also map emission from ammonia (8,8) and (9,9) in two clouds in the Sgr A complex (M-0.02-0.07 and M-0.13-0.08), and we find that the line emission is concentrated toward the the dense centers of these molecular clouds. The rotational temperatures derived from the metastable lines toward M-0.02-0.07 and M-0.13-0.08 and an additional cloud (M0.25+0.01) range from 350 to 450 K. Similarly highly-excited lines of ammonia have previously been observed toward Sgr B2, where gas with kinetic temperatures of ~600 K has been inferred. Our observations show that the existence of a hot molecular gas...

  5. Measurement of ambient ammonia with diffusion tube samplers

    NARCIS (Netherlands)

    Thijsse, T.R.; Duyzer, J.H.; Verhagen, H.L.M.; Wyers, G.P.; Wayers, A.; Möls, J.J.

    1998-01-01

    Results of a study to evaluate the suitability of passive samplers for the measurement of monthly averaged ammonia concentrations are presented. Five different samplers were tested. Four were diffusion tube samplers which differed in length and in the way they were modified to minimize disturbing ef

  6. Effects of ammonia from livestock farming on lichen photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, Luca [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pirintsos, Stergios Arg.; Kotzabasis, Kiriakos [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pisani, Tommaso [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Navakoudis, Eleni [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Loppi, Stefano, E-mail: loppi@unisi.i [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy)

    2010-06-15

    This study investigated if atmospheric ammonia (NH{sub 3}) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 mug/m{sup 3} (at a sheep farm), ca. 15 mug/m{sup 3} (60 m from the sheep farm) and ca. 2 mug/m{sup 3} (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH{sub 3} is susceptible to this pollutant in the gas-phase. The parameter PI{sub ABS}, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH{sub 3} than the F{sub V}/F{sub M} ratio, one of the most commonly used stress indicators. - Ammonia from livestock farming affects lichen photosynthesis.

  7. Litter ammonia losses amplified by higher air flow rates

    Science.gov (United States)

    ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...

  8. Ammonia removal from landfill leachate by air stripping and absorption.

    Science.gov (United States)

    Ferraz, Fernanda M; Povinelli, Jurandyr; Vieira, Eny Maria

    2013-01-01

    An old landfill leachate was pre-treated in a pilot-scale aerated packed tower operated in batch mode for total ammoniacal nitrogen (TAN) removal. The stripped ammonia was recovered with a 0.4 mol L(-1) H2SO4 solution, deionized water and tap water. Ca(OH)2 (95% purity) or commercial hydrated lime was added to the raw leachate to adjust its pH to 11, causing removal of colour (82%) and heavy metals (70-90% for Zn, Fe and Mn). The 0.4 molL(-1) H2SO4 solution was able to neutralize 80% of the stripped ammonia removed from 12 L of leachate. The effectiveness of the neutralization of ammonia with deionized water was 75%. Treating 100 L of leachate, the air stripping tower removed 88% of TAN after 72 h of aeration, and 87% of the stripped ammonia was recovered in two 31 L pilot-scale absorption units filled with 20 L of tap water. PMID:24350487

  9. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  10. Formaldoxime hydrogen bonded complexes with ammonia and hydrogen chloride

    Science.gov (United States)

    Golec, Barbara; Mucha, Małgorzata; Sałdyka, Magdalena; Barnes, Austin; Mielke, Zofia

    2015-02-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of hydrogen bonded complexes of formaldoxime with ammonia and hydrogen chloride trapped in solid argon matrices is reported. Both 1:1 and 1:2 complexes between formaldoxime and ammonia, hydrogen chloride have been identified in the CH2NOH/NH3/Ar, CH2NOH/HCl/Ar matrices, respectively, their structures were determined by comparison of the spectra with the results of calculations. In the 1:1 complexes present in the argon matrices the OH group of formaldoxime acts as a proton donor for ammonia and the nitrogen atom acts as a proton acceptor for hydrogen chloride. In the 1:2 complexes ammonia or hydrogen chloride dimers interact both with the OH group and the nitrogen atom of CH2NOH to form seven membered cyclic structures stabilized by three hydrogen bonds. The theoretical spectra generally agree well with the experimental ones, but they seriously underestimate the shift of the OH stretch for the 1:1 CH2NOH⋯NH3 complex.

  11. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  12. System Modeling for Ammonia Synthesis Energy Recovery System

    Science.gov (United States)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  13. Ammonia sensor for closed-loop SCR control

    NARCIS (Netherlands)

    Wang, D.Y.; Yao, S.; Shost, M.; Yoo, J.H.; Cabush, D.; Racine, D.; Cloudt, R.P.M.; Willems, F.P.T.

    2009-01-01

    Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a fe

  14. A high-sensitivity chemical sensor based on titania coated optical-fiber long period grating for ammonia sensing in water

    Science.gov (United States)

    Tiwari, D.; James, S. W.; Tatam, R. P.; Korposh, S.; Lee, S. W.

    2015-07-01

    Two highly sensitive ammonia sensors, formed by depositing coatings composed of titanium dioxide (TiO2) onto the cladding of an optical fibre sensing platform, are evaluated. A long period grating (LPG) of period 111 μm was fabricated in the core of an optical fibre so that the LPG operates at or near the phase matching turning point (PMTP). The first coating that was investigated was composed of TiO2 nanoparticles deposited by liquid phase deposition. The sensor showed high sensitivity and allowed low concentrations of ammonia in water (0.01 ppm) to be detected with a response time of less than 60 sec. The second coating was composed of TiO2 with subsequent layers of poly (allyamine hydrochloride) (PAH), and SiO2 nanospheres infused with a sensitive element composed of porphine. The ammonia adsorption to the porphine compound led to the changes in the LPG's transmission spectrum and allowed 0.1 ppm of ammonia in water to be detected with a response time of less than 60 sec.

  15. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    Science.gov (United States)

    Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.

    2006-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  16. Glutamine versus ammonia utilization in the NAD synthetase family.

    Directory of Open Access Journals (Sweden)

    Jessica De Ingeniis

    Full Text Available NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS. Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS

  17. MetNH3: Metrology for ammonia in ambient air

    Science.gov (United States)

    Braban, Christine; Twigg, Marsailidh; Tang, Sim; Leuenberger, Daiana; Ferracci, Valerio; Martin, Nick; Pascale, Celine; Hieta, Tuomas; Pogany, Andrea; Persijn, Stefan; van Wijk, Janneke; Gerwig, Holger; Wirtze, Klaus; Tiebe, Carlo; Balslev-Harder, David; Niederhausen, Bernhardt

    2015-04-01

    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on 'National Emission Ceilings for Certain Atmospheric Pollutants (NEC)' regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. Validated ammonia measurement data of high quality from air monitoring networks are vitally important for identifying changes due to implementations of environment policies, for understanding where the uncertainties in current emission inventories are derived from and for providing independent verification of atmospheric model predictions. The new EURAMET project MetNH3 aims to develop improved reference gas mixtures by static and dynamic gravimetric generation methods, develop and characterise laser based optical spectrometric standards and establish the transfer from high-accuracy standards to field applicable methods. MetNH3started in June 2014 and in this presentation the first results from the metrological characterisation of a commercially available cavity ring-down spectrometer (CRDS) will be discussed. Also first tests and results from a new design, Controlled Atmosphere Test Facility (CATFAC), which is to be characterised and used to validate the performance of diffusive samplers, denuders and on-line instruments, will be reported. CAFTEC can be used to control test parameters such as ammonia concentration, relative humidity and wind speed. Outline plans for international laboratory and field intercomparisons in 2016 will be presented.

  18. Study on adsorption and desorption of ammonia on graphene.

    Science.gov (United States)

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-12-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.

  19. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Science.gov (United States)

    Löscher, C. R.; Kock, A.; Könneke, M.; LaRoche, J.; Bange, H. W.; Schmitz, R. A.

    2012-07-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  20. Ammonia oxidation rates and nitrification in the Arabian Sea

    Science.gov (United States)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.