WorldWideScience

Sample records for ammines

  1. Surface adsorption in strontium chloride ammines

    DEFF Research Database (Denmark)

    Ammitzbøll, Andreas L.; Lysgaard, Steen; Klukowska, Agata

    2013-01-01

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammoni...

  2. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural...

  3. Surface adsorption in strontium chloride ammines.

    Science.gov (United States)

    Ammitzbóll, Andreas L; Lysgaard, Steen; Klukowska, Agata; Vegge, Tejs; Quaade, Ulrich J

    2013-04-28

    An adsorbed state and its implications on the ab- and desorption kinetics of ammonia in strontium chloride ammine is identified using a combination of ammonia absorption measurements, thermogravimetric analysis, and density functional theory calculations. During thermogravimetric analysis, ammonia desorption originating from the adsorbed state is directly observed below the bulk desorption temperature, as confirmed by density functional theory calculations. The desorption enthalpy of the adsorbed state of strontium chloride octa-ammine is determined with both techniques to be around 37-39 kJ∕mol. A simple kinetic model is proposed that accounts for the absorption of ammonia through the adsorbed state.

  4. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  5. Ammonia dynamics in magnesium ammine from DFT and neutron scattering

    DEFF Research Database (Denmark)

    Tekin, Adem; Hummelshøj, Jens Strabo; Jacobsen, Hjalte Sylvest

    2010-01-01

    Energy storage in the form of ammonia bound in metal salts, so-called metal ammines, combines high energy density with the possibility of fast and reversible NH3 ab- and desorption kinetics. The mechanisms and processes involved in the NH3 kinetics are investigated by density functional theory (D...

  6. Synthesis of niobium nitride by pyrolysis of niobium pentachloride ammines

    International Nuclear Information System (INIS)

    Grebtsova, O.M.; Shulga, Y.M.; Troitskii, V.N.

    1986-01-01

    This paper investigates the conditions for the preparation of niobium nitride in the thermal decomposition of niobium nitride in the thermal decomposition of niobium pentachloride ammines. The synthesis of the ammines was accomplished by the reaction of powdered NbC1 5 with dry ammonia at 210 K. Thermography and x-ray diffraction, spectral, and chemical analyses were used to identify the ammonolysis products. It was established that the products of ammonolysis of NbC1 5 are a mixture of the x-ray-amorphous complex Nb (NH 2 ) /SUB 5-x/ - (NG 3 ) 3 CL 3 (x≅) and 2 moles of NH 4 C1. The steps in the thermal decomposition of this mixture were studied. The phase transition that is observed in the case of further vacuum heat treatment at 1100-1300 K is presented

  7. Am(m)ines make the difference: organoruthenium am(m)ine complexes and their chemistry in anticancer drug development.

    Science.gov (United States)

    Babak, Maria V; Meier, Samuel M; Legin, Anton A; Adib Razavi, Mahsa S; Roller, Alexander; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G

    2013-03-25

    With the aim of systematically studying fundamental structure-activity relationships as a basis for the development of Ru(II) arene complexes (arene = p-cymene or biphenyl) bearing mono-, bi-, or tridentate am(m)ine ligands as anticancer agents, a series of ammine, ethylenediamine, and diethylenetriamine complexes were prepared by different synthetic routes. Especially the synthesis of mono-, di-, and triammine complexes was found to be highly dependent on the reaction conditions, such as stoichiometry, temperature, and time. Hydrolysis and protein-binding studies were performed to determine the reactivity of the compounds, and only those containing chlorido ligands undergo aquation or form protein adducts. These properties correlate well with in vitro tumor-inhibiting potency of the compounds. The complexes were found to be active in anticancer assays when meeting the following criteria: stability in aqueous solution and low rates of hydrolysis and binding to proteins. Therefore, the complexes least reactive to proteins were found to be the most cytotoxic in cancer cells. In general, complexes with biphenyl as arene ligand inhibited the growth of tumor cells more effectively than the cymene analogues, consistent with the increase in lipophilicity. This study highlights the importance of finding a proper balance between reactivity and stability in the development of organometallic anticancer agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  9. Unprecedented twofold intramolecular hydroamination in diam(m)ine-dicarboxylatodichloridoplatinum(IV) complexes - ethane-1,2-diamine vs. ammine ligands.

    Science.gov (United States)

    Reithofer, Michael R; Galanski, Markus; Arion, Vladimir B; Keppler, Bernhard K

    2008-03-07

    Reaction of (OC-6-13)-bis(2Z-3-carboxyacrylato)dichlorido(ethane-1,2-diamine)platinum(IV) and (OC-6-13)-diamminebis(2Z-3-carboxyacrylato)dichloridoplatinum(IV) with propylamine in the presence of 1,1'-carbonyl diimidazole afforded not the expected amides; instead, beside amide formation, a twofold intramolecular attack of the am(m)ine ligand at the C[double bond, length as m-dash]C bonds was observed involving either both (ethane-1,2-diamine) or only one (ammine) coordinated nitrogen atom(s).

  10. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp ∼1.6) are generally stabilized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interactions between DNA purines and ruthenium ammine complexes within nanostructured sol-gel silica matrixes.

    Science.gov (United States)

    Lopes, Luís M F; Garcia, Ana R; Brogueira, Pedro; Ilharco, Laura M

    2010-03-25

    The interactions between DNA purines (guanine and adenine) and three ruthenium ammine complexes (hexaammineruthenium(III) chloride, hexaammineruthenium(II) chloride, and ruthenium-red) were studied in a confined environment, within sol-gel silica matrixes. Two encapsulation methods were rehearsed (differing in temperature and condensation pH), in order to analyze the effects of the sol-gel processes on the purines and on the Ru complexes separately. The extent of decomposition of the Ru complexes, as well as the interactions established with the purine bases, proved to be determined by the coencapsulation method. Combined results by diffuse reflectance UV-vis and infrared spectroscopies showed that, when coencapsulation is carried out at 60 degrees C, specific H bonding interactions are established between the amine group of Ade and the ammine groups of the Ru complex or the hydroxo group of an early decomposition product. These are responsible for the important role of the purine in inhibiting the oxidation reactions of the Ru(II) and Ru(III) complexes. In contrast, Gua establishes preferential H bonds with the matrix (mainly due to the carbonyl group), leading to higher yields in the final oxidation products of the Ru complexes, namely, trimers and dimers. Direct covalent bonding of either purine to the metal was not observed.

  12. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    structures develop, which facilitates desorption from the interior of large, compact tablets. Density functional theory calculations reproduce trends in desorption enthalpies for the systems studied, and a mechanism in which individual chains of the ammines are released from the surface of the crystal......The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...... densities both gravimetrically and volumetrically. Upon heating, NH3 is released from the salts, and by employing an appropriate catalyst, H-2 can be released corresponding to up to 9.78 wt % H and 0.116 kg H/L for the Ca(NH3)(8)Cl-2 salt. The NH3 release from all four salts is investigated using...

  13. Improved Automotive NO (x) Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts

    DEFF Research Database (Denmark)

    Johannessen, Tue; Schmidt, Henning; Frey, Anne Mette

    2009-01-01

    Ammonia storage is a challenge in the selective catalytic reduction of NO (x) in vehicles. We propose a new system, based on metal ammines as the ammonia source. In combination with iron containing zeolites as the SCR catalyst it should be possible to obtain a low temperature system for NO (x...

  14. Trans labilization of am(m)ine ligands from platinum(II) complexes by cancer cell extracts.

    Science.gov (United States)

    Kasherman, Yonit; Sturup, Stefan; Gibson, Dan

    2009-03-01

    Cisplatin, cis-[Pt(NH(3))(2)Cl(2)], is an effective anticancer agent in wide clinical use whose efficacy is affected by cellular interactions with sulfur-containing nucleophiles. These interactions can potentially enhance the efficacy of the drug by mediating its delivery to nuclear DNA or inactivate the drug by binding to it irreversibly or by labilizing the NH(3) ligands. Despite the potential importance of trans-labilization reactions in the mechanism of action of the drug, few detailed studies on trans labilization of the ammines have been conducted. We used 2D NMR to show that some trans labilization occurs in proliferating cells and that aqueous extracts of cancer cells labilized 20% of the amine ligands of cis-[PtCl(2)((13)CH(3)NH(2))(2)] after a 12-h incubation. Both low molecular mass nucleophiles (less than 3 kDa) and high molecular mass nucleophiles (more than 3 kDa) labilize the amines with similar efficiency. Studies with model compounds show that thiols and thioethers bind to platinum(II) at similar rates, but thioethers are significantly more efficient at labilizing the am(m)ine at lower pH. N-Acetylcysteine is a more efficient trans-labilizer than glutathione, suggesting that the displacement of the amine proceeds through an associative mechanism. The lag time, the time that elapses from the formation of the Pt-S bond till the release of the amine trans to the sulfur, depends on the pH (for thiols), increasing at lower pH. Quantification of the platinum adducts obtained from incubation of cisplatin with cell extracts indicates that two thirds of the platinum is bound to cellular components with molecular mass greater than 3 kDa.

  15. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, structures and thermal decomposition of ammine MxB12H12complexes (M = Li, Na, Ca).

    Science.gov (United States)

    Hansen, Bjarne R S; Tumanov, Nikolay; Santoru, Antonio; Pistidda, Claudio; Bednarcik, Jozef; Klassen, Thomas; Dornheim, Martin; Filinchuk, Yaroslav; Jensen, Torben R

    2017-06-28

    A series of ammine metal-dodecahydro-closo-dodecaboranes, M x B 12 H 12 ·nNH 3 (M = Li, Na, Ca) were synthesized and their structural and thermal properties studied with in situ time-resolved synchrotron radiation powder X-ray diffraction, thermal analysis, Fourier transformed infrared spectroscopy, and temperature-programmed photographic analysis. The synthesized compounds, Li 2 B 12 H 12 ·7NH 3 , Na 2 B 12 H 12 ·4NH 3 and CaB 12 H 12 ·6NH 3 , contain high amounts of NH 3 , 43.3, 26.6 and 35.9 wt% NH 3 , respectively, which can be released and absorbed reversibly at moderate conditions without decomposition, thereby making the closo-boranes favorable 'host' materials for ammonia or indirect hydrogen storage in the solid state. In this work, fifteen new ammine metal dodecahydro-closo-dodecaborane compounds are observed by powder X-ray diffraction, of which six are structurally characterized, Li 2 B 12 H 12 ·4NH 3 , Li 2 B 12 H 12 ·2NH 3 , Na 2 B 12 H 12 ·4NH 3 , Na 2 B 12 H 12 ·2NH 3 , CaB 12 H 12 ·4NH 3 and CaB 12 H 12 ·3NH 3 . Li 2 B 12 H 12 ·4NH 3 and Na 2 B 12 H 12 ·4NH 3 are isostructural and monoclinic (P2 1 /n) whereas Na 2 B 12 H 12 ·2NH 3 and CaB 12 H 12 ·3NH 3 are both trigonal with space groups P3[combining macron]m1 and R3[combining macron]c, respectively. Generally, coordination between the metal and the icosahedral closo-borane anion is diverse and includes point sharing, edge sharing, or face sharing, while coordination of ammonia always occurs via the lone pair on nitrogen to the metal. Furthermore, a liquid intermediate is observed during heating of Li 2 B 12 H 12 ·7NH 3 . This work provides deeper insight into the structural, physical, and chemical properties related to thermal decomposition and possible ammonia and hydrogen storage.

  17. Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Panda, R.N.; Gajbhiye, N.S.

    2012-01-01

    Highlights: ► Variation of intrinsic magnetic parameters of Co-N. ► Synthesis by hexa-ammine cobalt complex route. ► Tuning of coercivity by variation of size. - Abstract: We report the variation of Curie temperature (T c ) and coercivity (H c ) of the single domain Co-N interstitial materials synthesized via nitridation of the hexa-ammine Cobalt(III) nitrate complex at 673 K. Co-N materials crystallize in the fcc cubic structure with unit cell parameter, a = 3.552 Å. The X-ray diffraction (XRD) peaks are broader indicating the materials to be nano-structured with crystallite sizes of 5–14 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirm the nanocrystalline nature of the materials. TEM images show chain-like clusters indicating dipolar interactions between the particles. Magnetic studies focus on the existence of giant magnetic Co atoms in the Co-N lattice that are not influenced by the thermal relaxation. The values of the H c could be tuned with the dimension of the particles. The values of T c of the nitride materials are masked by the onset of the ferromagnetic to superparamagnetic transition at higher temperatures. Thermomagnetic studies show an increasing trend in the Curie temperature, T c , with decrease in particle dimension. This result has been explained qualitatively on the basis of ferromagnetic to superparamagnetic transition and finite size scaling effects.

  18. Variation of intrinsic magnetic parameters of single domain Co-N interstitial nitrides synthesized via hexa-ammine cobalt nitrate route

    Energy Technology Data Exchange (ETDEWEB)

    Ningthoujam, R.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India); Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Panda, R.N., E-mail: rnp@bits-goa.ac.in [Chemistry Group, Birla Institute of Technology and Science-Pilani, Goa Campus, Zuari Nagar, Goa 403726 (India); Gajbhiye, N.S. [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Variation of intrinsic magnetic parameters of Co-N. Black-Right-Pointing-Pointer Synthesis by hexa-ammine cobalt complex route. Black-Right-Pointing-Pointer Tuning of coercivity by variation of size. - Abstract: We report the variation of Curie temperature (T{sub c}) and coercivity (H{sub c}) of the single domain Co-N interstitial materials synthesized via nitridation of the hexa-ammine Cobalt(III) nitrate complex at 673 K. Co-N materials crystallize in the fcc cubic structure with unit cell parameter, a = 3.552 Angstrom-Sign . The X-ray diffraction (XRD) peaks are broader indicating the materials to be nano-structured with crystallite sizes of 5-14 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies confirm the nanocrystalline nature of the materials. TEM images show chain-like clusters indicating dipolar interactions between the particles. Magnetic studies focus on the existence of giant magnetic Co atoms in the Co-N lattice that are not influenced by the thermal relaxation. The values of the H{sub c} could be tuned with the dimension of the particles. The values of T{sub c} of the nitride materials are masked by the onset of the ferromagnetic to superparamagnetic transition at higher temperatures. Thermomagnetic studies show an increasing trend in the Curie temperature, T{sub c}, with decrease in particle dimension. This result has been explained qualitatively on the basis of ferromagnetic to superparamagnetic transition and finite size scaling effects.

  19. Tetra­ammine­(carbonato-κ2 O,O′)cobalt(III) nitrate: a powder X-ray diffraction study

    Science.gov (United States)

    Le Bail, Armel

    2013-01-01

    Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3)(NH3)4]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the CoIII ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N—H⋯O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding inter­actions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3)(NH3)4]+ and NO3 − groups during the dehydration process, which produces an unusual volume increase of 4.3%. PMID:24046543

  20. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    2013-01-01

    selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...

  1. Computational Screening of Mixed Metal Halide Ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    selected by a Genetic Algorithm (GA), relying on biological principles of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d...

  2. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  3. Kinetics and mechanisms of the electron-transfer reactions between uranium(III) and some ruthenium(III) ammine complexes

    International Nuclear Information System (INIS)

    Adegite, A.; Lyun, J.F.; Ojo, J.F.

    1977-01-01

    The rates of reduction of ) 7Ru(NH 3 ) 6 { 3+ and 7RuX(NH 3 ) 5 { 3+ (n = 2 or 3: X = H 2 O,OH - , Cl - ,Br - , and 1 - ) by U 3+ have been measured with a stopped-flow spectrophotometer. The reductions of 7Ru(NH 3 ) 6 { 3+ and 7Ru(NH 3 )(OH 2 ){ 3+ proceed by an outer-sphere mechanism. The mechanism for 7Ru(NH 3 ) 5 (OH){ 2+ is less certain, but is probably also outer sphere. The penta-amminehalogeno-complexes have a reactivity order I > Br> Cl, probably by an inner-sphere mechanism. The rates of reduction and reactivity patterns of equivalent cobalt(III) and ruthenium(III) complexes with a common reducing ion are compared. From the results, it is concluded that differences in the kinetic reactivity of the two metal complexes are due to the basic difference in the electronic structure of Cosup(III) and Rusup(III). These differences are manifested as influences of intrinsic factors on the rates and reactivity, and affect not only the rates of the reactions but also the type of mechanism often preferred. On the other hand, a comparison of rates of oxidation of U 3+ with those of other aqua-ions employing Marcus theory leads to the conclusion that the very low reduction potential of U 3+ is responsible for its very high redox reactivity. (author). )

  4. Ammonia/Hydrogen Mixtures in an SI-Engine

    DEFF Research Database (Denmark)

    Mørch, Christian Sandersen; Bjerre, Andreas; Gøttrup, Morten Piil

    2011-01-01

    In recent years there has been increasing focus on using metal ammine complexes for ammonia storage. In this paper a fuel system for ammonia fuelled internal combustion engines using metal ammine complexes as ammonia storage is analyzed. The use of ammonia/hydrogen mixtures as an SI-engine fuel...

  5. Computational Search for Improved Ammonia Storage Materials

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Vegge, Tejs

    , bromide or iodide, and mixtures thereof. In total the search space consists of thousands of combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles of natural...

  6. Inverted Organic Solar Cells with Low-Temperature Al-Doped-ZnO Electron Transport Layer Processed from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Qianni Zhang

    2018-01-01

    Full Text Available The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to obtain the ZnO electron transport layer (ETL at a low temperature in inverted organic solar cells (OSCs. However, to dope the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxide tends to precipitate metal salts due to acid-base neutralization reactions. In this paper, we investigate the inverted OSCs with Al-doped-ZnO ETL made by immersion of metallic Al into the Zn-ammine precursor solution. The effects of ZnO layer with different immersion time of Al on film properties and solar cell performance have been studied. The results show that, with the Al-doped-ZnO ETL, an improvement of the device performance could be obtained compared with the device with the un-doped ZnO ETL. The improved device performance is attributed to the enhancement of charge carrier mobility leading to a decreased charge carrier recombination and improved charge collection efficiency. The fabricated thin film transistors with the same ZnO or AZO films confirm the improved electrical characteristics of the Al doped ZnO film.

  7. Effects of Copper Exchange Levels on Complexation of Ammonia in ...

    African Journals Online (AJOL)

    NJD

    At low copper exchange levels (<5 copper atoms per unit cell), the major complex is [Cu(Ozeo)2(NH3)2]2+ and ... amount of ammonia. KEYWORDS. Cation exchange, catalysis, copper, complexation, copper ammines. 1. .... at a 4 kHz MAS spinning rate on a Bruker AC 300 NMR spectro- meter (Fitchburg, MA, USA) at 7.05 ...

  8. JCSC_128_11_1703_1707_SI_a.docx

    Indian Academy of Sciences (India)

    dell

    Finally, the reaction was neutralized by triethyl ammine and the solution passed through a small basic alumina column. The reaction mixture was concentrated and 8 was separated by silica gel column chromatography using DCM/Hexane as eluent. 8 was crystallised with DCM/Hexane system. [8]2+ was generated by ...

  9. Adsorption of micro amounts of cadmium complex ion on active charcoal

    International Nuclear Information System (INIS)

    Mizuno, Kingo; Yasuda, Noriko; Miyatani, Giroku; Fujimura, Keishiro.

    1977-01-01

    Cadmium (II) reacts with an aqueous ammonia to form a hexa-ammine cadmium complex which is easily adsorbed on active charcoal by a butch method. The cadmium adsorbed on active charcoal is almost recovered rapidly by the shaking with a small quantity of 1 M hydrochloric acid, the active charcoal could be reused as a regenerated charcoal. Under the column method has been employed on the same concentration of cadmium solution which is used on butch method, the cadmium ion is completely adsorbed from an ammoniacal solution at pH 11. The effects of the organic substance accompanying with cadmium ion examined about the aqueous solution of 10 -4 M EDTA, 10 -2 M glycine, 3 x 10 -3 M n-octhyl alcohol and 5 x 10 -4 M methylorange. The competitions occured between an aqueous ammonia and other complex agents such as EDTA or glycine. The concomitance effect would be observed between ammine cadmium complex and methylorange. (auth.)

  10. Studies on the interaction of benzotriazole (a corrosion inibitor) with the ruthenium (II) (III) ammincomplexes and pentacyanoferrate (II)

    International Nuclear Information System (INIS)

    Espinoza R, R.L.

    1985-01-01

    Some studies on the interaction of benzotriazole with the aquapentacyanoferrate (II), aquapentaamminruthenium (II) and cis-and trans-(NH 3 ) 4 Ru(H 2 O) 2 2+ complexes are described. The reactions, substituted products and complexes production are demonstrated. The absorption bands for the ammine (benzotriazole) and ruthenium (II) complexes as well as the activation parameters and kinetics of reactions are discussed. (M.J.C.) [pt

  11. Charge Transfer in Multiple Site Chemical Systems.

    Science.gov (United States)

    1985-05-30

    films via sulfonamide , sulfonester, or *: sulfonanhydride linkages, respectively. The p-chlorosulfonateo polystyrene films can be cast onto virtually any...an ammine cmplex of ruthenium, organics, a nickel macrocycle and a nickel porphyrin. 7he modified films based on sulfonamide links were the most stable...spatially segregated films; 3) Selectivity and directed charge transfer effects involving redox couples in the external solution; 4) Hydrolysis of the

  12. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...... ammonia and benefits from the properties of ammonia as a fuel. The system can be used as a safe, reversible, low-cost hydrogen carrier....

  13. Effect of ammonium salts on the solvent extraction of Zn and Cd with liquid cation exchangers

    International Nuclear Information System (INIS)

    Shibata, Junji; Nishimura, Sanji; Mukai, Shigeru.

    1976-01-01

    The extraction of Zn and Cd from ammoniacal solution with D 2 EHPA and Versatic Acid 911 diluted in benzene was studied and the effect of ammonia on these extractions was clarified. The extraction of these metals with D 2 EHPA is not affected by ammonia, while the extraction with Versatic Acid 911 is considerably hindered. This is also recognized from the consideration by the average ligand number of metal ammine complex. The theoretical values obtained on the hypothesis that the metal ammine complex is not extracted into the organic phase are in good accord with the experimental results of Zn extraction. But there is a difference between the theoretical and experimental values of Cd extraction. The addition of p-nonyl phenol to the organic phase raises the extraction of these metals, especially in the pH region where the extraction is hindered by the formation of the metal ammine complex. The separation of Cd from a binary solution of Zn and Cd was tried and it was confirmed that the extraction under the optimum pH and ammonia concentration, and the scrubbing of the extract with Cd solution are required. (auth.)

  14. DDT performance of energetic cobalt coordination compounds. [Dozen of compounds similar to 2-(5-cyanotetrazolato)pentaaminecobalt perchlorate, trinitrotriamine cobalt, dinitrobis(ethylenediamine) cobalt perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, M.L.; Fleming, W.

    1986-01-01

    The compound 2-(5-cyanotetrazolato)pentaamminecobalt(III) perchlorate (CP) has been utilized in low-voltage detonators because it reliably undergoes deflagration-to-detonation transition (DDT). In the present investigation, we have compared the performance of over a dozen similar compounds. These compounds all have cobalt as the coordinating metal, most are ammine complexes, and all except one incorporate the perchlorate anion as an oxidizer. Chemical factors such as fuel-to-oxidizer ratio, trigger group, and organic content have been varied. 18 refs., 7 figs., 2 tabs.

  15. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  16. Computational analysis of gas-solid interactions in materials for energy storage and conversion

    DEFF Research Database (Denmark)

    Lysgaard, Steen

    found in certain experiments. We have furthermore determined a stable surface state of ammonia in SrCl2 ammines and identified its implications on the ab- and desorption kinetics. Metal salts often bind ammonia and water molecules in a similar structural coordination. We have studied the competitive...... exchange and diffusion processes of water and ammonia in magnesium chloride hexammine and hexahydrate as a method for non-thermal release of ammonia. A mixed phase containing both water and ammonia have been shown to be stable in a small region around room temperature. It is possible to shift the release...

  17. NIR-FT-Raman spectroscopic studies of hexammine and pentammine chromium(III) complexes

    Science.gov (United States)

    Chen, Yuying; Christensen, Daniel H.; Sørensen, Georg O.; Nielsen, Ole Faurskov; Jacobsen, Claus J. H.; Hyldtoft, Jens

    1994-03-01

    The NIR-FT-Raman spectra are presented for the hexammine [Cr(NH 3) 6]X 3 (where X = Br -, NO -3), pentamminechloro [Cr(NH 3) 5Cl]X 2 (where X = Cl -, ClO -4), and pentammineaqua [Cr(NH 3) 5(H 2O)]X 3 (where X = ClO -4, CF 3SO -3) chromium(III) complexes. The NIR-FT-Raman spectra, with an excitation wavelength of 1064 nm, were obtained at room temperature without problems from the strongly colored samples, which often cause problems with excitation by lasers in the visible region. All the Raman frequencies observed from the complexes have been assigned to the skeleton vibrational region from 100 to 600 cm -1. The symmetry and the general valence force constants for the bonds chromium(III)nitrogen, chromium(III)oxygen and chromium(III)chloro have been obtained. The nature of the metalligand bond between chromium(III) ammine complexes has been compared with recent results obtained for similar cobalt(III) ammine complexes.

  18. High purity silver microcrystals recovered from silver wastes by eco-friendly process using hydrogen peroxide.

    Science.gov (United States)

    Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet

    2017-07-01

    A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Response Behaviour of a Hydrogen Sensor Based on IonicConducting Polymer-metal Interfaces Prepared by the ChemicalReduction Method

    Directory of Open Access Journals (Sweden)

    Werner Weppner

    2006-04-01

    Full Text Available A solid-state amperometric hydrogen sensor based on a protonated Nafionmembrane and catalytic active electrode operating at room temperature was fabricated andtested. Ionic conducting polymer-metal electrode interfaces were prepared chemically byusing the impregnation-reduction method. The polymer membrane was impregnated withtetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced byusing either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensingcharacteristics with air as reference gas is reported. The sensors were capable of detectinghydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in therange of 10-30 s and a stable linear current output was observed. The thin Pt films werecharacterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic ForceMicroscopy, Scanning Electron Microscopy and EDAX.

  20. Studies of the yields of 57Fe(II)-species produced after the EC-decay and of 60Co(II)-species produced in the (n, γ) reaction in cobalt(III) coordination compounds

    International Nuclear Information System (INIS)

    Sano, Hirotoshi; Harada, Masayuki; Endo, Kazutoyo

    1978-01-01

    The yields of 57 Fe(II)-species produced after EC-decay were compared with those of 60 Co(II)-species produced in the 59 Co(n, γ) 60 Co reaction for twelve cobalt(III) coordination compounds. The results indicate that the radiochemical yield of 60 Co(II)-species correlates with the yield of 57 Fe(II)-species except in the case of [Co(NH 3 ) 6 ] 2 (CrO 4 ) 3 . The anomalously low yield of 57 Fe(II)-species in [Co(NH 3 ) 6 ] 2 (CrO 4 ) 3 is ascribed to the reaction of chromate anions with ammine ligands initiated by the nuclear transformation in a solid. (author)

  1. Evaluation of radiolabeled ruthenium compounds as tumor-localizing agents

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Richards, P.; Meinken, G.E.; Som, P.; Atkins, H.L.; Larson, S.M.; Grunbaum, Z.; Rasey, J.S.; Clarke, M.H.; Dowling, M.

    1979-01-01

    This work introduces a new class of radiopharmaceuticals based on ruthenium-97. The excellent physical properties of Ru-97, the high chemical reactivity of Ru, the potential antitumor activity of several Ru coordination compounds, and BLIP production of Ru-97, provide a unique combination for the application of this isotope in nuclear oncology. A systematic study was undertaken on the synthesis, characterization, and evaluation of a number of ruthenium-labeled compounds. In a variety of animal tumor models, several compounds show considerable promise as tumor-localizing agents when compared to gallium-67 citrate. The compounds studied (with Ru in different oxidation states) include ionic Ru, a number of hydrophilic and lipophilic chelates, and various ammine derivatives.

  2. Kefir and champagne vinegar to defeat bacterial vaginosis in woman, avoiding oral metronidazole, clindamycin and bothersome douchings

    Directory of Open Access Journals (Sweden)

    Piotr Brzezinski

    2018-02-01

    Full Text Available Scope ouf our study is to treat with natural remedies vaginitis in woman, when it has been detected the disease originates from bacterical assault (Gardnerella vaginalis and/or Streptococca spp. in order to avoid the administration of perilous antibiotics and elicit sexual desire and eliminate pain during urination in the woman who has suffered from this disease after 4-5 days only. We have to proceed with the preliminary phase of a simplest test (the ammin whiff test and determine the type of vaginitis and thus treat it using champagne or cider vinegar to adjust mucosal pH and kefir, a fermented beverage, that is extremely rich in mesophyllic bacteria, apt to reveal an important and suggestive function regard vaginal microbes.

  3. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    . Recently, metal ammine salts were proposed as safe, reversible. high-density and low-cost hydrogen carriers. Here, we discuss how this development could provide a platform for using ammonia as a fuel for the hydrogen economy, We do that by comparing various possible hydrogen carriers with respect to energy......Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...... of fossil fuels, are main drivers for the currently increasing research and development efforts. However. significant technological breakthroughs are necessary for making a hydrogen economy feasible. In particular, it is necessary to develop appropriate hydrogen storage and transportation technologies...

  4. A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor 'turn-off' probe for selective sensing of copper ions.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Bose, Madhuparna; Mondal, Subhadip; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra

    2017-06-01

    Zero-dimensional fluorescent nanoparticles having specificity as molecular probe appears to be strategically balanced fluorescent nano-probes. In this work, purified lemon extract and l-arginine have been thermally coupled for the extremely acute detection of Cu 2+ in aqueous medium. The Cu 2+ ions may be captured by the amino groups on the surface of the nano-sensor to form cupric ammine complex resulting in quenched fluorescence via an inner filter effect. Our proposed nano-probe is N-doped carbon dots (NCDs) which are efficiently selective as fluorescent chemosensor due to enormous binding affinity towards Cu 2+ in a wide range of concentration (0.05-300μM) within a few minutes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crystal structure of [UO2(NH35]NO3·NH3

    Directory of Open Access Journals (Sweden)

    Patrick Woidy

    2016-12-01

    Full Text Available Pentaammine dioxide uranium(V nitrate ammonia (1/1, [UO2(NH35]NO3·NH3, was obtained in the form of yellow crystals from the reaction of caesium uranyl nitrate, Cs[UO2(NO33], and uranium tetrafluoride, UF4, in dry liquid ammonia. The [UO2]+ cation is coordinated by five ammine ligands. The resulting [UO2(NH35] coordination polyhedron is best described as a pentagonal bipyramid with the O atoms forming the apices. In the crystal, numerous N—H...N and N—H...O hydrogen bonds are present between the cation, anion and solvent molecules, leading to a three-dimensional network.

  6. Metal Oxides Doped PPY-PVA Blend Thin Films Based Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-02-01

    Full Text Available Synthesis of metal oxides doped polypyrrole–polyvinyl alcohol blend thin films by in situ chemical oxidative polymerization, using microwave oven on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature(304 K. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as observed in the SEM image was observed to be uniformly covering the entire substrate surface. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability metal oxides doped PPY-PVA films.

  7. Antiproliferative effect of complexes of platinum (II) with plasmanyl-(N-acyl)-ethanolamine, an inhibitor of protein kinase C.

    Science.gov (United States)

    Mikhaevich, I S; Vlasenkova, N K; Gerasimova, G K

    1992-10-01

    Antiproliferative activities of combinations of semisynthetic plasmanyl-(N-acyl)-ethanolamine [PNAE(s)], an inhibitor of protein kinase C, with two antitumor complexes of platinum (II) [cisplatin and ammine(cyclopentylamine)-S-(-)-malatoplatinum (cycloplatam)] were investigated. The exposure of human melanoma BRO cells in culture simultaneously with cisplatin (1-10 microM) and PNAE(s) (100 microM-1 mM) in a molar ratio of 1/100 for 24 h induced a considerable decrease in the ability of these cells to incorporate [3H]thymidine into DNA. A considerable antiproliferative synergism of these agents was observed. The effect of cycloplatam/PNAE(s) combination in similar experiments was significantly different from cisplatin/PNAE(s), i.e. interaction of these agents was complex and synergism was not found.

  8. Electrodialytic soil remediation in a small pilot plant (Part II)

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Hansen, Lene

    1999-01-01

    Observations were made of copper-polluted soil to see, if any changes in the bonding type of copper in the soil were made during electrodialytic soil remediation. Three different fractions of the copper-polluted soil were used for investigation with infrared spectroscopy (IR), X-ray diffraction......-monia. Ammonia was chosen because it forms strong complexes with copper and to keep the soil basic, so that the carbonates were not dissolved. The bulk soil was treated by electrodialytic reme-dia-tion, and soil treated for seven months was investigated with XRD, TEM and SEM.Malachite was found by use of XRD...... (XRD), transmission electron microscope (TEM) and observations with scanning electron microscope (SEM), the last two combined with an EDX analysis unit. The three soil fractions were extracted with am-monia for observa-tion of the copper removal when copper forms copper-tetra-ammine complexes with am...

  9. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons...... and alcohols, it has the advantage that there is no CO2 emission at the end user. The drawbacks are mainly the toxicity of liquid ammonia and the problems related to trace amounts of ammonia in the hydrogen after decomposition. Storage of ammonia in metal ammine salts is discussed, and it is shown...... that this maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  10. Computational investigation and design of coordination compounds for hydrogen storage

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo

    it into a layered structure which is expected to improve the kinetics. Iodine doping could also be used for improving ion conduction in lithium tetrahydroborate, which is useful for batteries. Only the high temperature phase of lithium tetrahydroborate show a high ion conduction, and it was shown that doping......Two classes of high capacity hydrogen storage materials, the metal tetrahydroborates and the metal ammines, were investigated at the atomic scale using density functional theory simulations. It was shown that simple model structures could be used to asses the stabilities of complex systems. Trends...... lithium tetrahydroborate with iodine stabilizes the high temperature phase, in agreement with experiment. Finally, examples on how systematic structural studies of metal halides and hydrides can aid the design of new materials were given....

  11. Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Fang, Hongmei; Zhao, Li; Yue, Wenbo; Wang, Yuan; Jiang, Yang; Zhang, Yuan

    2015-01-01

    Graphene-based metal oxides are desirable as potential anode materials for lithium-ion batteries (LIBs) owing to their superior electrochemical properties. In this work, sandwich-structured graphene-metal oxide (ZnO, NiO) composites are facilely synthesized on a large scale through self-assembly of graphene oxide nanosheets and metal ammine complexes, and then thermal decomposition of the self-assembled products. ZnO or NiO nanoparticles with diameters of 5∼10 nm are immobilized between the layers of graphene nanosheets, which may provide the space for accommodating the volume change of metal oxides during cycles, and highly improve the electronic conductivity of the composites. Accordingly, these sandwich-structured composites exhibit enhanced electrochemical performances compared to metal oxide particles or stacked graphene nanosheets. This facile synthesis method is very suitable for the large-scale production of three-dimensional graphene-based composites as high-performance anodes for LIBs.

  12. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...... network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized:metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning...... the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out...

  13. A study of the effect of ammonia gas on the solid mono- and dinuclear oxorhenium(V complexes

    Directory of Open Access Journals (Sweden)

    M. M. MASHALY

    1999-09-01

    Full Text Available The reaction of ammonia gas with the solid oxorhenium(V complexes [Re2 O3L2Cl4]·2H2O, [Re2O2L3Cl6]·2H2O, [ReOLCl(OH23]Cl2, [ReOL2(OH23]CCl3, [ReOLCl3(OH2], [ReOL(SCN2Cl(OH2]·H2O and [ReOL(SCNCl2(OH2] (where L = 2-benzimadazolethione, yielded the corresponding ammine and/or amine complexes, [Re2O3L2(NH32(NH22]Cl2 (I, [Re2O2L3(NH32(NH24]Cl2 (II, [Re2O3L2(NH32 (NH24]·H2O (III, [Re2O3L4(NH24] (IV, [Re2O3L2(NH32(NH24C (V, [Re2O3L2(SCN4(NH32] (VI and [Re2O3L2(Thio2(NH24] (VII, respectively, (Thio = thiourea where ammonia gas has replaced other ligands such as chlorine and water. In complex VII thiourea replaced the thiocyanate group in the start complex through its reaction with ammonia gas. The obtained ammine and/or amine of rhenium(V complexes have been observed to decompose through several isolatable, as well as non-isolatable complex species as intermediates during heating. [Re2O3L4], [Re2O3L2(NH24] and [Re2O3L2(SCN4], were synthesized pyrolytically in the solid state from the corresponding parent oxorhenium complexes. The electronic absorption spectra and magnetic moments of the complexes show that the Re(V cation has an octahedral configuration. IR,1H-NMR spectroscopy, conductivity measurements and thermal analysies show that ammonia and thiourea behave as neutral monodentate ligands, SCN- and NH2- as monodentate monoanionic ligands, the organic ligand (L as a neutral monodentate or bidentate ligand towards the metal cation.

  14. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  15. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid.

    Science.gov (United States)

    Nakahara, Yoshiko; Toda, Tatsuro; Matsunami, Asuka; Kayaki, Yoshihito; Kuwata, Shigeki

    2018-01-04

    NNN and NCN pincer-type ruthenium(II) complexes featuring two protic pyrazol-3-yl arms with a trifluoromethyl (CF 3 ) group at the 5-position were synthesized and structurally characterized to evaluate the impact of the substitution on the properties and catalysis. The increased Brønsted acidity by the highly electron-withdrawing CF 3 pendants was demonstrated by protonation-deprotonation experiments. By contrast, the IR spectra of the carbonyl derivatives as well as the cyclic voltammogram indicated that the electron density of the ruthenium atom is negligibly influenced by the CF 3 group. Catalysis of these complexes in the decomposition of formic acid to dihydrogen and carbon dioxide was also examined. The NNN pincer-type complex 1 a with the CF 3 group exhibited a higher catalytic activity than the tBu-substituted analogue 1 b. In addition, the bis(CF 3 -pyrazolato) ammine derivative 4 catalyzed the reaction even in the absence of base additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  17. Exploring Intein Inhibition by Platinum Compounds as an Antimicrobial Strategy.

    Science.gov (United States)

    Chan, Hon; Pearson, C Seth; Green, Cathleen M; Li, Zhong; Zhang, Jing; Belfort, Georges; Shekhtman, Alex; Li, Hongmin; Belfort, Marlene

    2016-10-21

    Inteins, self-splicing protein elements, interrupt genes and proteins in many microbes, including the human pathogen Mycobacterium tuberculosis Using conserved catalytic nucleophiles at their N- and C-terminal splice junctions, inteins are able to excise out of precursor polypeptides. The splicing of the intein in the mycobacterial recombinase RecA is specifically inhibited by the widely used cancer therapeutic cisplatin, cis-[Pt(NH 3 ) 2 Cl 2 ], and this compound inhibits mycobacterial growth. Mass spectrometric and crystallographic studies of Pt(II) binding to the RecA intein revealed a complex in which two platinum atoms bind at N- and C-terminal catalytic cysteine residues. Kinetic analyses of NMR spectroscopic data support a two-step binding mechanism in which a Pt(II) first rapidly interacts reversibly at the N terminus followed by a slower, first order irreversible binding event involving both the N and C termini. Notably, the ligands of Pt(II) compounds that are required for chemotherapeutic efficacy and toxicity are no longer bound to the metal atom in the intein adduct. The lack of ammine ligands and need for phosphine represent a springboard for future design of platinum-based compounds targeting inteins. Because the intein splicing mechanism is conserved across a range of pathogenic microbes, developing these drugs could lead to novel, broad range antimicrobial agents. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Structure of the Hydrated Platinum(II) Ion And the Cis-Diammine-Platinum(II) Complex in Acidic Aqueous Solution: An EXAFS Study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilehvand, F.; Laffin, L.J.

    2009-05-18

    Careful analysis of Pt L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) spectra shows that the hydrated platinum(II) ion in acidic (HClO{sub 4}) aqueous solution binds four water molecules with the Pt-O bond distance 2.01(2) {angstrom} and one (or two) in the axial position at 2.39(2) {angstrom}. The weak axial water coordination is in accordance with the unexpectedly small activation volume previously reported for water exchange in an interchange mechanism with associative character. The hydrated cis-diammineplatinum(II) complex has a similar coordination environment with two ammine and two aqua ligands strongly bound with Pt-O/N bond distances of 2.01(2) {angstrom} and, in addition, one (or two) axial water molecule at 2.37(2) {angstrom}. This result provides a new basis for theoretical computational studies aiming to connect the function of the anticancer drug cis-platin to its ligand exchange reactions, where usually four-coordinated square planar platinum(II) species are considered as the reactant and product. {sup 195}Pt NMR spectroscopy has been used to characterize the Pt(II) complexes.

  19. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    Science.gov (United States)

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  20. The medium reorganization energy for the charge transfer reactions in proteins.

    Science.gov (United States)

    Krishtalik, Lev I

    2011-11-01

    A low static dielectric permittivity of proteins causes the low reorganization energies for the charge transfer reactions inside them. This reorganization energy does not depend on the pre-existing intraprotein electric field. The charge transferred inside the protein interacts with its aqueous surroundings; for many globular proteins, the effect of this surroundings on the reorganization energy is comparable with the effect of reorganization of the protein itself while for the charge transfer in the middle of membrane the aqueous phase plays a minor role. Reorganization energy depends strongly on the system considered, and hence there is no sense to speak on the "protein reorganization energy" as some permanent characteristic parameter. We employed a simple algorithm for calculation of the medium reorganization energy using the numerical solution of the Poisson-Boltzmann equation. Namely, the reaction field energy was computed in two versions - all media having optical dielectric permittivity, and all the media with the static one; the difference of these two quantities gives the reorganization energy. We have calculated reorganization energies for electron transfer in cytochrome c, various ammine-ruthenated cytochromes c, azurin, ferredoxin, cytochrome c oxidase, complex of methylamine dehydrogenase with amicyanin, and for proton transfer in α-chymotrypsin. It is shown that calculation of the medium reorganization energy can be a useful tool in analysis of the mechanisms of the charge transfer reactions in proteins. 2011 Elsevier B.V. All rights reserved.

  1. Tetraammine(carbonato-κ2O,O′cobalt(III nitrate: a powder X-ray diffraction study

    Directory of Open Access Journals (Sweden)

    Armel Le Bail

    2013-07-01

    Full Text Available Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3(NH34]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the CoIII ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N—H...O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding interactions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3(NH34]+ and NO3− groups during the dehydration process, which produces an unusual volume increase of 4.3%.

  2. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    Science.gov (United States)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn

  3. A chemical preformulation study of a host-guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery.

    Science.gov (United States)

    Kennedy, Alan R; Florence, Alastair J; McInnes, Fiona J; Wheate, Nial J

    2009-10-07

    Single crystal and powder X-ray diffraction have been used to examine the host-guest complex of cucurbit[7]uril (CB[7]) and the model dinuclear platinum anticancer complex trans-[{PtCl(NH(3))(2)}(2)mu-dpzm](2+) (di-Pt, dpzm= 4,4'-dipyrazolylmethane). The single crystal structure shows that the host-guest complex forms with the di-Pt dpzm ligand within the CB[7] cavity and with the platinum groups just beyond the macrocycle portals. Binding is stabilised through hydrophobic interactions and six hydrogen bonds between the platinum ammine ligands and the dpzm pyrazole amine to the CB[7] carbonyls. Each host-guest complex crystallises with two chloride counterions and 5.5 water molecules. The unit cell comprises four asymmetric units, each of which contains three crystallographically independent CB[7]-di-Pt moieties. X-Ray powder diffraction demonstrated structural consistency of the bulk crystals with a single polycrystalline phase that is identical with the single crystal structure. Finally, the effect of CB[7] encapsulation of the thermal stability of di-Pt was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). From the TGA experiments it was found that free CB[7] and the CB[7]-di-Pt complex lose 11 and 3.5% of their mass respectively, through the loss of water molecules, upon heating to 160 degrees C. The DSC results showed that the free dpzm ligand melts between 186 and 199 degrees C, with a standard enthalpy of fusion of 27.92 kJ mol(-1). As a 2+ inorganic salt the metal complex does not melt but undergoes several decomposition events between 140 and 290 degrees C. Encapsulation by CB[7] completely stabilises di-Pt with no decomposition of either the macrocycle or metal complex at temperatures up to 290 degrees C.

  4. Fluoridonitrosyl complexes of technetium(I) and technetium(II). Synthesis, characterization, reactions, and DFT calculations.

    Science.gov (United States)

    Balasekaran, Samundeeswari Mariappan; Spandl, Johann; Hagenbach, Adelheid; Köhler, Klaus; Drees, Markus; Abram, Ulrich

    2014-05-19

    A mixture of [Tc(NO)F5](2-) and [Tc(NO)(NH3)4F](+) is formed during the reaction of pertechnetate with acetohydroxamic acid (Haha) in aqueous HF. The blue pentafluoridonitrosyltechnetate(II) has been isolated in crystalline form as potassium and rubidium salts, while the orange-red ammine complex crystallizes as bifluoride or PF6(-) salts. Reactions of [Tc(NO)F5](2-) salts with HCl give the corresponding [Tc(NO)Cl4/5](-/2-) complexes, while reflux in neat pyridine (py) results in the formation of the technetium(I) cation [Tc(NO)(py)4F](+), which can be crystallized as hexafluoridophosphate. The same compound can be synthesized directly from pertechnetate, Haha, HF, and py or by a ligand-exchange procedure starting from [Tc(NO)(NH3)4F](HF2). The technetium(I) cation [Tc(NO)(NH3)4F](+) can be oxidized electrochemically or by the reaction with Ce(SO4)2 to give the corresponding Tc(II) compound [Tc(NO)(NH3)4F](2+). The fluorido ligand in [Tc(NO)(NH3)4F](+) can be replaced by CF3COO(-), leaving the "[Tc(NO)(NH3)4](2+) core" untouched. The experimental results are confirmed by density functional theory calculations on [Tc(NO)F5](2-), [Tc(NO)(py)4F](+), [Tc(NO)(NH3)4F](+), and [Tc(NO)(NH3)4F](2+).

  5. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    International Nuclear Information System (INIS)

    Bialy, Agata; Jensen, Peter B.; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-01

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba x Sr (1−x) Cl 2 mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH 3 ) 8 Cl 2 . - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl 2 in SrCl 2 yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures

  6. Molecular insights into the local anesthetic receptor within voltage-gated sodium channels using hydroxylated analogues of mexiletine

    Directory of Open Access Journals (Sweden)

    Jean-François eDesaphy

    2012-02-01

    Full Text Available We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003, suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogues by adding one or two hydroxyl groups to the aryl moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration-response relationships were constructed using an holding potential of -120 mV at 0.1 Hz (tonic block and 10 Hz (use-dependent block stimulation frequencies. The half-maximum inhibitory concentrations (IC50 were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. Alteration of tonic block suggests that the aryl moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryl moiety may modify high-affinity binding of the drug ammine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis showing that the presence of hydroxyl groups to the aryl moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with

  7. Photocytotoxic trans-diam(m)ine platinum(IV) diazido complexes more potent than their cis isomers.

    Science.gov (United States)

    Farrer, Nicola J; Woods, Julie A; Munk, Vivienne P; Mackay, Fiona S; Sadler, Peter J

    2010-02-15

    The photocytotoxicity of a series of anticancer trans-dihydroxido [Pt(N(3))(2)(OH)(2)(NH(3))(X)] (X = alkyl or aryl amine) platinum(IV) diazido complexes has been examined, and the influence of cis-trans isomerism has been investigated. A series of photoactivatable Pt(IV)-azido complexes has been synthesized: The synthesis, characterization, and photocytotoxicity of six mixed-ligand ammine/amine Pt(IV) diazido complexes, cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))(X)] where X = propylamine (4c), butylamine (5c), or pentylamine (6c) and aromatic complexes where X = pyridine (7c), 2-methylpyridine (8c), or 3-methylpyridine (9c) are reported. Six all-trans isomers have also been studied where X = methylamine (2t), ethylamine (3t), 2-methylpyridine (8t), 4-methylpyridine (10t), 3-methylpyridine (9t), and 2-bromo-3-methylpyridine (11t). All of the complexes exhibit intense azide-to-Pt(IV) LMCT bands (ca. 290 nm for trans and ca. 260 nm for cis). When irradiated with UVA light (365 nm), the Pt(IV) complexes undergo photoreduction to Pt(II) species, as monitored by UV-vis spectroscopy. The trans isomers of complexes containing aliphatic or aromatic amines were more photocytotoxic than their cis isomers. One of the cis complexes (9c) was nonphotocytotoxic despite undergoing photoreduction. Substitution of NH(3) ligands by MeNH(2) or EtNH(2) results in more potent photocytotoxicity for the all-trans complexes. The complexes were all nontoxic toward human keratinocytes (HaCaT) and A2780 human ovarian cancer cells in the dark, apart from the 3-methylpyridine (9t), 2-bromo-3-methylpyridine (11t), and 4-methylpyridine (10t) derivatives.

  8. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells

    KAUST Repository

    Wijeyasinghe, Nilushi

    2017-07-28

    This study reports the development of copper(I) thiocyanate (CuSCN) hole-transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n-alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin-cast in air and annealed at 100 °C. X-ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high-resolution valence band spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V−1 s−1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous-processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous-processed CuSCN-based cells consistently outperform devices based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous-based synthetic route that is compatible with high-throughput manufacturing and paves the way for further developments.

  9. Probes of the metal-to-ligand charge-transfer excited states in ruthenium-Am(m)ine-bipyridine complexes: the effects of NH/ND and CH/CD isotopic substitution on the 77 K luminescence.

    Science.gov (United States)

    Chen, Yuan-Jang; Xie, Puhui; Endicott, John F; Odongo, Onduru S

    2006-06-29

    The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in