WorldWideScience

Sample records for aminolevulinate dehydrogenase alad

  1. Comprehensive analysis of 5-aminolevulinic acid dehydrogenase (ALAD variants and renal cell carcinoma risk among individuals exposed to lead.

    Directory of Open Access Journals (Sweden)

    Dana M van Bemmel

    Full Text Available BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC. Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR and 95% confidence intervals (CI were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02 when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GGOR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GAOR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int = 0.06. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N. Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.

  2. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA)

    Energy Technology Data Exchange (ETDEWEB)

    Tasmin, Saira, E-mail: rimzim1612@yahoo.com [Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Furusawa, Hana [Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ahmad, Sk. Akhtar [Department of Occupational and Environmental Health, Bangladesh Institute of Health Sciences, 125/1, Darus Salam, Mirpur, Dhaka 1216 (Bangladesh); Faruquee, M.H. [Department of Public Health, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205 (Bangladesh); Watanabe, Chiho [Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-15

    Background and objective: Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this study investigated whether the ALAD genotype influenced urinary excretion of delta-aminolevulinic acid (U-ALA) among children exposed to environmental lead in Bangladesh. Methods: Subjects were elementary schoolchildren from a semi-urban industrialized area in Bangladesh. A total of 222 children were studied. Blood and urine were collected to determine ALAD genotypes, blood lead levels and urinary aminolevulinic acid (U-ALA). Results: The mean BPb level was 9.7 µg/dl for the study children. BPb was significantly positively correlated with hemoglobin (p<0.01). In total, allele frequency for ALAD 1 and 2 was 0.83 and 0.17 respectively. The mean U-ALA concentration was lower in ALAD1-2/2-2 carriers than ALAD1-1 carriers for boys (p=0.001). But for girls, U-ALA did not differ significantly by genotype (p=0.26). When U-ALA was compared by genotype at the same exposure level in a multiple linear regression analysis, boys who were ALAD1-2/2-2 carriers still had a lower level of U-ALA compared to ALAD1-1carriers. Conclusion: This study provides information about the influence of ALAD polymorphism and its association with U-ALA in Bangladeshi children. Our results indicate that the ALAD1-2/2-2 genotype may have a protective effect in terms of U-ALA for environmentally lead exposed boys. - Highlights: • High blood lead level for the environmentally exposed schoolchildren. • BPb was significantly correlated with U-ALA and Hb. • Effect of ALAD genotype on U-ALA is differed by sex. • Lower U-ALA in ALAD2 than ALAD1 carriers only for boys at same exposure.

  3. Aminolevulinate dehydrogenase polymorphisms did not modified lead serum and memory relationship

    Directory of Open Access Journals (Sweden)

    Lantip Rujito

    2012-12-01

    Full Text Available Background Lead accumulation in the blood widely known affecting the formation of heme and oxygen transport processes in vital organs, Leading to organ failure including the brain synapses. Lead affinity has been recognized influenced by constitutional genotype of aminolevulinate dehydrogenase (ALAD, which encodes for heme synthesis. This research aimed to determine the relationship between plumbum (Pb and short term memory on each ALAD gene genotyping (ALAD 1-1, ALAD 1-2 or ALAD 2-2 in gas station workers. Methods Seventy six probands from gas station workers were recruited to participate in this research. Each probands was carried out ALAD genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method, lead serum level using atomic absorbent spectrophotometer (AAS, and short term memory was measurement by intelligence structure test (IST. Results Proportion of d ALAD 1-1, 1-2, and 2-2 were 91.8%, 8.2% and 0% respectively. Lead serum showed 15.84 ppb in homozygous 1-1, and 20.79 ppb in heterozygous. Short term memory in the probands varied from 85 until 117, with average in 99.71. There was significant negative relationship between lead serum and short term memory (r=-0.24; p=0.038. However, we could not find any significant correlation in each d ALAD genotypes. Conclusion The d ALAD genotypes did not modified the relationship between serum lead level and short term memory in gas station workers.

  4. Aminolevulinate dehydrogenase polymorphisms did not modified lead serum and memory relationship

    Directory of Open Access Journals (Sweden)

    Lantip Rujito

    2015-12-01

    Full Text Available BACKGROUND Lead accumulation in the blood widely known affecting the formation of heme and oxygen transport processes in vital organs, Leading to organ failure including the brain synapses. Lead affinity has been recognized influenced by constitutional genotype of aminolevulinate dehydrogenase (ALAD, which encodes for heme synthesis. This research aimed to determine the relationship between plumbum (Pb and short term memory on each ALAD gene genotyping (ALAD 1-1, ALAD 1-2 or ALAD 2-2 in gas station workers. METHODS Seventy six probands from gas station workers were recruited to participate in this research. Each probands was carried out ALAD genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP method, lead serum level using atomic absorbent spectrophotometer (AAS, and short term memory was measurement by intelligence structure test (IST. RESULTS Proportion of δ ALAD 1-1, 1-2, and 2-2 were 91.8%, 8.2% and 0% respectively. Lead serum showed 15.84 ppb in homozygous 1-1, and 20.79 ppb in heterozygous. Short term memory in the probands varied from 85 until 117, with average in 99.71. There was significant negative relationship between lead serum and short term memory (r=-0.24; p=0.038. However, we could not find any significant correlation in each δ ALAD genotypes. CONCLUSION The δ ALAD genotypes did not modified the relationship between serum lead level and short term memory in gas station workers.

  5. Lead in Missouri Streams: Monitoring Pollution from Mining with an Assay for Erythrocyte [delta]-Aminolevulinic Acid Dehydratase (ALA-D) in Fish Blood

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The activity of the erythrocyte enzyme d-aminolevulinic acid dehydratase (ALA-D) has long been used as a biomarker of lead exposure in humans and waterfowl and, more...

  6. Delta aminolevulinate dehydratase (ALA-D) activity in human and experimental diabetes mellitus.

    Science.gov (United States)

    Fernández-Cuartero, B; Rebollar, J L; Batlle, A; Enriquez de Salamanca, R

    1999-01-01

    The haem pathway is impaired in porphyrias and a frequent coexistence of diabetes mellitus and porphyria disease has been reported. We have therefore decided to investigate delta-aminolevulinate dehydratase, one of the more sensitive enzymes in the haem pathway, in both human diabetic patients and diabetic rats. We have studied 131 diabetes mellitus patients, 32 insulin dependent and 99 non-insulin dependent. The latter group was further subdivided according to treatment: diet alone (n = 24), diet plus oral hypoglycemic agents (n = 28) and diet plus insulin (n = 47). We have also performed similar studies in the rat model of diabetes mellitus, induced in 11 Wistar rats by streptozotocin. Control groups of both humans and animals were used. Erythrocytic aminolevulinate dehydratase activity was reduced in both insulin dependent and non-insulin dependent diabetic patients as compared to their controls (p glycosilated hemoglobin concentration (p < 0.05) and in non-insulin dependent diabetes mellitus to the glycemia (p < 0.01). In the diabetic rat, aminolevulinate dehydratase activity was diminished on both erythrocytes (p < 0.01) and hepatic tissue (p < 0.01) when compared to the control group. The decrease in activity of erythrocyte aminolevulinate dehydratase observed in diabetic patients, may represent an additional and useful parameter for the assessment of the severity of carbohydrate metabolism impairment.

  7. Inhibition of erythrocytes δ-aminolevulinic acid dehydratase (ALAD) activity in fish from waters affected by lead smelters

    Science.gov (United States)

    Schmitt, Christopher J.; Caldwell, Colleen A.; Olsen, Bill; Serdar, Dave; Coffey, Mike

    2002-01-01

    We assessed the effects on fish of lead (Pb) released to streamsby smelters located in Trail, BC (Canada), E. Helena, MT, Herculaneum, MO, and Glover, MO. Fish were collected by electrofishing from sites located downstream of smelters and from reference sites. Blood from each fish was analyzed for δ-aminolevulinic acid dehydratase (ALAD) activity and hemoglobin (Hb), and samples of blood, liver, or carcass were analyzed for Pb, zinc (Zn), or both. Fish collected downstreamof all four smelters sites had elevated Pb concentrations, decreased ALAD activity, or both relative to their respectivereference sites. At E. Helena, fish from the downstream site also had lower Hb concentrations than fish from upstream. Differences among taxa were also apparent. Consistent with previous studies, ALAD activity in catostomids (Pisces: Catostomidae-northern hog sucker,Hypentelium nigricans;river carpsucker, Carpiodes carpio; largescale sucker, Catostomus macrocheilus; and mountain sucker, C. platyrhynchus) seemed more sensitive to Pb-induced ALADinhibition than the salmonids (Pisces: Salmonidae-rainbow trout,Oncorhynchus mykiss; brook trout,Salvelinus fontinalis) or common carp (Cyprinus carpio). Some of these differences may have resulted from differential accumulation of Zn, which was not measured at all sites. We detected noALAD activity in channel catfish (Ictaluruspunctatus) from either site on the Mississippi River at Herculaneum, MO. Our findings confirmed that Pb is releasedto aquatic ecosystems by smelters and accumulated by fish, andwe documented potentially adverse effects of Pb in fish. We recommend that Zn be measured along with Pb when ALAD activityis used as a biomarker and the collection of at least 10 fish ofa species at each site to facilitate statistical analysis.

  8. [delta-Aminolevulinate dehydratase deficiency].

    Science.gov (United States)

    Fujita, H; Ishida, N; Akagi, R

    1995-06-01

    delta-Aminolevulinate dehydratase (ALAD: E. C. 4.2.1.24), the second enzyme in the heme biosynthetic pathway, condenses two moles of delta-aminolevulinic acid to form porphobilinogen. ALAD deficiency is well known to develop signs and symptoms of typical hepatic porphyria, and classified into three categories as follows: (i) ALAD porphyria, a genetic defect of the enzyme, (ii) tyrosinemia type I, a genetic defect of fumarylacetoacetase in the tyrosine catabolic pathway, producing succinylacetone (a potent inhibitor of ALAD), and (iii) ALAD inhibition by environmental hazards, such as lead, trichloroethylene, and styrene. In the present article, we will describe molecular and biochemical mechanisms to cause the enzyme defect to discuss the significance of ALAD defect on human health.

  9. (Lead concentration in the blood and aminolevulinic acid dehydratase (ALAD) activity in the erythrocytes depending on sex, age, tobacco smoking and alcohol drinking in the group of persons exposed to industrial dust)

    Energy Technology Data Exchange (ETDEWEB)

    Kuliczkowski, K.

    1981-01-01

    A population of 399 persons (180 women and 219 men) has been examined. Anamnesis included detailed inquiries about smoking habit and alcohol drinking. In the laboratory, lead concentration in blood and ALAD activity in erythrocytes have been determined on empty stomach. No differences have been found in the mean lead concentration determined by sex, whereas the mean ALAD activity is higher in women than in men. The subjects' age has affected the test parameters neither in men nor women. In smoking men no changes in the mean lead concentration in blood and mean ALAD activity in erythrocytes have been found. In smoking women, the mean lead concentration is not changed, but the mean ALAD activity is lower. Alcohol drinking in men does not change the values of the test parameters, whereas drinking women have revealed higher mean blood lead concentration.

  10. Benchmark dose approach for low-level lead induced haematogenesis inhibition and associations of childhood intelligences with ALAD activity and ALA levels.

    Science.gov (United States)

    Wang, Q; Ye, L X; Zhao, H H; Chen, J W; Zhou, Y K

    2011-04-15

    Lead (Pb) levels, delta-aminolevulinic acid dehydratase (ALAD) activities, zinc protoporphyrin (ZPP) levels in blood, and urinary delta-aminolevulinic acid (ALA) and coproporphyrin (CP) concentrations were measured for 318 environmental Pb exposed children recruited from an area of southeast China. The mean of blood lead (PbB) levels was 75.0μg/L among all subjects. Benchmark dose (BMD) method was conducted to present a lower PbB BMD (lower bound of BMD) of 32.4μg/L (22.7) based on ALAD activity than those based on the other three haematological indices, corresponding to a benchmark response of 1%. Childhood intelligence degrees were not associated significantly with ALAD activities or ALA levels. It was concluded that blood ALAD activity is a sensitive indicator of early haematological damage due to low-level Pb exposures for children.

  11. Characterization of Three Homoeologous cDNAs Encoding Chloroplast-targeted Aminolevulinic Acid Dehydratase in Common Wheat

    Institute of Scientific and Technical Information of China (English)

    Yu Takenouchi; Haruka Nakajima; Kengo Kanamaru; Shigeo Takumi

    2011-01-01

    In the tetrapyrrole biosynthetic pathway of higher plants,5-aminolevulinic acid (ALA) is metabolized by ALA dehydratase (ALAD).Here,we isolated ALAD1 cDNA from common wheat (Triticum aestivum L.) and its diploid progenitors,and produced transgenic tobacco plants expressing the wheat ALAD1 gene.The ALAD1 genes were highly conserved among wheat relatives,and three homoeologous loci of wheat ALAD1 (TaALAD1) were equally transcribed in common wheat.A transient expression assay of a TaALAD1-GFP (green fluorescent protein) fusion protein suggested that TaALAD1 is localized in chloroplasts.Overexpression of TaALAD1 in transgenic tobacco resulted in a significant increase in ALAD activity in leaves.Moreover,the transgenic tobacco showed vigorous growth and increased survival rate on medium containing ALA at herbicidal concentrations.These results indicate that wheat ALAD1 has catalytic activity in metabolizing ALA in plastids,and that ectopic expression of TaALAD1 in transgenic plants increases their tolerance to ALA application at high concentrations.

  12. {delta}-ALAD activity variations in red blood cells in response to lead accumulation in rock doves (Columba livia)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Tejedor, M.C. [Universidad de Alcala de Henares (Spain)

    1992-10-01

    The enzyme {delta}-aminolevulinic acid dehydratase ({delta}-ALAD, E.C. 4.2.1.24), catalyses the second step of the haeme biosynthetic pathway and is required to maintain the haemoglobin and cytochrome content in red cells. {delta}-ALAD is not only found in bone marrow cells, the major site of haeme synthesis, but also in circulating erythrocytes and other tissues. An inverse correlation was found between {delta}-ALAD activity in red blood cells and lead concentration in the blood. The degree of {delta}-ALAD inhibition in erythrocytes has been widely accepted as a standard bioassay to detect acute and chronic lead exposure in humans and in avians. The value of this parameter as an indicator for environmental lead has been often reported in doves and Scanlon. In lead-treated rats, an increase in {delta}-ALAD activity in bone marrow cells and in blood samples was shown by radioimmunoassay at 5 and 9 days after the treatment. Similarly, the amount of {delta}-ALAD seems to be more sensitive to lead in avian species than in mammals, the usefulness of blood {delta}-ALAD activity as an index of lead exposure has already been questioned by Hutton in the pigeon and by Jaffe et al. in humans. The present investigation studied the toxic effects of lead on rock dove red blood cell {delta}-ALAD activity in two situations: in doves treated with lead acetate in the laboratory and in doves exposed to the environment of Alcala de Henares. The final lead blood concentrations were lower in the environmental than in the laboratory doves. {delta}-ALAD activity in bone marrow cells and the relationships between lead accumulation and enzyme activity in red cells, are examined. 20 refs., 5 figs., 1 tab.

  13. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia.

    Science.gov (United States)

    Dos Santos, Carlucio Rocha; Cavalcante, Ana Luiza Michel; Hauser-Davis, Rachel Ann; Lopes, Renato Matos; Mattos, Rita De Cássia Oliveira Da Costa

    2016-07-01

    Liver and blood δ-aminolevulinic acid dehydratase (ALA-D) inhibition by exposure to sub-lethal lead concentrations over time in Nile tilapia (Oreochromis niloticus) were investigated. All three lead concentrations (1mgkg(-1), 10mgkg(-1) and 100mgkg(-1)) significantly inhibited ALA-D activity in blood (319±29.2; 180±14.6 and 172±19µmols(-1)h(-1)L(-1) respectively) and liver (302±5.84; 201±41.4 and 93±22.1µmols(-1)h(-1)L(-1)) 24h after injection relative to controls (blood: 597±37.0µmols(-1)h(-1)L(-1); liver: 376±23.1µmols(-1)h(-1)L(-1)). Blood ALA-D was greatly inhibited in all but the highest lead dose. Fish were then exposed to 1mgkg(-1) lead for 9 days, and presented short-term hyperglycemia, decreased hemoglobin and hematocrit values and time-dependent blood ALA-D activity inhibition, corroborating blood ALA-D activity as being more suitable for investigating lead effects, showing dose and time-dependent ALA-D inhibition after lead exposure. The results of the present study also demonstrated that fish size affects blood ALA-D activity, as fish from the 24-h assay, which were slightly smaller (approximately 200g), showed higher ALA-D inhibition in response to lead exposure when compared to the fish from the 9-day assay (approximately 500g). Thus, fish size should always be taken into account both in the field and in laboratory settings, and efforts should be made to obtain uniform fish size samples for biomarker studies.

  14. Níveis de chumbo e atividade da desidratase do ácido delta-aminolevulínico (delta-ALAD) no sangue da população da Grande São Paulo, Brasil Levels of lead and delta-aminolevulinic acid dehydratase activity in the blood of Greater S. Paulo (Brazil) population groups

    OpenAIRE

    Nilda A.G.G. de Fernícola; Azevedo,Fausto A. de

    1981-01-01

    Foram feitas determinações de chumbo e atividade da delta-ALAD no sangue de 3 amostras populacionais da Grande São Paulo (Brasil). Um grupo (A) de área de escassa exposição ambiental ao chumbo, um grupo (B) exposto principalmente a fontes móveis de emissão de chumbo e um grupo (C) vizinho a uma indústria de recuperação de chumbo. Cada grupo foi subdividido conforme sexo e hábito de fumar. A plumbemia do grupo C (20,5 µg/100 ml) foi significantemente maior que as dos grupos A (11,2 µg/100 ml) ...

  15. Association between Blood Lead Levels and Delta-Aminolevulinic Acid Dehydratase in Pregnant Women

    Directory of Open Access Journals (Sweden)

    Osmel La-Llave-León

    2017-04-01

    Full Text Available Blood lead levels (BLLs and delta-aminolevulinic acid dehydratase (ALAD activity are considered biomarkers of lead exposure and lead toxicity, respectively. The present study was designed to investigate the association between BLLs and ALAD activity in pregnant women from Durango, Mexico. A total of 633 pregnant women aged 13–43 years participated in this study. Blood lead was measured by a graphite furnace atomic absorption spectrometer. ALAD activity was measured spectrophotometrically. Mean blood lead was 2.09 ± 2.34 µg/dL; and 26 women (4.1% crossed the Centers for Disease Control (CDC recommended level of 5 µg/dL. ALAD activity was significantly lower in women with levels of lead ≥5 µg/dL compared to those with BLLs < 5 µg/dL (p = 0.002. To reduce the influence of extreme values on the statistical analysis, BLLs were analyzed by quartiles. A significant negative correlation between blood lead and ALAD activity was observed in the fourth quartile of BLLs (r = −0.113; p < 0.01. Among women with blood lead concentrations ≥2.2 µg/dL ALAD activity was negatively correlated with BLLs (r = −0.413; p < 0.01. Multiple linear regression demonstrated that inhibition of ALAD in pregnant women may occur at levels of lead in blood above 2.2 µg/dL.

  16. Association between Blood Lead Levels and Delta-Aminolevulinic Acid Dehydratase in Pregnant Women.

    Science.gov (United States)

    La-Llave-León, Osmel; Méndez-Hernández, Edna M; Castellanos-Juárez, Francisco X; Esquivel-Rodríguez, Eloísa; Vázquez-Alaniz, Fernando; Sandoval-Carrillo, Ada; García-Vargas, Gonzalo; Duarte-Sustaita, Jaime; Candelas-Rangel, Jorge L; Salas-Pacheco, José M

    2017-04-18

    Blood lead levels (BLLs) and delta-aminolevulinic acid dehydratase (ALAD) activity are considered biomarkers of lead exposure and lead toxicity, respectively. The present study was designed to investigate the association between BLLs and ALAD activity in pregnant women from Durango, Mexico. A total of 633 pregnant women aged 13-43 years participated in this study. Blood lead was measured by a graphite furnace atomic absorption spectrometer. ALAD activity was measured spectrophotometrically. Mean blood lead was 2.09 ± 2.34 µg/dL; and 26 women (4.1%) crossed the Centers for Disease Control (CDC) recommended level of 5 µg/dL. ALAD activity was significantly lower in women with levels of lead ≥5 µg/dL compared to those with BLLs lead and ALAD activity was observed in the fourth quartile of BLLs (r = -0.113; p lead concentrations ≥2.2 µg/dL ALAD activity was negatively correlated with BLLs (r = -0.413; p lead in blood above 2.2 µg/dL.

  17. Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China

    Directory of Open Access Journals (Sweden)

    Pin Sun

    2012-07-01

    Full Text Available This study is to determine the distribution of the delta-aminolevulinic acid dehydratase (ALAD polymorphism among Han subjects of the Chinese population and to study whether the polymorphism in the ALAD gene modifies the toxicity of lead in lead-exposed workers. For this purpose we conducted a cross-sectional study on 156 Chinese workers who were exposed to lead in lead-acid battery and electric-flex manufacturing plants. The authors found that the allele frequencies of ALAD1 and ALAD2 were 0.9679 and 0.0321, respectively. Workers with the ALAD 1-1 genotype were associated with higher blood lead levels than those with the ALAD 1-2 genotype. Blood and urine lead levels were much higher in storage battery workers than in cable workers. The self-conscious symptom survey showed that the incidences of debilitation, amnesia and dreaminess were much higher in those had more than five years of tenure or contact with lead on the job within the ALAD 1-1 genotype subgroup. Laboratory examinations showed that serum iron and zinc levels in workers’ with the ALAD 1-2 genotype were higher than those with the ALAD 1-1 genotype, especially in storage-battery workers. Correlation analysis indicated that the blood lead level negatively correlated with serum calcium, iron and zinc level. The data of this study suggest that the ALAD gene polymorphism and serum ion levels may modify the kinetics of lead in blood. Therefore, the authors recommend that an adequate intake of dietary calcium, iron, and zinc or the calcium, iron, and zinc supplementation should be prescribed to Chinese lead exposed workers.

  18. Riik läks Natura-alade moodustamisel üle piiri / Kaur Lass

    Index Scriptorium Estoniae

    Lass, Kaur, 1973-

    2008-01-01

    Natura-alade moodustamisel on riik Eestis ületanud oma volitusi ja kahjustanud maaomanike huve, jättes teostamata keskkonna uuringud Natura-alade määramisel. Vt. samas: Vaidlus: spaa viis kohtusse

  19. Arsenic Induced Inhibition of δ-aminolevulinate Dehydratase Activity in Rat Blood and its Response To Meso 2,3-dimercaptosuccinic Acid and Monoisoamyl DMSA

    Institute of Scientific and Technical Information of China (English)

    SMRATI BHADAURIA; SWARAN J.S.FLORA

    2004-01-01

    Objective The objective of this study was to investigate arsenic induced changes in blood δ-aminolevulinic acid dehydratase (ALAD) after in vitro and in vivo exposure to this element and its response to co-administration of meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA (MiADMSA) either individually or in combination. Methods Rat whole blood was exposed to varying concentrations (0.1, 0.2 and 0.5 mmol/L) of arsenic (Ⅲ) or arsenic (V), to assess their effects on blood ALAD activity. Varying concentrations of MiADMSA and DMSA (0.1, 0.5 and 1.0 mmol/L) were also tried in combination to determine its ability to mask the effect of arsenic induced (0.5 mmol/L) inhibition of blood ALAD in vitro. In vitro and in vivo experiments were also conducted to determine the effects of DMSA and MiADMSA either individually or in combination with arsenic, on blood ALAD activity and blood arsenic concentration. Results In vitro experiments showed significant inhibition of the enzyme activity when 0.1-0.5 mmol/L of arsenic (Ⅲ and V) was used. Treatment with MiADMSA increased ALAD activity when blood was incubated at the concentration of 0.1 mmol/L arsenic (Ⅲ) and 0.1 mmol/L MiADMSA. No effect of 0.1 mmol/L MiADMSA on ALAD activity was noticed when the arsenic concentration was increased to 0.2 and 0.5 mmol/L. Similarly, MiADMSA at a lower concentration (0.1 mmol/L) was partially effective in the turnover of ALAD activity against 0.5 mmol/L arsenic (Ⅲ), but at two higher concentrations (0.5and 1.0 mmol/L) a complete restoration of ALAD activity was observed. DMSA at all the three concentrations (0.1, 0.5 and 1.0 mmol/L) was effective in restoring ALAD activity to the normal value.Conclusions The results thus suggest that arsenic has a distinct effect on ALAD activity. Another important toxicological finding of the present study, based on in vivo experiments further suggests that combined administration of DMSA and MiADMSA could be more beneficial for reducing blood

  20. Blood Lead Level and Δ-Aminolevulinic Acid Dehydratase Activity in Pre-Menopausal and Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    I.R Elezaj

    2012-07-01

    Full Text Available To describe the relationship of blood lead levels (BLL and blood, δ-aminolevulinic acid dehydratase(ALAD activity and haematocrit value(Hct to menopause , were examined 17 pre-or perimenopausal (PreM and 17 postmenopausal women (PosMfrom Prishtina City, the capital ofRepublic Kosovo. The mean age of the PreM women was 28.8 years (21-46, with a mean blood lead level of 1.2 μg/dL (SD=0.583 μg/dL , the mean blood ALAD activity53.2 U/LE (SD= 2.8 U/LE and haematocrit value42.1 % (SD= 4.3 %. The mean age of the PosM women was 53.6 years (43-67, with a mean blood lead level1.9 μg/dL (SD=0.94 μg/dL, the mean blood ALAD activity 44.4 U/LE(SD=7.2 U/LE and haematocrit value 42.1 % ( SD= 4.3 % and 42.2 % (SD=4.4 %. The BPb level of PosM women was significantly higher (P<0.001 in comparison with the BPb level in PreM women. The blood ALAD activity of PosM was significantly inhibited (P<0.002 in comparison with blood ALAD activity in PreM women. The haematocrit values were relatively unchanged. There was established significantly negative correlation between BPb and blood ALAD activity (r=- 0.605; P<0.01 in the PreM women.These results support the hypothesis that release of bone lead stores increases during menopause and constitutes an internal source of exposure possibly associated with adverse health effects on women in menopause transition.

  1. Persistent increase of blood lead level and suppression of δ-ALAD activity in northern bobwhite quail orally dosed with even a single 2-mm spent lead shot.

    Science.gov (United States)

    Holladay, S D; Kerr, R; Holladay, J P; Meldrum, B; Williams, S M; Gogal, R M

    2012-10-01

    Birds that display grit ingestion behavior are potentially at risk of lead (Pb) poisoning from mistaken ingestion of spent Pb shot pellets. The majority of available studies designed to assess such risk have used unspent shot pellets rather than field-obtained spent shot, which is oxidized and otherwise changed by weathering. Available studies also often administered more or heavier shot pellets to a bird than it might be expected to ingest. The current study dosed northern bobwhite quail (Colinus virginianus) weighing 194.6 ± 23.1 g (female birds) and 199.3 ± 12.2 g (male birds) with one to three spent no. 9 Pb shot collected from a skeet range, with particular interest in the toxicity that may occur from ingestion of a single 2-mm, 50 mg shot. An 8 week post-dosing clinical observation period was employed, over which feed consumption, body weight, blood Pb levels, and a battery of blood physiological parameters were made. Weight loss occurred in the birds, including male birds dosed with one Pb pellet. Erythrocyte delta aminolevulinic acid dehydratase (δ-ALAD) levels were decreased for the duration of the study across exposures and to levels associated with injury in wild bird populations. Decreased ALAD was particularly severe in female birds dosed with one Pb pellet and was still 92 % decreased at 8 weeks after dosing. Together, these results suggest that inadvertent ingestion of a single no. 9 Pb shot pellet can adversely affect the health of northern bobwhite quail.

  2. Blood lead levels, δ-ALAD inhibition, and hemoglobin content in blood of giant toad (Rhinella marina) to assess lead exposure in three areas surrounding an industrial complex in Coatzacoalcos, Veracruz, Mexico.

    Science.gov (United States)

    Ilizaliturri-Hernández, César Arturo; González-Mille, Donaji Josefina; Mejía-Saavedra, Jesús; Espinosa-Reyes, Guillermo; Torres-Dosal, Arturo; Pérez-Maldonado, Iván

    2013-02-01

    The Coatzacoalcos Region in Veracruz, Mexico houses one of the most important industrial complexes in Mexico and Latin America. Lead is an ubiquitous environmental pollutant which represents a great risk to human health and ecosystems. Amphibian populations have been recognized as biomonitors of changes in environmental conditions. The purpose of this research is to measure exposure to lead and evaluate hematological and biochemical effects in specimens of giant toads (Rhinella marina) taken from three areas surrounding an industrial complex in the Coatzacoalcos River downstream. Lead levels in toads' blood are between 10.8 and 70.6 μg/dL and are significantly higher in industrial sites. We have found a significant decrease in the delta-aminolevulinic acid dehydratase (δ-ALAD) activity in blood from 35.3 to 78 % for the urban-industrial and industrial sites, respectively. In addition, we have identified a strong inverse relationship between the δ-ALAD activity and the blood lead levels (r = -0.84, p < 0.001). Hemoglobin and mean corpuscular hemoglobin levels, as well as the condition factor, are found to be lower at industrial sites compared with the reference sites. Our results suggest that the R. marina can be considered a good biomonitor of the δ-ALAD activity inhibition and hematological alterations at low lead concentrations.

  3. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands.

    Science.gov (United States)

    Li, Chunping; Xu, Ming; Wang, Sumeng; Yang, Xiaolin; Zhou, Shourong; Zhang, Jingping; Liu, Qizhan; Sun, Yujie

    2011-05-30

    DNA methylation provides a plausible link between the environment and alterations in gene expression that may lead to disease phenotypes. Lead exposure can change DNA methylation status. Here, we hypothesized that the methylation of the ALAD gene promoter may play an important role in lead toxicity. To determine whether the methylation level of the ALAD promoter is associated with the risk of lead poisoning, we conducted a case-control study of 103 workers from a battery plant and 103 healthy volunteers with matching age and gender distribution. We employed real-time PCR and methylation-specific PCR (MSP) in cell models to determine the relationship between ALAD methylation level and transcription level. We found lead exposure to increase the ALAD gene methylation level and down-regulate ALAD transcription. The difference in methylation frequencies between exposures and controls was statistically significant (p=0.002), and individuals with methylated ALAD gene showed an increased risk of lead poisoning (adjusted OR=3.57, 95% CI, 1.55-8.18). This study suggests that the lead-exposure-induced increases in ALAD methylation may be involved in the mechanism of lead toxicity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes.

    Science.gov (United States)

    Hibino, Aiko; Petri, René; Büchs, Jochen; Ohtake, Hisao

    2013-08-01

    Uroporphyrinogen III (urogen III) was produced from 5-aminolevulinic acid (ALA), which is a common precursor of all metabolic tetrapyrroles, using thermostable ALA dehydratase (ALAD), porphobilinogen deaminase (PBGD), and urogen III synthase (UROS) of Thermus thermophilus HB8. The UROS-coding gene (hemD₂) of T. thermophilus HB8 was identified by examining the gene product for its ability to produce urogen III in a coupled reaction with ALAD and PBGD. The genes encoding ALAD, PBGD, and UROS were separately expressed in Escherichia coli BL21 (DE3). To inactivate indigenous mesophilic enzymes, the E. coli transformants were heated at 70 °C for 10 min. The bioconversion of ALA to urogen III was performed using a mixture of heat-treated E. coli transformants expressing ALAD, PBGD, and UROS at a cell ratio of 1:1:1. When the total cell concentration was 7.5 g/l, the mixture of heat-treated E. coli transformants could convert about 88 % 10 mM ALA to urogen III at 60 °C after 4 h. Since eight ALA molecules are required for the synthesis of one porphyrin molecule, approximately 1.1 mM (990 mg/l) urogen III was produced from 10 mM ALA. The present technology has great potential to supply urogen III for the biocatalytic production of vitamin B₁₂.

  5. Biological formation of 5-aminolevulinic acid by photosynthetic bacteria

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-yan; XU Xiang-yang; MA Qing-lan; WU Wei-hong

    2005-01-01

    In this study, 7 stains of Rhodopseudomonas sp. were selected from 36 photosynthetic bacteria stains storied in our laboratory.Rhodopseudomonas sp. strain 99-28 has the highest 5-aminolevulinic acid(ALA) production ability in these 7 strains. Rhodopseudomonas sp. 99-28 strain was mutated using ultraviolet radiation and a mutant strain L-1, which ALA production is higher than wild strain 99-28 about one times, was obtained. The elements affecting ALA formation of strain 99-28 and L-1 were studied. Under the optimal condition(pH 7.5,supplement of ALA dehydratase(ALAD) inhibitor, levulinic acid(LA) and precursors of ALA synthesis, glycine and succinat, 3000 Ix of light density), ALA formation of mutant L-1 was up to 22.15 mg/L. Strain L-1 was used to treat wastewater to remove CODCr and produce ALA. ALA production was 2.819 my/L, 1.531 rog/L, 2.166 mg/L, and 2.424 mg/L in monosodium glutamate wastewater(MGW),succotash wastewater(SW), brewage wastewater(BW), and citric acid wastewater(CAW) respectively. More than 90% of CODCr was removed in four kinds of wastewater. When LA, glycin and succinate were supplied, ALA production was dramatically increased,however, CODCr could hardly be removed.

  6. [Inhibition rate of gamma-aminolevulinic acid dehydratase activity in erythrocytes as a reliable index for individual workers of low lead exposure].

    Science.gov (United States)

    Hirano, H; Omichi, M; Ohishi, H; Ishikawa, K; Hirashima, N

    1983-09-01

    As the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes is decreased by lead exposure, we considered that a net reduction of ALAD activity by lead in blood should be the difference between the activity fully activated with zinc (Zn2+) and dithiothreitol (DTT) and that without activation. The optimal condition of activation of ALAD was found by addition of 0.25 mM of Zn2+ and 10 mM of DTT in the reaction mixture. Judging from our previous results that the amount of inhibition of ALAD activity can be represented as the rate of inhibition and is closely correlated with the dose of lead administered to rabbits, the inhibition rate of ALAD activity and lead content in blood (Pb-B) of lead workers were measured. The scatter diagram obtained from the inhibition rate and lead content in blood has two groups being divided at 50 micrograms/ml of Pb-B. In one group less than 50 micrograms/100 ml of Pb-B, the inhibition rate has been closely related to Pb-B., the regression equation being Y = 1.82 X + 11.7, and the correlation coefficient + 0.926. In another group more than 50 micrograms/100 ml of Pb-B the inhibition rate remained constant at the 90% level. Measurement of the inhibition rate suggests to have practical validity for monitoring lead exposure in workers, and by means of a nomograph lead content in blood can be estimated from the inhibition rate.

  7. Lack of association of delta-aminolevulinate dehydratase polymorphisms with blood lead levels and hemoglobin in Romanian women from a lead-contaminated region.

    Science.gov (United States)

    Rabstein, Sylvia; Unfried, Klaus; Ranft, Ulrich; Illig, Thomas; Kolz, Melanie; Mambetova, Chinara; Vlad, Mariana; Roman, Cecilia; Weiss, Tobias; Becker, Doreen; Brüning, Thomas; Pesch, Beate

    2008-01-01

    As part of a project on environmental pollution, this study aimed to evaluate associations between blood lead (BPb) levels, hemoglobin (Hb) content, and single-nucleotide polymorphisms (SNPs) of delta-aminolevulinic acid dehydratase (ALAD) gene in 129 unrelated women from Romania. Five SNPs (rs1805313, rs2228083, rs1805312, rs1800435, rs1139488) were analyzed with respect to haplotype structure and impact on BPb levels and Hb content with proportional odds and analysis of covariance models. Combinations of SNPs were rare (16%). Low haplotype diversity was found with seven haplotypes. One rare haplotype implied the C allele of rs1800435, often referred to as the ALAD2 allele (frequency 8.6%). The putative risk genotype (CC) occurred in only one woman with BPb below 0.5 microg/dl. Median BPb was 4.8 microg/dl and differed markedly by community with a level of 12.5 microg/dl near a mining-spill region. Hb was regular (interquartile range 12.3-13.7 g/dl) and not correlated with BPb, although quantitatively lower in women living near the spill region. No significant associations were found for BPb or Hb with SNPs, haplotypes, or diplotypes. BPb levels were higher in this region than in populations from industrialized countries but without hematotoxic effects. An impact of ALAD2 on BPb or Hb was not seen in these women.

  8. Metal Accumulation, Blood δ-Aminolevulinic Acid Dehydratase Activity and Micronucleated Erythrocytes of Feral pigeons (Columba Livia Living Near Former Lead-Zinc Smelter “ Trepça” – Kosovo

    Directory of Open Access Journals (Sweden)

    Elezaj I. R.

    2013-04-01

    Full Text Available The concentration of lead in blood and tibia (Pb, zinc (Zn and cupper (Cu in tibia, blood δ- aminolevulinic acid dehydratase (ALA-D; EC: 4.2.1.24 activity, hematocrit value (Hct and micronuclei frequency (MN of peripheral erythrocytes have been determinated in three different populations of feral pigeons (Columba livia; forma urbana and forma domestica, collected in Mitrovica town (situated close to smelter “Trepça”, down closed in 2000 year and in rural area (Koshare willage . The blood lead level in feral pigeons from Mitrovica (forma urbana was 3 times higher (149.6; 50.5 μg% in comparison with that in feral pigeons from Mitrovica (forma domestica and 27.7 times higher (5.4 μg% in comparison with pigeons from rural area. The Pb concentration of tibia of feral pigeons (froma urbana and forma domestica, from Mitrovica town was significantly higher (P<0.001 in comparison with control. The concentration of Zn in tibia of feral pigeons from Mitrovica town (forma urbana, was significantly higher (P<0.006 in comparison with control. The blood ALA-D activity of feral pigeons from Mitrovica town (forma urbana and froma domestica, was significantly inhibited in comparison with control. The blood ALA-D activity of feral pigeons –forma urbana from Mitrovica town was significantly inhibited (P<0.001 in comparison with the blood ALA-D activity of feral pigeons-forma domestica from Mitrovica town. The erythrocyte MN frequency of feral pigeons from Mitrovica was significantly higher (P <0.001 in comparison with controls. The smelter “Trepça” ten year after closed down pose a threat to the local environment, biota and people’s health.

  9. Source and impact of lead contamination on {delta}-aminolevulinic acid dehydratase activity in several marine bivalve species along the Gulf of Cadiz

    Energy Technology Data Exchange (ETDEWEB)

    Company, R.; Serafim, A.; Lopes, B.; Cravo, A. [CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Kalman, J.; Riba, I.; DelValls, T.A. [Catedra UNESCO/UNITWIN/WiCop, Department of Physical-Chemistry, Faculty Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Blasco, J. [Instituto Ciencias Marinas Andalucia (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cadiz (Spain); Delgado, J. [Department of Geology, University of Huelva, Avda Fuerzas Armadas s/n, 21071 Huelva (Spain); Sarmiento, A.M. [Catedra UNESCO/UNITWIN/WiCop, Department of Physical-Chemistry, Faculty Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Department of Geology, University of Huelva, Avda Fuerzas Armadas s/n, 21071 Huelva (Spain); Nieto, J.M. [Department of Geology, University of Huelva, Avda Fuerzas Armadas s/n, 21071 Huelva (Spain); Shepherd, T.J.; Nowell, G. [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom); Bebianno, M.J., E-mail: mbebian@ualg.pt [CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2011-01-17

    Coastal areas and estuaries are particularly sensitive to metal contamination from anthropogenic sources and in the last few decades the study of space-time distribution and variation of metals has been extensively researched. The Gulf of Cadiz is no exception, with several rivers draining one of the largest concentrations of sulphide deposits in the world, the Iberian Pyrite Belt (IPB). Of these rivers, the Guadiana, one of the most important in the Iberian Peninsula, together with smaller rivers like the Tinto and Odiel, delivers a very high metal load to the adjacent coastal areas. The purpose of this work was to study the source and impact of lead (Pb) drained from historical or active mining areas in the IPB on the activity of a Pb inhibited enzyme ({delta}-aminolevulinic acid dehydratase, ALAD) in several bivalve species along the Gulf of Cadiz. Seven marine species (Chamelea gallina, Mactra corallina, Donax trunculus, Cerastoderma edule, Mytilus galloprovincialis, Scrobicularia plana and Crassostrea angulata) were collected at 12 sites from Mazagon, near the mouth of the rivers Tinto and Odiel (Spain), to Cacela Velha (Ria Formosa lagoon system, Portugal). Lead concentrations, ALAD activity and lead isotope ratios ({sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb and {sup 208}Pb/{sup 204}Pb) were determined in the whole soft tissues. The highest Pb concentrations were determined in S. plana (3.50 {+-} 1.09 {mu}g g{sup -1} Pb d.w.) and D. trunculus (1.95 {+-} 0.10 {mu}g g{sup -1} Pb d.w.), while M. galloprovincialis and C. angulata showed the lowest Pb levels (<0.38 {mu}g g{sup -1} Pb d.w.). In general, ALAD activity is negatively correlated with total Pb concentration. However this relationship is species dependent (e.g. linear for C. gallina ALAD = -0.36[Pb] + 0.79; r = 0.837; or exponential for M. galloprovincialis ALAD = 2.48e{sup -8.3[Pb]}; r = 0.911). This indicates that ALAD activity has considerable potential as a biomarker of Pb and moreover, in

  10. Effects of aluminum sulfate on delta-aminolevulinate dehydratase from kidney, brain, and liver of adult mice

    Directory of Open Access Journals (Sweden)

    Schetinger M.R.C.

    1999-01-01

    Full Text Available The purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-aminolevulinic acid dehydratase (ALA-D activity from the brain, liver and kidney of adult mice (Swiss albine. In vitro experiments showed that the aluminum sulfate concentration needed to inhibit the enzyme activity was 1.0-5.0 mM (N = 3 in brain, 4.0-5.0 mM (N = 3 in liver and 0.0-5.0 mM (N = 3 in kidney. The in vivo experiments were performed on three groups for one month: 1 control animals (N = 8; 2 animals treated with 1 g% (34 mM sodium citrate (N = 8 and 3 animals treated with 1 g% (34 mM sodium citrate plus 3.3 g% (49.5 mM aluminum sulfate (N = 8. Exposure to aluminum sulfate in drinking water inhibited ALA-D activity in kidney (23.3 ± 3.7%, mean ± SEM, P<0.05 compared to control, but enhanced it in liver (31.2 ± 15.0%, mean ± SEM, P<0.05. The concentrations of aluminum in the brain, liver and kidney of adult mice were determined by graphite furnace atomic absorption spectrometry. The aluminum concentrations increased significantly in the liver (527 ± 3.9%, mean ± SEM, P<0.05 and kidney (283 ± 1.7%, mean ± SEM, P<0.05 but did not change in the brain of aluminum-exposed mice. One of the most important and striking observations was the increase in hepatic aluminum concentration in the mice treated only with 1 g% sodium citrate (34 mM (217 ± 1.5%, mean ± SEM, P<0.05 compared to control. These results show that aluminum interferes with delta-aminolevulinate dehydratase activity in vitro and in vivo. The accumulation of this element was in the order: liver > kidney > brain. Furthermore, aluminum had only inhibitory properties in vitro, while in vivo it inhibited or stimulated the enzyme depending on the organ studied.

  11. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer.

    Science.gov (United States)

    Inoue, Keiji

    2017-02-01

    Photodynamic therapy using 5-aminolevulinic acid is a treatment method in which the fluorescent substance of protoporphyrin IX excessively accumulated specifically in cancer cells is excited by visible red or green light irradiation, and reactive oxygen is produced and injures cancer cells. Photodynamic therapy using 5-aminolevulinic acid less markedly influences the surrounding normal cells and tissue as a result of no accumulation of protoporphyrin IX, being a low-invasive, less harmful treatment localized to cancer. Furthermore, photodynamic therapy using 5-aminolevulinic acid is painless, requiring no anesthesia because localized lesions are treated at a low-energy level, and repeatedly applicable, unlike radiotherapy, and so is expected to be a new low-invasive treatment based on a concept completely different from existing treatments. In fact, photodynamic therapy using 5-aminolevulinic acid for bladder cancer was clinically demonstrated mainly for treatment-resistant bladder carcinoma in situ, and favorable outcomes have been obtained. Photodynamic therapy using 5-aminolevulinic acid are photodynamic technologies based on the common biological characteristic of cancers, and are expected as novel therapeutic strategies for many types of cancer. © 2017 The Japanese Urological Association.

  12. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  13. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  14. Allergic contact dermatitis to methyl aminolevulinate after photodynamic therapy in 9 patients.

    Science.gov (United States)

    Hohwy, Thomas; Andersen, Klaus Ejner; Sølvsten, Henrik; Sommerlund, Mette

    2007-11-01

    This report describes 9 patients who developed allergic contact dermatitis to methyl aminolevulinate used for photodynamic therapy (PDT). The risk of developing contact allergy to methyl aminolevulinate in PDT treated patients was calculated to 1% after an average of 7 treatments (range 2-21).

  15. Allergic contact dermatitis to methyl aminolevulinate after photodynamic therapy in 9 patients

    DEFF Research Database (Denmark)

    Hohwy, Thomas; Andersen, Klaus Ejner; Sølvsten, Henrik;

    2007-01-01

    This report describes 9 patients who developed allergic contact dermatitis to methyl aminolevulinate used for photodynamic therapy (PDT). The risk of developing contact allergy to methyl aminolevulinate in PDT treated patients was calculated to 1% after an average of 7 treatments (range 2...

  16. Efficacy of 5-Aminolevulinic Acid Photodynamic Therapy in treatment of nasal inverted papilloma.

    Science.gov (United States)

    Zhang, Yunjie; Yang, Yuguang; Zou, Xianbiao

    2013-12-01

    Evaluate the efficacy of 5-Aminolevulinic Acid Photodynamic Therapy (PDT) in medical treatment of nasal inverted papilloma (NIP). Three patients with nasal inverted papilloma were treated with 5-Aminolevulinic Acid Photodynamic Therapy at our department from April to September 2012. The efficacy and adverse effects of 5-Aminolevulinic Acid Photodynamic Therapy were evaluated during 6-8 months of follow-up medical examination. After treated with 5-Aminolevulinic Acid Photodynamic Therapy, the nasal inverted papillomas were removed. No recurrence was found during the 6-8 months of follow-up medical examination. The major adverse effects were mild erosion, pain, and exudation. 5-Aminolevulinic Acid Photodynamic Therapy appears to be an effective treatment of nasal inverted papilloma. It can clear the papilloma lesions and is well tolerated by the patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparative Study of Photodynamic Therapy with Topical Methyl Aminolevulinate versus 5-Aminolevulinic Acid for Facial Actinic Keratosis with Long-Term Follow-Up

    OpenAIRE

    Ko, Dong-Yeob; Kim, Ki-Ho; Song, Ki-Hoon

    2014-01-01

    Background Few studies have compared the efficacy, cosmetic outcomes, and adverse events between 5-aminolevulinic acid photodynamic therapy (ALA-PDT) and methyl aminolevulinate-PDT (MAL-PDT) for actinic keratoses (AKs) in Asian ethnic populations with dark-skin. Objective We retrospectively compared the long-term efficacy, recurrence rates, cosmetic outcomes, and safety of ALA-PDT versus MAL-PDT for facial AKs in Koreans. Methods A total of 222 facial AKs in 58 patients were included in this ...

  18. Fractional laser-assisted delivery of methyl aminolevulinate

    DEFF Research Database (Denmark)

    Haak, Christina S; Farinelli, William A; Tam, Joshua

    2012-01-01

    Pretreatment of skin with ablative fractional lasers (AFXL) enhances the uptake of topical photosensitizers used in photodynamic therapy (PDT). Distribution of photosensitizer into skin layers may depend on depth of laser channels and incubation time. This study evaluates whether depth of intrade...... of intradermal laser channels and incubation time may affect AFXL-assisted delivery of methyl aminolevulinate (MAL).......Pretreatment of skin with ablative fractional lasers (AFXL) enhances the uptake of topical photosensitizers used in photodynamic therapy (PDT). Distribution of photosensitizer into skin layers may depend on depth of laser channels and incubation time. This study evaluates whether depth...

  19. Photodynamic Detection of Peritoneal Metastases Using 5-Aminolevulinic Acid (ALA

    Directory of Open Access Journals (Sweden)

    Yutaka Yonemura

    2017-03-01

    Full Text Available In the past, peritoneal metastasis (PM was considered as a terminal stage of cancer. From the early 1990s, however, a new comprehensive treatment consisting of cytoreductive surgery and perioperative chemotherapy has been established to improve long-term survival for selected patients with PM. Among prognostic indicators after the treatment, completeness of cytoreduction is the most independent predictors of survival. However, peritoneal recurrence is a main cause of recurrence, even after complete cytoreduction. As a cause of peritoneal recurrence, small PM may be overlooked at the time of cytoreductive surgery (CRS, therefore, development of a new method to detect small PM is desired. Recently, photodynamic diagnosis (PDD was developed for detection of PM. The objectives of this review were to evaluate whether PDD using 5-aminolevulinic acid (ALA could improve detection of small PM.

  20. Degradation mechanism and stability of 5-aminolevulinic acid.

    Science.gov (United States)

    Bunke, A; Zerbe, O; Schmid, H; Burmeister, G; Merkle, H P; Gander, B

    2000-10-01

    The physiological substance and precursor of the heme synthesis 5-aminolevulinic acid (ALA) is a promising prodrug for photodiagnosis and photodynamic therapy of epithelial tumors, particularly in urological and gynecological tissues. For the clinical use of this substance, a chemically stable and sterile drug formulation is required. In the present study, degradation mechanism of ALA in aqueous solution and possibilities to improve its stability were examined. A capillary electrophoretic method was developed that was suitable for the quantification of ALA and of two degradation products. The intermediate degradation product was 2, 5-dicarboxyethyl-3,6-dihydropyrazine, which was further oxidized to 2,5-dicarboxyethylpyrazine. The structures of the degradation products were proven by (1)H and (13)C nuclear magnetic resonance spectroscopy. ALA degradation was very efficiently inhibited by adjusting the pH of the aqueous solution to a value market introduction.

  1. Photodynamic therapy with 5-aminolevulinic acid: basic principles and applications

    Science.gov (United States)

    Pottier, Roy H.; Kennedy, James C.

    1996-01-01

    Numerous photosensitizing pigments that absorb visible light and are selectively retained in neoplastic tissue are being investigated as potential photochemotherapeutic agents. While much emphasis is being placed on the synthesis of new, far-red absorbing photosensitizers, an alternative approach has been to stimulate the human body to produce its own natural photosensitizer, namely protoporphyrin IX (PpIX). Exogenous 5-aminolevulinic acid (ALA) is rapidly bioconverted into PP by mitochondria, the process being particularly efficient in tumor cells. Since PpIX has a natural and rapid clearing mechanism (via the capture of iron in the process of being converted into heme), ALA-PDT does not suffer from lingering skin phototoxicity. ALA may be introduced orally, intravenously, or topically, and ALA-PDT has been shown to be effective in the treatment of both malignant and non-malignant lesions.

  2. Bioinformatics Analysis of ALAD Gene in Seven Plants%7种植物ALAD基因的生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    龙芳; 李绍鹏; 李茂富

    2013-01-01

    5-氨基乙酰丙酸脱水酶(δ-aminoaevulinic acid dehydratase, ALAD)是生物体所有四吡咯化合物生物合成所必需的酶。目前,GenBank共记载了39种绿色植物的ALAD基因。本文采用生物信息学方法对其中常用的模式植物拟南芥、玉米、小麦、大豆、苜蓿以及葡萄、菠菜等植物的5-氨基乙酰丙酸脱水酶基因的核苷酸及其编码的蛋白氨基酸序列、组成成分、导肽、信号肽、跨膜结构域、疏水性/亲水性、蛋白质二级结构、三级结构及功能域等进行预测和分析,并构建了5-氨基乙酰丙酸脱水酶蛋白家族的系统进化树。结果表明,这几种植物的开放阅读框都在1290 bp左右,分子量为47 kD左右,等电点(pI)值为5.5~7.0之间,ALAD蛋白呈中性至微酸性。含量最丰富的氨基酸为Ala、Leu、Val、Arg、Ser、Gly、Pro和Asp。研究还发现这些植物5-氨基乙酰丙酸脱水酶肽链表现出明显的疏水区和亲水区,不存在信号肽,有叶绿体转运肽;可能存在跨膜结构域。蛋白质二级结构中最主要的结构元件是无规则卷曲和α-螺旋,含有5-氨基乙酰丙酸脱水酶的活性结构域、ALAD-PGBS-aspartate-rich保守结构域、舍夫碱残基结构域和一个镁离子结合位点结构域。核苷酸同源性比对结果显示,拟南芥5-氨基乙酰丙酸脱水酶基因与其它植物的同源性较高;进化分析结果表明这些植物5-氨基乙酰丙酸脱水酶基因被分为六个大类。本工作可为今后深入研究植物5-氨基乙酰丙酸脱水酶的结构特征和功能提供一定的依据。%δ-aminoaevulinic acid dehydratase is necessary to the biosynthesis of porphyrin compounds in all organ-isms. At present, 39 greenery ALAD genes have been recorded in Gen Bank. In this paper, the nucleic acid sequences and amino acid sequences of ALAD gene from model plant, such as A rabidopsis thaliana, Zea may, Triticum urartu, Glycine max

  3. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  4. 5-aminolevulinic acid in photodynamic diagnosis and therapy of urological malignancies

    Science.gov (United States)

    Nelius, Thomas; de Riese, Werner T. W.

    2003-06-01

    Completeness and certainty of tumor detection are very important issues in clinical oncology. Recent technological developments in ultrasound, radiologic and magnetic resonance imaging diagnostics are very promising, but could not improve the detection rate of early stage malignancies. One of the most promising new approaches is the use of 5-aminolevulinic acid, a potent photosensitizer, in photodynamic diagnosis and therapy. 5-aminolevulinic acid is meanwhile a well-established tool in the photodynamic diagnosis of bladder cancer. It has been shown to improve the sensitivity of detection of superficial tumors and carcinoma in situ, which enables to reduce the risk of tumor recurrence related to undetected lesions or incomplete transurethral resection of the primary lesions. The use of 5-aminolevulinic acid is steadily expanding in diagnostics of urological malignancies. First clinical results are now reported in detection of urethral and ureteral lesions as well as in urine fluorescence cytology. Furthermore, due to the selective accumulation in transitional cell carcinoma of the bladder, 5-aminolevulinic acid may be an ideal candidate for photodynamic therapy in superficial bladder cancer. Summarizing the data of multiple clinical trials, 5-aminolevulinic acid is a promising agent in photodynamic diagnostics and treatment of superficial bladder cancer.

  5. Light fractionation does not enhance the efficacy of methyl 5-aminolevulinate mediated photodynamic therapy in normal mouse skin.

    NARCIS (Netherlands)

    Bruijn, H.S. de; Haas, E.R. de; Hebeda, K.M.; Ploeg-van den Heuvel, A. van der; Sterenborg, H.J.C.M.; Neumann, H.A.; Robinson, D.J.

    2007-01-01

    Previous work demonstrated that fractionated illumination using two fractions separated by a dark interval of 2 h, significantly enhanced the clinical efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA). Considering the increasing clinical use of methyl 5-aminolevulinate (MAL) an

  6. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  7. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    Science.gov (United States)

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.

  8. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    Science.gov (United States)

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Nair, Sean P; Xu, Jiru

    2016-04-01

    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae.

  9. Allergic contact dermatitis to methyl aminolevulinate (Metvix) cream used in photodynamic therapy.

    Science.gov (United States)

    Harries, Matthew J; Street, Gill; Gilmour, Elizabeth; Rhodes, Lesley E; Beck, Michael H

    2007-02-01

    Topical photodynamic therapy (PDT) is increasingly used in the treatment of superficial skin malignancies including actinic keratosis, Bowen's disease and superficial basal cell carcinoma. Contact allergy to the prodrug is rarely reported. We report a case of allergic contact dermatitis to methyl aminolevulinate cream used in PDT.

  10. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Delta-aminolevulinic acid test system. 862.1060 Section 862.1060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  11. Photofrin and 5-aminolevulinic acid permeation through oral mucosa in vitro

    Science.gov (United States)

    Flock, Stephen T.; Alleman, Anthony; Lehman, Paul; Blevins, Steve; Stone, Angie; Fink, Louis; Dinehart, Scott; Stern, Scott J.

    1994-07-01

    Photofrin and 5-aminolevulinic acid are photosensitizers that show promise in the photodynamic treatment of cancer, port-wine stains, atherosclerosis and viral lesions. Photofrin is a mixture of porphyrins which, upon the absorption of light, become temporarily cytotoxic. One side-effect associated with the use of Photofrin is long-term cutaneous photosensitivity. It is possible that topical application of this photosensitizing dye will ameliorate such a side-effect. Another way to avoid the cutaneous photosensitivity in photodynamic therapy is to use 5- aminolevulinic acid, which is a porphyrin precursor that causes an increase in the synthesis and concentration of the photosensitizer protoporphyrin IX. 5-aminolevulinic acid is usually applied topically, and so minimizes cutaneous photosensitivity while maximizing the local protoporphyrin concentration. There are a host of disorders in oral mucosa that are potentially treatable by photodynamic therapy. However, since stratum corneum presents an impermeable barrier to many pharmaceuticals, it is not clear that topical application of the photosensitizer will result in a clinically relevant tissue concentration. We have therefore studied the permeation behavior of Photofrin and 5-aminolevulinic acid by applying them to the surface of ex vivo oral mucosa tissue positioned by a Franz diffusion cell. In order to increase the permeability of the photosensitizer across the stratum corneum, we studied the effects of four different drug carriers: phosphate buffered saline, dimethylsulfoxide, ethanol and Azone with isopropyl alcohol.

  12. Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius)

    Science.gov (United States)

    Hoffman, D.J.; Franson, J.C.; Pattee, O.H.; Bunck, C.M.; Murray, H.C.

    1985-01-01

    1. One-day old American kestrel (Falco sparverius) nestlings were orally dosed daily with 5 ?l/g of corn oil (controls), 25, 125 or 625 mg/kg of metallic lead in corn oil for 10 days. 2. Forty per cent of the nestlings receiving 625 mg/kg of lead died after 6 days and growth rates were significantly depressed in the two highest lead dosed groups. At 10 days hematocrit values were significantly lower in the two highest lead treated groups, and hemoglobin content and red blood cell *-aminolevulinic acid dehydratase (ALAD) activity was depressed in all lead treated groups. Plasma creatine phosphokinase decreased in the two highest treatment groups. 3. Brain, liver and kidney ALAD activities, brain RNA to protein ratio and liver protein concentration decreased after lead exposure whereas liver DNA. DNA to RNA ratio and DNA to protein ratio increased. Brain monoamine oxidase and ATPase were not significantly altered. 4. Measurements of the ontogeny of hematological variants and enzymes in normal development, using additional untreated nestlings. revealed decreases in red blood cell ALAD, plasma aspartate amino transferase, lactate dehydrogenase. brain DNA and RNA and liver DNA, whereas hematocrit, hemoglobin, plasma alkaline phosphatase, brain monoamine oxidase, brain ALAD and liver ALAD increased during the first 10 days of posthatching development. 5. Biochemical and hematological alterations were more severe than those reported in adult kestrels or precocial young birds exposed to lead. Alterations may be due in part to delayed development.

  13. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  14. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  15. Porphyrin biodistribution in UV-exposed murine skin after methyl- and hexyl-aminolevulinate incubation

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Lerche, Catharina M; Philipsen, Peter A

    2012-01-01

    Topical photodynamic therapy (PDT) with methyl-aminolevulinate (MAL) is a well-established treatment for precancerous skin lesions and non-melanoma skin cancer. Treatment outcomes are less effective for thick than for superficial lesions, which are presumed to be due to insufficient Pp......IX biodistribution in tumour tissue. Hexyl-aminolevulinate (HAL) is a more lipophilic photosensitizer precursor than MAL and may penetrate the skin to a greater depth and more homogeneously. We compared HAL- and MAL-induced PpIX accumulation in specific skin compartments using concentrations of 2%, 6% and 20% HAL...... and MAL on long-term UV-irradiated mouse skin. Furthermore, 20% HAL and 20% MAL were applied to non-irradiated skin. Porphyrin fluorescence was measured by fluorescence microscopy in selected skin regions: the epidermis, superficial dermis, deep dermis and sebaceous gland epithelium down to a depth of 1...

  16. Urticaria after methyl aminolevulinate photodynamic therapy in a patient with nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Wolfe, Christopher M; Green, W Harris; Hatfield, H Keith; Cognetta, Armand B

    2012-11-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) is utilized in several countries for the treatment of basal cell carcinoma, but allergic sensitization has been reported by the manufacturer. To the best of our knowledge, we report the first case of urticaria following MAL-PDT in a patient with nevoid basal cell carcinoma syndrome. Prophylactic use of antihistamines may allow continued use of MAL-PDT in this setting.

  17. A 10-Year Retrospective Analysis of Methyl Aminolevulinate Photodynamic Therapy Consultation at the Hospital de Braga

    OpenAIRE

    Brito, C; Resende, C.; Oliveira, P.

    2016-01-01

    Introduction Photodynamic therapy (PDT) is a well-established treatment for actinic keratosis (AK), basal cell carcinoma (BCC), and Bowen’s disease (BD). The object of this study was to describe the results of a retrospective analysis of patients treated with methyl aminolevulinate PDT (MAL-PDT) with red light, over the past decade at the Hospital de Braga (Braga, Portugal). Methods This study is based on the retrospective analysis of the clinical records of patients treated with MAL-PDT from...

  18. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation

    OpenAIRE

    Leidiane De Lucca; Fabiane Rodrigues; Letícia B. Jantsch; Neme, Walter S.; Gallarreta, Francisco M. P.; Gonçalves, Thissiane L.

    2016-01-01

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 2...

  19. Reduced aminolevulinate dehydrase activity in rats with functional renal failure induced by cyclosporin A.

    Science.gov (United States)

    Fontanellas, A; Herrero, J A; Enríquez de Salamanca, R

    1997-01-01

    Patients with chronic failure evidence various abnormalities in heme metabolism, primarily erythrocyte aminolevulinate dehydrase hypoactivity and increased plasma and erythrocyte porphyrin levels. Such abnormalities have also been observed in animals with both acute and chronic experimental renal failure. The aim of this work was to study these parameters of porphyrin metabolism in an experimental model of functional renal failure. A group of 11 male Wistar rats received 13 doses (25 mg/kg body weight/day) of cyclosporin A. Serum creatinine did not vary, but the blood urea nitrogen levels increased and a significant decrease in the creatinine clearance was observed. The drug also caused a marked decrease in the erythrocyte aminolevulinate dehydrase activity, a slight reduction of the hematocrit value, and increased levels of blood porphyrins. The plasma of treated rats showed capacity to inhibit aminolevulinate dehydrase activity when incubated in vitro with erythrocytes from control rats. Porphyrin metabolism remained unchanged in the liver. The daily diuresis was significantly decreased in the cyclosporin as compared to the control group; however, the porphyrinuria showed no changes. The derangements in the erythrocyte heme biosynthesis pathway observed in patients with chronic renal failure are reproducible in an experimental model of cyclosporin A-induced functional renal failure.

  20. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells.

    Science.gov (United States)

    Ito, Hiromu; Tamura, Masato; Matsui, Hirofumi; Majima, Hideyuki J; Indo, Hiroko P; Hyodo, Ichinosuke

    2014-03-01

    Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.

  1. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  2. Comparison of aminolevulinic acid and hexylester aminolevulinate induced protoporphyrin IX fluorescence for the detection of ovarian carcinoma metastases: an experimental study

    Science.gov (United States)

    Ascencio, Manuel; Regis, Claudia; Mordon, Serge; Collinet, Pierre

    2009-06-01

    The present study aimed at comparing the photo detection of peritoneal micrometastases in an ovarian cancer model following administration of two precursors of protoporphyrin IX (PpIX): aminolevulinic acid (ALA) and hexylester aminolevulinate (He-ALA). ALA or He-ALA (100mg/kg) was injected in the peritoneum cavity of 16 rats with induced peritoneal metastases of ovarian cancer. Two hours later, the tumours were visualized laparoscopically using both white light for standard exploration and blue light for fluorescence (D-light, Karl Storz, Tuttlingen, Germany). Peritoneal micrometastases were counted. The distribution of PpIX through the peritoneum was studied on frozen biopsies using fluorescence microscopy and correlated with pathological findings. The number of micrometastases detected by the fluorescence blue mode was significantly higher (pcancer cells. Macroscopically fluorescing nodules were histopathology confirmed as malignant. In conclusion, He-ALA is an excellent precursor for PpIX synthesis giving the highest PpIX fluorescence contrast between normal and tumoral peritoneum. Imaging with He-ALA improves the detection of peritoneal metastases comparing to ALA.

  3. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  4. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  5. Níveis de chumbo e atividade da desidratase do ácido delta-aminolevulínico (delta-ALAD) no sangue da população da Grande São Paulo, Brasil

    OpenAIRE

    Nilda A.G.G. de Fernícola; Azevedo,Fausto A. de

    1981-01-01

    Foram feitas determinações de chumbo e atividade da delta-ALAD no sangue de 3 amostras populacionais da Grande São Paulo (Brasil). Um grupo (A) de área de escassa exposição ambiental ao chumbo, um grupo (B) exposto principalmente a fontes móveis de emissão de chumbo e um grupo (C) vizinho a uma indústria de recuperação de chumbo. Cada grupo foi subdividido conforme sexo e hábito de fumar. A plumbemia do grupo C (20,5 µg/100 ml) foi significantemente maior que as dos grupos A (11,2 µg/100 ml) ...

  6. Descrição bioquímica quântica do bolsão de interação do ÍON Zn2+ na enzima ALAD humana

    OpenAIRE

    Barbosa, Emmanuel Duarte

    2016-01-01

    A enzima Delta Aminolevulínico Desidratase (ALAD) é uma metaloproteína citosólica essencial em vários processos biológicos, uma vez que é responsável pelo segundo passo da catálise enzimática na formação de porfobilinogênio, um precursor dos tetrapirrólicos (heme, clorofila). Esta enzima é bastante sensível a metais pesados e tem sido classicamente usada como um marcador na intoxicação por chumbo. Sua inibição se dá pela substituição desses metais pesados no sítio de ligação a ...

  7. Evidence that isolated developing chloroplasts are capable of synthesizing chlorophyll b from 5-aminolevulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Laiqiang; Hoffman, N.E. (Carnegie Institution of Washington, Stanford, CA (USA))

    1990-09-01

    Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating ({sup 14}C)5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.

  8. Clinical, histological, and immunohistochemical markers of resistance to Methyl-aminolevulinate Photodynamic therapy in Bowen's disease.

    Science.gov (United States)

    Gracia-Cazaña, T; Salazar, N; Vera-Álvarez, J; Aguilera, J; López-Navarro, N; Herrera-Ceballos, E; González, S; Juarranz, Á; Gilaberte, Y

    2017-09-08

    Bowen's disease (BD) is an intraepidermic squamous cell carcinoma (SCC), which principally appears on photoexposed areas.(1) Methyl-aminolevulinate (MAL) photodynamic therapy (PDT) is an excellent option for the treatment of BD (strength of recommendation, A; quality of evidence, 1). However, despite good response rates, some tumors prove non-responsive due to primary or acquired resistance.(2) The present study sought to identify clinical, histological, and molecular variables implicated in the response to MAL-PDT in BD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid.

    Science.gov (United States)

    Koizumi, Noriaki; Harada, Yoshinori; Minamikawa, Takeo; Tanaka, Hideo; Otsuji, Eigo; Takamatsu, Tetsuro

    2016-01-21

    Photodynamic diagnosis based on 5-aminolevulinic acid-induced protoporphyrin IX has been clinically applied in many fields based upon its evidenced efficacy and adequate safety. In order to establish a personalized medicine approach for treating gastric cancer patients, rapid intraoperative detection of malignant lesions has become important. Feasibility of photodynamic diagnosis using 5-aminolevulinic acid for gastric cancer patients has been investigated, especially for the detection of peritoneal dissemination and lymph node metastasis. This method enables intraoperative real-time fluorescence detection of peritoneal dissemination, exhibiting higher sensitivity than white light observation without histopathological examination. The method also enables detection of metastatic foci within excised lymph nodes, exhibiting a diagnostic accuracy comparable to that of a current molecular diagnostics technique. Although several complicating issues still need to be resolved, such as the effect of tissue autofluorescence and the insufficient depth penetration of excitation light, this simple and rapid method has the potential to become a useful diagnostic tool for gastric cancer, as well as urinary bladder cancer and glioma.

  10. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    Science.gov (United States)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  11. The possibility of using 5-aminolevulinic acid in lead phytoextraction process

    Directory of Open Access Journals (Sweden)

    Zbigniew Jarosz

    2013-04-01

    Full Text Available Studies conducted in the greenhouse involving a sunflower (Helianthus annuus L. grown in medium containing 200 mg Pb ∙ dm -3 which were designed to evaluate the impact of foliar nutrition with 5-aminolevulinic acid (5-ALA on the chemical composition of sunflower in reference to possible use of this plant in the process of induced phytoextraction. The study revealed from 4.8% to 34.1% increase in aboveground matter of sunflower which was sprayed by 5-ALA solution at concentrations of 0.01-0.1 ppm in comparison with plants grown in a medium containing 200 mg Pb ∙ dm -3 with no 5-ALA spraying. The sunflower leaves sprayed by 5-ALA solution contained from 3.78% to 27.1% more lead in comparison to plants not sprayed by this agent. As well as remarkable decrease in lead content from 17.4 to 33.4% was recorded in the roots of sunflower sprayed by 5-ALA solution. The lead content in plant shoots was independent from foliar application of 5-aminolevulinic acid

  12. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    Directory of Open Access Journals (Sweden)

    Halani SH

    2016-09-01

    Full Text Available Sameer H Halani,1 D Cory Adamson1,2 1Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; 2Neurosurgery Section, Atlanta VA Medical Center, Decatur, GA, USA Abstract: Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. Keywords: aminolevulinic acid, 5-ALA, fluorescence, glioblastoma multiforme, high-grade glioma, resection

  13. The relation between methyl aminolevulinate concentration and inflammation after photodynamic therapy in healthy volunteers

    DEFF Research Database (Denmark)

    Fabricius, Susanne; Lerche, Catharina Margrethe; Philipsen, Peter Alshede;

    2013-01-01

    Inflammation and pain are well known adverse-effects in photodynamic therapy (PDT). There is currently a tendency towards introducing lower concentrations of the photosensitizer than used in the standard treatment for various indications. The aim of this study was to investigate whether reduced...... concentrations of methyl aminolevulinate (MAL) can reduce inflammation (erythema) during PDT treatment. We measured the formation of protoporphyrin IX (PpIX) using fluorescence and monitored both erythema and pain during and after PDT treatment with conventional 16% MAL and threee reduced concentrations of 2, 0.......75, and 0.25% in twenty-four healthy volunteers. We found that lowering the MAL concentration reduced PpIX fluorescence and erythema after PDT treatment. There was a strong correlation (R(2) = 0.70) between the PpIX fluorescence and erythema after treatment. A further increase in erythema after PDT...

  14. Accumulation of porphyrins in Propionibacterium acnes by 5-aminolevulinic acid and its esters.

    Science.gov (United States)

    Ogata, Arisa; Hasunuma, Yuya; Kikuchi, Emii; Ishii, Takuya; Ishizuka, Masahiro; Tokuoka, Yoshikazu

    2017-09-01

    We have investigated the accumulation of porphyrins in Propionibacterium acnes (P.acnes) by 5-aminolevulinic acid hydrochloride (ALA) and its esters, ALA methyl ester hydrochloride (mALA), ALA octyl ester hydrochloride (oALA), and ALA benzyl ester hydrochloride (bALA). From the fluorescence spectra of porphyrins accumulated in P.acnes, the order of porphyrin accumulation is as follows: ALA≫mALA≈bALA>oALA (≈0). Moreover, the PDT efficacy is reduced in the order of ALA>mALA≈bALA>oALA (≈without additives). These results confirm that ALA is superior to ALA esters in accumulating porphyrins in P.acnes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optical spectroscopy by 5-aminolevulinic acid hexylester induced photodynamic treatment in rat bladder cancer

    Science.gov (United States)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Gederaas, Odrun A.; Arum, Carl-Jørgen; Krokan, Hans E.; Hjelme, Dag R.; Svaasand, Lars O.

    2006-02-01

    Photodynamic therapy (PDT) is a treatment modality which has been shown to be effective for both malignant and non-malignant diseases. New photosensitizers such as 5-aminolevulinic acid hexylester (hALA) may increase the efficiency of PDT. Monitoring of the tissue response provides important information for optimizing factors such as drug and light dose for this treatment modality. Optical spectroscopy may be suited for this task. To test the efficacy of hALA induced PDT, a study on rats with a superficial bladder cancer model, in which a bladder cancer cell line (AY-27) is instilled, will be performed. Preliminary studies have included a PDT feasibility study on rats, fluorescence spectroscopy on AY-27 cell suspensions, and optical reflection and fluorescence spectroscopy in rat bladders in vivo. The results from the preliminary studies are promising, and the study on hALA induced PDT treatment of bladder cancer will be continued.

  16. Utilization of 5-aminolevulinic acid in the photodynamic therapy of tumors: biochemical and photobiological aspects

    Science.gov (United States)

    Pottier, Roy H.; Kennedy, James C.

    1994-03-01

    Inherent in both plants and animals is the natural porphyrin, Protoporphyrin IX (Pp). Although Pp does not appear to have any intrinsic biological activity, it is a potent natural photosensitizer. When activated with ultraviolet or visible light, this photosensitizer can induce significant photodynamic effects on tissues, cells, subcellular elements, and macromolecules via the production of singlet oxygen. The biosynthesis of endogenous Pp is under strict enzymatic control. It is possible to bypass a rate controlling step and induce large, transient concentrations of Pp by the addition of exogenous 5-aminolevulinic acid (ALA). ALA may be administered systemically or topically. Much larger amounts of Pp are produced in certain types of tumor tissue than in adjacent normal tissue. Topically applied ALA can be used to treat a variety of skin lesions, including actinic keratosis, basal cell carcinomas and psoriasis.

  17. Photodynamic diagnosis following intravesical instillation of aminolevulinic acid (ALA): first clinical experiences in urology

    Science.gov (United States)

    Baumgartner, Reinhold; Kriegmair, M.; Stepp, Herbert G.; Lumper, W.; Heil, Peter; Riesenberg, Rainer; Stocker, Susanne; Hofstetter, Alfons G.

    1993-06-01

    Delta Aminolevulinic acid (ALA), a precursor of Protoporphyrin IX (PP IX) in hem biosynthesis has been topically applied in urinary bladders in order to study its potential as fluorescent tumor marker. Preclinical experiments have been performed on chemically induced tumors in rats, revealing a ratio of PP IX-fluorescence intensity up to 20:1 in tumors as compared to healthy urothelium. Synthesis of PP IX has been stimulated in 56 patients by intravesical instillation of a pH-neutral ALA-solution. After an incubation time of two to four hours strong red fluorescence was endoscopically observed even in tiny superficial tumors. Brightness and contrast allows visualization of early stage urothelial diseases with naked eyes and without the necessity suppressing background fluorescence or violet excitation light.

  18. Daylight photodynamic therapy with methyl-aminolevulinate for the treatment of actinic cheilitis.

    Science.gov (United States)

    Fai, Dario; Romanello, Eugenio; Brumana, Marta Benedetta; Fai, Carlotta; Vena, Gino Antonio; Cassano, Nicoletta; Piaserico, Stefano

    2015-01-01

    Actinic cheilitis (AC) is a common premalignant condition that requires an effective treatment to reduce the risk of malignant transformation. Photodynamic therapy (PDT) has been recently added to the armamentarium available for AC treatment. Daylight PDT (D-PDT) is a novel PDT modality in which the activation of the topical photosensitizer is induced by the exposure to natural daylight instead of artificial light sources without preliminary occlusion. This simplified procedure was found to be more tolerated as compared to conventional PDT. We report our preliminary experience on the use of D-PDT using methyl-aminolevulinate cream in 10 patients with refractory AC of the lower lip. Patients received two consecutive D-PDT sessions with an interval of 7-14 days. At 3 months after therapy, a complete response was observed in seven patients, with sustained results in five patients over an observational period of 6-12 months. Treatment was well tolerated.

  19. Treatment of actinic cheilitis by photodynamic therapy with 5-aminolevulinic acid and blue light activation.

    Science.gov (United States)

    Zaiac, Martin; Clement, Annabelle

    2011-11-01

    Actinic cheilitis (AC), a common disorder of the lower lip, should be treated early to prevent progression to invasive squamous cell carcinoma. This study evaluated the safety and efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) activated by blue light for the treatment of AC. Fifteen patients with clinically evident or biopsy-proven AC received two treatments with ALA PDT with blue light activation. Treatments were spaced three to five weeks apart. Most patients achieved 65% to 75% clearance three to five weeks after the first treatment and all achieved more than 75% clearance one month after the second treatment. Three patients achieved complete clearance. Pain and burning during irradiation were absent or mild. All patients said they would repeat the procedure. ALA PDT with 417 nm blue light is a promising option for the treatment of AC of the lower lip.

  20. OPTIMIZATIONS FOR 5-AMINOLEVULINIC ACID BASED PHOTODYNAMIC THERAPY IN PURGING LEUKEMIA CELL HL60

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.

  1. Responses to hexyl 5-aminolevulinate-induced photodynamic treatment in rat bladder cancer model

    Science.gov (United States)

    Arum, Carl-Jørgen; Gederas, Odrun; Larsen, Eivind; Randeberg, Lise; Zhao, Chun-Mei

    2010-02-01

    OBJECTIVES: In this study, we evaluated histologically the effects of hexyl 5-aminolevulinateinduced photodynamic treatment in the AY-27 tumor cell induced rat bladder cancer model. MATERIAL & METHODS: The animals (fischer-344 female rats) were divided into 2 groups, half of which were orthotopically implanted with 400,000 syngeniec AY-27 urothelia1 rat bladder cancer cells and half sham implanted. 14 days post implantation 6 rats from each group were treated with hexyl 5-aminolevulinate-induced photodynamic treatment (8mM HAL and light fluence of 20 J/cm2). Additional groups of animals were only given HAL instillation, only light treatment, or no treatment. All animals were sacrificed 7 days after the PDT/only HAL/only light or no treatment. Each bladder was removed, embedded in paraffin and stained with hematoxylin, eosin, and saferin for histological evaluation at high magnification for features of tissue damage by a pathologist blinded to the sample source. RESULTS: In all animals that were AY-27 implanted and not given complete PDT treatment, viable tumors were found in the bladder mucosa and wall. In the animals treated with complete HAL-PDT only 3 of 6 animals had viable tumor. In the 3 animals with viable tumor it was significantly reduced in volume compared to the untreated animals. It was also noted that in the PDT treated animals there was a significantly increased inflammatory response (lymphocytic and mononuclear cell infiltration) in the peri-tumor area compared to implanted animals without complete HAL-PDT. CONCLUSION: Our results suggest that hexyl 5-aminolevulinate-induced photodynamic treatment in a rat bladder cancer model involves both direct effects on cell death (necrosis and apoptosis) and indirect effects to evoke the host immune-response, together contributing to tumor eradication.

  2. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  3. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  4. Leishmania spp: Delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway

    Science.gov (United States)

    Dutta, Sujoy; Furuyama, Kazumichi; Sassa, Shigeru; Chang, Kwang-Poo Chang

    2008-01-01

    To further develop the Leishmania model for porphyria based on their deficiencies in heme biosynthesis, three Old World species were doubly transfected as before for Leishmania amazonensis with cDNAs, encoding the 2nd and 3rd enzymes in the pathway. Expression of the transgenes was verified immunologically at the protein level and functionally by uroporphyrin neogenesis that occurs only after exposure of the double-transfectants to delta-aminolevulinate. All species examined were equally deficient in heme biosynthesis, as indicated by the accumulation of uroporphyrin as the sole porphyrin and the production of coproporphyrin upon further transfection of one representative species with the downstream gene. The results obtained thus demonstrate that at least the first five enzymes for heme biosynthesis are absent in all species examined, rendering their transfectants inducible with aminolevulinate to accumulate porphyrins and thus useful as cellular models for human porphyrias. PMID:18164705

  5. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy.

    Directory of Open Access Journals (Sweden)

    Yan Baglo

    Full Text Available Photodynamic therapy (PDT is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA, or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX. Activation of PpIX by light causes the formation of reactive oxygen species (ROS and toxic responses. Studies have indicated that ALA and its methyl ester (MAL are taken up into the cells via γ-butyric acid (GABA transporters (GATs. Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations. Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain.

  6. Comparative study of trichloroacetic acid vs. photodynamic therapy with topical 5-aminolevulinic acid for actinic keratosis of the scalp.

    Science.gov (United States)

    Di Nuzzo, Sergio; Cortelazzi, Chiara; Boccaletti, Valeria; Zucchi, Alfredo; Conti, Maria Luisa; Montanari, Paola; Feliciani, Claudio; Fabrizi, Giuseppe; Pagliarello, Calogero

    2015-09-01

    Photodynamic therapy with 5-methyl-aminolevulinate and photodynamic therapy with trichloroacetic acid 50% are the two techniques utilized in the management of actinic keratosis. This study was planned to compare the efficacy, adverse effects, recurrence and cosmetic outcome of these option therapies in patients with multiple actinic keratosis of the scalp. Thirteen patients with multiple actinic keratosis were treated with one of the two treatments on half of the scalp at baseline, while the other treatment was performed on the other half 15 days apart, randomly. Efficacy, adverse effects, cosmetic outcome and recurrence were recorded at follow-up visit at 1, 3, 6 and 12 months. Photodynamic therapy with 5 methyl-aminolevulinate was more effective than trichloroacetic acid although less tolerated by patients as it was more painful. Early adverse effects were almost the same even if trichloroacetic acid leads also to crust formation and to a worse cosmetic outcome characterized by hypopigmentation. Recurrence was lower in the area treated with photodynamic therapy. Trichloroacetic acid 50% is less effective than photodynamic therapy with 5 methyl-aminolevulinate in the treatment of multiple actinic keratosis of the scalp although better tolerated by patients. As this technique is less painful and less expensive than photodynamic therapy, we hypothesize and suggest that more sequential treatments could lead to better results. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Reappraisal of Blood Lead Levels and Relation to Delta-Aminolevulinic Acid Dehydratase, Zinc Protoporphyrin and Urinary ALA Level in Thai Normal Adults and Lead Exposed Workers

    Directory of Open Access Journals (Sweden)

    Watcharachai Rujirojkul

    2008-01-01

    Full Text Available All studied participants of 65 lead-exposed workers and 52 non lead-exposed persons who voluntarily participated and signed consents were interviewed about their working duration, type of work, risk behavior and personal data. Blood and urine samples were drawn for PbB, d-ALAD, ZPP and ALAU analysis respectively. The mean PbB level for workers in lead smelters, 22.4 +/- 17.9 microgram/dl (range 1.3-67.2 microgram/dl was found higher than that for the non-exposed persons (mean = 5.0 +/- 2.4 microgram/dl, range 2.0-13.2 microgram/dl. In relative to previous studies, mean PbB concentration found in the unexposed persons tended to decreased follows the reduced use of leaded gasoline in 1996 in Thailand. A highly significant negative correlation (R2 = 0.86 was observed between PbB concentration and d-ALAD activities among lead exposed persons. Statistical analysis showed that d-ALAD activities significantly decreased (p10 microgram/dl. ZPP measurement is simple and inexpensive, but less sensitive and could be used for screening only in those high lead contaminated persons (PbB>40 microgram/dl. ALAU measurement cannot be served as early biochemical indices of lead exposure both in lead exposed and non-lead exposed persons.

  8. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    Science.gov (United States)

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  9. In vitro evaluation of 5-aminolevulinic acid (ALA loaded PLGA nanoparticles

    Directory of Open Access Journals (Sweden)

    Shi L

    2013-07-01

    Full Text Available Lei Shi,1 Xiuli Wang,1 Feng Zhao,2 Hansen Luan,2 Qingfeng Tu,1 Zheng Huang,3 Hao Wang,2 Hongwei Wang1,41Shanghai Skin Disease Hospital, Shanghai, People's Republic of China; 2National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China; 3Ministry of Education (MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, People's Republic of China; 4Huadong Hospital, Fudan University, Shanghai, People's Republic of ChinaBackground: 5-Aminolevulinic acid (ALA is a prodrug for topical photodynamic therapy. The effectiveness of topical ALA can be limited by its bioavailability. The aim of this study was to develop a novel ALA delivery approach using poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs.Methods: A modified double emulsion solvent evaporation method was used to prepare ALA loaded PLGA NPs (ALA PLGA NPs. The characteristics, uptake, protoporphyrin IX fluorescence kinetics, and cytotoxicity of ALA PLGA NPs toward a human skin squamous cell carcinoma cell line were examined.Results: The mean particle size of spherical ALA PLGA NPs was 65.6 nm ± 26 nm with a polydispersity index of 0.62. The encapsulation efficiency was 65.8% ± 7.2% and ALA loading capacity was 0.62% ± 0.27%. When ALA was dispersed in PLGA NPs, it turned into an amorphous phase. ALA PLGA NPs could be taken up by squamous cell carcinoma cells and localized in the cytoplasm. The protoporphyrin IX fluorescence kinetics and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay showed that ALA PLGA NPs were more effective than free ALA of the same concentration.Conclusion: PLGA NPs provide a promising ALA delivery strategy for topical ALA-photodynamic therapy of skin squamous cell carcinoma.Keywords: 5-Aminolevulinic acid (ALA, nanoparticles, poly(lactic-co-glycolic acid (PLGA, skin squamous cell carcinoma, photodynamic therapy (PDT

  10. Photodynamic therapy using systemic administration of 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode for methicillin-resistant Staphylococcus aureus-infected ulcers in mice.

    Science.gov (United States)

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.

  11. Identification of atherosclerosis using aminolevulinic gold nanoparticle assay in fecal specimens

    Science.gov (United States)

    Gonçalves, Karina de O.; da Silva, Mônica N.; Courrol, Lilia C.

    2015-06-01

    The atheromatous plaques exhibit an accumulation of protoporphyrin IX, or PpIX, which is transferred to the feces. In this work it was associated a precursor of the PpIX, the 5-aminolevulinic acid, ALA, with gold nanoparticles (ALA:AuNps). The objective was verify the possibility to use ALA:AuNPs as a diagnosis agent for atherosclerosis. ALA:AuNps were synthesized mixing ALA with Tetrachloroauric(III) acid in miliQ water solution followed by photoreduction with light from a Xenon lamp. A total of 22 Male New Zealand rabbits were divided into 3 groups: control group (CG) where animals received normal diet, control group with ALA (CGALA ) and Experimental Group with ALA:AuNPs ( EGALAAu ) in which the animals received a diet with 1% cholesterol. Measurements of the emission intensity of extracted porphyrins from the feces in the region between 575 and 725 nm were done. An increase in the feces porphyrin emission after ALA and ALA:AuNPs administration was observed.

  12. Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy.

    Science.gov (United States)

    Nie, Zhuxiang; Bayat, Ardeshir; Behzad, Farhad; Rhodes, Lesley E

    2010-12-01

    A 36-year-old Caucasian female of Iranian origin presented with a persistently raised dermal lesion under her chin, confirmed histologically to be a keloid scar. There was a 4-year history of a negative response to a range of conventional treatments including topical silicone gel sheets, steroid creams, steroid injections and surgical excision. In view of treatment failure and an in vitro study indicating a positive effect of photodynamic therapy (PDT)on keloid fibroblasts, we treated our patient's lesion with five sessions of methyl aminolevulinate photodynamic therapy (MAL-PDT) over a period of 5 months. Following this treatment regime, her keloid scar had considerably reduced in size and become flattened.The surface of the keloid also became smooth, with attenuation in erythema at the margin as well as an improvement in the colour of the scar, which was better matched to the surrounding skin. There was no recurrence at 1-year follow-up and this treatment resulted in an overall acceptable cosmetic outcome. This case report presents PDT as a potential treatment option for persistent keloid lesions unresponsive to conventional scar modulation therapies and suggests a need for further research in this area.

  13. [Production of 5-aminolevulinic acid from organic industrial wastewater by photosynthetic bacteria].

    Science.gov (United States)

    Xiuyan, Liu; Xiangyang, Xu; Min, Ye; Shuo, Xiang

    2008-09-01

    We used Rhodopseudomonas strains with high-yield of 5-aminolevulinic acid (ALA) to produce ALA from wastewater of producing monosodium glutamate, citric acid, beer, and soybean product. Cultivation was carried out under anaerobic light condition (3000 Lux) at 30 degrees C. For comparison, we tested the addition of levulinic acid (LA), glycin and succinate to the substrate to increase the production of ALA, effect of sterilization of the wastewater for both strains. Cell mass concentration (OD660) and the content of ALA were determined with spectrophotometer. Without adding levulinic acid (LA), glycin and succinate, the growth of strain 99-28 reached plateau after 72-96 h. The maxiam ALA production was obtained at 96 h. Both the yield of ALA and the Chemical Oxygen Demand (CODcr) removal rate of monosodium glutamate waster water were the highest in all tested wasterwaters. When LA, glycin and succinate were added, ALA production of strain 99-28 was significantly increased whereas the CODcr removal was adversely affected. Non-sterial wasterwater slightly reduced the growth and CODcr removal rate of strain 99-28, however the ALA production could be strongly reduced with the addition of LA, glycin and succinate. The growth and CODcr removal of mutant strain L-1 was similar with strain 99-28, but its ALA production was much higher than that of strain 99-28. The Rhodopseudomonas strains screened in our laboratory can use organic wasterwater as substrates to produce ALA and remove CODcr.

  14. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice.

    Science.gov (United States)

    Li, Yongning; Zhou, Qi; Hu, Zheng; Yang, Bin; Li, Qingsong; Wang, Jianhua; Zheng, Jinhua; Cao, Wenwu

    2015-01-01

    Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (Ptreatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (posteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (posteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway.

  15. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey); East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum (Turkey); Genişel, Mucip, E-mail: m.genisel@hotmail.com [Department of Crop and Animal Production, Vocational High School, Agri (Turkey); Erdal, Serkan, E-mail: serkanerdal25@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey)

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  16. Acne treatment by methyl aminolevulinate photodynamic therapy with red light vs. intense pulsed light.

    Science.gov (United States)

    Hong, Jong Soo; Jung, Jae Yoon; Yoon, Ji Young; Suh, Dae Hun

    2013-05-01

    Various methods of photodynamic therapy (PDT) for acne have been introduced. However, comparative studies among them are still needed. We performed this study to compare the effect of methyl aminolevulinate (MAL) PDT for acne between red light and intense pulsed light (IPL). Twenty patients were enrolled in this eight-week, prospective, split-face study. We applied MAL cream over the whole face with a three-hour incubation time. Then patients were irradiated with 22 J/cm(2) of red light on one-half of the face and 8-10 J/cm(2) of IPL on the other half during each treatment session. We performed three treatment sessions at two-week intervals and followed-up patients until four weeks after the last session. Inflammatory and non-inflammatory acne lesions were reduced significantly on both sides. The red light side showed a better response than the IPL side after the first treatment. Serious adverse effects after treatment were not observed. MAL-PDT with red light and IPL are both an effective and safe modality in acne treatment. Red light showed a faster response time than IPL. After multiple sessions, both light sources demonstrated satisfactory results. We suggest that reducing the total dose of red light is desirable when performing MAL-PDT in Asian patients with acne compared with Caucasians.

  17. 5-Aminolevulinic Acid Fluorescence in High Grade Glioma Surgery: Surgical Outcome, Intraoperative Findings, and Fluorescence Patterns

    Directory of Open Access Journals (Sweden)

    Alessandro Della Puppa

    2014-01-01

    Full Text Available Background. 5-Aminolevulinic acid (5-ALA fluorescence is a validated technique for resection of high grade gliomas (HGG; the aim of this study was to evaluate the surgical outcome and the intraoperative findings in a consecutive series of patients. Methods. Clinical and surgical data from patients affected by HGG who underwent surgery guided by 5-ALA fluorescence at our Department between June 2011 and February 2014 were retrospectively evaluated. Surgical outcome was evaluated by assessing the resection rate as gross total resection (GTR>98% and GTR>90%. We finally stratified data for recurrent surgery, tumor location, tumor size, and tumor grade (IV versus III grade sec. WHO. Results. 94 patients were finally enrolled. Overall GTR>98% and GTR>90% was achieved in 93% and 100% of patients. Extent of resection (GTR>98% was dependent on tumor location, tumor grade (P<0.05, and tumor size (P<0.05. In 43% of patients the boundaries of fluorescent tissue exceeded those of tumoral tissue detected by neuronavigation, more frequently in larger (57% (P<0.01 and recurrent (60% tumors. Conclusions. 5-ALA fluorescence in HGG surgery enables a GTR in 100% of cases even if selection of patients remains a main bias. Recurrent surgery, and location, size, and tumor grade can predict both the surgical outcome and the intraoperative findings.

  18. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid.

    Directory of Open Access Journals (Sweden)

    Maiko Hayashi

    Full Text Available Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.

  19. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid.

    Science.gov (United States)

    Hayashi, Maiko; Fukuhara, Hideo; Inoue, Keiji; Shuin, Taro; Hagiya, Yuichiro; Nakajima, Motowo; Tanaka, Tohru; Ogura, Shun-ichiro

    2015-01-01

    Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.

  20. Light-induced cytotoxicity after aminolevulinic acid treatment is mediated by heme and not by iron.

    Science.gov (United States)

    Breusing, Nicolle; Grimm, Stefanie; Mvondo, Dagmar; Flaccus, Andrea; Biesalski, Hans Konrad; Grune, Tilman

    2010-04-02

    Photodynamic therapy (PDT) is a promising antitumor treatment strategy. However, effectiveness of PDT is limited due to an initiation of rescue responses in tumor cells, including the induction of heme oxygenase-1 (HO-1). Furthermore, the main sources of free radical production in PDT-induced oxidative stress are not clear. Here, human melanoma cells were loaded with the photosensitizer 5-aminolevulinic acid and exposed to non-thermal light of 420-800 nm at different doses. It was shown that inhibition of HO-1 activity by zinc protoporphyrin IX increased PDT-induced cytotoxicity in a dose-dependent manner. Interestingly, the cytotoxic effects were not diminished by the simultaneous application of the iron chelator desferrioxamine. Importantly, PDT together with non-toxic doses of hemin increased the number of dead cells. From these results can be concluded that heme but not iron act as the main source of free radicals in PDT treatment. This is supported by the fact that during PDT ferritin is readily up-regulated, able to bind excess iron formed by the HO-1 action. The combined treatment of photosensitizers with HO-1 inhibitors might increase the effectiveness of PDT in tumor treatment.

  1. Identification of regulatory sequences in the gene for 5-aminolevulinate synthase from rat.

    Science.gov (United States)

    Braidotti, G; Borthwick, I A; May, B K

    1993-01-15

    The housekeeping enzyme 5-aminolevulinate synthase (ALAS) regulates the supply of heme for respiratory cytochromes. Here we report on the isolation of a genomic clone for the rat ALAS gene. The 5'-flanking region was fused to the chloramphenicol acetyltransferase gene and transient expression analysis revealed the presence of both positive and negative cis-acting sequences. Expression was substantially increased by the inclusion of the first intron located in the 5'-untranslated region. Sequence analysis of the promoter identified two elements at positions -59 and -88 bp with strong similarity to the binding site for nuclear respiratory factor 1 (NRF-1). Gel shift analysis revealed that both NRF-1 elements formed nucleoprotein complexes which could be abolished by an authentic NRF-1 oligomer. Mutagenesis of each NRF-1 motif in the ALAS promoter gave substantially lowered levels of chloramphenicol acetyltransferase expression, whereas mutagenesis of both NRF-1 motifs resulted in the almost complete loss of expression. These results establish that the NRF-1 motifs in the ALAS promoter are critical for promoter activity. NRF-1 binding sites have been identified in the promoters of several nuclear genes encoding mitochondrial proteins concerned with oxidative phosphorylation. The present studies suggest that NRF-1 may co-ordinate the supply of mitochondrial heme with the synthesis of respiratory cytochromes by regulating expression of ALAS. In erythroid cells, NRF-1 may be less important for controlling heme levels since an erythroid ALAS gene is strongly expressed and the promoter for this gene apparently lacks NRF-1 binding sites.

  2. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation.

    Science.gov (United States)

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-05-03

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage.

  3. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Elisa Sauer

    2014-11-01

    Full Text Available Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D, protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II, which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA, in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids.

  4. Herbicide clomazone effects on δ-aminolevulinic acid activity and metabolic parameters in Cyprinus carpio.

    Science.gov (United States)

    Menezes, Charlene; Leitemperger, Jossiele; Murussi, Camila; Toni, Cândida; Araújo, Maria do Carmo Santos; Farias, Iria Luiza; Perazzo, Giselle Xavier; Barbosa, Nilda Vargas; Loro, Vania Lucia

    2014-04-01

    The objective of this study was to investigate δ-aminolevulinic acid (δ-ALA-D) activity and metabolic parameters of Cyprinus carpio exposed to clomazone herbicide. Fish were exposed 2.5, 5, 10 and 20 mg L(-1) of clomazone for 192 h. Results indicated that δ-ALA-D activity was decreased in the gills at concentrations of 5 and 10 mg L(-1). Liver glycogen increased, while muscle and gill glycogen levels decreased at 5, 10 and 20 mg L(-1). Glucose was increased in the gills and plasma. Lactate decreased in the gills and liver and increased in the muscle. Protein and amino acids levels increased in the liver and gills and decreased in the muscle. At a clomazone concentration of 20 mg L(-1), ammonia increased in the gills and muscle and decreased in the liver. The results indicated that the metabolic parameters of glycogen, lactate, protein and amino acids in liver, muscle and gills, blood glucose levels, and the enzyme δ-ALA-D in gills may be useful indicators of clomazone toxicity in carp.

  5. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  6. Enhanced transdermal delivery of 5-aminolevulinic acid and a dipeptide by iontophoresis.

    Science.gov (United States)

    Krishnan, Gayathri; Roberts, Michael S; Grice, Jeffrey; Anissimov, Yuri G; Benson, Heather A E

    2011-01-01

    Poor skin permeability limits the application of peptides to the skin. Enhanced skin permeation could facilitate the development of new therapies for dermatologic and cosmeceutical applications. The aim of this study was to investigate the application of iontophoresis to the delivery of small peptide model compounds (5-aminolevulinic acid and L-alanine-L-tryptophan) across human skin. Under the conditions tested, iontophoresis increased the in vitro permeability coefficient of ALA.HCl across human epidermis from 7 X 10(-5) cm/h with passive diffusion to 110 x 10(-5) cm/h with iontophoresis. D-Glucose permeation elucidated the iontophoretic electrotransport of ALA.HCl to have contributions of both electrorepulsion and electroosmosis. The L-alanine-L-tryptophan permeability coefficient was increased from 1.5 x 10(-5) cm/h to 35 x 10(-5) cm/h with iontophoretic application. Iontophoretic delivery of the dipeptide increased markedly at lower pH because of an increase in electrorepulsive transport. The study demonstrates that iontophoresis can enhance epidermal permeation of a small peptide and peptide-like drug by up to 15- and 22-fold under the conditions tested.

  7. FERTILIZATION OF VINE BY A 5-AMINOLEVULINIC ACID-BASED FERTILIZER AND ITS PROFITABILITY

    Directory of Open Access Journals (Sweden)

    VLADIMR IMANSK

    2013-03-01

    Full Text Available In this work we investigated the effect of different doses of NPKS fertilizer added into the soil for nutrient contents in the soil, as well as the quantity and quality of grapes. During the vegetation of the vine, we tested the 5-aminolevulinic acid-based fertilizer (ALA. We summarize that higher doses of fertilizer added into soil caused higher amounts of available nutrients. During the vegetation of the vine an increase of ALA had a positive effect on the optimal balance of nutrients. Fertilization also increased the grape-vine yield, with the strongest effect (by 68% observed due to the application of ALA during the vegetation period of the vine. Added fertilizers had a statistically significant influence on decreased sugar concentration in the grape-vine however the addition of fertilizer into the soil, mainly the application of ALA during vegetation of the vine (by 57% had a positive effect on increase of the total content of sugar in the grape-vine, produced on 1 hectare. The year had a significant influence on the economical evaluation.

  8. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Krzysztof Bilmin

    2016-10-01

    Full Text Available Sonodynamic therapy (SDT is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro . This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  9. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro.

    Science.gov (United States)

    Bilmin, K; Kujawska, T; Secomski, W; Nowicki, A; Grieb, P

    2016-01-01

    Sonodynamic therapy (SDT) is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA) which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml) for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro. This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  10. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Science.gov (United States)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  11. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer.

    Science.gov (United States)

    Namikawa, Tsutomu; Yatabe, Tomoaki; Inoue, Keiji; Shuin, Taro; Hanazaki, Kazuhiro

    2015-08-07

    5-aminolevulinic acid (ALA) is a naturally occurring amino acid that is a protoporphyrin IX (PpIX) precursor and a next-generation photosensitive substance. After exogenous administration of ALA, PpIX specifically accumulates in cancer cells owing to the impaired metabolism of ALA to PpIX in mitochondria, which results in a red fluorescence following irradiation with blue light and the formation of singlet oxygen. Fluorescence navigation by photodynamic diagnosis (PDD) using ALA provides good visualization and detection of gastric cancer lesions and is a potentially valuable diagnostic tool for gastric cancer for evaluating both the surgical resection margins and extension of the lesion. Furthermore, PDD using ALA might be used to detect peritoneal metastases during preoperative staging laparoscopy, where it could provide useful information for the selection of a therapeutic approach. Another promising application for this modality is in the evaluation of lymph node metastases. Photodynamic therapy (PDT) using ALA to cause selective damage based on the accumulation of a photosensitizer in malignant tissue is expected to be a non-invasive endoscopic treatment for superficial early gastric cancer. ALA has the potential to be used not only as a diagnostic agent but also as a therapeutic drug, resulting in a new strategy for cancer diagnosis and therapy. Here, we review the current use of PDD and PDT in gastric cancer and evaluate its future potential beyond conventional modalities combined with a light energy upconverter, a light-emitting diode and near-infrared rays as light sources.

  12. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  13. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase...

  14. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  15. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  16. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  17. Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages

    Directory of Open Access Journals (Sweden)

    Cheng J

    2013-02-01

    Full Text Available Jiali Cheng,1,* Xin Sun,1,2,* Shuyuan Guo,1,* Wei Cao,1 Haibo Chen,1 Yinghua Jin,1 Bo Li,1 Qiannan Li,1 Huan Wang,1 Zhu Wang,3 Qi Zhou,3 Peng Wang,3 Zhiguo Zhang,3 Wenwu Cao,3,4 Ye Tian1,21Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People’s Republic of China; 2Division of Pathophysiology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin, People’s Republic of China; 3Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, People’s Republic of China; 4Materials Research Institute, The Pennsylvania State University, University Park, PA, USA*These authors contributed equally to this workBackground: Inflammatory cells exhibit an elevated level of protoporphyrin IX (PpIX after the administration of 5-aminolevulinic acid (ALA. Here, we investigate the sonodynamic effects of ALA-derived PpIX (ALA-PpIX on macrophages, which are the pivotal inflammatory cells in atherosclerosis.Methods and results: Cultured THP-1 macrophages were incubated with ALA. Fluorescence microscope and fluorescence spectrometer detection showed that intracellular PpIX increased with the concentration of ALA in the incubation solution in a time dependent manner; the highest level of intracellular PpIX was observed after 3-hour incubation. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assays demonstrated that lower concentrations (less than 2 mM of ALA have no influence on cell viability (more than 90% of cells survived, but sonodynamic therapy (SDT with a low concentration of ALA significantly decreased the survival rate of cells, and the effect was increased with both ALA concentration and ultrasound exposure time. Cell apoptosis and necrosis induced by ALA-mediated SDT (ALA-SDT were measured using

  18. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    Science.gov (United States)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  19. Aminolevulinic Acid-Mediated Photodynamic Therapy Causes Cell Death in MG-63 Human Osteosarcoma Cells.

    Science.gov (United States)

    White, Bradley; Rossi, Vince; Baugher, Paige J

    2016-09-01

    The aim of this study was to test the efficacy of aminolevulinic acid-mediated photodynamic therapy (PDT) against the human osteosarcoma cell line MG-63. Osteosarcoma is the most common type of primary malignant bone tumor diagnosed in the United States among adolescents and children. Treatments for osteosarcoma often result in diminished limb use or amputation. Because ALA-mediated PDT exhibits dual specificity in the context of tumor killing, this therapy could represent a less invasive, but effective, treatment for this disease. To assess ALA dark toxicity in MG-63 cells, cells were incubated with varying concentrations of ALA, and cell viability was determined by crystal violet assay. Protoporphyrin IX (PpIX) accumulation was assessed subsequent to ALA incubation at various concentrations using spectrofluorometry. Cell death subsequent to ALA-PDT was determined by illuminating cells at a wavelength of 635 nm at various light intensities subsequent to ALA incubation. Cell viability was assessed using the MTT assay. ALA dark toxicity was observed only at the highest concentrations of 2, 5, and 10 mM. Maximal PpIX concentration was observed at 0.5 and 1 mM ALA, subsequent to a 24-h incubation. Maximal cell death with minimal light toxicity was observed at 0.5 and 1 mM ALA after illumination with 0.6 and 3 J/cm(2) light. Collectively, our data indicate that ALA-PDT can result in the death of MG-64 human osteosarcoma cells in vitro.

  20. Interference with the Jaffé Method for Creatinine Following 5-Aminolevulinic Acid Administration

    Science.gov (United States)

    Quon, Harry; Grossman, Craig E.; King, Rebecca L.; Putt, Mary; Donaldson, Keri; Kricka, Larry; Finlay, Jarod; Malloy, Kelly; Cengel, Keith A.; Busch, Theresa M.

    2013-01-01

    Background The photosensitizer pro-drug 5-aminolevulinic acid (5-ALA) has been administered systemically for photodynamic therapy. Although several toxicities have been reported, nephrotoxicity has never been observed. Materials and Methods Patients with head and neck mucosal dysplasia have been treated on a phase 1 study of escalating light doses in combination with 60 mg/kg of oral 5-ALA. Serum creatinine was measured with the modified Jaffe method or an enzymatic method in the first 24 hours after 5-ALA. Interference by 5-ALA, as well as by its photosensitizing product protoporphyrin IX, was assessed. Results Among 11 subjects enrolled to date, 9 of 11 had blood chemistries collected within the first 5 hours with 7 demonstrating significant grade 3 creatinine elevations (p=0.030). There was no additional evidence of compromised renal function or increased PDT-induced mucositis. Creatinine levels measured by the Jaffe assay increased linearly as a function of the ex-vivo addition of ALA (p<.0001). The exogenous addition of PpIX did not alter creatinine levels. ALA did not interfere with creatinine levels as measured by an enzymatic assay. A total of 4 of the 11 subjects had creatinine levels prospectively measured by both the Jaffe and the enzymatic assays. Only the Jaffe method demonstrated significant elevations as a function of time after ALA administration. Conclusions The transient increase in creatinine after systematic ALA can be attributed, in part, if not entirely, to interference of ALA in the Jaffe reaction. Alternative assays should be employed in situations calling for monitoring of kidney function after systemic ALA. PMID:21112550

  1. 5-Aminolevulinic acid induced photodynamic inactivation on Staphylococcus aureus and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Chien-Ming Hsieh

    2014-09-01

    Full Text Available The aim of the present study was to develop a simple and fast screening technique to directly evaluate the bactericidal effects of 5-aminolevulinic acid (ALA-mediated photodynamic inactivation (PDI and to determine the optimal antibacterial conditions of ALA concentrations and the total dosage of light in vitro. The effects of PDI on Staphylococcus aureus and Pseudomonas aeruginosa in the presence of various concentrations of ALA (1.0 mM, 2.5 mM, 5.0 mM, 10.0 mM were examined. All bacterial strains were exponentially grown in the culture medium at room temperature in the dark for 60 minutes and subsequently irradiated with 630 ± 5 nm using a light-emitting diode (LED red light device for accumulating the light doses up to 216 J/cm2. Both bacterial species were susceptible to the ALA-induced PDI. Photosensitization using 1.0 mM ALA with 162 J/cm2 light dose was able to completely reduce the viable counts of S. aureus. A significant decrease in the bacterial viabilities was observed for P. aeruginosa, where 5.0 mM ALA was photosensitized by accumulating the light dose of 162 J/cm2. We demonstrated that the use of microplate-based assays—by measuring the apparent optical density of bacterial colonies at 595 nm—was able to provide a simple and reliable approach for quickly choosing the parameters of ALA-mediated PDI in the cell suspensions.

  2. Vitamin D as a potential enhancer of aminolevulinate-based photodynamic therapy for nonmelanoma skin cancer

    Science.gov (United States)

    Maytin, Edward V.; Anand, Sanjay; Atanaskova, Natasha; Wilson, Clara

    2010-02-01

    Vitamin D3 (Vit D3) is a hormone essential for normal bone and cardiovascular health, and may participate in preventing nonmelanoma skin cancers (NMSC). Calcitriol (1,25 dihydroxyD3) is the active form of the hormone. We showed previously that calcitriol is a potent inducer of protoporphyrin IX (PpIX) in skin keratinocytes grown in organotypic cultures. Here, we investigated the ability of Vit D3 to enhance PpIX levels within skin tumors in vivo. Squamous tumors, generated by chemical carcinogenesis in mice, were pretreated for 3 days with topical calcitriol. Then 5-aminolevulinic acid (5-ALA) was applied topically, and PpIX levels were measured by noninvasive fluorimetry and in biopsied tissue. Calcitriol pretreatment resulted in a 3 to 4-fold elevation of PpIX in tumors, relative to no pretreatmen, providing significantly more photosensitizer available for tumor destruction. For deep tumors, topical calcitriol may not penetrate sufficiently. Therefore we explored whether systemic Vit D3, given short-term (3 days), might elevate PpIX within NMSC in a deep tumor model (subcutaneously-implanted A431 human squamous carcinoma cells). Defined amounts of calcitriol were injected into the mice for 3 d, followed by systemic 5-ALA, tissue biopsy, and confocal microscopic measurement of PpIX in frozen tissues. PpIX was clearly elevated after systemically delivered calcitriol. More work is needed, but if the amount of calcitriol required to elevate PpIX levels proves to be small, then the approach may ultimately prove attractive. Since most Americans are currently Vitamin D deficient, a small increase in calcitriol might be possible without risk of hypercalcemia.

  3. Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory responses in broiler chickens.

    Science.gov (United States)

    Sato, K; Matsushita, K; Takahashi, K; Aoki, M; Fuziwara, J; Miyanari, S; Kamada, T

    2012-07-01

    The objective of this study was to investigate the effect of dietary supplementation with 5-aminolevulinic acid (5-ALA) on the immune system, inflammatory response, and growth performance of broiler chickens. The levels of cluster of differentiation 3 (CD3) mRNA in the spleens of chickens gradually increased with dietary 5-ALA concentration, while the expression levels of interleukin (IL)-2 decreased. Mitogen-induced proliferation of splenic mononuclear cells and blood mononuclear cell phagocytosis in chickens fed 0.001 and 0.01% 5-ALA-supplemented diets were significantly greater than in chickens fed a basal diet (control). Plasma thiobarbituric acid reactive substance (TBARS) concentration gradually increased along with 5-ALA supplement concentration. These results provide the first evidence that the use of dietary 0.001 and 0.01% 5-ALA supplementation induces the T-cell immune system via mild oxidative stress in chickens. Three hours after Escherichia coli lipopolysaccharide-induced immune stimulation, the levels of mRNA encoding pro-inflammatory cytokines, such as IL-6 and tumor necrosis factor-like ligand 1A (TL1A), in chickens fed a 0.001% 5-ALA-supplemented diet were significantly lower than those in chickens exposed to other treatments. The plasma caeruloplasmin concentration in chickens fed a 0.001% 5-ALA-supplemented diet was significantly lower than in controls or in chickens fed diets supplemented with other concentrations of 5-ALA 24 h after injection of LPS. In addition, BW at 21 and 50 d of age was significantly higher in chickens fed a 0.001% 5-ALA-supplemented diet than in control chickens. The findings suggest that supplementation of diets with 0.001% 5-ALA could prevent the catabolic changes induced by immunological stimulation. These results show that 5-ALA might be useful as an immunomodulator to stimulate T-cells via mild oxidative stress in growing broiler chickens, thereby improving the growth performance.

  4. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Werf, M.J. [Michigan State Univ., East Lansing, MI (United States); Zeikus, J.G. [Michigan State Univ., East Lansing, MI (United States)]|[MBI International, Lansing, MI (United States)

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  5. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques.

    Science.gov (United States)

    Petříčková, Kateřina; Chroňáková, Alica; Zelenka, Tomáš; Chrudimský, Tomáš; Pospíšil, Stanislav; Petříček, Miroslav; Krištůfek, Václav

    2015-01-01

    A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

  6. Evaluation of the risk of liver damage from the use of 5-aminolevulinic acid for intra-operative identification and resection in patients with malignant gliomas

    DEFF Research Database (Denmark)

    Offersen, Cecilie Mørck; Skjoeth-Rasmussen, Jane

    2017-01-01

    BACKGROUND: The clinical efficacy of 5-aminolevulinic acid (5-ALA) for fluorescence-guided surgery of malignant gliomas is evident from several studies; however, as post-operative elevations of liver enzymes have been seen, there is a potential risk of liver damage upon administration. The aim of...

  7. The clinical efficacy of topical methyl-aminolevulinate photodynamic therapy in moderate to severe actinic keratoses of the face and scalp.

    NARCIS (Netherlands)

    Kleinpenning, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2010-01-01

    INTRODUCTION: Since actinic keratoses (AKs) often appear in areas with field cancerization, photodynamic therapy (PDT) may have significant advantages over the standard treatment options. Objectives: Clinical efficacy of PDT with topical methyl aminolevulinate (MAL-PDT) in field cancerization was ev

  8. Comparison of topical methyl aminolevulinate photodynamic therapy with cryotherapy or Fluorouracil for treatment of squamous cell carcinoma in situ: Results of a multicenter randomized trial.

    NARCIS (Netherlands)

    Morton, C.; Horn, M.; Leman, J.; Tack, B.; Bedane, C.; Tjioe, M.; Ibbotson, S.; Khemis, A.; Wolf, P.

    2006-01-01

    OBJECTIVE: To compare the efficacy, tolerability, and cosmetic outcome of photodynamic therapy (PDT) using topical methyl aminolevulinate with cryotherapy or topical fluorouracil for treatment of squamous cell carcinoma in situ. DESIGN: Randomized, placebo-controlled study, with follow-up at 3 and 1

  9. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment

    DEFF Research Database (Denmark)

    Rubel, D M; Spelman, L; Murrell, D F

    2014-01-01

    BACKGROUND: Daylight photodynamic therapy (DL-PDT) of actinic keratosis (AK) has shown preliminary efficacy and safety results comparable to conventional photodynamic therapy (c-PDT), using methyl aminolevulinate (MAL) cream. OBJECTIVES: To demonstrate the efficacy and safety of DL-PDT vs. c...

  10. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  11. Serum lactic dehydrogenase isoenzymes and serum hydroxy butyric dehydrogenase in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kanekar D

    1979-01-01

    Full Text Available Total serum lactate dehydrogenase activity in cases of myocar-dial infarct is difficult to interpret as abnormal values can occur in diseases of liver, kidney and skeletal muscle. The estimation of its isoenzymes is of better diagnostic help because of its tissue specificity. Serum LDH isoenzymes were studied in patients o f myocardial infarction and results are quantitated by densitometry. As LDH 1 represents serum hydroxybutyric dehydrogenase when 2-oxylbutyrate is used as substrate, serum hydroxybutyric dehydro-genase was also estimated in above patients. Greater specificity in diagnosis is achieved with SHBDH because of its myocardial nature and lower incidence of false positive results.

  12. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice.

    Directory of Open Access Journals (Sweden)

    Yongning Li

    Full Text Available Sonodynamic therapy (SDT is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro.The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM, ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined.Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2 for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01 and reduced the viability of UMR-106 cells (p<0.05. ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both. Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01 and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound. Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound.The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway.

  13. 5-Aminolevulinic acid-mediated photodynamic therapy for oral cancers and precancers

    Directory of Open Access Journals (Sweden)

    Hsin-Ming Chen

    2012-12-01

    Full Text Available Previous studies have used both systemic and topical 5-aminolevulinic acid (ALA-mediated photodynamic therapy (PDT to treat oral precancers including oral leukoplakia (OL, oral erythroleukoplakia (OEL, and oral verrucous hyperplasia (OVH as well as oral cancers including oral verrucous carcinoma (OVC and oral squamous cell carcinoma (OSCC. Systemic ALA-PDT has been used to treat oral dysplastic lesions and oral cancers with promising clinical outcomes. The efficacy of a regular topical ALA-PDT (fluence rate, 100 mW/cm2; light dose, 100 J/cm2 was tested on an extensive buccal OVC and an enhanced topical ALA-PDT (fluence rate, 200 mW/cm2; light dose, 200 J/cm2 on an early-invasive OSCC; complete regression of the carcinomas was demonstrated after 28 and 18 PDT treatments, respectively. Several previous studies showed relatively good outcomes for OL lesions treated with topical ALA-PDT. However, it was found that the regular topical ALA-PDT is very effective for OVH and OEL lesions but less so for OL lesions. Better PDT outcomes are significantly associated with OVH and OEL lesions with smaller size, pink to red color, epithelial dysplasia, or thinner surface keratin layer. Moreover, the thicker surface keratin layer on the OL lesions is responsible for the relatively poorer PDT outcomes for OL lesions. In addition, both light emitting diode light- and laser light-mediated topical ALA-PDTs are comparative treatment modalities for OVH and OEL lesions. Methotrexate- or vitamin D3-preconditioned prostate or skin carcinoma cells can accumulate more intracellular protoporphyrin IX, resulting in an increased killing of these preconditioned cells by subsequent ALA-PDT. Because chemotherapy can help destroy carcinoma cells and tumor-associated vasculatures and cryotherapy pretreatment may help the diffusion of ALA into lesional epithelial cells, the chemotherapy or cryotherapy-combined topical ALA-PDT may be a new effective PDT alternative for

  14. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  15. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  16. Binding of small molecules to lipoamide dehydrogenase

    NARCIS (Netherlands)

    Muiswinkel-Voetberg, van H.

    1972-01-01

    The existence of a monomer-dimer equilibrium with lipoamide dehydrogenase is demonstrated. The equilibrium can be shifted to the monomer side at low ionic strength and low pH by removing the phosphate ions by extensive dialysis. At low ionic strength, I : 0.01 and 0.02, the enzyme

  17. Alcohol dehydrogenase – physiological and diagnostic Importance

    Directory of Open Access Journals (Sweden)

    Magdalena Łaniewska-Dunaj

    2013-08-01

    Full Text Available Alcohol dehydrogenase (ADH is a polymorphic enzyme, existing in multiple isoenzymes divided into several classes and localized in different organs. ADH plays a significant role in the metabolism of many biologically important substances, catalyzing the oxidation or reduction of a wide spectrum of specific substrates. The best characterized function of ADH is protection against excess of ethanol and some other exogenous xenobiotics and products of lipid peroxidation. The isoenzymes of alcohol dehydrogenase also participate in the metabolism of retinol and serotonin. The total alcohol dehydrogenase activity is significantly higher in cancer tissues than in healthy organs (e.g. liver, stomach, colorectum. The changes in activity of particular ADH isoenzymes in the sera of patients with different cancers (especially of the digestive system seem to be caused by release of these isoenzymes from cancer cells, and may play a potential role as markers of this cancer. The particular isoenzymes of ADH present in the serum may indicate the cancer localization. Alcohol dehydrogenase may also be useful for diagnostics of non-cancerous liver diseases (e.g. viral hepatitis, non-alcoholic cirrhosis.

  18. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  19. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; Clark, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  20. Calculations of hydrogen tunnelling and enzyme catalysis: a comparison of liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase

    Science.gov (United States)

    Tresadern, Gary; McNamara, Jonathan P.; Mohr, Matthias; Wang, Hong; Burton, Neil A.; Hillier, Ian H.

    2002-06-01

    Although the potential energy barrier for hydrogen transfer is similar for the enzymes liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase, the degree of tunnelling is predicted to differ greatly, and is reflected by their primary kinetic isotope effects.

  1. Applications of 5-aminolevulinic acid on the physiological and biochemical characteristics of strawberry fruit during postharvest cold storage

    Directory of Open Access Journals (Sweden)

    Yi Li

    Full Text Available ABSTRACT: The compound 5-aminolevulinic acid (ALA is a key precursor in the biosynthesis of porphyrins, such as chlorophyll, heme and phytochromobilin, and has multiple physiological effects on plants. Varying concentrations of ALA (50mg L-1, 100mg L-1, and 150mg L-1 and water (control were applied to white stage 'Sweet Charlie' strawberry fruit. All ALA treatments delayed senescence and improved the qualities of strawberries fruit during storage. Among the treatments, 150mg L-1 ALA was the most effective dosage concentration. Exogenously applied ALA significantly reduced the decay index, respiration rate, O2 - production rate (O2 -, H2O2 and malondialdehyde (MDA content, increased superoxide dismutase (SOD, ascorbate peroxidase activities (APX, total soluble solids (TSS content, titratable acidity (TA and anthocyanin content during the initial stage of storage. These results supported the pre harvest application of ALA as a beneficial strategy for the prevention of postharvest decay of strawberry fruit.

  2. New proposal for the treatment of viral warts with intralesional injection of 5-aminolevulinic acid photodynamic therapy.

    Science.gov (United States)

    Kim, Jung Eun; Kim, Sun Ji; Hwang, Jong Ik; Lee, Kyung Jin; Park, Hyun Jeong; Cho, Baik Kee

    2012-06-01

    Although photodynamic therapy (PDT) using intralesional injection (ILI) can theoretically enhance the efficacy of the PDT, the effect of ILI-PDT on warts has not been reported in the literature so far. Eight patients with multiple viral warts were enrolled in the study. PDT was performed after the incubation for 1 h, followed by the ILI of aminolevulinic acid (ALA) into the warts. The treatment was repeated at 2-3 week intervals. Fifty percent of patients showed good to cure response. Complete remission was observed in two patients. There was no apparent correlation between the initial severity of warts and the likelihood of response. No one reported severe adverse reaction. The present study suggests that intralesional administration of ALA might be a safe and effective treatment option of thick treatment-resistant warts and can be performed with a shorter incubation period.

  3. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: Outcomes for genetic screening techniques

    Directory of Open Access Journals (Sweden)

    Katerina ePetrickova

    2015-08-01

    Full Text Available A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike classical primary metabolism ALAS, the C5N unit-forming cALAS (cyclizing ALAS catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of classical ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87 % putatively encoding cALAS. Phylogenetic analysis of the hemA homologues revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GeneBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.

  4. Comparison of blood lead and blood and plasma δ-aminolevulinic acid concentrations as biomarkers for lead poisoning in cattle.

    Science.gov (United States)

    Kang, Hwan Goo; Bischoff, Karyn; Ebel, Joseph G; Cha, Sang Ho; McCardle, James; Choi, Cheong Up

    2010-11-01

    Lead (Pb) concentrations in whole blood and δ-aminolevulinic acid (ALA) concentrations in plasma and whole blood from 37 cattle with suspected Pb exposure were determined in order to investigate the usefulness of ALA as a biological indicator for Pb poisoning in cattle. Cows were divided into 4 groups based on blood Pb, as follows: ppb (group 1), 30-100 ppb (group 2), 100-300 ppb (group 3), and >300 ppb (group 4). The derivatization reaction for ALA was improved by a greater than 2-fold measure in whole blood and by a 10-fold measure in plasma by adding 75 and 50 µl of 0.1 N HCl, respectively. Blood Pb concentrations ranged from ppb to 1,006 ppb (185.5 ± 254.9 ppb), with 17 samples containing >50 ppb Pb. Delta-aminolevulinic acid concentrations in whole blood and plasma ranged from ppb to 96.9 ppb (77.4 ± 8.4 ppb) and from ppb to 24.0 ppb (4.6 ± 3.8 ppb), respectively. Whole blood ALA did not correlate with blood lead concentrations in any group. Increase in plasma ALA concentration was dependent on blood Pb concentration. There was no correlation between blood Pb concentration and plasma ALA concentration in group 2 (n  =  4), but correlation coefficients were 0.736 in group 3 and 0.807 in group 4, respectively. The correlation coefficient was increased to 0.851 when groups 3 and 4 were combined. Based on these observations, in cattle, plasma ALA is a more reliable biological biomarker for Pb exposure than is blood ALA.

  5. 5-aminolevulinic acid-incorporated poly(vinyl alcohol nanofiber-coated metal stent for application in photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Kang DH

    2012-05-01

    Full Text Available Jin Ju Yoo*, Chan Kim*, Chung-Wook Chung, Young-Il Jeong, Dae Hwan KangNational Research and Development Center for Hepatibiliary Disease, Pusan National University Yangsan Hospital, Gyeongnam 626-770, Korea *These authors contributed equally to this work.Background: The study investigated the use of combined photodynamic therapy (PDT and stent placement for the treatment of cholangiocarcinoma (CC. For this purpose, 5-aminolevulinic acid (ALA was incorporated into poly(vinyl alcohol (PVA nanofiber, and coated onto metal stents. Their efficacy was assessed in PDT towards HuCC-T1 CC cells.Methods: Fabrication of ALA-PVA nanofiber, and simultaneous coating onto metal stents, was performed through electrospinning. The dark-toxicity, generation of protoporphyrin IX (PpIX, and PDT effect of ALA and ALA-PVA nanofiber were studied in vitro, using HuCC-T1 CC cells.Results: The ALA-PVA nanofibers were coated onto metal stents less than 1000 nm in diameter. ALA-only displayed marginal cytotoxicity; ALA-PVA nanofiber showed less cytotoxicity. PpIX generation was not sigficantly different between ALA and ALA-PVA nanofiber treatments. PVA itself did not generate PpIX in tumor cells. ALA and ALA-PVA nanofiber displayed a similar PDT effect on tumor cells. Cell viability was decreased, dose-dependently, until ALA concentration reached 100 µg/mL. Necrosis and apoptosis of tumor cells occurred similarly for ALA and ALA- PVA nanofiber treatments.Conclusion: The ALA-PVA nanofiber-coated stent is a promising candidate for therapeutic use with cholangiocarcinoma.Keywords: nanofiber, photodynamic therapy, 5-aminolevulinic acid, poly(vinyl alcohol

  6. Purification of arogenate dehydrogenase from Phenylobacterium immobile.

    Science.gov (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F

    1985-01-07

    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  7. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  8. Dependence between the level of delta-aminolevulinic acid in urine and some parameters with workers of the Zletovo battery factory in Probistip

    OpenAIRE

    Stavreva Veselinovska, Snezana; Zivanovic, Jordan

    1998-01-01

    Lead has the key part in relation to intoxication by heavy metals. The aim of this determination of correlation between the level of delta-aminolevulinic acid in urine and some other parameters with workers professionally expose to the influence of lead in different parts of the factory producing batteries "Zletovo" in Probistip. The material being used for analysis was the urine 256 persons of both sexses, age level 20-50 years.

  9. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    Science.gov (United States)

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring.

  10. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    Science.gov (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  11. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    OpenAIRE

    1989-01-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  12. Malate dehydrogenase: a model for structure, evolution, and catalysis.

    OpenAIRE

    1994-01-01

    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  13. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  14. Placental glucose dehydrogenase polymorphism in Koreans.

    Science.gov (United States)

    Kim, Y J; Paik, S G; Park, H Y

    1994-12-01

    The genetic polymorphism of placental glucose dehydrogenase (GDH) was investigated in 300 Korean placentae using horizontal starch gel electrophoresis. The allele frequencies for GDH1, GDH2 and GDH3 were 0.537, 0.440 and 0.005, respectively, which were similar to those in Japanese. We also observed an anodal allele which was similar to the GDH4 originally reported in Chinese populations at a low frequency of 0.015. An additional new cathodal allele (named GDH6) was observed in the present study with a very low frequency of 0.003.

  15. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  16. Identity of the subunits and the stoicheiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase.

    Science.gov (United States)

    Kasprzak, A A; Papas, E J; Steenkamp, D J

    1983-01-01

    Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated. Images Fig. 1. PMID:6882357

  17. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Tohru [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan); Okamoto, Koji; Niikuni, Ryoyu [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Takahashi, Kiwamu [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Ishizawa, Kenichi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai (Japan); Ichinohasama, Ryo [Department of Hematopathology, Tohoku University Graduate School, Sendai (Japan); Nakamura, Yukio [Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki (Japan); Nakajima, Motowo; Tanaka, Tohru [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Harigae, Hideo, E-mail: harigae@med.tohoku.ac.jp [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan)

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  18. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.

    Science.gov (United States)

    Fujiwara, Tohru; Okamoto, Koji; Niikuni, Ryoyu; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-11-07

    Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA

  19. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  20. The influence of photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) on J-774A.1 macrophage cell line

    Science.gov (United States)

    Kawczyk-Krupka, Aleksandra; Czuba, Zenon; Ledwon, Aleksandra; Latos, Wojciech; Sliszka, Ewelina; Mianowska, Marta; Krol, Wojciech; Sieron, Aleksander

    2008-02-01

    Introduction. The whole mechanism of the cellular level of tumor destruction by photodynamic therapy (PDT) is still unknown. Despite necrotic and apoptotic ways of cell death, there is a variety of events leading to and magnifying the inactivation of tumor cells. Material and methods. J-774A.1 were incubated with δ-aminolevulinic acid (ALA) at different concentrations (125, 250, 500, 1000 μM) and then irradiated with VIS (400 - 750 nm) at the dose of 5,10 and 30 J/cm2 delivered from the incoherent light source. The effects of the application of ALA-PDT were evaluated on the basis of cell viability, nitric oxide (NO), tumor necrosis factor α- (TNF-α) and interleukin-1β (IL-1β) produced by the J-774A.1 cells. Results. The cell viability (assessed using MTT test) was comparable with control group at 5,10 and 30 J/cm2. At these doses of energy using different concentrations of ALA we have observed that at the higher energy doses, the greater increase of TNF-α release, lowering of the level of IL-1β production and decrease of NO release were observed. There was also observed the dependence of the secretional activity of the cells on the ALA concentrations. Conclusion. The cell viability and production of cytokines depended on ALA concentrations and energy doses of the light. The higher some cytokines' release after PDT could be an additional factor for the complete eradication of tumor.

  1. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.

    Science.gov (United States)

    Blake, E; Allen, J; Thorn, C; Shore, A; Curnow, A

    2013-05-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of precancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength, and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment, localized oxygen depletion occurs and is thought to contribute to decreased efficacy. The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to noninvasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area, respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally, no significant difference in PpIX photobleaching or clinical outcome at 3 months between the groups of patients was observed, although the group that received standard MAL-PDT demonstrated a significant increase (pMAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.

  2. Long-term follow-up of metil aminolevulinate (MAL)-PDT in difficult-to-treat cutaneous Bowen's disease.

    Science.gov (United States)

    Cavicchini, Stefano; Serini, Stefano Maria; Fiorani, Roberta; Girgenti, Valentina; Ghislanzoni, Massimo; Sala, Francesco

    2011-08-01

    Bowen's disease (BD) is a form of intraepidermal squamous cell carcinoma, which is clinically characterized by gradually enlarging, well-demarcated erythematous plaques with irregular borders and surface crusting or scaling, affecting primarily the elderly. BD often presents with lesions difficult to treat with standard therapy as surgery, cryosurgery, or 5-fluorouracil (5-FU) for the risk of significantly poor cosmetic outcome, failure rate, and adverse events, related mainly to the age of the patients. Topical PDT with methyl aminolevulinate (MAL) represents a valid and approved therapy for BD lesions in many cases, especially for lesions located at poor healing sites or for large patches of disease, due to its high efficacy coupled with good tolerability and tissue-sparing attitude. In this study, we sought to investigate the efficacy, safety, and cosmetic outcome of MAL-PDT in a series of patients with BD lesions which were challenging to treat for clinical, surgical, and patient-related reasons, such as size of the lesion, difficult surgical approach for anatomical sites, or age of patients and request of the best cosmetic result. We also performed a long-term follow-up to assess recurrence rates and eventual late-onset adverse events.

  3. Effects of 5-aminolevulinic acid photodynamic therapy on TLRs in acne lesions and keratinocytes co-cultured with P. acnes.

    Science.gov (United States)

    Ma, Ying; Chen, Qinyi; Liu, Ye; Wang, Qianqian; Huang, Zheng; Xiang, Leihong

    2016-09-01

    To investigate the effect of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on the expression of Toll like receptors (TLRs) in human keratinocytes and its role in acne treatment. TLR2 and TLR4 expression in acne lesions before and after ALA-PDT were examined by immunohistochemical assay. Primary keratinocytes were obtained from acne lesions, co-cultured with P. acnes and then treated with ALA-PDT using red or blue LED. Cytokines production were examined by ELISA, TLR2 and TLR4 gene expression by real-time PCR, and TLR2 and TLR4 protein expression by Western-blot assay. The overexpression of TLR2 and TLR4 in acne lesion were detected, which became negative or weaker after ALA-PDT. The infection of P. acnes in keratinocytes could significantly increase the levels of early inflammatory cytokines (e.g. IL-1α, TNF-α and IL-8) (Pkeratinocytes (Pkeratinocytes treated with P. acnes via TLRs pathways. Copyright © 2016. Published by Elsevier B.V.

  4. Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation

    Science.gov (United States)

    Wang, Wenqian; Tabu, Kouichi; Hagiya, Yuichiro; Sugiyama, Yuta; Kokubu, Yasuhiro; Murota, Yoshitaka; Ogura, Shun-ichiro; Taga, Tetsuya

    2017-01-01

    Cancer stem cells (CSCs) are dominantly responsible for tumor progression and chemo/radio-resistance, resulting in tumor recurrence. 5-aminolevulinic acid (ALA) is metabolized to fluorescent protoporphyrin IX (PpIX) specifically in tumor cells, and therefore clinically used as a reagent for photodynamic diagnosis (PDD) and therapy (PDT) of cancers including gliomas. However, it remains to be clarified whether this method could be effective for CSC detection. Here, using flow cytometry-based analysis, we show that side population (SP)-defined C6 glioma CSCs (GSCs) displayed much less 5-ALA-derived PpIX fluorescence than non-GSCs. Among the C6 GSCs, cells with ultralow PpIX fluorescence exhibited dramatically higher tumorigenicity when transplanted into the immune-deficient mouse brain. We further demonstrated that the low PpIX accumulation in the C6 GSCs was enhanced by deferoxamine (DFO)-mediated iron chelation, not by reserpine-mediated inhibition of PpIX-effluxing ABCG2. Finally, we found that the expression level of the gene for heme oxygenase-1 (HO-1), a heme degradation enzyme, was high in C6 GSCs, which was further up-regulated when treated with 5-ALA. Our results provide important new insights into 5-ALA-based PDD of gliomas, particularly photodetection of SP-defined GSCs by iron chelation based on their ALA-PpIX-Heme metabolism. PMID:28169355

  5. A gas chromatography-mass spectrometry method for the determination of delta-aminolevulinic acid in plant leaves.

    Science.gov (United States)

    Hijaz, Faraj; Killiny, Nabil

    2016-05-20

    Delta-aminolevulinic (δ-ALA) acid is an important intermediate for tetrapyrroles biosynthesis and it has recently received great attention in plant physiology and human toxicology. However, the colorimetric method which is the most common method for determination of δ-ALA is time consuming and is not specific. In this study, a method for determination of δ-ALA in plant tissues was developed based on the trimethylsilyl (TMS) derivative of the pyrrole formed from the reaction of δ-ALA with ethyl acetoacetate via Knorr condensation. The δ-ALA in the HCl extract was reacted with ethyl acetoacetate to form a pyrrole. Then, the pyrrole compound was extracted using ethyl acetate and the solvent was evaporated to dryness. The dried sample was derivatized to its TMS ester and analyzed using GC-MS. The concentration of δ-ALA in citrus leaves incubated with levulinic acid was also determined by the conventional colorimetric method. The linear range was 10-200ppm in the full scan mode and 0.1-20ppm in the selected ion monitoring (SIM). The limit of detection was 6ppm in the full scan and 0.05ppm in SIM mode, representing a four-fold increase in sensitivity compared to the colorimetric method. The GC-MS method developed in this study is simple, accurate, sensitive, and could also be used to measure δ-ALA in other biological samples.

  6. Comparative analysis of the effects of CO2 fractional laser and sonophoresis on human skin penetration with 5-aminolevulinic acid.

    Science.gov (United States)

    Choi, J H; Shin, E J; Jeong, K H; Shin, M K

    2017-08-19

    Successful delivery of a photosensitizer into the skin is an important factor for effective photodynamic therapy (PDT). The effective method to increase drug penetration within short incubation time overcoming skin barrier have been investigated. This study was performed to analyze and compare the effectiveness of ablative fractional laser (FXL) pretreatment and/or sonophoresis for enhancing the penetration of 5-aminolevulinic acid (ALA) into human skin in vivo. Twenty-four identical 1 × 1 cm(2) treatment areas were mapped on the backs of ten healthy male subjects. Each area received FXL pretreatment and/or sonophoresis with different energy settings and ALA incubation times. After treatments, porphyrin fluorescence reflecting the ALA penetration were measured. Application of ablative CO2 FXL pretreatment resulted to higher fluorescence intensities than the non-treatment group. Incubation times were positively correlated with the increments of ALA penetration. However, increasing pulse energy or combining with sonophoresis did not show additional positive effects on ALA penetration. Ablative CO2 FXL pretreatment effectively facilitated ALA penetration in human skin in vivo. Ablative CO2 FXL alone without sonophoresis setting pulse energy of 10 and 20 mJ with more than 60 min of ALA incubation time could be an ideal setting for ALA penetration.

  7. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    Science.gov (United States)

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.

  8. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors.

    Science.gov (United States)

    Ye, Xuying; Yin, Huijuan; Lu, Yu; Zhang, Haixia; Wang, Han

    2016-10-12

    We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3-6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  9. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors

    Directory of Open Access Journals (Sweden)

    Xuying Ye

    2016-10-01

    Full Text Available We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA and hematoporphyrin monomethyl ether (HMME to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h and 5.8-fold (3 h higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3–6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  10. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  11. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  12. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  13. Fast internal dynamics in alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.; Richter, D. [Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ollivier, J. [Institut Laue-Langevin, CS 20156, 38042 Grenoble (France); Zamponi, M. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  14. Fast internal dynamics in alcohol dehydrogenase

    Science.gov (United States)

    Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D.

    2015-08-01

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  15. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  16. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  17. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  18. A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-Aminolevulinic acid as vehicles for drug delivery

    Science.gov (United States)

    Kia, Majid; Golzar, Maryam; Mahjoub, Kosar; Soltani, Alireza

    2013-10-01

    At present work, we explore the adsorption properties of the 5-Aminolevulinic acid (5ALA) interacting with SWCNTs, C60, and C24 by density functional ab initio (DFT) calculations. It was found that the electronic structure of C60 is more sensitive to the presence of 5ALA in comparison with C24, (5, 5), and (9, 0) SWCNT. Our results demonstrate that the interactions between 5ALA and the nanostructures are chemisorption. The natural bond orbital (NBO) and density of states (DOSs) analyses represent that the nature of 5ALA adsorption on the applied nanostructures is permanently electrostatic rather than covalent.

  19. In Vivo Non-Invasive Evaluation of Actinic Keratoses Response to Methyl-Aminolevulinate-Photodynamic Therapy (MAL-PDT) by Reflectance Confocal Microscopy

    OpenAIRE

    Marina Venturini; Arianna Zanca; Piergiacomo Calzavara-Pinton

    2014-01-01

    Photodynamic therapy (PDT) with methyl-aminolevulinate (MAL) is an approved non-invasive treatment option for actinic keratoses (AKs). In vivo reflectance confocal microscopy (RCM) is a non-invasive tool for real-time imaging of epidermis and superficial dermis in vivo that has been previously reported to facilitate the in vivo evaluation of skin lesions, including AKs. The aim of this study was to investigate the use of in vivo RCM in evaluating AKs response to MAL-PDT. For this reason a tot...

  20. Cell wall-associated malate dehydrogenase activity from maize roots.

    Science.gov (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko

    2011-10-01

    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  1. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  2. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    from Geobacillus. It is selected from SEQ ID NO. 1-17. Sequences not defined here may be found at ftp://ftp.wipo.int/pub/publishedpctsequences/publication. The heterologous gene encoding glycerol dehydrogenase has been incorporated into the chromosome of the bacterium, or is inserted into a lactate...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... selected from glycerol dehydrogenase (E.C 1.1.1.6); glycerol dehydrogenase (NADP(+)) (E.C. 1.1.1.72); glycerol 2-dehydrogenase (NADP(+)) (E.C. 1.1.1.156); and glycerol dehydrogenase (acceptor) (E.C. 1.1.99.22). The heterologous gene encoding a glycerol dehydrogenase is derived from Thermotoga or is derived...

  3. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid and ethylene from delta-aminolevulinic acid in ripening tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    El-Rayes, D.E.D.A.

    1987-01-01

    A new pathway for ethylene (C/sub 2/H/sub 4/) biosynthesis, which utilizes delta-aminolevulinic acid (ALA) as a precursor of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of C/sub 2/H/sub 4/, is presented. ALA enhanced ACC accumulation to 410% and C/sub 2/H/sub 4/ production to 232% of the control. The C/sub 2/H/sub 4/ production rate varied with the ALA concentration and the stage of tomato fruit development. As the ALA concentration increased from zero to 40 mM, the C/sub 2/H/sub 4/ production rate increased. Both treated and untreated pericarp discs from fruits at the pink stage of development yielded the largest C/sub 2/H/sub 4/ production rate. Radioactivity from (2,3-/sup 3/H)ALA was detected in both ACC and C/sub 2/H/sub 4/, and radioactivity from (4-/sup 14/C)ALA was detected in ACC and CO/sub 2/ but not in C/sub 2/H/sub 4/. However, radioactivity from (5-/sup 14/C)ALA was detected in CO/sub 2/, and its amount was greater than that obtained from (4-/sup 14/C)ALA. Neither ACC nor C/sub 2/H/sub 4/ showed any radioactivity when (5-/sup 14/C)ALA was supplied to the fruit discs. In addition, when (2,3-/sup 3/H)ALA or (4-/sup 14/C)ALA was supplied to the fruit discs, radioactivity was detected in other metabolites such as fumarate, succinate, malate, glutamate, glutamine, ..cap alpha..-ketoglutarate, and methionine, but the amount of radioactivity was insignificant as compared with the amount of radioactivity found in C/sub 2/H/sub 4/ and ACC.

  4. Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Anand, Sanjay; Honari, Golara; Hasan, Tayyaba; Elson, Paul; Maytin, Edward V

    2009-05-15

    To improve treatment efficacy and tumor cell selectivity of delta-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) via pretreatment of cells and tumors with methotrexate to enhance intracellular photosensitizer levels. Skin carcinoma cells, in vitro and in vivo, served as the model system. Cultured human SCC13 and HEK1 cells, normal keratinocytes, and in vivo skin tumor models were preconditioned with methotrexate for 72 h and then incubated with ALA for 4 h. Changes in protoporphyrin IX (PpIX) levels and cell survival after light exposure were assessed. Methotrexate preconditioning of monolayer cultures preferentially increased intracellular PpIX levels 2- to 4-fold in carcinoma cells versus normal keratinocytes. Photodynamic killing was synergistically enhanced by the combined therapy compared with PDT alone. Methotrexate enhancement of PpIX levels was achieved over a broad methotrexate concentration range (0.0003-1.0 mg/L; 0.6 nmol/L-2 mmol/L). PpIX enhancement correlated with changes in protein expression of key porphyrin pathway enzymes, approximately 4-fold increase in coproporphyrinogen oxidase and stable or slightly decreased expression of ferrochelatase. Differentiation markers (E-cadherin, involucrin, and filaggrin) were also selectively induced by methotrexate in carcinoma cells. In vivo relevance was established by showing that methotrexate preconditioning enhances PpIX accumulation in three models: (a) organotypic cultures of immortalized keratinocytes, (b) chemically induced skin tumors in mice; and (c) human A431 squamous cell tumors implanted subcutaneously in mice. Combination therapy using short-term exposure to low-dose methotrexate followed by ALA-PDT should be further investigated as a new combination modality to enhance efficacy and selectivity of PDT for epithelial carcinomas.

  5. Vitamin D Combined with Aminolevulinate (ALA)-Mediated Photodynamic Therapy (PDT) for Human Psoriasis: A Proof-of-Principle Study.

    Science.gov (United States)

    Maytin, Edward V; Honari, Golara; Khachemoune, Amor; Taylor, Charles R; Ortel, Bernhard; Pogue, Brian W; Sznycer-Taub, Nathaniel; Hasan, Tayyaba

    2012-09-01

    We previously showed that select agents (methotrexate or Vitamin D), when administered as a preconditioning regimen, are capable of promoting cellular differentiation of epithelial cancer cells while simultaneously enhancing the efficacy of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT). In solid tumors, pretreatment with Vitamin D simultaneously promotes cellular differentiation and leads to selective accumulation of target porphyrins (mainly protoporphyrin IX, PpIX) within diseased tissue. However, questions of whether or not the effects upon cellular differentiation are inexorably linked to PpIX accumulation, and whether these effects might occur in hyperproliferative noncancerous tissues, have remained unanswered. In this paper, we reasoned that psoriasis, a human skin disease in which abnormal cellular proliferation and differentiation plays a major role, could serve as a useful model to test the effects of pro-differentiating agents upon PpIX levels in a non-neoplastic setting. In particular, Vitamin D, a treatment for psoriasis that restores (increases) differentiation, might increase PpIX levels in psoriatic lesions and facilitate their responsiveness to ALA-PDT. This concept was tested in a pilot study of 7 patients with bilaterally-matched psoriatic plaques. A regimen in which calcipotriol 0.005% ointment was applied for 3 days prior to ALA-PDT with blue light, led to preferential increases in PpIX (~130%), and reductions in thickness, redness, scaling, and itching in the pretreated plaques. The results suggest that a larger clinical trial is warranted to confirm a role for combination treatments with Vitamin D and ALA-PDT for psoriasis.

  6. Reaction of diphenyl diselenide with hydrogen peroxide and inhibition of delta-aminolevulinate dehydratase from rat liver and cucumber leaves

    Directory of Open Access Journals (Sweden)

    M. Farina

    2002-06-01

    Full Text Available The interaction of the product of H2O2 and (PhSe2 with delta-aminolevulinate dehydratase (delta-ALA-D from mammals and plants was investigated. (PhSe2 inhibited rat hepatic delta-ALA-D with an IC50 of 10 µM but not the enzyme from cucumber leaves. The reaction of (PhSe2 with H2O2 for 1 h increased the inhibitory potency of the original compound and the IC50 for animal delta-ALA-D inhibition was decreased from 10 to 2 µM. delta-ALA-D from cucumber leaves was also inhibited by the products of reaction of (PhSe2 with H2O2 with an IC50 of 4 µM. The major product of reaction of (PhSe2 with H2O2 was identified as seleninic acid and produced an intermediate with a lambdamax at 265 nm after reaction with t-BuSH. These results suggest that the interaction of (PhSe2 with mammal delta-ALA-D requires the presence of cysteinyl residues in close proximity. Two cysteine residues in spatial proximity have been recently described for the mammalian enzyme. Analysis of the primary structure of plant delta-ALA-D did not reveal an analogous site. In contrast to (PhSe2, seleninic acid, as a result of the higher electrophilic nature of its selenium atom, may react with additional cysteinyl residue(s in mammalian delta-ALA-D and also with cysteinyl residues from cucumber leaves located at a site distinct from that found at the B and A sites in mammals. Although the interaction of organochalcogens with H2O2 may have some antioxidant properties, the formation of seleninic acid as a product of this reaction may increase the toxicity of organic chalcogens such as (PhSe2.

  7. Low-Dose Topical 5-Aminolevulinic Acid Photodynamic Therapy in the Treatment of Different Severity of Acne Vulgaris.

    Science.gov (United States)

    Tao, Shi-Qin; Li, Fei; Cao, Lei; Xia, Ru-Shan; Fan, Hua; Fan, Ying; Sun, Hui; Jing, Cheng; Yang, Li-Jia

    2015-12-01

    The objective of this article is to investigate the effectiveness and safety of photodynamic therapy (PDT) with 3.6 % topical aminolevulinic acid (ALA) and a short incubation time with red light in moderate to severe acne. One hundred and thirty-six patients with moderate to severe acne were treated with 3.6 % topical ALA-PDT for three sessions with an interval of 2 weeks. Patients were evaluated for efficacy and safety on week 2, 4, 6, 8, and 12 after the initial treatment. Most patients showed apparent clearance of acne lesions at the treated site after three sessions. The effective treatment rates were increased after the multiple therapies. The clinical outcomes are the best at 4 weeks after the final treatment. The total effectiveness rate and cure rate of the low-dose ALA-PDT procedure is 92.65 and 47.06 %, respectively. Thirty-one patients and nineteen patients showed apparent exacerbation of acne lesions before the 2nd and 3rd treatment, respectively, but all of them showed good or excellent improvement after a three-course treatment. A few patients showed mild relapse including papules and comedos at 8 weeks after the final treatment. No significant differences are found in the effects of different acne severity and different genders. Adverse reactions are mild and transient. A 3.6 % topical ALA-PDT with a short time incubation with red light is a simple and an effective treatment option for moderate to severe acne with mild side effects in Chinese people.

  8. Diagnostic approach for cancer cells in urine sediments by 5-aminolevulinic acid-based photodynamic detection in bladder cancer.

    Science.gov (United States)

    Miyake, Makito; Nakai, Yasushi; Anai, Satoshi; Tatsumi, Yoshihiro; Kuwada, Masaomi; Onishi, Sayuri; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide

    2014-05-01

    Bladder urothelial carcinoma is diagnosed and followed up after transurethral resection using a combination of cystoscopy, urine cytology and urine biomarkers at regular intervals. However, cystoscopy can overlook flat lesions like carcinoma in situ, and the sensitivity of urinary tests is poor in low-grade tumors. There is an emergent need for an objective and easy urinary diagnostic test for the management of bladder cancer. In this study, three different modalities for 5-aminolevulinic acid (ALA)-based photodynamic diagnostic tests were used. We developed a compact-size, desktop-type device quantifying red fluorescence in cell suspensions, named "Cellular Fluorescence Analysis Unit" (CFAU). Urine samples from 58 patients with bladder cancer were centrifuged, and urine sediments were then treated with ALA. ALA-treated sediments were subjected to three fluorescence detection assays, including the CFAU assay. The overall sensitivities of conventional cytology, BTA, NMP22, fluorescence cytology, fluorescent spectrophotometric assay and CFAU assay were 48%, 33%, 40%, 86%, 86% and 87%, respectively. Three different ALA-based assays showed high sensitivity and specificity. The ALA-based assay detected low-grade and low-stage bladder urothelial cells at shigher rate (68-80% sensitivity) than conventional urine cytology, BTA and NMP22 (8-20% sensitivity). Our findings demonstrate that the ALA-based fluorescence detection assay is promising tool for the management of bladder cancer. Development of a rapid and automated device for ALA-based photodynamic assay is necessary to avoid the variability induced by troublesome steps and low stability of specimens.

  9. Clearance of protoporphyrin IX induced by 5-aminolevulinic acid from WiDr human colon carcinoma cells

    Science.gov (United States)

    Juzeniene, Asta; Kaliszewski, Miron; Bugaj, Andrzej; Moan, Johan

    2009-06-01

    5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is the most widely practiced form of PDT in dermatology. One of the advantages of ALA-PDT is that undesirable photosensitization lasts only for 24-48 h. In order to optimize ALA-PDT it is necessary to understand the mechanisms controlling intracellular PpIX clearance (efflux and transformation into heme) in order to decrease protoporphyrin IX (PpIX) clearance rates in the early stages of its production. The aim of this study was to investigate the factors controlling the clearance of intracellular PpIX. Fluorescence spectroscopy was used to study PpIX kinetics in WiDr cells initially treated with ALA. The clearance rate of PpIX in WiDr cells was faster after application of a low concentration of ALA (0.1 mM) than after application of high concentration of ALA (1 mM). PpIX was cleared faster from cells which initially were seeded at low densities than cells seeded at higher densities. The presence of the iron chelator deferoxamine reduced the clearance rate of PpIX, while the presence of ferrous sulfate acted oppositely. The decay rate of PpIX in WiDr cells was faster at higher temperature than at lower. The ferrochelatase activity at pH 7.2 was significantly greater than that at pH 6.7. ALA concentration, application time, cell density, temperature, pH, intracellular iron content, intracellular amount and localization of PpIX are factors controlling PpIX clearance.

  10. Separation and partial characterization of enzymes catalyzing delta-aminolevulinic acid formation in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Rieble, S; Beale, S I

    1991-09-01

    Formation of the universal tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate via the five-carbon pathway requires three enzymes: glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde (GSA) aminotransferase. All three enzymes were separated from extracts of the unicellular cyanobacterium Synechocystis sp. PCC 6803, and two of them, glutamyl-tRNA synthetase and GSA aminotransferase, were partially characterized. After an initial high speed centrifugation and differentiatial ammonium sulfate fractionation of cell extract, the enzymes were separated by successive affinity chromatography on Reactive Blue 2-Sepharose and 2',5'-ADP-agarose. All three enzyme fractions were required to reconstitute ALA formation from glutamate. The apparent native molecular masses of glutamyl-tRNA synthetase and GSA aminotransferase were determined by gel filtration chromatography to be 63 and 98 kDa, respectively. Neither glutamyl-tRNA synthetase nor GSA aminotransferase activity was affected by hemin concentrations up to 10 and 30 microM, respectively, and neither activity was affected by protochlorophyllide concentrations up to 2 microM. GSA aminotransferase was inhibited 50% by 0.5 microM gabaculine. The gabaculine inhibition was reversible for up to 1 h after its addition, if the gabaculine was removed by gel filtration before the enzyme was incubated with substrate. However, irreversible inactivation was obtained by preincubating the enzyme at 30 degrees C either for several hours with gabaculine alone or for a few minutes with both gabaculine and GSA. Neither pyridoxal phosphate nor pyridoxamine phosphate significantly affected the activity of GSA aminotransferase at physiologically relevant concentrations, and neither of these compounds reactivated the gabaculine-inactivated enzyme. It was noted that the presence of pyridoxamine phosphate in the ALA assay mixture produced a false positive color reaction even in the absence of enzyme.

  11. Topical 5-aminolevulinic acid photodynamic therapy improved refractory acne conglobata and perifolliculitis capitis abscedens et suffodiens rather than hidradenitis suppurativa

    Directory of Open Access Journals (Sweden)

    Linglin Zhang

    2016-01-01

    Full Text Available Acne conglobata (AC, perifolliculitis capitis abscedens et suffodiens (PCAS and hidradenitis suppurativa (HS are uncommon refractory chronic, inflammatory, scarring diseases but cause serious damage to the quality of life. These three diseases are associated with follicular occlusion. Several studies indicated topical 5-aminolevulinic acid photodynamic therapy (ALA-PDT improved follicular occlusion besides acne treatment. So we attempted to apply ALA-PDT to medicine resistant AC, PCAS and HS. Topical ALA-PDT was applied to 10 patients with AC, seven patients with PCAS and three patients with HS for more than three sessions. All the patients completed the dermatology life quality index (DLQI questionnaire and were assessed for the efficacy at the baseline and on two weeks after each treatment. Adverse effects were recorded at each visit. The results showed 25.5% (5/20, two cases of AC and three cases of PCAS of patients achieved excellent improvement after three sessions of PDT and another 60.0% (12/20, eight cases of AC and four cases of PCAS of patients achieved good improvement. 15.0% (3/20, three cases of HS got poor response (< 20% lesions clearance. Another five cases (three cases of AC and two cases of PCAS also achieved excellent response after 5–7 sessions of PDT. We also found that papular/nodular, cyst/abscess showed higher clearance rate than sinus/fistula (88.5%, 86.1% versus 11.1%. DLQI was reduced after three sessions of PDT in AC and PCAS patients rather than HS patients. 5-ALA-PDT could improve refractory AC and PCAS but could not lead to improvement in late stage of HS. The efficacy increased with more treatment sessions.

  12. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    Science.gov (United States)

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  13. Study on Insecticidal Activities and Effect on Three Kinds of Enzymes by 5- Aminolevulinic Acid on Oxya chinensis

    Institute of Scientific and Technical Information of China (English)

    YIN Kun; MA En-bo; XUE Chun-rong; WU Hai-hua; GUO Ya-ping; ZHANG Jian-zhen

    2008-01-01

    Insecticidal activities and effects on three enzymic activities caused by 5-aminolevulinic acid (ALA) on Oxya chinensis were studied. Fourth-instar nymphs of O. chinensis were treated with different doses of ALA (A 1,250 mM; A2, 450 mM; A3,750 mM; A4, 1 000 mM). Mortality and the activities of acetylcholinesterase (ACHE), glutathione S-transferase (GSTs), and glutathione peroxidase (GPx) were determinated. The mortality of O. chinensis rose with an increasing dose of ALA. The mortality of high-dose treatments A3 and A4 reached 66.19 and 80.21%, respectively. The value of LD50 was 3.61 (3.29-3.93) mg g-1 body weight (95% confidence interval). Biochemical studies showed that the activities of AChE and GPx in the A4 treatment declined by 51.53 and 42.82% in the female, and 42.65 and 43.85% in the male compared to the control, respectively, and the degree of decline reached a significant level at P < 0.05. Meanwhile, the GSTs activities of O. chinensis enhanced with increasing dose of ALA. The GSTs activities of female and male O. chinensis in the A4 treatment remarkably increased by 171.05 and 97.42% compared to the control (P < 0.05). ALA had an obviously toxic effect on O. chinensis. Moreover, ALA caused the photoinactivation of AChE and GPx, which induced nerve transmission blocking and the capability to defend oxidation damage declining. Meanwhile, a high dose of ALA could activate GSTs, which caused a feedback inhibition of the insect to the phototoxic substance.

  14. RNA is required for enzymatic conversion of glutamate to delta-aminolevulinate by extracts of Chlorella vulgaris.

    Science.gov (United States)

    Weinstein, J D; Beale, S I

    1985-05-15

    Formation of delta-aminolevulinic acid (ALA) from glutamete catalyzed by a soluble extract from the unicellular green alga, Chlorella vulgaris, was abolished after incubation of the cell extract with bovine pancreatic ribonuclease A (RNase). Cell extract was prepared for the ALA formation assay by high-speed centrifugation and gel-filtration through Sephadex G-25 to remove insoluble and endogenous low-molecular-weight components. RNA hydrolysis products did not affect ALA formation, and RNase did not affect the ability of ATP and NADPH to serve as reaction substrates, indicating that the effect of RNase cannot be attributed to degradation of reaction substrates or transformation of a substrate or cofactor into an inhibitor. The effect of RNase was blocked by prior addition of placental RNase inhibitor (RNasin) to the cell extract, but RNasin did not reverse the effect of prior incubation of the cell extract with RNase, indicating that RNase does not act by degrading a component generated during the ALA-forming reaction, but instead degrades an essential component already present in active cell extract at the time the ALA-forming reaction is initiated. After inactivation of the cell extract by incubation with RNase, followed by administration of RNasin to block further RNase action, ALA-forming activity could be restored to a higher level than originally present by addition of a C. vulgaris tRNA-containing fraction isolated from an active ALA-forming preparation by phenol extraction and DEAE-cellulose chromatography. Baker's yeast tRNA, wheat germ tRNA, Escherichia coli tRNA, and E. coli tRNAglu type II were unable to reconstitute ALA-forming activity in RNase-treated cell extract, even though the cell extract was capable of catalyzing the charging of some of these RNAs with glutamate.

  15. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose

    2016-10-01

    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  16. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    OpenAIRE

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  17. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    OpenAIRE

    Tang, J C; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  18. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  19. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  20. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... for studies that investigated G6PD deficiency in Indian population. If any author studied .... analyses, (2) case reports, and (3) reviews and editorials. 2.3. ..... Beutler E, editors. Glucose-6-phosphate dehydrogenase. Orlando,.

  1. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  2. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.

    Science.gov (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F

    2013-12-01

    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  3. Resurrecting ancestral alcohol dehydrogenases from yeast.

    Science.gov (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A

    2005-06-01

    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  4. Lactic dehydrogenase and cancer: an overview.

    Science.gov (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  5. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride.

    Science.gov (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F

    1990-01-01

    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).

  6. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology.

    Science.gov (United States)

    Toyama, Hirohide; Mathews, F Scott; Adachi, Osao; Matsushita, Kazunobu

    2004-08-01

    Quino(hemo)protein alcohol dehydrogenases (ADH) that have pyrroloquinoline quinone (PQQ) as the prosthetic group are classified into 3 groups, types I, II, and III. Type I ADH is a simple quinoprotein having PQQ as the only prosthetic group, while type II and type III ADHs are quinohemoprotein having heme c as well as PQQ in the catalytic polypeptide. Type II ADH is a soluble periplasmic enzyme and is widely distributed in Proteobacteria such as Pseudomonas, Ralstonia, Comamonas, etc. In contrast, type III ADH is a membrane-bound enzyme working on the periplasmic surface solely in acetic acid bacteria. It consists of three subunits that comprise a quinohemoprotein catalytic subunit, a triheme cytochrome c subunit, and a third subunit of unknown function. The catalytic subunits of all the quino(hemo)protein ADHs have a common structural motif, a quinoprotein-specific superbarrel domain, where PQQ is deeply embedded in the center. In addition, in the type II and type III ADHs this subunit contains a unique heme c domain. Various type II ADHs each have a unique substrate specificity, accepting a wide variety of alcohols, as is discussed on the basis of recent X-ray crystallographic analyses. Electron transfer within both type II and III ADHs is discussed in terms of the intramolecular reaction from PQQ to heme c and also from heme to heme, and in terms of the intermolecular reaction with azurin and ubiquinone, respectively. Unique physiological functions of both types of quinohemoprotein ADHs are also discussed.

  7. Improved 5-Aminolevulinic Acid Production with Recombinant Escherichia coli by a Short-term Dissolved Oxygen Shock in Fed-batch Fermentation

    Institute of Scientific and Technical Information of China (English)

    杨俊; 朱力; 傅维琦; 林逸君; 林建平; 岑沛霖

    2013-01-01

    5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ-isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 min in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 min. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g·L-1 (72 mmol·L-1), which is the highest yield in the fermentation broth reported up to now.

  8. [Alcohol dehydrogenase and aldehyde dehydrogenase as tumour markers and factors intensifying carcinogenesis in colorectal cancer].

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Kedra, Bogusław; Szmitkowski, Maciej

    2008-06-01

    Numerous experiments have shown that alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in cells of various cancers and play role in carcinogenesis. The aim of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity, between colorectal cancer and normal colonic mucosa. We have also investigated the serum activity of these enzymes in colorectal cancer patients as potential tumour markers. The activities of ADH isoenzymes and ALDH were measured in the: cancer tissue, healthy colonic mucosa and serum of 42 patients with colorectal cancer. For the measurement of the activity of class I ADH isoenzyme and ALDH activity the fluorometric methods was employed. The total ADH activity and activity of class III and IV isoenzymes was measured by the photometric method. The activity of total alcohol dehydrogenase and class I of ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH had higher activities in cancer tissue but the differences were not statistically significant. The activity of ALDH was significantly lower in the cancer cells. The activities of all tested enzymes and isoenzymes in colorectal cancer tissue were not significantly higher in drinkers than in non-drinkers. Additionally we observed statistically significant increasing activity of class I ADH isoenzymes in the sera of patients with colorectal cancer. For this reason the total ADH activity was also significantly increased. The activities of ADH III and ADH IV isoenzymes and ALDH were unchanged in the sera of patients. There were no marked differences in activities of all tested enzymes and isoenzymes between drinkers and non-drinkers (with colorectal cancer). The differences in activities of total ADH and class I ADH isoenzymes between colorectal cancer tissues and healthy mucosa might be a factor of ethanol metabolism disorders, which can intensify carcinogenesis. The increased total

  9. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica

    2012-01-01

    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  10. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Directory of Open Access Journals (Sweden)

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  11. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  12. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways

    NARCIS (Netherlands)

    Franken, A.C.; Christien Lokman, B.; Ram, A.F.; Hondel, C.A. van den; Weert, S. de; Punt, P.J.

    2012-01-01

    To increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5′-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modula

  13. Aminolevulinic Acid-Mediated Photodynamic Therapy of Human Meningioma: An in Vitro Study on Primary Cell Lines

    Directory of Open Access Journals (Sweden)

    Mustafa El-Khatib

    2015-04-01

    Full Text Available Objective: Five-aminolevulinic acid (5-ALA-induced porphyrins in malignant gliomas are potent photosensitizers. Promising results of ALA-PDT (photodynamic therapy in recurrent glioblastomas have been published. Recently, 5-ALA-induced fluorescence was studied in meningioma surgery. Here, we present an experimental study of ALA-PDT in an in vitro model of primary meningioma cell lines. Methods: We processed native tumor material obtained intra-operatively within 24 h for cell culture. Epithelial membrane antigen (EMA immunohistochemistry was performed after the first passage to confirm that cells were meningioma cells. For 5-ALA-PDT treatment, about 5000 cells per well were seeded in 20 wells of a blank 96-well plate. Each block of 4 wells was inoculated with 150 µL of 0, 25, 50 and 100 µg/mL 5-ALA solutions; one block was used as negative control without 5-ALA and without PDT. Following incubation for 3 h PDT was performed using a laser (635 nm, 18.75 J/cm2. The therapeutic response was analyzed by the water soluble tetrazolium salt (WST-1 cell viability assay 90 min after PDT. Results: 5-ALA-PDT was performed in 14 primary meningioma cell lines. EMA expression was verified in 10 primary cell cultures. The remaining 4 were EMA negative and PDT was without any effect in these cultures. All 10 EMA-positive cell lines showed a significant and dose-dependent decrease in viability rate (p < 0.001. Cell survival at 5-ALA concentrations of 12.5, 25, 50 and 100 μg/mL was 96.5% ± 7.6%, 67.9% ± 29.9%, 24.0% ± 16.7% and 13.8% ± 7.5%, respectively. For the negative controls (no 5-ALA/PDT and ALA/no PDT, the viability rates were 101.72% ± 3.5% and 100.17% ± 3.6%, respectively. The LD50 for 5-ALA was estimated between 25 and 50 µg/mL. Conclusion: This study reveals dose-dependent cytotoxic effects of 5-ALA-PDT on primary cell lines of meningiomas. Either 5-ALA or PDT alone did not affect cell survival. Further efforts are necessary to study the

  14. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Pilar Teixidor

    Full Text Available During the last decade, the use of 5-aminolevulinic acid (5-ALA has been steadily increasing in neurosurgery. The study's main objectives were to prospectively evaluate the effectiveness and safety of 5-ALA when used in clinical practice setting on high-grade gliomas' patients.National, multicenter and prospective observational study.authorized conditions of use of 5-ALA.contraindication to 5-ALA, inoperable or partial resected tumors, pregnancy and children. Epidemiological, clinical, laboratory, radiological, and safety data were collected. Effectiveness was assessed using complete resection of the tumor, and progression-free and overall survival probabilities.Between May 2010 and September 2014, 85 patients treated with 5-ALA were included, and 77 were suitable for the effectiveness analysis. Complete resection was achieved in 41 patients (54%. Surgeons considered suboptimal the fluorescence of 5-ALA in 40% of the patients assessed. The median duration of follow-up was 12.3 months. The progression-free survival probability at 6 months was 58%. The median duration overall survival was 14.2 months. Progression tumor risk factors were grade of glioma, age and resection degree; and death risk factors were grade of glioma and gender. No severe adverse effects were reported. At one month after surgery, new or increased neurological morbidity was 6.5%. Hepatic enzymes were frequently increased within the first month after surgery; however, they subsequently normalized, and this was found to have no clinical significance.In clinical practice, the 5-ALA showed a good safety profile, but the benefits related to 5-ALA have not been yet clearly shown. The improved differentiation expected by fluorescence between normal and tumor cerebral tissue was suboptimal in a relevant number of patients; in addition, the expected higher degree of resection was lower than in clinical trials as well as incomplete resection was not identified as a prognostic factor

  15. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  16. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    Science.gov (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  17. Combination photodynamic therapy using 5-fluorouracil and aminolevulinate enhances tumor-selective production of protoporphyrin IX and improves treatment efficacy of squamous skin cancers and precancers

    Science.gov (United States)

    Maytin, Edward V.; Anand, Sanjay

    2016-03-01

    In combination photodynamic therapy (cPDT), a small-molecule drug is used to modulate the physiological state of tumor cells prior to giving aminolevulinate (ALA; a precursor for protoporphyrin IX, PpIX). In our laboratory we have identified three agents (methotrexate, 5-fluorouracil, and vitamin D) that can enhance therapeutic effectiveness of ALAbased photodynamic therapy for cutaneous squamous cell carcinoma (SCC). However, only one (5-fluorouracil; 5-FU) is FDA-approved for skin cancer management. Here, we describe animal and human studies on 5-FU mechanisms of action, in terms of how 5-FU pretreatment leads to enhanced PpIX accumulation and improves selectivity of ALA-PDT treatment. In A431 subcutaneous tumors in mice, 5-FU changed expression of heme enzyme (upregulating coproporphyrinogen oxidase, and down-regulating ferrochelatase), inhibited tumor cell proliferation (Ki-67), enhanced differentiation (E-cadherin), and led to strong, tumor-selective increases in apoptosis. Interestingly, enhancement of apoptosis by 5-FU correlated strongly with an increased accumulation of p53 in tumor cells that persisted for 24 h post- PDT. In a clinical trial using a split-body, bilaterally controlled study design, human subjects with actinic keratoses (AK; preneoplastic precursors of SCC) were pretreated on one side of the face, scalp, or forearms with 5-FU cream for 6 days, while the control side received no 5-FU. On the seventh day, the levels of PpIX in 4 test lesions were measured by noninvasive fluorescence dosimetry, and then all lesions were treated with PDT using methyl-aminolevulinate (MAL) and red light (635 nm). Relative amounts of PpIX were found to be increased ~2-fold in 5-FU pretreated lesions relative to controls. At 3 months after PDT, the overall clinical response to PDT (reduction in lesion counts) was 2- to 3-fold better for the 5-FU pretreated lesions, a clinically important result. In summary, 5-FU is a useful adjuvant to aminolevulinate-based PDT

  18. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Science.gov (United States)

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  19. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  20. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  1. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  2. Correlation between treatment time, photobleaching, inflammation and pain after photodynamic therapy with methyl aminolevulinate on tape-stripped skin in healthy volunteers

    DEFF Research Database (Denmark)

    Lerche, Catharina M; Fabricius, Susanne; Philipsen, Peter A;

    2015-01-01

    Photodynamic therapy (PDT) is an attractive treatment option for skin diseases such as actinic keratosis, since large skin areas can be treated with high response rates and good cosmetic outcomes. Nevertheless inflammation and pain are still major side effects. The aim of this study...... was to investigate the extent to which less time-consuming PDT treatment regimens using methyl aminolevulinate (MAL) decrease protoporphyrin IX (PpIX) photobleaching, inflammation and pain. Twenty-four healthy volunteers were treated with 4 different interventions on each forearm. All 8 fields were tape-stripped 10...... MAL removal. PpIX fluorescence, photobleaching, objective and subjective erythema (as a measure for inflammation), pigmentation and pain were measured. The results showed a significant correlation between incubation time, time until illumination and photobleaching. Furthermore, there was a significant...

  3. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli.

    Science.gov (United States)

    Li, Fangfang; Wang, Yang; Gong, Kai; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2014-01-01

    In the current study, the small RNA ryhB, which regulates the metabolism of iron in Escherichia coli, was constitutively expressed in engineered E. coli DALA. The resulting strain E. coli DALRA produced 16% more 5-aminolevulinic acid (ALA) than the parent strain E. coli DALA in batch fermentation. Meanwhile, we found that addition of iron in the medium increased heme formation and reduced ALA yield, whereas the presence of iron chelator in the medium decreased heme concentration and increased the ALA production efficiency (ALA yield per OD600). The qRT-PCR analysis showed that the mRNA levels of hemB and hemH were also decreased as well as the known RyhB target genes of acnAB, sdhAB, fumA, and cydAB in E. coli DALRA. These results indicated that small RNA can be used as a tool for regulating ALA accumulation in E. coli.

  4. Improvement of manganese peroxidase production by the hyper lignin-degrading fungus Phanerochaete sordida YK-624 by recombinant expression of the 5-aminolevulinic acid synthase gene.

    Science.gov (United States)

    Hirai, Hirofumi; Misumi, Kenta; Suzuki, Tomohiro; Kawagishi, Hirokazu

    2013-12-01

    The manganese peroxidase (MnP) gene (mnp4) promoter of Phanerochaete sordida YK-624 was used to drive expression of 5-aminolevulinic acid synthase (als), which is a key heme biosynthesis enzyme. The expression plasmid pMnP4pro-als was transformed into P. sordida YK-624 uracil auxotrophic mutant UV-64, and 14 recombinant als expressing-transformants were generated. Average cumulative MnP activities in the transformants were 1.18-fold higher than that of control transformants. In particular, transformants A-14 and A-61 showed significantly higher MnP activity (approximately 2.8-fold) than wild type. RT-PCR analysis indicated that the increased MnP activity was caused by elevated recombinant als expression. These results suggest that the production of MnP is improved by high expression of als.

  5. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  6. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  7. Clinical studies of combined photodynamic therapy using 5-fluorouracil and methyl-aminolevulinate in patients at high risk for squamous cell carcinoma

    Science.gov (United States)

    Maytin, Edward V.; Lohser, Sara; Tellez, Alejandra; Wene, Lauren; Ishak, Rim; Anand, Sanjay

    2013-03-01

    Photodynamic therapy (PDT) using aminolevulinic acid or its methyl ester, methyl-aminolevulinate (MAL), is an increasingly recognized approach for treating squamous neoplasia of the skin. Advantages of MAL-PDT include its ability to cover broad diseased areas (field treatment), and to do multiple sessions with little-to-no risk of scarring or mutagenesis. MAL-PDT is especially valuable in certain populations at high risk for skin cancer, including Caucasian patients with extensive solar damage, and organ transplant recipients (OTR) who take immunosuppressive drugs to prevent graft rejection. The latter group has a 65-200 fold increased risk of developing squamous cell carcinoma (SCC), a major cause of mortality. Therapeutic options for those patients, other than frequent surgeries, are very limited. Topical 5-Fluorouracil (5-FU), frequently prescribed in normal patients for pre-SCC of the skin, is only minimally effective in the OTR group. MAL-PDT, however, has ~40% efficacy for pre-SCC in OTR patients. Based upon our preclinical studies in mouse tumor models, which showed that preconditioning with 5-FU can drive higher accumulation of target protoporphyins (PpIX), we proposed a rational combination regimen of 5-FU and MAL-PDT in humans. A clinical trial was designed to test the hypothesis that a combination of 5-FU followed by MAL-PDT will elevate PpIX levels and achieve better clinical outcomes in high-risk OTR patients. Primary endpoints include PpIX levels and biochemical markers (p53) measured noninvasively and in skin biopsies. Lesion clearance and recurrence (via photographs and clinical exam) are secondary endpoints. Ongoing results of this clinical trial are presented.

  8. Molecular dynamics analysis of the structural and dynamic properties of the functionally enhanced hepta-variant of mouse 5-aminolevulinate synthase.

    Science.gov (United States)

    Na, Insung; DeForte, Shelly; Stojanovski, Bosko M; Ferreira, Gloria C; Uversky, Vladimir N

    2017-01-09

    Heme biosynthesis, a complex, multistage, and tightly controlled process, starts with 5-aminolevulinate (ALA) production, which, in metazoa and certain bacteria, is a reaction catalyzed by 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme. Functional aberrations in ALAS are associated with several human diseases. ALAS can adopt open and closed conformations, with segmental rearrangements of a C-terminal, 16-amino acid loop and an α-helix regulating accessibility to the ALAS active site. Of the murine erythroid ALAS (mALAS2) forms previously engineered to assess the role of the flexible C-terminal loop versus mALAS2 function one stood out due to its impressive gain in catalytic power. To elucidate how the simultaneously introduced seven mutations of this activity-enhanced variant affected structural and dynamic properties of mALAS2, we conducted extensive molecular dynamics simulation analysis of the dimeric forms of wild-type mALAS2, hepta-variant and Rhodobacter capsulatus ALAS (aka R. capsulatus HemA). This analysis revealed that the seven simultaneous mutations in the C-terminal loop, which extends over the active site of the enzyme, caused the bacterial and murine proteins to adopt different conformations. Specifically, a new β-strand in the mutated 'loop' led to interaction with two preexisting β-strands and formation of an anti-parallel three-stranded β-sheet, which likely endowed the murine hepta-variant a more 'stable' open conformation than that of wild-type mALAS2, consistent with a kinetic mechanism involving a faster closed-to-open conformation transition and product release for the mutated than wild-type enzyme. Further, the dynamic behavior of the mALAS2 protomers was strikingly different in the two dimeric forms.

  9. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  10. Aminolevulinic Acid Topical

    Science.gov (United States)

    ... on or under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated skin to direct sunlight or bright ...

  11. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  12. In vitro effects of metals and pesticides on dehydrogenase activity in ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... Key words: Dehydrogenase activity, rhizosplane bacteria, atrazine, cypermethrin, ... resources for improved and sustainable agriculture ... Growth of cowpea and source of microbial community. The cowpea plant (Vigna unguiculata) was grown to maturity in an ..... stimulation of dehydrogenase activity.

  13. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.

    OpenAIRE

    1987-01-01

    The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrogenase in all cases. Purification of malate dehydrogenase resulted in a 130- to 240-fold increase in ...

  14. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  15. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Koretaro Takahashi

    2013-10-01

    Full Text Available Five bromophenols isolated from three Rhodomelaceae algae (Laurencia nipponica, Polysiphonia morrowii, Odonthalia corymbifera showed inhibitory effects against glucose 6-phosphate dehydrogenase (G6PD. Among them, the symmetric bromophenol dimer (5 showed the highest inhibitory activity against G6PD.

  16. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman

    2014-11-01

    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  17. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  18. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  19. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  20. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    Science.gov (United States)

    2003-08-01

    Effect of macromolecula r crowding upon the st ructure and funct ion of an enzyme: Glycera ldehyde-3-phospha te dehydrogenase. Biochem- istry 20:4821...Leit ing B, Ruel R, Nicholson DW, and Thornber ry NA (1998) Inhibit ion of human caspases by pept ide-based and macromolecula r inh ib- itors. J Biol

  1. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  2. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  3. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  4. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  5. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  6. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  7. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.

    Science.gov (United States)

    Aoshima, Miho; Igarashi, Yasuo

    2008-03-01

    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  8. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  9. Cost Effectiveness of Imiquimod 5% Cream Compared with Methyl Aminolevulinate-Based Photodynamic Therapy in the Treatment of Non-Hyperkeratotic, Non-Hypertrophic Actinic (Solar) Keratoses: A Decision Tree Model

    OpenAIRE

    Wilson, Edward C F

    2010-01-01

    Background: Actinic keratosis (AK) is caused by chronic exposure to UV radiation (sunlight). First-line treatments are cryosurgery, topical 5-fluorouracil (5-FU) and topical diclofenac. Where these are contraindicated or less appropriate, alternatives are imiquimod and photodynamic therapy (PDT). Objective: To compare the cost effectiveness of imiquimod and methyl aminolevulinate-based PDT (MAL-PDT) from the perspective of the UK NHS. Methods: A decision tree model was populated with data fro...

  10. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  11. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J.; Dijkstra, Bauke W.

    2015-01-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The

  12. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.

    Science.gov (United States)

    Gai, Pan-Pan; Zhao, Cui-E; Wang, Ying; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-15

    A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity. In comparison with a bare gold electrode, an 800 mV decrease in the overpotential for NADH oxidation and CoI-like behavior were observed at NG-modified electrode, which is the largest decrease in overpotential for NADH oxidation reported to date. The catalytic rate constant (k) for the CoI-like behavior of NG was estimated to be 2.3×10(5) M(-1) s(-1), which is much higher than that of other previously reported FMN analogs. The Michaelis-Menten constant (Km) of NG was 26 μM, which is comparable to the Km of CoI (10 μM). Electrodes modified with NG and NG/gold nanoparticals/formate dehydrogenase (NG/AuNPs/FDH) showed excellent analytical performance for the detection of NADH and formate. This electrode fabrication strategy could be used to create a universal biosensing platform for developing NAD(+)-dependent dehydrogenase biosensors and biofuel cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    Science.gov (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  14. Metsaomanikud vaidlevad Natura-alade vastu / Silvia Paluoja

    Index Scriptorium Estoniae

    Paluoja, Silvia, 1956-

    2004-01-01

    Pärnumaa keskkonnateenistusse jõudis 97 avaldust kinnistute omanikelt, kelle maad jäävad ohustatud või haruldaste taimede ja loomade ning nende elupaikade kaitseks moodustatavasse üleeuroopalisse hoiualade ehk Natura 2000 võrgustikku

  15. 17. Alade Adetayo Oludare kinship Structures in sub Saharan Africa ...

    African Journals Online (AJOL)

    REGINALDS

    the universe within African communities. Anthony Kanu ..... recent xenophobic attacks in South Africa seem to provide ample evidence of an. African society .... connections alone, as is the case in some of the indigenous African communities.

  16. Metsaomanikud vaidlevad Natura-alade vastu / Silvia Paluoja

    Index Scriptorium Estoniae

    Paluoja, Silvia, 1956-

    2004-01-01

    Pärnumaa keskkonnateenistusse jõudis 97 avaldust kinnistute omanikelt, kelle maad jäävad ohustatud või haruldaste taimede ja loomade ning nende elupaikade kaitseks moodustatavasse üleeuroopalisse hoiualade ehk Natura 2000 võrgustikku

  17. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...... oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production...

  18. Substrate specificity and stereospecificity of nicotinamide adenine dinucleotide-linked alcohol dehydrogenases from methanol-grown yeasts.

    OpenAIRE

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Marczak, I

    1981-01-01

    Nicotine adenine dinucleotide-linked primary alcohol dehydrogenase and a newly discovered secondary alcohol dehydrogenase coexist in most strains of methanol-grown yeasts. Alcohol dehydrogenases from methanol-grown yeasts oxidize (--)-2-butanol preferentially over its (+) enantiomorph. This is substantially different from alcohol dehydrogenases from bakers' yeast and horse liver.

  19. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    OpenAIRE

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency...

  20. Recent advances in biotechnological applications of alcohol dehydrogenases.

    Science.gov (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  1. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  2. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  3. GLUTAMATE DEHYDROGENASE 1 AND SIRT4 REGULATE GLIAL DEVELOPMENT

    OpenAIRE

    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.

    2012-01-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  4. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    OpenAIRE

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  5. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  6. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  7. SERUM LACTATE DEHYDROGENASE AS A PROGNOSTIC MARKER IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Hardik

    2015-11-01

    Full Text Available : BACKGROUND: Breast cancer a multifactorial disease and one of the most dreaded of human diseases that claims the lives of thousands of women all over the globe every year. This may probably due to the fact that it remains undiagnosed at an early stage perhaps due to lack of awareness amongst the females and the fact that most cancers do not produce any symptoms until the tumour are too large to be removed surgically. Hence there is need to detect cancer at an early stage. AIM: Estimation of diagnostic importance and prognostication of serum Lactate dehydrogenase in cases on breast cancer. SETTINGS AND DESIGN: An observational study was conducted in Acharya Vinoba Bhave Rural Hospital, Sawangi (Meghe, Wardha which included 44 confirmed cases of carcinoma breast and 44 normal healthy females admitted in AVBRH in a span of 2 years. METHODS AND MATERIAL: Determination of serum LDH was done using TC matrix analyser. The values of LDH were obtained on presentation, 21 days after intervention, 2 months after intervention and 6 months after intervention. The values of LDH on presentation in both the groups were compared. The decline in the values of LDH were observed with the due course of treatment. Chisquare test and Student’s Unpaired and paired t test were used for statistical analysis. RESULT: The mean Lactate dehydrogenase on presentation was in study group and control group was 564.38±219.41 IU/L and 404.18±101.32 IU/L respectively (p<0.05. The levels of Lactate dehydrogenase decreased with due course of treatment. The levels of LDH were proportionate to the stage of disease. CONCLUSION: The results of the study concludes cost effective usefulness of serum Lactate dehydrogenase in early detection of breast cancer and to assess its prognostic importance which can be done in smaller laboratories. The traditional model of DS-

  8. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  9. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  10. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  11. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    Science.gov (United States)

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  12. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  13. A quantitative histochemical study of lactate dehydrogenase and succinate dehydrogenase activities in the membrana granulosa of the ovulatory follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Enelow, R

    1983-11-01

    Using a microdensitometer, lactate dehydrogenase and succinate dehydrogenase activities were measured in the membrana granulosa of the rat ovulatory follicle. Ovaries were removed on each day of the oestrous cycle; oestrus, dioestrus-1, dioestrus-2, and proestrus; and enzyme activities measured in the membrana granulosa as a whole and in four regions within it: peripheral (PR), antral (AR), cumulus oophorus (CO) and corona radiata (CR). Throughout the cycle, lactate dehydrogenase activity was greatest in PR. On oestrus, lactate dehydrogenase activity was progressively less in AR, CO and CR. On dioestrus-1, activity was identical in AR and CO and less in CR. On dioestrus-2, activity was greater in AR than in CO or CR. By proestrus, activity was equal in AR, CO and CR. In the membrana granulosa as a whole, and in each region, lactate dehydrogenase activity declined as ovulation approached. In contrast, succinate dehydrogenase activity in the membrana granulosa as a whole and in PR was constant throughout the cycle. Activity fluctuated in the other regions. Succinate dehydrogenase activity on oestrus was greatest in PR, less in AR and CO and least in CR. On the remaining days, succinate dehydrogenase activity was greatest in PR and less but equal in the remainder of the membrana granulosa.

  14. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Ferrari, P.; McKay, J.D.; Jenab, M.; Brennan, P.; Canzian, F.; Vogel, U.; Tjonneland, A.; Overvad, K.; Tolstrup, J.S.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Morois, S.; Kaaks, R.; Boeing, H.; Bergmann, M.; Trichopoulou, A.; Katsoulis, M.; Trichopoulos, D.; Krogh, V.; Panico, S.; Sacerdote, C.; Palli, D.; Tumino, R.; Peeters, P.H.M.; Gils, C.H. van; Bueno-de-Mesquita, B.; Vrieling, A.; Lund, E.; Hjartaker, A.; Agudo, A.; Suarez, L.R.; Arriola, L.; Chirlaque, M.D.; Ardanaz, E.; Sanchez, M.J.; Manjer, J.; Lindkvist, B.; Hallmans, G.; Palmqvist, R.; Allen, N.; Key, T.; Khaw, K.T.; Slimani, N.; Rinaldi, S.; Romieu, I.; Boffetta, P.; Romaguera, D.; Norat, T.; Riboli, E.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian

  15. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study

    Directory of Open Access Journals (Sweden)

    Bentley M Vitória LB

    2001-08-01

    Full Text Available Abstract Background Photodynamic therapy (PDT using 5-aminolevulinic acid (5-ALA is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs in order to optimize its skin delivery in Photodynamic Therapy (PDT of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis to be treated by topical PDT of skin cancer.

  16. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.).

    Science.gov (United States)

    Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat

    2017-03-01

    Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L(-1) of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H2O2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.

  17. Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Toshihisa Ishikawa

    2011-09-01

    Full Text Available Photodynamic diagnosis (PDD is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP-binding cassette (ABC transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR analysis to design potent ABCG2-inhibitors.

  18. In Vivo Non-Invasive Evaluation of Actinic Keratoses Response to Methyl-Aminolevulinate-Photodynamic Therapy (MAL-PDT by Reflectance Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Marina Venturini

    2014-03-01

    Full Text Available Photodynamic therapy (PDT with methyl-aminolevulinate (MAL is an approved non-invasive treatment option for actinic keratoses (AKs. In vivo reflectance confocal microscopy (RCM is a non-invasive tool for real-time imaging of epidermis and superficial dermis in vivo that has been previously reported to facilitate the in vivo evaluation of skin lesions, including AKs. The aim of this study was to investigate the use of in vivo RCM in evaluating AKs response to MAL-PDT. For this reason a total of 10 biopsy-proven AKs were treated by MAL-PDT, according to standard PDT protocol for AKs. RCM investigation was performed before and after PDT and RCM-guided punch biopsies was taken at 3 months in all patients for histopathologic examination. At 3 months follow-up, complete clinical response was observed by clinical examination in 9 out of 10 lesions and a partial clinical response in 1 lesion. In vivo RCM detected two residual AKs in subclinical form, missed by clinical examination. Histological analysis confirmed these results. In vivo RCM may be a new alternative tool for the non-invasive diagnosis of AKs and evaluation of AKs response to non-invasive treatments, as MAL-PDT, improving the ability of dermatologists to diagnose AKs even in subclinical stage.

  19. The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain

    Directory of Open Access Journals (Sweden)

    Feryal Al-Saber

    2016-01-01

    Full Text Available Type 2 diabetes mellitus is prevalent especially in Gulf countries and poses serious long-term risks to patients. A multifaceted treatment approach can include nutritional supplements with antioxidant properties such as 5-aminolevulinic acid (5-ALA with sodium ferrous citrate (SFC. This prospective, randomized, single-blind, placebo-controlled, dose escalating pilot clinical trial assessed the safety of 5-ALA with SFC at doses up to 200 mg 5-ALA/229.42 mg SFC per day in patients living in Bahrain with type 2 diabetes mellitus that was uncontrolled despite the use of one or more antidiabetic drugs. Fifty-three patients (n=53 from 3 sites at one center were enrolled by Dr. Feryal (Site #01, Dr. Hesham (Site #02, and Dr. Waleed (Site #03 (n=35, 5-ALA-SFC; n=18, placebo. There was no significant difference in incidence of adverse events reported, and the most frequent events reported were gastrointestinal in nature, consistent with the known safety profile of 5-ALA in patients with diabetes. No significant changes in laboratory values and no difference in hypoglycemia between patients receiving 5-ALA and placebo were noted. Overall, the current results support that use of 5-ALA-SFC up to 200 mg per day taken as 2 divided doses is safe in patients taking concomitant oral antidiabetic medications and may offer benefits in the diabetic population. This trial is registered with ClinicalTrials.gov NCT02481141.

  20. Fractionated illumination after topical application of 5-aminolevulinic acid on normal skin of hairless mice: the influence of the dark interval.

    Science.gov (United States)

    de Bruijn, H S; van der Ploeg-van den Heuvel, A; Sterenborg, H J C M; Robinson, D J

    2006-12-01

    We have previously shown that light fractionation during topical aminolevulinic acid based photodynamic therapy (ALA-PDT) with a dark interval of 2h leads to a significant increase in efficacy in both pre-clinical and clinical PDT. However this fractionated illumination scheme required an extended overall treatment time. Therefore we investigated the relationship between the dark interval and PDT response with the aim of reducing the overall treatment time without reducing the efficacy. Five groups of mice were treated with ALA-PDT using a single light fraction or the two-fold illumination scheme with a dark interval of 30 min, 1, 1.5 and 2h. Protoporphyrin IX fluorescence kinetics were monitored during illumination. Visual skin response was monitored in the first seven days after PDT and assessed as PDT response. The PDT response decreases with decreasing length of the dark interval. Only the dark interval of 2h showed significantly more damage compared to all the other dark intervals investigated (Pdark interval used. We conclude that in the skin of the hairless mouse the dark interval cannot be reduced below 2h without a significant reduction in PDT efficacy.

  1. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    Directory of Open Access Journals (Sweden)

    Tian Tian

    2014-01-01

    Full Text Available Lead (Pb is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA in oilseed rape (Brassica napus L. was investigated with or without foliar application of ALA (25 mg L−1 in hydroponic environment under different Pb levels (0, 100, and 400 µM. Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants.

  2. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    Science.gov (United States)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  3. No-Needle Jet Intradermal Aminolevulinic Acid Photodynamic Therapy for Recurrent Nodular Basal Cell Carcinoma of the Nose: A Case Report

    Directory of Open Access Journals (Sweden)

    Daniel Barolet

    2011-01-01

    Full Text Available Photodynamic therapy (PDT with aminolevulinic acid (ALA to treat nodular basal cell carcinoma (BCC has been shown to be beneficial. The success rate of ALA-PDT in the treatment of nodular BCC is dependent on optimal penetration of the photosensitizing agent and subsequent PpIX production. To enhance topical delivery of drugs intradermally, a needleless jet injection (NLJI, which employs a high-speed jet to puncture the skin without the side effects of needles, was used in one patient with recurrent BCC of the nose. Photoactivation was then performed using red light emitting diode [CW @ λ 630 nm, irradiance 50 mW/cm2, total fluence 51 J/cm2] for 17 minutes. Excellent cosmesis was obtained. Aside from mild crusting present for six days, no other adverse signs were noted. Clinically, there was no recurrent lesion up two years postintervention. Additional studies in larger samples of subjects are needed to further evaluate this promising technique.

  4. The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain

    Science.gov (United States)

    Al-Saber, Feryal; Aldosari, Waleed; Alselaiti, Mariam; Khalfan, Hesham; Kaladari, Ahmed; Khan, Ghulam; Harb, George; Rehani, Riyadh; Kudo, Sizuka; Koda, Aya; Tanaka, Tohru

    2016-01-01

    Type 2 diabetes mellitus is prevalent especially in Gulf countries and poses serious long-term risks to patients. A multifaceted treatment approach can include nutritional supplements with antioxidant properties such as 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC). This prospective, randomized, single-blind, placebo-controlled, dose escalating pilot clinical trial assessed the safety of 5-ALA with SFC at doses up to 200 mg 5-ALA/229.42 mg SFC per day in patients living in Bahrain with type 2 diabetes mellitus that was uncontrolled despite the use of one or more antidiabetic drugs. Fifty-three patients (n = 53) from 3 sites at one center were enrolled by Dr. Feryal (Site #01), Dr. Hesham (Site #02), and Dr. Waleed (Site #03) (n = 35, 5-ALA-SFC; n = 18, placebo). There was no significant difference in incidence of adverse events reported, and the most frequent events reported were gastrointestinal in nature, consistent with the known safety profile of 5-ALA in patients with diabetes. No significant changes in laboratory values and no difference in hypoglycemia between patients receiving 5-ALA and placebo were noted. Overall, the current results support that use of 5-ALA-SFC up to 200 mg per day taken as 2 divided doses is safe in patients taking concomitant oral antidiabetic medications and may offer benefits in the diabetic population. This trial is registered with ClinicalTrials.gov NCT02481141.

  5. 提高氨基酮戊酸透皮能力的方法%Methods to improve transdermal delivery of aminolevulinic acid

    Institute of Scientific and Technical Information of China (English)

    石磊; 王秀丽; 王宏伟

    2012-01-01

    氨基酮戊酸光动力治疗在皮肤科领域应用广泛,由于氨基酮戊酸透皮能力低,限制氨基酮戊酸光动力治疗的疗效.氨基酮戊酸衍生物,微针、激光、离子导入和运输载体技术相继被应用于提高氨基酮戊酸的透皮能力,并且取得了一定的效果.它们可通过不同的机制提高氨基酮戊酸透皮的深度和透皮的量,使氨基酮戊酸光动力治疗能更有效地应用于皮肤科领域.%Aminolevulinic acid-based photodynamic therapy (ALA-PDT) has been extensively applied in dermatology.However,the low permeability of ALA across intact skin has limited the efficacy of ALA-PDT.To enhace the percutaneous penetration of ALA,esterified derivatives,microneedles,laser,iontophoresis,delivery vehicles have been used in succession,and some achievements have been made.These methods can increase the transdermal delivery of ALA in terms of depth and quantity by different mechanisms,and indirectly promote the efficacy of ALA-PDT in dermatoses.

  6. Promotion by 5-Aminolevulinic Acid of Germination of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) Seeds Under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Liang-Ju WANG; Wei-Bing JIANG; Hui LIU; Wei-Qin LIU; Lang KANG; Xi-Lin HOU

    2005-01-01

    The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var.communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress.These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme,which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.

  7. Bucher's indirect comparison of daylight photodynamic therapy with methyl aminolevulinate cream versus diclofenac plus hyaluronic acid gel for the treatment of multiple actinic keratosis.

    Science.gov (United States)

    Calzavara-Pinton, Piergiacomo; Zane, Cristina; Pacou, Maud; Szeimies, Rolf-Markus

    2016-10-01

    Actinic keratosis (AK) is a pre-cancerous condition characterised by patches of thick, scaly skin developing on sun-exposed areas of the body. When multiple AKs develop on severely photodamaged skin, commonly used treatments include photodynamic therapy and diclofenac plus hyaluronic acid gel (DHA). Methyl aminolevulinate daylight photodynamic therapy (MAL DL-PDT) is an alternative to conventional photodynamic therapy (MAL c-PDT). Trials have indicated that MAL DL-PDT is as effective as MAL c-PDT but reduces treatment-related pain and dermatological side effects. To indirectly compare between MAL DL-PDT and DHA in patients with AK. A total of three randomised trials were collected using a systematic literature review. An adjusted indirect comparison was conducted on complete lesion response rate at 12 weeks. The data indicated that mild lesions, moderate lesions, and mild and moderate lesions treated with MAL DL-PDT were more than four times more likely to undergo a complete response than lesions treated with DHA at 12 weeks, with ORs ranging from 4.23 to 4.81. Results were all statistically significant. This is the first indirect comparison demonstrating the effectiveness of MAL-PDT over DHA for the treatment of AK, and further research is needed to assess the long-term efficacy of these interventions (i.e. six months and beyond), as well as safety and patient-reported outcomes.

  8. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    Science.gov (United States)

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  9. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response

  10. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Science.gov (United States)

    Li, Ming-Yang; Wang, Yin-Yan; Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao

    2015-01-01

    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA

  11. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.

  12. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  13. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.

    Science.gov (United States)

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J

    2003-01-01

    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  14. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  15. [Dihydropirymidine dehydrogenase (DPD)--a toxicity marker for 5-fluorouracil?].

    Science.gov (United States)

    Jedrzychowska, Adriana; Dołegowska, Barbara

    2013-01-01

    In proceedings relating to patients suffering from cancer, an important step is predicting response and toxicity to treatment. Depending on the type of cancer, physicians use the generally accepted schema of treatment, for example pharmacotherapy. 5-fluorouracil (5-FU) is the most widely used anticancer drug in chemotherapy for colon, breast, and head and neck cancer. Patients with dihydropyrimidine dehydrogenase (DPD) deficiency, which is responsible for the metabolism of 5-FU, may experience severe side effects during treatment, and even death. In many publications the need for determining the activity of DPD is discussed, which would protect the patient from the numerous side effects of treatment. However, in practice these assays are not done routinely, despite the high demand. In most cases, a genetic test is used to detect changes in the gene encoding DPD (such as in the USA), but because of the large number of mutations the genetic test cannot be used as a screening test. Dihydropyrimidine dehydrogenase activity has been shown to have high variability among the general population, with an estimated proportion of at least 3-5% of individuals showing low or deficient DPD activity. In this publication we presents data about average dihydropirymidine dehydrogenase activity in various populations of the world (e.g. Japan, Ghana, Great Britain) including gender differences and collected information about the possibility of determination of DPD activity in different countries. Detection of reduced DPD activity in patients with planned chemotherapy will allow a lower dosage of 5-FU or alternative treatment without exposing them to adverse reactions.

  16. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  17. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  18. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    Science.gov (United States)

    Biehl, Ralf; Hoffmann, Bernd; Monkenbusch, Michael; Falus, Peter; Préost, Sylvain; Merkel, Rudolf; Richter, Dieter

    2008-09-01

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  19. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described. © 2014 Wiley Periodicals, Inc.

  20. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Mattingly, S.M. [Oak Ridge National Lab., TN (United States); Danson, M. [Univ. of Bath (United Kingdom)] [and others

    1996-07-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based on the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with the continuous recycling of cofactor. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value chemical commodity. 23 refs., 5 figs.

  1. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  2. Arteriovenous malformation within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Grace Lai

    2015-01-01

    Full Text Available Background: The co-occurrence of intracranial arteriovenous malformations (AVMs and cerebral neoplasms is exceedingly rare but may harbor implications pertaining to the molecular medicine of brain cancer pathogenesis. Case Description: Here, we present a case of de novo AVM within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma (WHO Grade III and review the potential contribution of this mutation to aberrant angiogenesis as an interesting case study in molecular medicine. Conclusion: The co-occurrence of an IDH1 mutated neoplasm and AVM supports the hypothesis that IDH1 mutations may contribute to aberrant angiogenesis and vascular malformation.

  3. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria.

  4. Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei

    Science.gov (United States)

    Bertelli, Massimo; El-Bastawissy, Eman; Knaggs, Michael H.; Barrett, Michael P.; Hanau, Stefania; Gilbert, Ian H.

    2001-05-01

    A number of triphenylmethane derivatives have been screened against 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Some of these compounds show good inhibition of the enzymes and also selectivity towards the parasite enzyme. Modelling was undertaken to dock the compounds into the active sites of both enzymes. Using a combination of DOCK 3.5 and FLEXIDOCK a correlation was obtained between docking score and both activity for the enzymes and selectivity. Visualisation of the docked structures of the inhibitors in the active sites of the enzymes yielded a possible explanation of the selectivity for the parasite enzyme.

  5. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  6. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  7. Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase

    OpenAIRE

    Matsushita, Hiroyuki; Itagaki, Eiji; 板垣, 英治

    1992-01-01

    The variation with pH of kinetic parameters was examined for 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina. The V(max)/K(m) profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the ina...

  8. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  9. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  10. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshio Terada

    Full Text Available BACKGROUND/AIMS: Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP-based chemotherapy. 5-Aminolevulinic acid (ALA is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI. METHOD: We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E. We divided four groups of rats: control, CDDP only, CDDP + ALA(post;(ALA 10 mg/kg + Fe in drinking water after CDDP, CDDP + ALA(pre & post. RESULT: CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP. CONCLUSION: These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  11. Low-dose Methotrexate Enhances Aminolevulinate-based Photodynamic Therapy in Skin Carcinoma Cells In-vitro and In-vivo

    Science.gov (United States)

    Anand, Sanjay; Honari, Golara; Hasan, Tayyaba; Elson, Paul; Maytin, Edward V.

    2009-01-01

    Purpose To improve treatment efficacy and tumor cell selectivity of δ-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), via pretreatment of cells and tumors with methotrexate (MTX) to enhance intracellular photosensitizer levels. Experimental Design Skin carcinoma cells, in-vitro and in-vivo, served as the model system. Cultured human SCC13 and HEK1 cells, normal keratinocytes, and in-vivo skin tumor models (see below) were preconditioned with MTX for 72 h, then incubated with ALA for 4 h. Changes in PpIX levels and in cell survival after light exposure were assessed. Results MTX-preconditioning of monolayer cultures preferentially raised intracellular PpIX levels 2- to 4-fold in carcinoma cells versus normal keratinocytes. Photodynamic killing was synergistically enhanced by the combined therapy, compared to PDT alone. MTX enhancement of PpIX levels was achieved over a broad MTX concentration range (0.0003 – 1.0 mg/L; 0.6 nM – 2 mM). PpIX enhancement correlated with changes in protein expression of key porphyrin pathway enzymes, i.e. ~4-fold increase in coproporphyrinogen oxidase, and stable or slightly decreased expression of ferrochelatase. Differentiation markers (E-cadherin, involucrin, filaggrin) were also selectively induced by MTX in carcinoma cells. In-vivo relevance was established by showing that MTX preconditioning enhances PpIX accumulation in three models: (1) organotypic cultures of immortalized keratinocytes; (2) chemically-induced skin tumors in mice; and (3) human A431 squamous cell tumors implanted subcutaneously in mice. Conclusion Combination therapy using short-term exposure to low-dose MTX followed by ALA-PDT should be further investigated as a new combination modality to enhance efficacy and selectivity of PDT for epithelial carcinomas. PMID:19447864

  12. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    Science.gov (United States)

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Science.gov (United States)

    Terada, Yoshio; Inoue, Keiji; Matsumoto, Tatsuki; Ishihara, Masayuki; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Horino, Taro; Karashima, Takashi; Tamura, Kenji; Fukuhara, Hideo; Fujimoto, Shimpei; Tsuda, Masayuki; Shuin, Taro

    2013-01-01

    Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP)-based chemotherapy. 5-Aminolevulinic acid (ALA) is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI). We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E). We divided four groups of rats: control, CDDP only, CDDP + ALA(post);(ALA 10 mg/kg + Fe in drinking water) after CDDP, CDDP + ALA(pre & post). CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX) IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO)-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP. These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  14. Correlation between treatment time, photobleaching, inflammation and pain after photodynamic therapy with methyl aminolevulinate on tape-stripped skin in healthy volunteers.

    Science.gov (United States)

    Lerche, Catharina M; Fabricius, Susanne; Philipsen, Peter A; Wulf, Hans Christian

    2015-05-01

    Photodynamic therapy (PDT) is an attractive treatment option for skin diseases such as actinic keratosis, since large skin areas can be treated with high response rates and good cosmetic outcomes. Nevertheless inflammation and pain are still major side effects. The aim of this study was to investigate the extent to which less time-consuming PDT treatment regimens using methyl aminolevulinate (MAL) decrease protoporphyrin IX (PpIX) photobleaching, inflammation and pain. Twenty-four healthy volunteers were treated with 4 different interventions on each forearm. All 8 fields were tape-stripped 10 times. On the right arm MAL was applied for 20, 40, 60 or 180 min, followed by further incubation after wiping off MAL until 180 min after start and then illuminating with red light 180 min after start. On the left arm MAL or vehicle was applied for 30, 60, or 90 min and illuminated immediately after MAL removal. PpIX fluorescence, photobleaching, objective and subjective erythema (as a measure for inflammation), pigmentation and pain were measured. The results showed a significant correlation between incubation time, time until illumination and photobleaching. Furthermore, there was a significant correlation between photobleaching and erythema and also between photobleaching and pain. In conclusion, shorter PDT regimens result in decreased photobleaching and also less inflammation and pain. We hypothesize that a shorter incubation time is important for the optimal specific subcellular distribution of PpIX and to avoid unspecific distribution. We propose a shorter PDT regimen, "Pulse PDT", comprising, for example 30 min incubation with MAL and illumination after 180 min, and we have planned a study of actinic keratosis and "Pulse PDT".

  15. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  16. Effects of exogenous 5-aminolevulinic acid on PIP1 and NIP aquaporin gene expression in seedlings of cucumber cultivars subjected to salinity stress.

    Science.gov (United States)

    Yan, F; Qu, D; Zhao, Y Y; Hu, X H; Zhao, Z Y; Zhang, Y; Zou, Z R

    2014-01-22

    Aquaporins play a direct role in plant water relation under salt stress, but the effects of 5-aminolevulinic acid (ALA) on aquaporin gene expression in salt-treated plants remain unknown. This study investigated the potential effects of exogenous ALA (50 mg/dm3) on aquaporin expression levels under salt stress (75 mM NaCl) in the salt-sensitive (Jinchun No.4) and the relatively salt-tolerant cucumber (Jinyou No.1) seedlings. The expressions of cucumber PIP aquaporin gene (CsPIP1:1) and cucumber NIP aquaporin gene (CsNIP) were analyzed in 20-day-old seedling leaves at 2, 4, 8, 16, and 24 h after ALA treatment. After treatment with saline alone and ALA alone, CsPIP1:1 and CsNIP gene expression levels in the 2 cucumber cultivars increased to maximum at 2 h. The aquaporin gene expression in salt-treated cucumber seedling leaves was considerably higher than that in leaves subjected to exogenous ALA. Further, the aquaporin expression levels in Jinchun No.4 were higher than those in Jinyou No.1, reaching 5.20- and 2-fold induction levels, respectively. After treatment with both ALA and NaCl, the CsNIP gene expression was downregulated in both the cucumber cultivars, while that of CsPIP1:1 decreased at 2 h and then increased to 3.8-fold in Jinchun No.4. In Jinyou No.1, CsPIP1:1 gene expression gradually increased to 2.3-fold at 4 h, followed by a decline in expression. The results indicated that ALA might delay and counteract the upregulated expression of CsPIP1:1 and CsNIP genes in cucumber seedlings under NaCl stress. Thus, salt tolerance of cucumber seedlings might be enhanced by ALA application.

  17. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    Science.gov (United States)

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  18. Superficial hemangioma is better treated by topical 5-aminolevulinic followed by 595-nm pulsed dye laser therapy rather than 595-nm laser therapy alone.

    Science.gov (United States)

    Zeng, Ming; Shen, Songke; Chen, Wei; Yang, Chunjun; Liu, ShengXiu

    2017-08-16

    The aim of this study was to compare the efficacy and adverse effects of a 595-nm pulsed dye laser therapy alone (PDL alone) with a 5-aminolevulinic (5-ALA) local application followed by a 595-nm PDL (5-ALA PDL) in the treatment of superficial hemangioma (SH). A prospectively randomized study in 181 patients with SH was carried out over a period of 24 months. One hundred and ninety-three patients were seen. One hundred and eighty-one patients with SH were enrolled, of which 165 completed final follow-up. One hundred and nineteen patients received PDL alone and 46 received 5-ALA PDL. The patients were assessed clinically and the patient's parents were given a satisfaction questionnaire. Baseline patient data (gender, lesion size, lesion site, treatment times, cure rate, and adverse reactions) were recorded and the results of the treatment of the two groups were analyzed and compared. Complete clearing of the lesion (recovery grade 4) was achieved in 44/119 (37.0%) of the PDL alone group and 31/46 (67.4%) of the 5-ALA PDL group (X (2) = 10.30, p < 0.001). Atrophic scars, hyper- and hypopigmentation occurred in both groups (X (2) = 3.32, p = 0.564). The patients' parents' satisfaction was greater in the 5-ALA PDL group. The clinical outcome of 5-ALA PDL was superior to that of PDL alone in the treatment of SH and only minor adverse events occurred in each group.

  19. The role of 5-aminolevulinic acid in enhancing surgery for high-grade glioma, its current boundaries, and future perspectives: A systematic review.

    Science.gov (United States)

    Mansouri, Alireza; Mansouri, Sheila; Hachem, Laureen D; Klironomos, George; Vogelbaum, Michael A; Bernstein, Mark; Zadeh, Gelareh

    2016-08-15

    5-Aminolevulinic acid (5-ALA) has been approved as an intraoperative adjunct in glioma surgery in Europe, but not North America. A systematic review was conducted to assess the evidence regarding 5-ALA as a surgical adjunct. The MEDLINE, EMBASE, and CENTRAL databases were searched, using terms relevant to "5-ALA" and "high-grade gliomas." Included studies were based on adults aged ≥18 years who underwent surgical resection/biopsy. No language or date limitations were used. Forty-three studies (1830 patients) were identified. Thirty-six were coordinated by European countries, 2 were in the United States, and none were in Canada. One was randomized, 28 were prospective, and 14 were retrospective. Twenty-six studies assessed the utility of 5-ALA as a diagnostic tool, 24 assessed its influence on the extent of resection (EOR), 9 assessed survival, and 22 reported adverse events. 5-ALA had high sensitivity and positive predictive value, whereas its specificity increased with additional adjuncts. The EOR increased with 5-ALA, but only progression-free survival was significantly influenced. Reporting of adverse events was not systematic. The use of 5-ALA improved tumor visualization and thus enabled a greater EOR and perhaps increased survival. However, additional adjuncts may be necessary for maximizing the specificity of resection and patient safety. Additional parameters, such as patient quality of life and health economic analyses, would be informative. Thus, additional systematic collection of prospective evidence may be necessary for the global incorporation of this potentially valuable surgical adjunct into routine practice. Cancer 2016;122:2469-78. © 2016 American Cancer Society. © 2016 American Cancer Society.

  20. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior.

    Science.gov (United States)

    Fang, Yi-Ping; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung

    2009-11-01

    Psoriasis, an inflammatory skin disease, exhibits recurring itching, soreness, and cracked and bleeding skin. Currently, the topical delivery of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is an optional treatment for psoriasis which provides long-term therapeutic effects, is non-toxic and enjoys better compliance with patients. However, the precursor of ALA is hydrophilic, and thus its ability to penetrate the skin is limited. Also, little research has provided a platform to investigate the penetration behavior in disordered skin. We employed a highly potent ethosomal carrier (phosphatidylethanolamine; PE) to investigate the penetration behavior of ALA and the recovery of skin in a hyperproliferative murine model. We found that the application of ethosomes produced a significant increase in cumulative amounts of 5-26-fold in normal and hyperproliferative murine skin samples when compared to an ALA aqueous solution; and the ALA aqueous solution appeared less precise in terms of the penetration mode in hyperproliferative murine skin. After the ethosomes had been applied, the protoporphyrin IX (PpIX) intensity increased about 3.64-fold compared with that of the ALA aqueous solution, and the penetration depth reached 30-80 microm. The results demonstrated that the ethosomal carrier significantly improved the delivery of ALA and the formation of PpIX in both normal and hyperproliferative murine skin samples, and the expression level of tumor necrosis factor (TNF)-alpha was reduced after the ALA-ethosomes were applied to treat hyperproliferative murine skin. Furthermore, the results of present study encourage more investigations on the mechanism of the interaction with ethosomes and hyperproliferative murine skin.

  1. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes.

    Science.gov (United States)

    Chou, K H; Splittstoesser, W E

    1972-04-01

    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  2. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  3. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs.

    Science.gov (United States)

    Laganà, G; Bellocco, E; Mannucci, C; Leuzzi, U; Tellone, E; Kotyk, A; Galtieri, A

    2006-01-01

    Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) electrophoretic tissue patterns of two different orders of Elasmobranchii: Carchariniformes (Galeus melanostomus and Prionace glauca) and Squaliformes (Etmopterus spinax and Scymnorinus licha) were studied. The number of loci expressed for these enzymes was the same of other elasmobranch species. Differences in tissue distribution were noted in LDH from G. melanostomus due to the presence of an additional heterotetramer in the eye tissue. There were also differences in MDH. In fact, all the tissues of E. spinax and G. melanostomus showed two mitochondrial bands. Major differences were noted in the number of isozymes detected in the four compared elasmobranchs. The highest polymorphism was observed in E. spinax and G. melanostomus, two species that live in changeable environmental conditions. The resistance of isozymes after urea treatment was examined; the resulting patterns showed a quite good resistance of the enzymes, higher for LDH than MDH, also at urea concentration much greater than physiological one. These results indicated that the total isozyme resistance can be considered higher in urea accumulators (such as elasmobranchs) than in the non-accumulators (such as teleosts).

  4. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  5. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  6. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Wangluo; Chen, Shuai; Liao, Yuanping; Wang, Dingli; Ding, Jianfeng; Wang, Yingming; Ran, Xiaoyuan; Lu, Daru; Zhu, Huaxing

    2013-12-01

    As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  8. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  9. Structural analysis of fungus-derived FAD glucose dehydrogenase.

    Science.gov (United States)

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-08-27

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.

  10. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... (fast metabolizers) showed an average daily alcohol intake of 4.3 g per day lower than subjects with two copies of the rs1229984(G) allele (slow metabolizers) (P-diff...

  11. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    Science.gov (United States)

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  13. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  14. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of colorectal cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Mroczko, Barbara; Szmitkowski, Maciej

    2010-10-01

    The activity of total alcohol dehydrogenase (ADH) and class I isoenzymes is significantly higher in colorectal cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnosing colorectal cancer. The aim of this study was to investigate a potential role of ADH and aldehyde dehydrogenase (ALDH) as tumor markers for colorectal cancer. We defined diagnostic sensitivity, specificity, positive and negative predictive values, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 182 patients with colorectal cancer before treatment and from 160 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric, but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH I isoenzyme and ADH total in the sera of colorectal cancer patients compared to the control. The diagnostic sensitivity for ADH I was 76%, specificity 82%, AND positive and negative predictive values were 85 and 74%, respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. The area under ROC curve for ADH I was 0.72. The results suggest a potential role for ADH I as marker for colorectal cancer.

  15. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    Science.gov (United States)

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  16. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    Science.gov (United States)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  17. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  18. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations

    NARCIS (Netherlands)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2016-01-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regener

  19. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli.

    Science.gov (United States)

    Ogawa, Tadashi; Murakami, Keiko; Mori, Hirotada; Ishii, Nobuyoshi; Tomita, Masaru; Yoshin, Masataka

    2007-02-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  20. Role of Phosphoenolpyruvate in the NADP-Isocitrate Dehydrogenase and Isocitrate Lyase Reaction in Escherichia coli▿

    OpenAIRE

    2006-01-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki′ of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  1. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions MCAD deficiency medium-chain acyl-CoA dehydrogenase deficiency Printable PDF Open ... Javascript to view the expand/collapse boxes. Description Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a ...

  2. A rapid procedure for eliminating chromatofocusing buffer and concentrating minor active subforms of mitochondrial malate dehydrogenase.

    Science.gov (United States)

    Gelpí, J L; Gracia, V; Imperial, S; Mazo, A; Cortés, A

    1990-11-01

    Mitochondrial malate dehydrogenase from several sources contains different molecular forms whose origin is still under discussion. Separation of these subforms has been achieved by chromatofocusing. A simple and rapid method, based on 5' AMP Sepharose chromatography, has been developed to concentrate mitochondrial malate dehydrogenase subforms and simultaneously remove chromatofocusing buffer.

  3. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  4. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  5. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  6. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  7. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  8. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  9. Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Ferit, H.

    2017-03-01

    Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.

  10. The reaction of choline dehydrogenase with some electron acceptors.

    Science.gov (United States)

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  11. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;

    2016-01-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  12. Kinetics of myoglobin redox form stabilization by malate dehydrogenase.

    Science.gov (United States)

    Mohan, Anand; Muthukrishnan, S; Hunt, Melvin C; Barstow, Thomas J; Houser, Terry A

    2010-06-09

    This study reports the reduction of metmyoglobin (MMb) via oxidation of malate to oxaloacetate and the regeneration of reduced nicotinamide adenine dinucleotide (NADH) via malate dehydrogenase (MDH). Two experiments were conducted to evaluate a malate-MDH-NADH system as a possible mechanism for MMb reduction. In experiment 1, kinetics of MDH and MMb reduction were determined, and the results showed that increasing concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and l-malate also increased (p malate and NAD(+) added. Reduction of MMb in the muscle extracts via MDH was NAD(+), malate, and extract concentration dependent (p malate can replenish NADH via MDH activity in post-mortem muscle, ultimately resulting in a more functional meat color.

  13. Mechanistic enzymology of CO dehydrogenase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, S.W.

    1992-01-01

    The final steps in acetyl-CoA biosynthesis by anaerobic bacteria are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. An important achievement was to establish conditions under which acetyl-CoA synthesis by purified enzymes equals the in vivo rate of acetate synthesis. Under these optimized conditions we established that the rate limiting step in the synthesis of acetyl-CoA from methyl-H[sub 4]folate, CO and CoA is likely to be the methylation of CODH by the methylated corrinoid/iron-sulfur protein. We then focused on stopped flow studies of this rate limiting transmethylation reaction and established its mechanism. We have studied the carbonylation of CODH by infrared and resonance Raman spectroscopy and determined that the [Ni-Fe[sup 3-4]S[sub 4

  14. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Directory of Open Access Journals (Sweden)

    Hirokazu Shiga

    2014-03-01

    Full Text Available The retention of the enzyme activity of alcohol dehydrogenase (ADH has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11 was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  15. Encapsulation of alcohol dehydrogenase in mannitol by spray drying.

    Science.gov (United States)

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-03-24

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  16. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom,L.; Gan, L.

    2006-01-01

    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  17. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  18. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  19. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  20. In vitro interaction between psychotropic drugs and alcohol dehydrogenase activity.

    Science.gov (United States)

    Roig, M G; Bello, F; Burguillo, F J; Cachaza, J M; Kennedy, J F

    1991-03-01

    A series of CNS-stimulating and -depressant drugs have been studied for their in vitro interaction with horse liver alcohol dehydrogenase (ADH) activity. The depressant drugs studied included barbital, phenobarbital, thiopental, nitrazepam, chlorpromazine, sulpiride, clomethiazole, Li2CO3, diazepam, phenytoin, ethosuximide, morphine, and codeine. The stimulant drugs were theophylline, caffeine, amphetamine, imipramine, chlorimipramine, amitriptyline, and tranylcypromine. The results were as follows. First, ADH activity was inhibited by the action of chlorpromazine, tranylcypromine, imipramine, chlorimipramine, amitriptyline, sulpiride, amphetamine, codeine, ethosuximide, morphine, clomethiazole, nitrazepam, Li2CO3, theophylline, and phenobarbital, in descending order of inhibitory effect. Second, inhibition followed by activation of ADH activity was observed for imipramine and chlorimipramine. Third, activation of ADH activity was observed for phenytoin. Finally, the following drugs were not seen to exert any effect on ADH activity: barbital, thiopental, diazepam, and caffeine.

  1. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  2. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst.

    Science.gov (United States)

    An, Hongjie; Jin, Bo; Dai, Sheng

    2015-01-01

    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications.

  3. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    Science.gov (United States)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  4. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M

    1996-05-01

    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  5. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra

    1991-01-01

    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  6. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  7. Crystallographic analysis of FAD-dependent glucose dehydrogenase.

    Science.gov (United States)

    Komori, Hirofumi; Inaka, Koji; Furubayashi, Naoki; Honda, Michinari; Higuchi, Yoshiki

    2015-08-01

    An FAD-dependent glucose dehydrogenase (GDH) from Aspergillus terreus was purified and crystallized at 293 K using the sitting-drop vapour-diffusion method. A data set was collected to a resolution of 1.6 Å from a single crystal at 100 K using a rotating-anode X-ray source. The crystal belonged to space group P21, with unit-cell parameters a = 56.56, b = 135.74, c = 74.13 Å, β = 90.37°. The asymmetric unit contained two molecules of GDH. The Matthews coefficient was calculated to be 2.2 Å(3) Da(-1) and the solvent content was estimated to be 44%.

  8. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  9. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase.

    Science.gov (United States)

    Doyle, S A; Fung, S Y; Koshland, D E

    2000-11-21

    Despite the structural similarities between isocitrate and isopropylmalate, isocitrate dehydrogenase (IDH) exhibits a strong preference for its natural substrate. Using a combination of rational and random mutagenesis, we have engineered IDH to use isopropylmalate as a substrate. Rationally designed mutations were based on comparison of IDH to a similar enzyme, isopropylmalate dehydrogenase (IPMDH). A chimeric enzyme that replaced an active site loop-helix motif with IPMDH sequences exhibited no activity toward isopropylmalate, and site-directed mutants that replaced IDH residues with their IPMDH equivalents only showed small improvements in k(cat). Random mutants targeted the IDH active site at positions 113 (substituted with glutamate), 115, and 116 (both randomized) and were screened for activity toward isopropylmalate. Six mutants were identified that exhibited up to an 8-fold improvement in k(cat) and increased the apparent binding affinity by as much as a factor of 80. In addition to the S113E mutation, five other mutants contained substitutions at positions 115 and/or 116. Most small hydrophobic substitutions at position 116 improved activity, possibly by generating space to accommodate the isopropyl group of isopropylmalate; however, substitution with serine yielded the most improvement in k(cat). Only two substitutions were identified at position 115, which suggests a more specific role for the wild-type asparagine residue in the utilization of isopropylmalate. Since interactions between neighboring residues in this region greatly influenced the effects of each other in unexpected ways, structural solutions were best identified in combinations, as allowed by random mutagenesis.

  10. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  11. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.

    Science.gov (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja

    2012-05-01

    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  12. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children.

    Science.gov (United States)

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas

    2014-12-01

    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis.

  13. Effect of cell cycle phase on the sensitivity of SAS cells to sonodynamic therapy using low-intensity ultrasound combined with 5-aminolevulinic acid in vitro.

    Science.gov (United States)

    Li, Nan; Sun, Miao; Wang, Yao; Lv, Yanhong; Hu, Zheng; Cao, Wenwu; Zheng, Jinhua; Jiao, Xiaohui

    2015-08-01

    Sonodynamic therapy (SDT) with 5-aminolevulinic acid (5-ALA) can effectively inhibit various types of tumor in vitro and in vivo. However, the association between the efficacy of SDT and the phase of the cell cycle remains to be elucidated. 5-ALA may generate different quantities of sonosensitizer, protoporphyrin IX (PpIX), in different phases of the cell cycle, which may result in differences in sensitivity to 5-ALA-induced SDT. The present study aimed to investigate the effect of the cell cycle on the susceptibility of SAS cells to SDT following synchronization to different cell cycle phases. These results indicates that the rates of cell death and apoptosis of the SAS cells in the S and G2/M phases were significantly higher following SDT, compared with those in the G1-phase cells and unsynchronized cells, with a corresponding increase in PpIX in the S and G2/M cells. In addition, the expression of caspase-3 increased, while that of B-cell lymphoma (Bcl)-2 decreased markedly in theS and G2/M cells following SDT. Cyclin A was also expressed at higher levels in the S and G2/M cells, compared with the G1-phase cells. SDT also caused a significant upregulation of cyclin A in all phases of the cell cycle, however this was most marked in the S and G2/M cells. It was hypothesized that high expression levels of cyclin A in the S and G2/M cells may promote the induction of caspase-3 and reduce the induction of Bcl-2 by SDT and, therefore, enhance apoptosis. Taken together, these data demonstrated that cells in The S and G2/M phases generate more intracellular PpIX, have higher levels of cyclin A and are, therefore, more sensitive to SDT-induced cytotoxicity. These findings indicate the potential novel approach to preventing the onset of cancer by combining cell-cycle regulators with SDT. This sequential combination therapy may be a simple and cost-effective way of enhancing the effects of SDT in clinical settings.

  14. Comparison of colorimetric and HPLC methods for determination of delta-aminolevulinic acid in urine with reference to dose-response relationship in occupational exposure to lead.

    Science.gov (United States)

    Fukui, Yoshinari; Miki, Mieko; Ukai, Hirohiko; Okamoto, Satoru; Takada, Shiro; Ikeda, Masayuki

    2005-10-01

    Both traditional colorimetry and recently developed HPLC-fluorometry have been in use for determination of delta-aminolevulinic acid in urine (ALA-U), an effect marker of occupational exposure to lead (Pb). The present study was initiated to compare the values by the two methods on an epidemiology basis among workers occupationally exposed to lead (Pb), to estimate quantitatively the colorimetry-associated increment over the values by the HPLC method, to evaluate ALA-U determination in occupational health service for Pb-exposed workers, and to identify a critical Pb-B to induce an elevation in ALA-U. For this purpose, blood and urine samples were collected from three groups of Pb-exposed workers (both men and women in combination, including smokers) and analyzed for Pb in blood (Pb-B; measured in all subjects) and ALA-U (by colorimetry or HPLC), i.e., Group 1 (164 subjects with urinalysis by the two methods), Group 2 (2,923 subjects by colorimetry), and Group 3 (2,540 subjects by HPLC). ALA-U when measured by colorimetry was higher than the values by HPLC, and that the mean difference on a group basis was 1.4 mg/l (in a range of 1.1 to 1.8 mg/l), irrespective of Pb-B levels. It was also found that the increase in ALA-U was small when Pb-B was relatively low (e.g., < or = 40 microg/100 ml), and that the increase on a group basis in response to an increase in Pb-B from 5 to 40 microg/100 ml was as small as < or = 0.6 mg/l. Thus, ALA-U appeared to be not a sensitive marker of Pb effects at low Pb-B levels. ALA-U however increased substantially with a point of inflection at the Pb-B level of about 17-34 microg/100 ml. Thus it was concluded that ALA-U as measured by colorimetry is greater than ALA-U by HPLC by 1.4 mg/l on average irrespective of intensity of Pb-exposure, which may induce bias in evaluation of health effect, and that ALA-U levels will increase when Pb-B is in excess of 17-34 microg/100 ml.

  15. The time-dependent accumulation of protoporphyrin IX fluorescence in nodular basal cell carcinoma following application of methyl aminolevulinate with an oxygen pressure injection device.

    Science.gov (United States)

    Blake, E; Campbell, S; Allen, J; Mathew, J; Helliwell, P; Curnow, A

    2012-12-01

    Topical protoporphyrin (PpIX)-induced photodynamic therapy (PDT) relies on the penetration of the prodrug into the skin lesion and subsequent accumulation of the photosensitizer. Methyl aminolevulinate (MAL)-PDT is an established treatment for thinner and superficial non-melanoma skin cancers (NMSCs) but for the treatment of the thicker nodular basal cell carcinoma (nBCC) enhanced penetration of the prodrug is required. This study employed a new higher pressure, oxygen pressure injection (OPI) device, at the time of Metvix® application with a view to enhancing the penetration of MAL into the tumors. Each patient had Metvix® applied to a single nBCC followed by application of a higher pressure OPI device. Following different time intervals (0, 30, 60, 120 or 180 min) the tumors were excised. The maximum depth and area of MAL penetration achieved in each lesion was measured using PpIX fluorescence microscopy. As expected, an increase in the depth of MAL-induced PpIX accumulation and area of tumor sensitized was observed over time; when the Metvix® cream was applied for 0, 30, 60, 120 and 180 min the median depth of PpIX fluorescence was 0%, 21%, 26.5%, 75.5% and 90%, respectively and the median area of tumor sensitized was 0%, 4%, 6%, 19% and 60%, respectively. As the investigation presented here did not include a control arm, the relative depths of fluorescence observed in this study were statistically compared (using the non-parametric Mann Whitney U test) with the results of our previous study where patients had Metvix® cream applied either with or without the standard pressure OPI device. When the higher pressure OPI device was employed compared to without OPI this increase was observed to be greater following 30, 120, and 180 min although overall not significantly (p=0.835). In addition, no significant difference between the higher pressure OPI device employed here and the previously investigated standard pressure OPI device was observed (p=0.403). However

  16. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  17. Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery

    Science.gov (United States)

    Valdés, Pablo A.; Jacobs, Valerie; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Paulsen, Keith D.; Roberts, David W.

    2015-01-01

    OBJECT Previous studies in high-grade gliomas (HGGs) have indicated that protoporphyrin IX (PpIX) accumulates in higher concentrations in tumor tissue, and, when used to guide surgery, it has enabled improved resection leading to increased progression-free survival. Despite the benefits of complete resection and the advances in fluorescence-guided surgery, few studies have investigated the use of PpIX in low-grade gliomas (LGGs). Here, the authors describe their initial experience with 5-aminolevulinic acid (ALA)–induced PpIX fluorescence in a series of patients with LGG. METHODS Twelve patients with presumed LGGs underwent resection of their tumors after receiving 20 μg/kg of ALA approximately 3 hours prior to surgery under an institutional review board–approved protocol. Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology. RESULTS Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1, area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [CPpIX] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of CPpIX that were

  18. Safety test of a supplement, 5-aminolevulinic acid phosphate with sodium ferrous citrate, in diabetic patients treated with oral hypoglycemic agents

    Directory of Open Access Journals (Sweden)

    Naohide Yamashita

    2014-09-01

    Full Text Available Objective: This study aimed to examine the safety of 5-aminolevulinic acid phosphate (5-ALA with sodium ferrous citrate (SFC in diabetic patients treated with one or more oral hypoglycemic agents (OHAs. Background: Recent intervention studies performed in the USA and Japan have shown that a nutritional supplement of 5-ALA with SFC efficiently reduced blood glucose levels in pre-diabetic population without any adverse events. Thus, it was anticipated that 5-ALA with SFC may potentially be taken as a beneficial supplement by diabetic patients who were being treated with OHA therapy. Nevertheless, it is important to examine its safety and efficacy in diabetic population. Methods: This study was a prospective single-blinded, randomized, placebo-controlled and parallel-group comparison study. Medically treated diabetic patients between the ages of 30 and 75 were recruited from the Tokyo metropolitan area of Japan and 45 subjects were selected after screening. These subjects were randomly assigned to three groups: daily intake of 15mg 5-ALA, 50mg 5-ALA, and a placebo (n=15, respectively. The supplement or placebo was administered for 12 weeks followed by a four week washout period. The primary endpoint was safety and occurrence of hypoglycemic attack, while the secondary endpoint was changes of fasting blood glucose (FBG and hemoglobin A1c (HbA1c. Results: Adverse events related to 5-ALA with SFC were not observed in all the groups. Abnormalities in blood and urine tests were not observed either. Significant decrease in FBG was not detected in all the groups. However, there was a small but significant decrease in HbA1c at 4 and 8 week in the 15 mg 5-ALA group. Significant decrease in HbA1c was not observed in the 50 mg 5-ALA group, although a tendency to decrease after 4 weeks was apparent. Conclusion: 5-ALA with SFC is a safe and potentially beneficial supplement if taken by diabetic patients treated with OHAs.

  19. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  20. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA.

  1. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  2. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Ding; Su-Ping Li; Hai-Xia Cao; Jian-Zhong Wu; Chang-Ming Gao; Ping Su; Yan-Ting Liu; Jian-Nong Zhou; Jun Chang; Gen-Hong Yao

    2009-01-01

    AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males. METHODS: Two hundred and twenty-one esophageal cancer patients and 191 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing highperformance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI). RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 1.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.

  3. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  4. An NAD-specific glutamate dehydrogenase from cyanobacteria. Identification and properties.

    Science.gov (United States)

    Chávez, S; Candau, P

    1991-07-08

    The unicellular cyanobacterium Synechocystis sp. PCC 6803 presents a hexameric NAD-specific glutamate dehydrogenase with a molecular mass of 295 kDa. The enzyme differs from the NADP-glutamate dehydrogenase found in the same strain and is coded by a different gene. NAD-glutamate dehydrogenase shows a high coenzyme specificity, catalyzes preferentially glutamate formation and presents Km values for ammonium, NADH and 2-oxoglutarate of 4.5 mM, 50 microM and 1.8 mM respectively. An animating role for the enzyme is discussed.

  5. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... and internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  6. Clinical Effect of 5-aminolevulinic Acid Photodynamic Treating 10 Cases Bowen' s Disease%5-氨基酮戊酸光动力疗法治疗鲍温病10例疗效观察

    Institute of Scientific and Technical Information of China (English)

    熊林; 陆延娜; 万静; 魏亚东; 赵延东

    2012-01-01

    目的 观察5-氨基酮戊酸光动力疗法治疗鲍温病的临床疗效.方法 将20例鲍温病患者分为两组,各10例.治疗组予5-氨基酮戊酸外涂于皮损处,3h后予红光照射20min,能量密度100~120 J/cm2,1次/周,共4周.对照组外涂5-氟尿嘧啶软膏皮损处,2次/d,共4周.结果 治疗组完全缓解率为90.00%,对照组为30.00%,两组间完全缓解率比较,差异有统计学意义(P<0.05).且治疗组均未见严重不良反应,对照组有溃疡及瘢痕等不良反应.结论 5-氨基酮戊酸光动力疗法治疗鲍温病临床疗效较好,且无严重不良反应,值得临床推广应用.%Objective To observe the clinical effect of 5-aminolevulinic acid photodynamic therapy ( ALA-PDT) treating Bowen' s disease. Methods Twonty cases of Bowen' s disease were randomly divided into treatment group and control. Each group has 10 cases. Treatment group: applied 5-aminolevulinic acid (ALA) to the skin lesions, 3 hours later red light irradiated 20min, energy density was 100 ~ 120 J/cm2, one time a week for 4 weeks. Control group: smearing 5-fluorouracil cream(5-Fu ointment) on skin lesions,, twice daily for 4 weeks. Results Completely remission rate was 90. 00% in treatment group and 30. 00% in control. The difference between them had statistical significance(P <0.05). There were no serious side effects in the treatment group, but the control group appeared ulcer, scar and other side effects. Conclusion 5-aminolevulinic acid photodynamic is a good therapeutic method for Bowen' s disease.

  7. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1

    Directory of Open Access Journals (Sweden)

    Zhou Cong-Zhao

    2007-06-01

    Full Text Available Abstract Background As the third enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH is the main generator of cellular NADPH. Both thioredoxin reductase and glutathione reductase require NADPH as the electron donor to reduce oxidized thioredoxin or glutathione (GSSG. Since thioredoxin and GSH are important antioxidants, it is not surprising that 6PGDH plays a critical role in protecting cells from oxidative stress. Furthermore the activity of 6PGDH is associated with several human disorders including cancer and Alzheimer's disease. The 3D structural investigation would be very valuable in designing small molecules that target this enzyme for potential therapeutic applications. Results The crystal structure of 6-phosphogluconate dehydrogenase (6PGDH/Gnd1 from Saccharomyces cerevisiae has been determined at 2.37 Å resolution by molecular replacement. The overall structure of Gnd1 is a homodimer with three domains for each monomer, a Rossmann fold NADP+ binding domain, an all-α helical domain contributing the majority to hydrophobic interaction between the two subunits and a small C-terminal domain penetrating the other subunit. In addition, two citrate molecules occupied the 6PG binding pocket of each monomer. The intact Gnd1 had a Km of 50 ± 9 μM for 6-phosphogluconate and of 35 ± 6 μM for NADP+ at pH 7.5. But the truncated mutants without the C-terminal 35, 39 or 53 residues of Gnd1 completely lost their 6PGDH activity, despite remaining the homodimer in solution. Conclusion The overall tertiary structure of Gnd1 is similar to those of 6PGDH from other species. The substrate and coenzyme binding sites are well conserved, either from the primary sequence alignment, or from the 3D structural superposition. Enzymatic activity assays suggest a sequential mechanism of catalysis, which is in agreement with previous studies. The C-terminal domain of Gnd1 functions as a hook to further tighten the dimer, but it is not

  8. Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase.

    Science.gov (United States)

    Steenkamp, D J; Beinert, H

    1982-01-01

    E.p.r. spectroscopy of the trimethylamine and dimethylamine dehydrogenases of Hyphomicrobium X indicates that the substrate-reduced forms of these enzymes exist in the triplet state, which arise through interaction of a reduced [4Fe-4S] cluster and flavosemiquinone, with e.p.r. signals which differ in detail from those of the trimethylamine dehydrogenase of bacterium W3A1. Under certain conditions the intramolecular electron transfer between the flavoquinol form of 6-S-cysteinyl-FMN and the [4Fe-4S] cluster in all three dehydrogenases was much slower than the preceding reduction of the flavin to the flavoquinol form. Trimethylamine dehydrogenases from both organisms show a time-dependent broadening of the e.p.r. signals centred around g = 2 after mixing with trimethylamine. The broadening of the e.p.r. signals could be correlated with an unexpected dependence of the rate of formation of the triplet state on substrate concentration. A model which accounts in a qualitative manner for the substrate dependence of the formation of the triplet state in the trimethylamine dehydrogenase of Hyphomicrobium X is proposed. The binding of the substrate to the reduced form of the enzyme seems to result in a conformational change of the enzyme to a form in which the rate of intramolecular electron transfer is decreased. This finding may be correlated with the observation of hyperbolic substrate inhibition for both trimethylamine dehydrogenases. The results indicate the transfer of an electron to the [4Fe-4S] cluster to be an obligatory step in catalysis and suggest that the transfer of electrons from these enzymes to electron acceptors is mediated solely through the [4Fe-4S] cluster. PMID:6297456

  9. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault

    2003-01-01

    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  10. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault

    2003-01-01

    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  11. Immobilisation and characterisation of glucose dehydrogenase immobilised on ReSyn: a proprietary polyethylenimine support matrix

    CSIR Research Space (South Africa)

    Twala, BV

    2010-01-01

    Full Text Available Immobilisation of enzymes is of considerable interest due to the advantages over soluble enzymes, including improved stability and recovery. Glucose Dehydrogenase (GDH) is an important biocatalytic enzyme due to is ability to recycle the biological...

  12. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  13. Heterozygosity of the sheep: Polymorphism of 'malic enzyme', isocitrate dehydrogenase (NADP+), catalase and esterase.

    Science.gov (United States)

    Baker, C M; Manwell, C

    1977-04-01

    In contrast to other reports, it is found that the sheep has approximately as much enzyme variation as man. Most of the genetically interpretable enzyme variation in heart, liver, kidney and muscle from 52 sheep (Merinos or Merino crosses) is in the NADP-dependent dehydrogenases [two 'malic enzymes' and the supernatant isocitrate dehydrogenase (NADP+)] and in the esterases. Ten different loci for NAD-dependent dehydrogenases are electrophoretically monomorphic, as are five different NADH diaphorases from heart muscle and 15 different major proteins from skeletal muscle. It is highly statistically significant that NADP-dependent dehydrogenases and esterases are polymorphic but representatives of several other major classes of enzymes are not. The physiological significance of this polymorphism may be related to the role of these enzymes in growth and detoxication, sheep having been selected by man for faster growth, of wool or of carcass, and for grazing a wide variety of plants.

  14. Potential Mitochondrial Isocitrate Dehydrogenase R140Q Mutant Inhibitor from Traditional Chinese Medicine against Cancers

    National Research Council Canada - National Science Library

    Lee, Wen-Yuan; Chen, Kuan-Chung; Chen, Hsin-Yi; Chen, Calvin Yu-Chian

    2014-01-01

    ...) genes will induce various cancers, including chondrosarcoma, cholangiocarcinomas, and acute myelogenous leukemia due to the effect of point mutations in the active-site arginine residues of isocitrate dehydrogenase (IDH...

  15. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase

    National Research Council Canada - National Science Library

    Courtade, Gaston; Wimmer, Reinhard; Røhr, Åsmund K; Preims, Marita; Felice, Alfons K G; Dimarogona, Maria; Vaaje-Kolstad, Gustav; Sørlie, Morten; Sandgren, Mats; Ludwig, Roland; Eijsink, Vincent G H; Aachmann, Finn Lillelund

    2016-01-01

    .... We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH...

  16. Synthesis of allitol from D-psicose using ribitol dehydrogenase and ...

    African Journals Online (AJOL)

    State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan ... and formate dehydrogenase (FDH) under optimised production conditions. .... ammonia, and the run time was 15 min, with a.

  17. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin

    2014-03-01

    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  18. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    Science.gov (United States)

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  19. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  20. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren

    2008-01-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  1. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  2. Isocitrate dehydrogenase 1 and 2 mutations in gliomas.

    Science.gov (United States)

    Megova, Magdalena; Drabek, Jiri; Koudelakova, Vladimira; Trojanec, Radek; Kalita, Ondrej; Hajduch, Marian

    2014-12-01

    Over the past few years, new biomarkers have allowed a deeper insight into gliomagenesis and facilitated the identification of possible targets for glioma therapy. Isocitrate dehydrogenase (IDH) 1 and IDH2 mutations have been shown to be promising biomarkers for monitoring disease prognosis and predicting the response to treatment. This review summarizes recent findings in this field. Web of Science, Science Direct, and PubMed online databases were used to search for publications investigating the role of IDH in glioma. References were identified by searching for the keywords "IDH1 or IDH2 and glioma and diagnostic or predictive or prognostic" in papers published from January, 2008, to April, 2014. Only papers in English were reviewed. Publications available only as an abstract were not included. IDH1/2 mutations are tightly associated with grade II and III gliomas and secondary glioblastomas, with better prognosis and production of a recently described oncometabolite, 2-hydroxyglutarate (2HG). Although the contradictory positive effect of IDH mutation on prognosis and negative role of 2HG in tumor transformation remain unresolved, the future direction of personalized treatment strategies targeted to glioma development is likely to focus on IDH1/2 mutations.

  3. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica.

    Science.gov (United States)

    Kabran, Philomène; Rossignol, Tristan; Gaillardin, Claude; Nicaud, Jean-Marc; Neuvéglise, Cécile

    2012-06-01

    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.

  4. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de

    1998-01-01

    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC 1.1.1.37 in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  5. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum.

    Science.gov (United States)

    Yennaco, Lynda J; Hu, Yajing; Holden, James F

    2007-09-01

    Native and recombinant malate dehydrogenase (MDH) was characterized from the hyperthermophilic, facultatively autotrophic archaeon Pyrobaculum islandicum. The enzyme is a homotetramer with a subunit mass of 33 kDa. The activity kinetics of the native and recombinant proteins are the same. The apparent K ( m ) values of the recombinant protein for oxaloacetate (OAA) and NADH (at 80 degrees C and pH 8.0) were 15 and 86 microM, respectively, with specific activity as high as 470 U mg(-1). Activity decreased more than 90% when NADPH was used. The catalytic efficiency of OAA reduction by P. islandicum MDH using NADH was significantly higher than that reported for any other archaeal MDH. Unlike other archaeal MDHs, specific activity of the P. islandicum MDH back-reaction also decreased more than 90% when malate and NAD(+) were used as substrates and was not detected with NADP(+). A phylogenetic tree of 31 archaeal MDHs shows that they fall into 5 distinct groups separated largely along taxonomic lines suggesting minimal lateral mdh transfer between Archaea.

  6. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.

    Science.gov (United States)

    Lee, Seung-Min; Dho, So Hee; Ju, Sung-Kyu; Maeng, Jin-Soo; Kim, Jeong-Yoon; Kwon, Ki-Sun

    2012-10-01

    Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16(INK4A) and p21(CIP1) protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

  7. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function

    Directory of Open Access Journals (Sweden)

    Bhubanananda Sahu

    2016-11-01

    Full Text Available The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.

  8. Human choline dehydrogenase: medical promises and biochemical challenges.

    Science.gov (United States)

    Salvi, Francesca; Gadda, Giovanni

    2013-09-15

    Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.

  9. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    Science.gov (United States)

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  10. Serum alcohol dehydrogenase levels in patients with mental disorders.

    Science.gov (United States)

    Kravos, Matej; Malesic, Ivan; Levanic, Suzana

    2005-11-01

    Alcohol dehydrogenase (ADH) was assessed in 81 patients admitted to hospital for treatment for alcohol dependence with or without liver cirrhosis, 20 patients with bipolar disorder treated with lithium carbonate and 41 patients with various mental disorders treated with psychopharmacologic agents. Testing the hypothesis of the arithmetic mean showed that in alcohol dependents the arithmetic mean of ADH activity (12.19 nkat/l+/-5.61) differs significantly from that in healthy subjects (4.45 nkat/l+/-2.31) and in the group with ethanol poisoning (6.24 nkat/l+/-3.65) there is none. In the group with bipolar disorder, treated with lithium (7.39 nkat/l+/-3.11) and, in the group of patients treated with psychiatric drugs because of various mental disorders (7.79 nkat/l+/-8.51), the differences are statistically significant. In our opinion, assessing ADH activity in the sera of alcohol dependents could be an additional marker advantageous to the diagnostics, course and monitoring of therapy in such patients. In the groups of patients with mental disorders treated with psychotropic drugs, the increased ADH activity was found to be a more sensitive marker for the detection of drug hepatotoxicity.

  11. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity.

    Science.gov (United States)

    Dong, Xing; Fan, Yunchang; Zhang, Heng; Zhong, Yingying; Yang, Yang; Miao, Juan; Hua, Shaofeng

    2016-05-01

    Ionic liquids (ILs) were widely used in scientific and industrial application and have been reported to possess potential toxicity to the environment and human health. The effects of six typical N-methylimidazolium-based ILs ([Cnmim]X, n=4, 6, 8; X=Br(-), Cl(-), BF4(-), CF3SO3(-)) on the lactic dehydrogenase (LDH) activity and the molecular interaction mechanism of ILs and the LDH were investigated with the aid of spectroscopic techniques. Experimental results showed that the LDH activity was inhibited in the presence of ILs. For the ILs with the same anion but different cations, their inhibitory ability on the LDH activity increased with increasing the alkyl chain length on the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of LDH with the addition of ILs. Both positive ΔH and ΔS suggested that hydrophobicity was the major driven force in the interaction process as expected.

  12. Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene

    Directory of Open Access Journals (Sweden)

    Cheryl K. Zogg

    2014-01-01

    Full Text Available Exemplified by cancer cells’ preference for glycolysis, for example, the Warburg effect, altered metabolism in tumorigenesis has emerged as an important aspect of cancer in the past 10–20 years. Whether due to changes in regulatory tumor suppressors/oncogenes or by acting as metabolic oncogenes themselves, enzymes involved in the complex network of metabolic pathways are being studied to understand their role and assess their utility as therapeutic targets. Conversion of glycolytic intermediate 3-phosphoglycerate into phosphohydroxypyruvate by the enzyme phosphoglycerate dehydrogenase (PHGDH—a rate-limiting step in the conversion of 3-phosphoglycerate to serine—represents one such mechanism. Forgotten since classic animal studies in the 1980s, the role of PHGDH as a potential therapeutic target and putative metabolic oncogene has recently reemerged following publication of two prominent papers near-simultaneously in 2011. Since that time, numerous studies and a host of metabolic explanations have been put forward in an attempt to understand the results observed. In this paper, I review the historic progression of our understanding of the role of PHGDH in cancer from the early work by Snell through its reemergence and rise to prominence, culminating in an assessment of subsequent work and what it means for the future of PHGDH.

  13. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  14. Regulation of L-threonine dehydrogenase in somatic cell reprogramming.

    Science.gov (United States)

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian

    2013-05-01

    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  15. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae.

    Science.gov (United States)

    DeLuna, Alexander; Quezada, Héctor; Gómez-Puyou, Armando; González, Alicia

    2005-03-25

    The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.

  16. Glutamate dehydrogenase 1 and SIRT4 regulate glial development.

    Science.gov (United States)

    Komlos, Daniel; Mann, Kara D; Zhuo, Yue; Ricupero, Christopher L; Hart, Ronald P; Liu, Alice Y-C; Firestein, Bonnie L

    2013-03-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP-ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.

  17. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae.

    Science.gov (United States)

    Bogonez, E; Satrústegui, J; Machado, A

    1985-06-01

    The activity of glutamate dehydrogenase (NADP+) (EC 1.4.1.4; NADP-GDH) of Saccharomyces cerevisiae is decreased under conditions in which intracellular ammonia concentrations increases. A high internal ammonia concentration can be obtained (a) by increasing the ammonium sulphate concentration in the culture medium, and (b) by growing the yeast either in acetate + ammonia media, where the pH of the medium rises during growth, or in heavily buffered glucose + ammonia media at pH 7.5. Under these conditions cellular oxoglutarate concentrations do not vary and changes in NADP-GDH activity appear to provide a constant rate of oxoglutarate utilization. The following results suggest that the decrease in NADP-GDH activity in ammonia-accumulating yeast cells is brought about by repression of synthesis: (i) after a shift to high ammonium sulphate concentrations, the number of units of activity per cell decreased as the inverse of cell doubling; and (ii) the rate of degradation of labelled NADP-GDH was essentially the same in ammonia-accumulating yeast cells and in controls, whereas the synthesis constant was much lower in the ammonia-accumulating cells than in the controls.

  18. The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Gómez-Manzo, Saúl; Contreras-Zentella, Martha; González-Valdez, Alejandra; Sosa-Torres, Martha; Arreguín-Espinoza, Roberto; Escamilla-Marván, Edgardo

    2008-06-30

    The oxidation of ethanol to acetic acid is the most characteristic process in acetic acid bacteria. Gluconacetobacter diazotrophicus is rather unique among the acetic acid bacteria as it carries out nitrogen fixation and is a true endophyte, originally isolated from sugar cane. Aside its peculiar life style, Ga. diazotrophicus, possesses a constitutive membrane-bound oxidase system for ethanol. The Alcohol dehydrogenase complex (ADH) of Ga. diazotrophicus was purified to homogeneity from the membrane fraction. It-exhibited two subunits with molecular masses of 71.4 kDa and 43.5 kDa. A positive peroxidase reaction confirmed the presence of cytochrome c in both subunits. Pyrroloquinoline quinone (PQQ) of ADH was identified by UV-visible light and fluorescence spectroscopy. The enzyme was purified in its full reduced state; potassium ferricyanide induced its oxidation. Ethanol or acetaldehyde restored the full reduced state. The enzyme showed an isoelectric point (pI) of 6.1 and its optimal pH was 6.0. Both ethanol and acetaldehyde were oxidized at almost the same rate, thus suggesting that the ADH complex of Ga. diazotrophicus could be kinetically competent to catalyze, at least in vitro, the double oxidation of ethanol to acetic acid.

  19. Computational design of glutamate dehydrogenase in Bacillus subtilis natto.

    Science.gov (United States)

    Chen, Li-Li; Wang, Jia-Le; Hu, Yu; Qian, Bing-Jun; Yao, Xiao-Min; Wang, Jing-Fang; Zhang, Jian-Hua

    2013-04-01

    Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD(+) or NADP(+) as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP(+) was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.

  20. Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside.

    Science.gov (United States)

    Jäger, Walter; Salamon, Alexandra; Szekeres, Thomas

    2002-04-01

    Benzamide riboside (BR) is a novel anticancer agent exhibiting pronounced activity against several human tumor cell lines via the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH) that catalyzes the formation of xanthine 5'-monophosphate from inosine 5'-monophosphate and nicotinamide adenine dinucleotide, thereby restricting the biosynthesis of guanylates. Phosphorylation of BR to its 5'-monophosphate derivative appears to be ubiquitous in most cells catalyzed by the enzymes, adenosine kinase, nicotinamide nucleoside kinase and 5' nucleotidase. BR 5'-monophosphate is then converted to the active metabolite benzamide adenine dinucleotide (BAD) by NMN adenylyltransferase, the rate-limiting enzyme in the biosynthesis of NAD. As BAD is more potent in the inhibition of IMPDH than BR and BR 5'-monophosphate, cytotoxicity of BR is closely connected with intercellular metabolism to BAD. However, intracellular BAD level is also affected by BADase activity, a phosphodiesterase which hydrolyzes BAD to BR-5'-monophosphate and AMP. A recent study demonstrates enzymatic deamination of BR to non-cytotoxic benzene carboxylic acid (BR-COOH) as the main hepatic BR biotransformation product in rat liver. As the IMPDH inhibitors tiazofurin and ribavirin exhibit predominant accumulation and biotransformation in liver, hepatic metabolism may be an important factor also for BR activation and inactivation and should be considered in human liver during cancer therapy when BR is used as a single drug or in combination with other anticancer agents.

  1. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  2. Novel Inhibitors of Mitochondrial sn-Glycerol 3-phosphate Dehydrogenase

    Science.gov (United States)

    Orr, Adam L.; Ashok, Deepthi; Sarantos, Melissa R.; Ng, Ryan; Shi, Tong; Gerencser, Akos A.; Hughes, Robert E.; Brand, Martin D.

    2014-01-01

    Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD+ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP) discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5) were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC50 and Ki values between ∼1–15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems. PMID:24587137

  3. The role of glutamate dehydrogenase in mammalian ammonia metabolism.

    Science.gov (United States)

    Spanaki, Cleanthe; Plaitakis, Andreas

    2012-01-01

    Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

  4. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum.

    Science.gov (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-27

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51 kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2 kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30°C, and interestingly, it could utilize NAD(+) and NADP(+) as coenzymes with similar efficiency and showed no obvious difference toward NAD(+) and NADP(+). In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum.

  5. Structure and Function of Lactate Dehydrogenase from Hagfish

    Directory of Open Access Journals (Sweden)

    Mitsumasa Okada

    2010-03-01

    Full Text Available The lactate dehydrogenases (LDHs in hagfish have been estimated to be the prototype of those in higher vertebrates. The effects of high hydrostatic pressure from 0.1 to 100 MPa on LDH activities from three hagfishes were examined. The LDH activities of Eptatretus burgeri, living at 45–60 m, were completely lost at 5 MPa. In contrast, LDH-A and -B in Eptatretus okinoseanus maintained 70% of their activities even at 100 MPa. These results show that the deeper the habitat, the higher the tolerance to pressure. To elucidate the molecular mechanisms for adaptation to high pressure, we compared the amino acid sequences and three-dimensional structures of LDHs in these hagfish. There were differences in six amino acids (6, 10, 20, 156, 269, and 341. These amino acidresidues are likely to contribute to the stability of the E. okinoseanus LDH under high-pressure conditions. The amino acids responsible for the pressure tolerance of hagfish are the same in both human and hagfish LDHs, and one substitution that occurred as an adaptation during evolution is coincident with that observed in a human disease. Mutation of these amino acids can cause anomalies that may be implicated in the development of human diseases.

  6. Green tea catechins: inhibitors of glycerol-3-phosphate dehydrogenase.

    Science.gov (United States)

    Kao, Chung-Cheng; Wu, Bo-Tsung; Tsuei, Yi-Wei; Shih, Li-Jane; Kuo, Yu-Liang; Kao, Yung-Hsi

    2010-05-01

    Green tea catechins, especially (-)-epigallocatechin-3-gallate (EGCG), are known to regulate obesity and fat accumulation. We performed a kinetic analysis in a cell-free system to determine the mode of inhibition of glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) by EGCG. GPDH catalyzes the beta-nicotinamide adenine dinucleotide (NADH)-dependent reduction of dihydroxyacetone phosphate (DHAP) to yield glycerol-3-phosphate, which serves as one of the major precursors of triacylglycerols. We found that EGCG dose-dependently inhibited GPDH activity at a concentration of approximately 20 muM for 50 % inhibition. The IC (50) values of other green tea catechins, such as (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin, were all above 100 microM. This suggests a catechin type-dependent effect. Based on double-reciprocal plots of the kinetic data, EGCG was a noncompetitive inhibitor of the GPDH substrates, NADH and DHAP, with respective inhibition constants (Ki) of 18 and 31 microM. Results of this study possibly support previous studies that EGCG mediates fat content. Georg Thieme Verlag KG Stuttgart. New York.

  7. Metabolic engineering of lactate dehydrogenase rescues mice from acidosis.

    Science.gov (United States)

    Acharya, Abhinav P; Rafi, Mohammad; Woods, Elliot C; Gardner, Austin B; Murthy, Niren

    2014-06-05

    Acidosis causes millions of deaths each year and strategies for normalizing the blood pH in acidosis patients are greatly needed. The lactate dehydrogenase (LDH) pathway has great potential for treating acidosis due to its ability to convert protons and pyruvate into lactate and thereby raise blood pH, but has been challenging to develop into a therapy because there are no pharmaceutical-based approaches for engineering metabolic pathways in vivo. In this report we demonstrate that the metabolic flux of the LDH pathway can be engineered with the compound 5-amino-2-hydroxymethylphenyl boronic acid (ABA), which binds lactate and accelerates the consumption of protons by converting pyruvate to lactate and increasing the NAD(+)/NADH ratio. We demonstrate here that ABA can rescue mice from metformin induced acidosis, by binding lactate, and increasing the blood pH from 6.7 to 7.2 and the blood NAD(+)/NADH ratio by 5 fold. ABA is the first class of molecule that can metabolically engineer the LDH pathway and has the potential to have a significant impact on medicine, given the large number of patients that suffer from acidosis.

  8. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  9. Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase.

    Science.gov (United States)

    Ruda, Gian Filippo; Campbell, Gordon; Alibu, Vincent P; Barrett, Michael P; Brenk, Ruth; Gilbert, Ian H

    2010-07-15

    The enzyme 6-phosphogluconate dehydrogenase is a potential drug target for the parasitic protozoan Trypanosoma brucei, the causative organism of human African trypanosomiasis. This enzyme has a polar active site to accommodate the phosphate, hydroxyl and carboxylate groups of the substrate, 6-phosphogluconate. A virtual fragment screen was undertaken of the enzyme to discover starting points for the development of inhibitors which are likely to have appropriate physicochemical properties for an orally bioavailable compound. A virtual screening library was developed, consisting of compounds with functional groups that could mimic the phosphate group of the substrate, but which have a higher pKa. Following docking, hits were clustered and appropriate compounds purchased and assayed against the enzyme. Three fragments were identified that had IC50 values in the low micromolar range and good ligand efficiencies. Based on these initial hits, analogues were procured and further active compounds were identified. Some of the fragments identified represent potential starting points for a medicinal chemistry programme to develop potent drug-like inhibitors of the enzyme. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Site Saturation Mutagenesis Applications on Candida methylica Formate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Gülşah P. Özgün

    2016-01-01

    Full Text Available In NADH regeneration, Candida methylica formate dehydrogenase (cmFDH is a highly significant enzyme in pharmaceutical industry. In this work, site saturation mutagenesis (SSM which is a combination of both rational design and directed evolution approaches is applied to alter the coenzyme specificity of NAD+-dependent cmFDH from NAD+ to NADP+ and increase its thermostability. For this aim, two separate libraries are constructed for screening a change in coenzyme specificity and an increase in thermostability. To alter the coenzyme specificity, in the coenzyme binding domain, positions at 195, 196, and 197 are subjected to two rounds of SSM and screening which enabled the identification of two double mutants D195S/Q197T and D195S/Y196L. These mutants increase the overall catalytic efficiency of NAD+ to 5.6×104-fold and 5×104-fold value, respectively. To increase the thermostability of cmFDH, the conserved residue at position 1 in the catalytic domain of cmFDH is subjected to SSM. The thermodynamic and kinetic results suggest that 8 mutations on the first residue can be tolerated. Among all mutants, M1L has the best residual activity after incubation at 60°C with 17%. These studies emphasize that SSM is an efficient method for creating “smarter libraries” for improving the properties of cmFDH.

  11. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization.

    Science.gov (United States)

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M

    2014-02-01

    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents.

  12. The structure and allosteric regulation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2011-09-01

    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  13. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  14. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  15. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  16. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  18. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.

    Science.gov (United States)

    Bartholomae, Maike; Meyer, Frederik M; Commichau, Fabian M; Burkovski, Andreas; Hillen, Wolfgang; Seidel, Gerald

    2014-02-01

    In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.

  19. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  20. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    Science.gov (United States)

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the

  1. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules.

    OpenAIRE

    Gardiol, A E; Truchet, G L; Dazzo, F. B.

    1987-01-01

    Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti ba...

  2. Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans.

    Science.gov (United States)

    Matsunami, H; Kawaguchi, H; Inagaki, K; Eguchi, T; Kakinuma, K; Tanaka, H

    1998-02-01

    We constructed an overexpression system in Escherichia coli of the leuB gene coding for 3-isopropylmalate dehydrogenase in Thiobacillus ferrooxidans. E. coli harboring the plasmid we constructed, pKK leuB1, produced 17-fold the enzyme protein of the expression system previously used for purification. The substrate specificity of the enzyme was analyzed with synthetic (2R, 3S)-3-alkylmalates. The 3-isopropylmalate dehydrogenase of Thiobacillus ferrooxidans had broad specificity toward the alkylmalates.

  3. [Palmitoyl-CoA-dehydrogenase from rabbit adrenals, liver and myocardium].

    Science.gov (United States)

    Doroshkevich, N A; Mandrik, K A; Vinogradov, V V

    1988-01-01

    Partially purified preparations of palmitoyl-CoA dehydrogenase from rabbit adrenal glands, liver and heart tissues exhibited similar kinetic parameters. Km value constituted 6.58, 5.26 and 6.67 microM for the enzyme from adrenal glands, liver and heart tissues, respectively. At the same time, palmitoyl-CoA dehydrogenase possessed lower catalytic capacity in adrenal glands due to the decreased amount of the enzyme as compared with that of liver or heart tissues.

  4. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    Science.gov (United States)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  5. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  6. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  7. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  8. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii.

    Science.gov (United States)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel.

  9. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    Science.gov (United States)

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  10. Human kidney 11 beta-hydroxysteroid dehydrogenase: regulation by adrenocorticotropin?

    Science.gov (United States)

    Diederich, S; Quinkler, M; Miller, K; Heilmann, P; Schoneshofer, M; Oelkers, W

    1996-03-01

    In ectopic adrenocorticotropin (ACTH) syndrome (EAS) with higher ACTH levels than in pituitary Cushing's syndrome and during ACTH infusion, the ratio of cortisol to cortisone in plasma and urine is increased, suggesting inhibition of renal 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) by ACTH or by ACTH-dependent steroids. Measuring the conversion of cortisol to cortisone by human kidney slices under different conditions, we tested the possibility of 11 beta-HSD regulation by ACTH and corticosteroids. Slices prepared from unaffected parts of kidneys removed because of renal cell carcinoma were incubated with unlabeled or labeled cortisol, and cortisol and cortisone were quantitated after HPLC separation by UV or radioactive detection. The 11 beta HSD activity was not influenced by incubation with increasing concentrations (10(-12)-10(-9) mol/l) of ACTH (1-24 or 1-39) for 1 h. Among 12 ACTH-dependent steroids tested (10(-9)-10(-6) mol/l), only corticosterone (IC50 = 2 x 10(-7) mol/l), 18-OH-corticosterone and 11 beta-OH-androstenedione showed a significant dose-dependent inhibition of 11 beta-HSD activity. The percentage conversion rate of cortisol to cortisone was concentration dependent over the whole range of cortisol concentrations tested (10(-8) - 10(-5) mol/l. A direct inhibitory effect of ACTH on 11 beta-HSD is, therefore, unlikely. The only steroids inhibiting the conversion of cortisol to cortisone are natural substrates for 11 beta-HSD. Kinetic studies show a saturation of the enzyme at high cortisol concentrations. Thus, the reduced percentage renal cortisol inactivation in EAS seems to be due mainly to overload of the enzyme with endogenous substrates (cortisol, corticosterone and others) rather than to direct inhibition of 11 beta-HSD by ACTH or ACTH-dependent steroids, not being substrates of 11 beta-HSD.

  11. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  12. The expression of succinate dehydrogenase in breast phyllodes tumor.

    Science.gov (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, WooHee; Koo, Ja Seung

    2014-10-01

    The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

  13. Screening and Characterization of Proline Dehydrogenase Flavoenzyme Producing Pseudomonas Entomophila

    Directory of Open Access Journals (Sweden)

    H Shahbaz- Mohammadi

    2011-12-01

    Full Text Available Background and Objectives: Proline dehydrogenase (ProDH; 1.5.99.8 plays an important role in specific determination of plasma proline level in biosensor and diagnostic kits. The goal of this research was to isolate and characterize ProDH enzyme from Iranian soil microorganisms.Materials and Methods: Screening of L-proline degradative enzymes from soil samples was carried out employing enrichment culture techniques. The isolate was characterized by biochemical reactions and specific PCR amplification. The target ProDH was purified and the effects of pH and temperature on the activity and stability were also tested.Results: Among the 250 isolates recovered from 40 soil samples, only one strain characterized as Pseudomonas entomophila displayed the highest enzyme activity toward L-proline (350 U/l than others. The enzyme of interest was identified as a ProDH and had Km value of 32 mM for L-proline. ProDH exhibited its best activity at temperature range of 25 to 35°C and its highest activity was achieved at 30°C. It was almost stable at temperatures between 25-30°C for 2 hours. The optimum pH activity of ProDH reaction was 8.5 and its activity was stable in pH range of 8.0-9.0 upto 24 hours. The enzyme was purified with a yield of 8.5% and a purification factor of 37.7. The molecular mass of the purified ProDH was about 40 kDa, and determined to be a monomeric protein."nConclusion: This is the first report concerning the ProDH production by a P. entomophila bacterium isolated from soil sample.

  14. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  15. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation.

    Science.gov (United States)

    Gerardo Valadez, J; Grover, Vandana K; Carter, Melissa D; Calcutt, M Wade; Abiria, Sunday A; Lundberg, Christopher J; Williams, Thomas V; Cooper, Michael K

    2013-01-28

    The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.

  16. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  17. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases.

    Science.gov (United States)

    Kim, Byoungjin; Sullivan, Ryan P; Zhao, Huimin

    2010-07-01

    L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD(+) reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L: -arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD(+)-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55-65 degrees C with the other LADs showed the maximum activity in the temperature range of 40-50 degrees C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP(+) was increased by 2.5 x 10(4)-fold, whereas the cofactor preference toward NADP(+) of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

  18. Short-chain dehydrogenases/reductases in cyanobacteria.

    Science.gov (United States)

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  19. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis.

    Science.gov (United States)

    Plapp, Bryce V; Savarimuthu, Baskar Raj; Ferraro, Daniel J; Rubach, Jon K; Brown, Eric N; Ramaswamy, S

    2017-07-18

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme-NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ∼1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD(+) and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  20. Structural basis of cooperativity in human UDP-glucose dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Venkatachalam Rajakannan

    Full Text Available BACKGROUND: UDP-glucose dehydrogenase (UGDH is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY: Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION: In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.

  1. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  2. Residues that influence coenzyme preference in the aldehyde dehydrogenases.

    Science.gov (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A

    2015-06-01

    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  3. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    Science.gov (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.

    Science.gov (United States)

    Goncalves, Renata L S; Bunik, Victoria I; Brand, Martin D

    2016-02-01

    In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.

  5. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  6. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail: yoji@dpc.ehime-u.ac.jp; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)

    2008-06-16

    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  7. Tear Malate Dehydrogenase,Lactate Dehydrogenase and Their Isoenzymes in Normal Chinese Subjects and Patients of Ocular Surface Disorders

    Institute of Scientific and Technical Information of China (English)

    QingGuo; HanchengZhang

    1995-01-01

    Purose:To determine levels of malate dehydrogenase(MDH),lactate dehydroge-nase(LDH)and their isoenzymes in tears of normal Chinese subjects and patients with ocular surface disorders.Methods:The age range of normal subjects was10-88,with136mal and 128fe-male subjects.123patients suffered from ocular surface disorders.Tears were col-lected from lower fornix on Xinghua filter disc(0.1mm thick,5mm in diameter).The values of tearMDHand LDHwere determined by MONARCH-2000Ana-lyzer(U.S.A)Their isoenzymes were separated by acetate cellulose elec-trophoresis and were determined by Model CDS-200light densitometer.Results:The normal values of tear LDH and MDH were 45.51+23.00-81.35+37.84umol·s-1/Land11.00+5.33-19.50+9.17umol·s-1/Lrespectively,dis-regarding sex or eye distriction(P>0.05).The values of tear LDHandMDH in the group aged10-19were significantly lower than in another groups(P<0.05),95%normal ranges of tearMDHaged below19and above20were3.63-19.90umol·s-1/L.THe MDH isoenzymes comprised MDHs and MDHm,the former accounting for80.0-89.1%.The LDH isoenzymes comprised 5varieties.of which the ratioH/Mof subunit H tosubunit Mwas0.196+0.02.Levels of tear LDH,MDHand their isoenzymes in different diseases were various.Conclusions;Tear LDH/MDHratio reflected sensitively the matabolism of corneae and conjunetival epithelium.The changes in LDH isoenzymes were hel-ful to the differential diagnosis of external eye diseases,and the increase of MDHm reflected sensitively the degree of injury to the corneal epithelium.

  8. Mechanism of Hyperinsulinism in Short-chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency Involves Activation of Glutamate Dehydrogenase*

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K.; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M.; Jones, Patricia M.; Collins, Heather W.; Cohen, Noam A.; Cohen, Akiva S.; Nissim, Itzhak; Smith, Thomas J.; Strauss, Arnold W.; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.

    2010-01-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh−/−). The hadh−/− mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh−/− mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh−/− mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh−/− islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh−/− islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh−/− islets also have increased [U-14C]glutamine oxidation. In contrast, hadh−/− mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh−/− islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh−/− islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD. PMID:20670938

  9. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase.

    Science.gov (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A

    2010-10-01

    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  10. 5-Aminolevulinic acid and the hepatic oxidative stress in the early phase of experimental hexachlorobenzene intoxication Ácido delta-aminolevulinico e estresse oxidativo hepático na fase inicial da intoxicação experimental por hexaclorobenzeno

    OpenAIRE

    Tânia Cristina Higashi Sawada; Vanessa Vitoriano da Silva; Sonia Barros; Cristina Dislich Röpke; Silvia Berlanga de Moraes Barros

    2004-01-01

    This work evaluated the levels of 5-aminolevulinic acid (ALA) in the liver of rats exposed to different doses of HCB (25,50, and 100 mg/kg b.w. for 4 weeks) and correlated them with lipid peroxidation parameters. Levels of ALA were determined by high-pressure liquid chromatography after derivatization with acetylacetone and formaldehyde, followed by fluorescence detection. The methodology was carefully validated, nonetheless hepatic levels of ALA in all animals treated or not were below the d...

  11. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    Science.gov (United States)

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable

  12. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes.

    Science.gov (United States)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten

    2008-06-01

    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  13. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-dong; SHI Yan-fang; WANG Hong; WANG Jia-liang; MA Wen-bin; WANG Ren-zhi

    2011-01-01

    Background Site A132Arg mutations potentially impair the affinity of isocitrate dehydrogenase 1 (IDH1) for its substrate isocitrate (ICT),consequently reducing the production of α-ketoglutarate and leading to tumor growth through the induction of the hypoxia-inducible factor-1 (HIF-1) pathway.However,given that the roles of other active sites in IDH1 substrate binding remain unclear,we aimed to investigate IDH1 mutation pattern and its influence on enzyme function.Methods Fifteen IDH1 catalytic active site candidates were selected for in silico mutagenesis and protein homology modeling.Binding free energy of the IDH1/ICT complexes with single-site mutations was compared with that of the wild type.The affinity of 10 IDH1 catalytic active sites for the ICT substrate was further calculated.Results The IDH1 active site included seven residues from chain A (A77Thr,A94Ser,A100Arg,A132Arg,A1O9Arg,A275Asp,and A279Asp) and three residues from chain B (B214Thr,B212Lys,and B252Asp) that constituted the substrate ICT-binding site.These residues were located within 0.5 nm of ICT,indicating a potential interaction with the substrate.IDH1 changes of binding free energy (△E) suggested that the A132Arg residue from chain A contributes three hydrogen bonds to the ICT α-carboxyl and β-carboxyl groups,while the other nine residues involved in ICT binding form only one or two hydrogen bonds.Amino acid substitutes at A132Arg,A109Arg,and B212Lys sites,had the greatest effect on enzyme affinity for its substrate.Conclusions Mutations at sites A132Arg,A109Arg,and B212Lys reduced IDH1 affinity for ICT,indicating these active sites may play a central role in substrate binding.Mutations at sites A77Thr,A94Ser,and A275Asp increased the affinity of IDH1 for ICT,which may enhance IDN1 catalytic activity.Mutant IDH1 proteins with higher catalytic activity than the wild-type IDH1 could potentially be used as a novel gene therapy for glioblastoma multiforme.

  14. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos.

    Science.gov (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G

    2000-08-01

    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  15. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  16. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  17. D- and L-lactate dehydrogenases during invertebrate evolution

    Directory of Open Access Journals (Sweden)

    Stillman Jonathon H

    2008-10-01

    Full Text Available Abstract Background The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(--lactate and D(+-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh. Results Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view that the main isozymes (LDH-A, LDH-B and LDH-C evolved through a series of gene duplications after the vertebrates diverged from tunicates. We report several gene duplication events in the crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were found in both vertebrates and invertebrates. Conclusion The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the evolution of L-Ldh has been punctuated by

  18. Relationship Between Polymorphism of Methylenetetrahydrofolate Dehydrogenase and Congenital Heart Defect

    Institute of Scientific and Technical Information of China (English)

    JUN CHENG; WEN-LI ZHU; JING-JING DAO; SHU-QING LI; YONG LI

    2005-01-01

    Objective To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two CHD patients and their parents were included in this study as case group in Liaoning Province by birth defect registration cards, and 124 healthy subjects (age and gender matched) and their parents were simultaneously selected from the same geographic area as control. Their gene polymorphism of MTHFD G1958A locus was examined with PCR-RFLP, and serum folic acid and homocysteine (Hcy) levels were tested with radio-immunoassay and fluorescence polarization immunoassay (FPIA). Results There existed gene polymorphism at MTHFD G1958A locus in healthy subjects living in North China. The percentages of GG, GA, and AA genotype were 57.98%, 35.57%, and 6.45% respectively, and the A allele frequency was 24.23%, which was significantly different from Western population. No difference was observed when comparing genotype distribution and allele frequency between the case and control groups, so was the result from the comparison between genders. The A allele frequency of arterial septal defect patients' mothers (10.87%) was significantly lower than that of controls (28.15%) (P=0.014), with OR=0.31 (95% CI: 0.09-0.84), and no difference in the other subgroups. The percentage of at least one parent carrying A allele in arterial septal defect subgroup (43.48%) was significantly lower than that in controls (69.64%) (P=0.017), with OR=0.34 (95% CI: 0.12-0.92). The analysis of genetic transmission indicated that there was no transmission disequillibrium in CHD nuclear families. Their serum folic acid level was significantly higher than that of controls (P=0.000), and Hcy level of the former was higher than that of the latter with no statistical significance (P>0.05). Serum Hcy and folic acid levels of mothers with gene mutation were lower than those of mothers

  19. 11beta-hydroxysteroid dehydrogenase type 1 and obesity.

    Science.gov (United States)

    Morton, Nicholas M; Seckl, Jonathan R

    2008-01-01

    The metabolic syndrome consists of a constellation of co-associated metabolic abnormalities such as insulin resistance, type 2 diabetes, dyslipidaemia, hypertension and visceral obesity. For many years endocrinologists have noted the striking resemblance between this disease state and that associated with Cushing's syndrome. However, in the metabolic syndrome plasma cortisol levels tend to be normal or lower than in normal individuals. Nevertheless there is strong evidence that glucocorticoid action underlies metabolic disease, largely from rodent obesity models where removing glucocorticoids reverses obesity and its metabolic abnormalities. The apparent paradox of similar metabolic defects - despite the opposing plasma glucocorticoid profiles of Cushing's and idiopathic metabolic syndrome - remained intriguing until the discovery that intracellular glucocorticoid reactivation was elevated in adipose tissue of obese rodents and humans. The enzyme that mediates this activation, conversion of cortisone (11-dehydrocorticosterone in rodents) to cortisol (corticosterone in rodents), locally within tissues is 11beta -hydroxysteroid dehydrogenase type 1 (11beta -HSD1). In order to determine whether elevated tissue 11beta -HSD1 contributed to obesity and metabolic disease, transgenic mice overexpressing 11beta -HSD1 in adipose tissue or liver were made. Adipose-selective 11beta -HSD1 transgenic mice exhibited elevated intra-adipose and portal, but not systemic corticosterone levels, abdominal obesity, hyperglycaemia, insulin resistance, dyslipidaemia and hypertension. In contrast, transgenic overexpression of 11beta -HSD1 in liver yielded an attenuated metabolic syndrome with mild insulin resistance, dyslipidaemia, hypertension and fatty liver, but not obesity or glucose intolerance. Together with early data using non-selective 11beta -HSD1 inhibitors to insulin sensitise humans, this corroborated the notion that the enzyme may be a good therapeutic target in the treatment

  20. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.

    Science.gov (United States)

    Berzin, Vel; Tyurin, Michael; Kiriukhin, Michael

    2013-02-01

    Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

  1. Analysis of isocitrate dehydrogenase-1/2 gene mutations in gliomas

    Institute of Scientific and Technical Information of China (English)

    YU Lei; QI Song-tao; LI Zhi-yong

    2010-01-01

    Objective To highlight recent researches which may show promise for histomolecular classification and new treatments for gliomas.Data sources All articles cited in this review were mainly searched from PubMed, which were published in English from 1996 to 2010.Study selection Original articles and critical reviews selected were relevant to the isocitrate dehydrogenase-1/2 mutation in gliomas and other tumors.Results Extraordinary high rates of somatic mutations in isocitrate dehydrogenase-1/2 occur in the majority of World Health Organization grade Ⅱ and grade Ⅲ gliomas as well as grade Ⅳ secondary glioblastomas. Isocitrate dehydrogenase-1/2 mutations are associated with younger age at diagnosis and a better prognosis in patients with mutated tumors. The functional role of isocitrate dehydrogenase-1/2 mutations in the pathogenesis of gliomas is still unclear.Conclusion Isocitrate dehydrogenase-1/2 mutations define a specific subtype of gliomas and may have great significance in the diagnosis, prognosis, and treatment of patients with these tumors.

  2. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  3. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

    Science.gov (United States)

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M

    2013-11-30

    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.

  4. Isolation and characterization of an inducible NAD-dependent butyraldehyde dehydrogenase from clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, W.; Duerre, P. [Universitaet Ulm (Germany)

    1996-12-31

    A NAD-dependent butyraldehyde dehydrogenase (BAD) has been purified from C. acetobutylicum DSM 792 and DSM 173 1. This key enzyme of butanol production, catalyzing the conversion of butyryl-CoA to butyraldehyde, was induced shortly before the onset of butanol production and proved to be oxygen-sensitive. A one step purification procedure on reactive green 19 allowed to purify the enzyme to homogeneity. The purified protein was found to be extremely unstable and could only partially be stabilized by addition of mercaptoethanol and storage below -20{degrees}C. The enzyme subunit had a molecular mass of 39.5 kDa. In the reverse reaction (butyryl-CoA-forming) the apparent pH optimum was 9.75 and Vmax was significantly higher with butyraldehyde and propionaldehyde than with acetaldehyde. BAD could also use NADP+, but NAD+ was the preferred coenzyme for the reverse reaction. The N-terminal amino acid sequence of the C. acetobutylicurn DSM 792 protein showed high homology to glyceraldehyde-3-phosphate dehydrogenases (GAP), especially to the protein of C. pasteurianum. Genomic libraries of C. acetobutylicum DSM 792 were screened by hybridization using PCR-generated heterologous probes encoding the gap gene of C. pasteurianum. Sequence analysis of the positive clones revealed high homology, but no identity to the N-terminal amino acid sequence of the butyraldehyde dehydrogenase. Thus, BAD from C. acetobutylicum is distinctly different from other reported aldehyde dehydrogenases with butyraldehyde dehydrogenase activity.

  5. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  6. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Science.gov (United States)

    Basner, Alexander; Antranikian, Garabed

    2014-01-01

    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  7. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  8. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    Science.gov (United States)

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  9. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.

    Science.gov (United States)

    Murakami, Keiko; Yoshino, Masataka

    2004-12-15

    Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.

  10. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    Science.gov (United States)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  11. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal.

  12. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis.

    Science.gov (United States)

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-09-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  13. Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814.

    Science.gov (United States)

    Nakamura, K; Nakamura, M; Yoshikawa, H; Amano, Y

    2001-01-01

    A key enzyme of the thiosulfate oxidation pathway in Acidithiobacillus thiooxidans JCM7814 was investigated. As a result of assaying the enzymatic activities of thiosulfate dehydrogenase, rhodanese, and thiosulfate reductase at 5.5 of intracellular pH, the activity of thiosulfate dehydrogenase was measured as the key enzyme. The thiosulfate dehydrogenase of A. thiooxidans JCM7814 was purified using three chromatographies. The purified sample was electrophoretically homogeneous. The molecular mass of the enzyme was 27.9 kDa and it was a monomer. This enzyme had cytochrome c. The optimum pH and temperature of this enzyme were 3.5 and 35 degrees C. The enzyme was stable in the pH range from 5 to 7, and it was stable up to 45 degrees C. The isoelectric point of the enzyme was 8.9. This enzyme reacted with thiosulfate as a substrate. The Km was 0.81 mM.

  14. Crystallization and initial X-ray diffraction analysis of human pyruvate dehydrogenase

    Science.gov (United States)

    Ciszak, E.; Korotchkina, L. G.; Hong, Y. S.; Joachimiak, A.; Patel, M. S.

    2001-01-01

    Human pyruvate dehydrogenase (E1) is a component enzyme of the pyruvate dehydrogenase complex. The enzyme catalyzes the irreversible decarboxylation of pyruvic acid and the rate-limiting reductive acetylation of the lipoyl moiety linked to the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. E1 is an alpha(2)beta(2) tetramer ( approximately 154 kDa). Crystals of this recombinant enzyme have been grown in polyethylene glycol 3350 using a vapor-diffusion method at 295 K. The crystals are characterized as orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 64.2, b = 126.9, c = 190.2 A. Crystals diffracted to a minimum d spacing of 2.5 A. The asymmetric unit contains one alpha(2)beta(2) tetrameric E1 assembly; self-rotation function analysis showed a pseudo-twofold symmetry relating the two alphabeta dimers.

  15. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  16. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  18. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)(+)-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD(+) Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD(+)/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme.

  19. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Muro-Pastor, M I; Florencio, F J

    1992-01-15

    NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.

  20. Homology modelling and docking analysis of L-lactate dehydrogenase from Streptococcus thermopilus

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir R.

    2016-01-01

    Full Text Available The aim of this research was to create a three-dimensional model of L-lactate dehydrogenase from the main yoghurt starter culture - Streptococcus thermopilus, to analyse its structural features and investigate substrate binding in the active site. NCBI BlastP was used against the Protein Data Bank database in order to identify the template for construction of homology models. Multiple sequence alignment was performed using the program MUSCULE within the UGENE 1.11.3 program. Homology models were constructed using the program Modeller v. 9.17. The obtained 3D model was verified by Ramachandran plots. Molecular docking simulations were performed using the program Surflex-Dock. The highest sequence similarity was observed with L-lactate dehydrogenase from Lactobacillus casei subsp. casei, with 69% identity. Therefore, its structure (PDB ID: 2ZQY:A was selected as a modelling template for homology modelling. Active residues are by sequence similarity predicted: S. thermophilus - HIS181 and S. aureus - HIS179. Binding energy of pyruvate to L-lactate dehydrogenase of S. thermopilus was - 7.874 kcal/mol. Pyruvate in L-lactate dehydrogenase of S. thermopilus makes H bonds with catalytic HIS181 (1.9 Å, as well as with THR235 (3.6 Å. Although our results indicate similar position of substrates between L-lactate dehydrogenase of S. thermopilus and S. aureus, differences in substrate distances and binding energy values could influence the reaction rate. Based on these results, the L-lactate dehydrogenase model proposed here could be used as a guide for further research, such as transition states of the reaction through molecular dynamics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009