WorldWideScience

Sample records for aminoglycosides

  1. Therapeutic drug monitoring of aminoglycosides in neonates

    NARCIS (Netherlands)

    Touw, Daniël J; Westerman, Elsbeth M; Sprij, Arwen J

    2009-01-01

    The efficacy and toxicity of aminoglycosides show a strong direct positive relationship with blood drug concentrations, therefore, therapy with aminoglycosides in adults is usually guided by therapeutic drug monitoring. Dosing regimens in adults have evolved from multiple daily dosing to

  2. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae.

    Science.gov (United States)

    Nordmann, Patrice; Jayol, Aurélie; Dobias, Jan; Poirel, Laurent

    2017-04-01

    The rapid aminoglycoside NP (Nordmann/Poirel) test was developed to rapidly identify multiple aminoglycoside (AG) resistance in Enterobacteriaceae It is based on the detection of the glucose metabolism related to enterobacterial growth in the presence of a defined concentration of amikacin plus gentamicin. Formation of acid metabolites was evidenced by a color change (orange to yellow) of the red phenol pH indicator. The rapid aminoglycoside NP test was evaluated by using bacterial colonies of 18 AG-resistant isolates producing 16S rRNA methylases, 20 AG-resistant isolates expressing AG-modifying enzymes (acetyl-, adenyl-, and phosphotransferases), and 10 isolates susceptible to AG. Its sensitivity and specificity were 100% and 97%, respectively, compared to the broth dilution method, which was taken as the gold standard for determining aminoglycoside resistance. The test is inexpensive, rapid (<2 h), and implementable worldwide. Copyright © 2017 American Society for Microbiology.

  3. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  4. Modulation of RNA function by aminoglycoside antibiotics.

    Science.gov (United States)

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-04

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.

  5. Aminoglycoside resistance among isolates of nosocomial Enterobacteriaceae

    International Nuclear Information System (INIS)

    Botha, P.L.; Elisha, G.; Pratt, K.

    1981-01-01

    Fifty-seven gentamicin-resistant isolates of Enterobacteriaceae, obtained from patients attending hospital, were examined for the production of aminoglycoside-modifying enzymes. Of the 51 strains producing such enzymes, 34 were presumptively plasmid-mediated as indicated by conjugation experiments

  6. An overview of strategies for synthetic modifications of aminoglycosides

    International Nuclear Information System (INIS)

    Aslam, M.W.

    2013-01-01

    Aminoglycosides, a family of structurally related broad-spectrum bactericidal compounds, have been used extensively for the treatment of aerobic gram-negative bacterial infections because of their rapid anti-bacterial activity, chemical stability and ability to work in combination with other drugs. However, toxic side-effects and growing bacterial resistance have narrowed the significance of aminoglycosides as antibiotics. Due to these limitations, extensive research on aminoglycosides has resulted in the development of a wide range of synthetic strategies to improve the overall characteristics of aminoglycosides. Herein, an overview of the various approaches reported in the literature to enhance binding affinity and to overcome resistance of aminoglycosides is provided. (author)

  7. Aminoglycoside antibiotics and autism: a speculative hypothesis

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2001-10-01

    Full Text Available Abstract Background Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. Presentation We hypothesize that aminoglycoside antibiotics could a trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. Testing Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children and the onset of autism symptoms (hypothesis "a", or between amino glycoside use and improvement of these symptoms (hypothesis "b". Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". Implications It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism.

  8. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  9. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  10. Clinical pharmacokinetics of aminoglycosides in the neonate: a review.

    Science.gov (United States)

    Pacifici, Gian Maria

    2009-04-01

    Sepsis is common in neonates and is a major cause of morbidity and mortality. Sixty percent of preterm neonates receive at least one antibiotic, and 43% of the antibiotics administered to these neonates are aminoglycosides. The clearance (Cl), serum half-life (t(1/2)), and volume of distribution (Vd) of aminoglycosides change during the neonatal life, and the pharmacokinetics of aminoglycosides need to be studied in neonates in order to optimise therapy with these drugs. The aim of this work is to review the published data on the pharmacokinetics of aminoglycosides in order to provide a critical analysis of the literature that can be a useful tool in the hands of physicians. The bibliographic search was performed electronically using PubMed, as the search engine, through July 11th, 2008. Firstly, a Medline search was performed with the keywords "pharmacokinetics of aminoglycosides in neonates" with the limit of "human". Other Medline searches were performed with the keywords "pharmacokinetics of ... in neonates" followed by the name of the aminoglycosides: amikacin, gentamicin, netilmicin and tobramycin. In addition, the book Neofax: A Manual of Drugs Used in Neonatal Care by Young and Mangum (Thomson Healthcare, 2007) was consulted. The aminoglycosides are mainly eliminated by the kidney, and their elimination rates are reduced at birth. As a consequence Cl is reduced and t(1/2) is prolonged in the neonate as compared to more mature infants. The high body-water content of the neonate results in a large Vd of aminoglycosides as these drugs are fairly water soluble. Postnatal development is an important factor in the maturation of the neonate, and as postnatal age proceeds, Cl of aminoglycosides increases. The maturation of the kidney governs the pharmacokinetics of aminoglycosides in the infant. Cl and t(1/2) are influenced by development, and this must be taken into consideration when planning a dosage regimen with aminoglycosides in the neonate. Aminoglycosides

  11. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  12. Radioimmunoassay and radioenzymatic assay of a new aminoglycoside antibiotic, netilmicin

    International Nuclear Information System (INIS)

    Broughton, A.; Strong, J.E.; Pickering, L.K.; Knight, J.; Bodey, G.P.

    1978-01-01

    A radioimmunoassay and a radioenzymatic assay for netilmicin, a new aminoglycoside, were developed in our laboratories to assist in the study of the pharmacology of the drug and establish values for use in its monitoring. The assays are sensitive, precise, and rapid, giving results that correlate (r = 0.90) with each other and with those of a microbiological assay in which Klebsiella pneumoniae is used as the test organism. Preliminary pharmacological studies show the drug to have a biological half-life of 135 min, which is comparable to that for other aminoglycosides

  13. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    Science.gov (United States)

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  14. The risks of concurrent treatment with tenofovir and aminoglycosides ...

    African Journals Online (AJOL)

    The risks of concurrent treatment with tenofovir and aminoglycosides in patients with HIV-associated tuberculosis. C Kenyon, N Wearne, R Burton, G Meintjes. Abstract. The South African public sector antiretroviral treatment (ART) guidelines have recently been changed to include tenofovir in the first-line regimen.1 ...

  15. In vitro studies with UK-18,892, a new aminoglycoside antibiotic.

    Science.gov (United States)

    Jevons, S; Cheeseman, H E; Brammer, K W

    1978-09-01

    The antibacterial activity of UK-18,892, a new semisynthetic aminoglycoside, was examined against aminoglycoside-susceptible and aminoglycoside-resistant clinical isolates of gram-negative bacilli and Staphylococcus aureus. UK-18,892 had a similar degree of activity to those of amikacin and kanamycin A against aminoglycoside-susceptible bacteria but was less potent than gentamicin against all isolates except Providencia spp. UK-18,892 was highly active against aminoglycoside-resistant bacteria, inhibiting 93% of the 268 isolates examined at 12.5 mug/ml. Amikacin was similarly active, whereas gentamicin inhibited only 14% of these isolates at 12.5 mug/ml.

  16. The Sensitivity to Aminoglycosides and Heavy Metals of Isolates of ...

    African Journals Online (AJOL)

    Eighty-two clinical isolates of Pseudomonas aeruginosa strains were tested for their sensitivity to aminoglycosides by an agar diffusion method and to heavy metals by a dilution technique on tri –buffered mineral salt agar containing 10 – 100mg/L CdCl2.H20, CoCl2.6H20, ZnCl2, AgNO3 and HgCl2. All the strains tested ...

  17. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Coenzyme Q10 protects hair cells against aminoglycoside.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugahara

    Full Text Available It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10 is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group. In the neomycin group, utricles were cultured with neomycin (1 mM to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM. Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  19. A study of gram-negative bacterial resistance to Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Maleknejad P

    1993-05-01

    Full Text Available From hygienic and economical point of view, drug therapy and prophylaxy in infectious diseases are of great importance. After the world war II, a reduction in the efficacy of sulfonamide in the treatment of shigellosis was observed and later on it led to a survey on drug resistance and the way of its transmission. The aim of this survey, during which 100 cases of gram-negative bacteria were identified, is to study the drug resistance of this bacteria against five types of aminoglycosides by antibiotic sensitivity test (disc-diffusion. Out of 100 strains, 47% were resistant to gentamycin, 70% to kanamycin, 82% to streptomycin, 53% to tobramycin, and 8% to amikacin

  20. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  1. UK-18,892: resistance to modification by aminoglycoside-inactivating enzymes.

    Science.gov (United States)

    Andrews, R J; Brammer, K W; Cheeseman, H E; Jevons, S

    1978-12-01

    UK-18,892, a new semisynthetic aminoglycoside, was active against bacteria possessing aminoglycoside-inactivating enzymes, with the exception of some known to possess AAC(6') or AAD(4') enzymes. This activity has been rationalized by using cell-free extracts of bacteria containing known inactivating enzymes, where it was shown that UK-18,892 was not a substrate for the APH(3'), AAD(2''), AAC(3), and AAC(2') enzymes. It was also demonstrated that UK-18,892 protected mice against lethal infections caused by organisms possessing aminoglycoside-inactivating enzymes.

  2. Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ilgu, Muslum [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.

  3. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Goltermann, Lise; Good, Liam; Bentin, Thomas

    2013-01-01

    For almost half of a century, we have known that aminoglycoside antibiotics corrupt ribosomes, causing translational misreading, yet it remains unclear whether or not misreading triggers protein misfolding, and possible effects of chaperone action on drug susceptibilities are poorly understood...

  4. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk.

    Science.gov (United States)

    Boyer, Alexandre; Gruson, Didier; Bouchet, Stéphane; Clouzeau, Benjamin; Hoang-Nam, Bui; Vargas, Frédéric; Gilles, Hilbert; Molimard, Mathieu; Rogues, Anne-Marie; Moore, Nicholas

    2013-04-01

    Aminoglycoside nephrotoxicity has been reported in patients with sepsis, and several risk factors have been described. Once-daily dosing and shorter treatment have reduced nephrotoxicity risk, and simplified aminoglycoside monitoring. This review focuses on nephrotoxicity associated with aminoglycosides in the subset of patients with septic shock or severe sepsis. These patients are radically different from those with less severe sepsis. They may have, for instance, renal impairment due to the shock per se, sepsis-related acute kidney injury, frequent association with pre-existing risk factors for renal failure such as diabetes, dehydration and other nephrotoxic treatments. In this category of patients, these risk factors might modify substantially the benefit-risk ratio of aminoglycosides. In addition, aminoglycoside administration in critically ill patients with sepsis is complicated by an extreme inter- and intra-individual variability in drug pharmacokinetic/pharmacodynamic characteristics: the volume of distribution (Vd) is frequently increased while the elimination constant can be either increased or decreased. Consequently, and although its effect on nephrotoxicity has not been explored, a different administration schedule, i.e. a high-dose once daily (HDOD), and several therapeutic drug monitoring (TDM) options have been proposed in these patients. This review describes the historical perspective of these different options, including those applying to subsets of patients in which aminoglycoside administration is even more complex (obese intensive care unit [ICU] patients, patients needing continuous or discontinuous renal replacement therapy [CRRT/DRRT]). A simple linear dose adjustment according to aminoglycoside serum concentration can be classified as low-intensity TDM. Nomograms have also been proposed, based on the maximum (peak) plasma concentration (Cmax) objectives, weight and creatinine clearance. The Sawchuk and Zaske method (based on the

  5. Determination of aminoglycoside antibiotics using complex compounds of chromotropic acid bisazoderivatives with rare earth ions

    International Nuclear Information System (INIS)

    Alykov, N.M.

    1981-01-01

    Studies of complex formation of bisazo derivatives of chromotropic acid with rare earth ions and aminoglycoside antibiotics have made it possible to choose carboxyarsenazo, orthanyl R and carboxynitrazo as highly sensitive reagents for determining aminoglycoside antibiotics. Conditions have been found for the formation of precipitates of different-ligand complexes containing rare earth ions, bisazo derivatives of chromotropic acid and aminogylcoside antibiotics. A procedure has been worked out of determining the antibiotics in biological samples with carboxyarsenazo [ru

  6. Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions.

    Science.gov (United States)

    Zhang, Jingji; Pavlov, Michael Y; Ehrenberg, Måns

    2018-02-16

    We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.

  7. The activity of aminoglycoside antibiotics against Trypanosoma brucei.

    Science.gov (United States)

    Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S

    1998-01-01

    The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.

  8. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short...

  9. Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Hongzhe eLi

    2015-04-01

    Full Text Available Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs. Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy.Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR for 30 minutes prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy.We found wide-band noise (WBN levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS.These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic

  10. Clinical Pharmacokinetics of Penicillins, Cephalosporins and Aminoglycosides in the Neonate: A Review

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2010-08-01

    Full Text Available Bacterial infections are common in the neonates and are a major cause of morbidity and mortality. Sixty percent of preterm infants admitted to neonatal intensive care units received at least one antibiotic during the first week of life. Penicillins, aminoglycosides and cephalosporins comprised 53, 43 and 16%, respectively. Kinetic parameters such as the half-life (t1/2, clearance (Cl, and volume of distribution (Vd change with development, so the kinetics of penicillins, cephalosporins and aminoglycosides need to be studied in order to optimise therapy with these drugs. The aim of this study is to review the pharmacokinetics of penicillins, cephalosporins and aminoglycosides in the neonate in a single article in order to provide a critical analysis of the literature and thus provide a useful tool in the hands of physicians. The bibliographic search was performed electronically using PubMed, as the search engine, until February 2nd, 2010. Medline search terms were as follows: pharmacokinetics AND (penicillins OR cephalosporins OR aminoglycosides AND infant, newborn, limiting to humans. Penicillins, cephalosporins and aminoglycosides are fairly water soluble and are mainly eliminated by the kidneys. The maturation of the kidneys governs the pharmacokinetics of penicillins, cephalosporins and aminoglycosides in the neonate. The renal excretory function is reduced in preterms compared to term infants and Cl of these drugs is reduced in premature infants. Gestational and postnatal ages are important factors in the maturation of the neonate and, as these ages proceed, Cl of penicillins, cephalosporins and aminoglycosides increases. Cl and t1/2 are influenced by development and this must be taken into consideration when planning a dosage regimen with these drugs. More pharmacokinetic studies are required to ensure that the dose recommended for the treatment of sepsis in the neonate is evidence based.

  11. Aminoglycoside Concentrations Required for Synergy with Carbapenems against Pseudomonas aeruginosa Determined via Mechanistic Studies and Modeling.

    Science.gov (United States)

    Yadav, Rajbharan; Bulitta, Jürgen B; Schneider, Elena K; Shin, Beom Soo; Velkov, Tony; Nation, Roger L; Landersdorfer, Cornelia B

    2017-12-01

    This study aimed to systematically identify the aminoglycoside concentrations required for synergy with a carbapenem and characterize the permeabilizing effect of aminoglycosides on the outer membrane of Pseudomonas aeruginosa Monotherapies and combinations of four aminoglycosides and three carbapenems were studied for activity against P. aeruginosa strain AH298-GFP in 48-h static-concentration time-kill studies (SCTK) (inoculum: 10 7.6 CFU/ml). The outer membrane-permeabilizing effect of tobramycin alone and in combination with imipenem was characterized via electron microscopy, confocal imaging, and the nitrocefin assay. A mechanism-based model (MBM) was developed to simultaneously describe the time course of bacterial killing and prevention of regrowth by imipenem combined with each of the four aminoglycosides. Notably, 0.25 mg/liter of tobramycin, which was inactive in monotherapy, achieved synergy (i.e., ≥2-log 10 more killing than the most active monotherapy at 24 h) combined with imipenem. Electron micrographs, confocal image analyses, and the nitrocefin uptake data showed distinct outer membrane damage by tobramycin, which was more extensive for the combination with imipenem. The MBM indicated that aminoglycosides enhanced the imipenem target site concentration up to 4.27-fold. Tobramycin was the most potent aminoglycoside to permeabilize the outer membrane; tobramycin (0.216 mg/liter), gentamicin (0.739 mg/liter), amikacin (1.70 mg/liter), or streptomycin (5.19 mg/liter) was required for half-maximal permeabilization. In summary, our SCTK, mechanistic studies and MBM indicated that tobramycin was highly synergistic and displayed the maximum outer membrane disruption potential among the tested aminoglycosides. These findings support the optimization of highly promising antibiotic combination dosage regimens for critically ill patients. Copyright © 2017 American Society for Microbiology.

  12. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    antibiotics, which also interact with this region of rRNA. Mutations of certain nucleotides in rRNA reduce aminoglycoside binding affinity, as previously demonstrated using a model RNA oligonucleotide system. Here, predictions from the oligonucleotide system were tested in the ribosome by mutation...... for the aminoglycoside paromomycin, whereas no discernible reduction in affinity was observed with 1406 mutant ribosomes. These data are consistent with prior NMR structural determination of aminoglycoside interaction with the decoding region, and further our understanding of how aminoglycoside resistance can...

  13. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  14. Triclosan-Induced Aminoglycoside-Tolerant Listeria monocytogenes Isolates Can Appear as Small-Colony Variants

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Hein-Kristensen, Line; Gram, Lone

    2014-01-01

    Exposure of the human food-borne pathogen Listeria monocytogenes to sublethal concentrations of triclosan can cause resistance to several aminoglycosides. Aminoglycoside-resistant isolates exhibit two colony morphologies: normal-size and pinpoint colonies. The purposes of the present study were...... to characterize the small colonies of L. monocytogenes and to determine if specific genetic changes could explain the triclosan-induced aminoglycoside resistance in both pinpoint and normal-size isolates. Isolates from the pinpoint colonies grew poorly under aerated conditions, but growth was restored by addition......I and that exposure to triclosan can cause resistance to antibiotics that enters the cell via active transport. Further studies are needed to elucidate if L. monocytogenes pinpoint isolates could have any clinical impact, e.g., in persistent infections....

  15. Dosing strategy based on prevailing aminoglycoside minimum inhibitory concentration in India: Evidence and issues

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2017-01-01

    Full Text Available Aminoglycosides are important agents used for treating drug-resistant infections. The current dosing regimen of aminoglycosides does not achieve sufficient serum level concentration for the infected bacterial pathogen interpreted as susceptible based on laboratory testing. Minimum inhibitory concentration was determined for nearly 2000 isolates of Enterobacteriaceae and Pseudomonas aeruginosa by broth microdilution method. Results were interpreted based on CLSI and EUCAST interpretative criteria and the inconsistencies in the susceptibility profile were noted. This study provides insights into the inconsistencies existing in the laboratory interpretation and the corresponding clinical success rates. This urges the need for revising clinical breakpoints for amikacin, to resolve under dosing leading to clinical failure.

  16. Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting.

    Science.gov (United States)

    López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio

    2018-04-01

    Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.

  17. Is the addition of aminoglycosides to beta-lactams in cancer patients with febrile neutropenia needed?

    Science.gov (United States)

    Contreras, Valeria; Sepúlveda, Sebastián; Heredia, Ana

    2016-02-24

    It is still controversial if the combined use of beta-lactam antibiotics and aminoglycosides has advantages over broad-spectrum beta-lactam monotherapy for the empirical treatment of cancer patients with febrile neutropenia. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified three systematic reviews including 14 pertinent randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded the combination of beta-lactam antibiotics and aminoglycosides probably does not lead to a reduced mortality in febrile neutropenic cancer patients and it might increase nephrotoxicity.

  18. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk

    NARCIS (Netherlands)

    Haasnoot, W.; Cazemier, G.; Koets, M.; Amerongen, van A.

    2003-01-01

    The application of an optical biosensor (Biacore 3000), with four flow channels (Fcs), in combination with a mixture of four specific antibodies resulted in a competitive inhibition biosensor immunoassay (BIA) for the simultaneous detection of the five relevant aminoglycosides in reconstituted

  19. The effect of the circadian rhythm on the clearance of aminoglycosides in ICU patients

    NARCIS (Netherlands)

    Van Maarseveen, E.; Proost, J.; Neef, C.; Touw, D.

    Aims: Critically ill patients, admitted to an intensive care unit, are at high risk of acquiring a nosocomial infection. Aminoglycosides (AMGs) are frequently used as first line therapy in severe hospital-acquired pneumonia or sepsis. It has been shown that once daily dosing (ODD) can reduce toxic

  20. Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria

    Directory of Open Access Journals (Sweden)

    Mariana C. Fiori

    2017-11-01

    Full Text Available In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46. Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.

  1. Therapeutic drug monitoring by radioimmunoassay: Determination of aminoglycoside antibiotics and vancomycin in plasma

    International Nuclear Information System (INIS)

    Glaubitt, D.; Drechsler, H.J.; Knoch, K.; Siafarikas, K.

    1984-01-01

    Radioimmunoassay of aminoglycoside antibiotics (gentamicin, tobramycin, netilmicin) or vancomycin in plasma may considerably aid to assess their appropriate dosage and, if necessary, to rapidly adjust it to the assumed requirement. Thus the dosage of the antibiotic is kept large enough as to lead to the desired therapeutic result but not as high as to cause side effects. (orig.)

  2. Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species.

    Science.gov (United States)

    Lee, H B; Kim, Y; Kim, J C; Choi, G J; Park, S-H; Kim, C-J; Jung, H S

    2005-01-01

    To investigate the in vitro antifungal and antioomycete activities of some aminoglycosides against true fungi and Phytophthora and Pythium species and to evaluate the potential of the antibiotics against Phytophthora late blight on plants. Antifungal and antioomycete activities of aminoglycoside antibiotics (neomycin, paromomycin, ribostamycin and streptomycin) and a paromomycin-producing strain (Streptomyces sp. AMG-P1) against Phytophthora and Pythium species and 10 common fungi were measured in potato dextrose broth (PDB) and on seedlings in pots. Paromomycin was the most active against Phytophthora and Pythium species with a minimal inhibitory concentration of 1-10 microg ml(-1) in PDB, but displayed low to moderate activities towards other common fungi at the same concentration. Paromomycin also showed potent in vivo activity against red pepper and tomato late blight diseases with 80 and 99% control value, respectively, at 100 microg ml(-1). In addition, culture broth of Streptomyces sp. AMG-P1 as a paromomycin producer exhibited high in vivo activity against late blight at 500 microg freeze-dried weight per millilitre. Among tested aminoglycoside antibiotics, paromomycin was the most active against oomycetes both in vitro and in vivo. Data from this study show that aminoglycoside antibiotics have in vitro and in vivo activities against oomycetes, suggesting that Streptomyces sp. AMG-P1 may be used as a biocontrol agent against oomycete diseases.

  3. Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients.

    Science.gov (United States)

    Kuschal, Christiane; Khan, Sikandar G; Enk, Benedikt; DiGiovanna, John J; Kraemer, Kenneth H

    2015-04-01

    Readthrough of premature termination (stop) codons (PTC) is a new approach to treatment of genetic diseases. We recently reported that readthrough of PTC in cells from some xeroderma pigmentosum complementation group C (XP-C) patients could be achieved with the aminoglycosides geneticin or gentamicin. We found that the response depended on several factors including the PTC sequence, its location within the gene and the aminoglycoside used. Here, we extended these studies to investigate the effects of other aminoglycosides that are already on the market. We reasoned that topical treatment could deliver much higher concentrations of drug to the skin, the therapeutic target, and thus increase the therapeutic effect while reducing renal or ototoxicity in comparison with systemic treatment. Our prior clinical studies indicated that only a few percent of normal XPC expression was associated with mild clinical disease. We found minimal cell toxicity in the XP-C cells with several aminoglycosides. We found increased XPC mRNA expression in PTC-containing XP-C cells with G418, paromomycin, neomycin and kanamycin and increased XPC protein expression with G418. We conclude that in selected patients with XP, topical PTC therapy can be investigated as a method of personalized medicine to alleviate their cutaneous symptoms. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  5. Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDI-TOF/MS

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2016-11-01

    Full Text Available Emergence of extremely drug resistant tuberculosis (XDR-TB is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB. Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK and kanamycin (KM resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636 and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can

  6. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS.

    Science.gov (United States)

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.

  7. A Novel 6'-N-Aminoglycoside Acetyltransferase, AAC(6')-Ial, from a Clinical Isolate of Serratia marcescens.

    Science.gov (United States)

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2016-03-01

    Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.

  8. Dissemination of Genes Encoding Aminoglycoside-Modifying Enzymes and armA Among Enterobacteriaceae Isolates in Northwest Iran.

    Science.gov (United States)

    Ghotaslou, Reza; Yeganeh Sefidan, Fatemeh; Akhi, Mohammad Taghi; Asgharzadeh, Mohammad; Mohammadzadeh Asl, Yalda

    2017-10-01

    Enzymatic inactivation is one of the most important mechanisms of resistance to aminoglycosides. The aim of this study was to investigate the prevalence of armA and diversity of the genes encoding aminoglycoside-modifying enzymes (AMEs) and their associations with resistance phenotypes in Enterobacteriaceae isolates. Three hundred and seven Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration for amikacin, gentamicin, tobramycin, and kanamycin were done for susceptibility testing. Thirteen AME genes and armA methylase were screened using the PCR and sequencing assays. Two hundred and twenty (71.7%) of isolates were resistant to aminoglycosides and 155 (70.5%) of them were positive for aminoglycoside resistance genes. The most prevalent AME genes were ant(3″)-Ia and aph(3″)-Ib with the frequency 35.9% and 30.5%, respectively. Also, 21 (9.5%) of resistant isolates were positive for armA methylase gene. The prevalence of resistance to aminoglycoside is high and AME genes frequently are disseminated in Enterobacteriaceae isolates. There is an association between phenotypic resistance and the presence of some aminoglycoside genes.

  9. Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3′′)(9) adenyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden); Näsvall, Joakim [Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala (Sweden); Wu, Shiying [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden); Andersson, Dan I. [Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala (Sweden); Selmer, Maria, E-mail: maria.selmer@icm.uu.se [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden)

    2015-10-31

    The crystal structure of the aminoglycoside-adenylating enzyme AadA is reported together with functional experiments providing insights into its oligomeric state, ligand binding and catalysis. Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). Here, the first crystal structure of an ANT(3′′)(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 Å resolution. AadA consists of a nucleotidyltransferase domain and an α-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.

  10. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide testing by MTBDRsl in Armenia

    Directory of Open Access Journals (Sweden)

    Hasmik Margaryan

    2016-01-01

    Conclusion: Isolates with rrs structural gene mutations were cross-resistant to streptomycin, KAN, CAP, and AMK. Detection of the A1401G mutation appeared to be 100% specific for the detection of resistance to KAN and AMK. Being the first assessment, these data establish the presence of phenotypic drug-resistant and extensively drug-resistant strains using molecular profiling and are helpful in understanding aminoglycoside resistance on a molecular level.

  11. Two unusual cases of severe recalcitrant hypocalcemia due to aminoglycoside-induced hypomagnesemia

    Directory of Open Access Journals (Sweden)

    Tarun Varma

    2013-01-01

    Full Text Available Aminoglycoside (AMG-induced renal toxicity is well-known and may manifest with non-oliguric renal failure or renal tubular dysfunction like Fanconi-like syndrome, Barter syndrome-like syndrome or distal renal tubular acidosis (RTA. These phenomena have been described with Gentamycin and Amikacin though rarely with Kanamycin. We present two cases of pulmonary tuberculosis that were treated with Kanamycin and during the course of treatment, developed severe recalcitrant hypocalcemia along with hypomagnesemia.

  12. Complexation of anionic copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide with aminoglycoside antibiotics

    Science.gov (United States)

    Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.

    2014-03-01

    The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.

  13. Molecular detection of aminoglycoside-modifying enzyme genes in Acinetobacter baumannii clinical isolates.

    Science.gov (United States)

    Heidary, Mohsen; Salimi Chirani, Alireza; Khoshnood, Saeed; Eslami, Gita; Atyabi, Seyyed Mohammad; Nazem, Habibollah; Fazilati, Mohammad; Hashemi, Ali; Soleimani, Saleh

    2017-06-01

    Acinetobacter baumannii is a major opportunistic pathogen in healthcare settings worldwide. In Iran, there are only few reports on the prevalence of aminoglycoside resistance genes among A. baumannii isolates. The aim of this study was to investigate the existence of aminoglycoside-modifying enzyme (AME) genes from A. baumannii strains collected at a university teaching hospital in Iran. One hundred A. baumannii strains were collected between 2014 and 2015 from hospitalized patients at Loghman Hakim Hospital, Tehran, Iran. Antimicrobial susceptibility was determined by disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. The DNA was extracted using a kit obtained from Bioneer Co. (Korea) and was used as a template for polymerase chain reaction. The most active antimicrobial agent against these strains was colistin. The rate of extended-spectrum cephalosporin resistance was 97%. The aadA1, aadB, aac(6')-Ib, and aac(3)-IIa genes were found in 85%, 77%, 72%, and 68% of A. baumannii isolates, respectively. This study showed a high prevalence rate of AME genes in A. baumannii. This prevalence rate has explained that further aminoglycoside resistance genes may have role in the resistance of clinical isolates of A. baumannii. Therefore, control and treatment of serious infections caused by this opportunistic pathogen should be given more consideration.

  14. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection

    International Nuclear Information System (INIS)

    Sierra-Rodero, M.; Fernandez-Romero, J.M.; Gomez-Hens, A.

    2012-01-01

    We describe an on-chip microflow injection (μFI) approach for the determination of aminoglycoside antibiotics using chemiluminescence (CL) detection. The method is based on the inhibition of the Cu(II)-catalyzed CL reaction of luminol and hydrogen peroxide by the aminoglycosides due to the formation of a complex between the antibiotic and Cu(II). The main features of the method include small sample volumes and a fast response. Syringe pumps were used to insert the sample and the reagents into the microfluidic device. CL was collected using a fiber optic bundle connected to a luminescence detector. All instrumental, hydrodynamic and chemical variables involved in the system were optimized using neomycin as the aminoglycoside model. Inhibition is proportional to the concentration of the antibiotics. The dynamic ranges of the calibration graphs obtained for neomycin, streptomycin and amikacin are 0.3-3.3, 0.9-13.7, and 0.8-8.5 μmol L -1 , and the detection limits are 0.09, 0.28 and 0.24 μmol L -1 , respectively. The precision of the methods, expressed as relative standard deviation, is in the range from 0.8 to 5.0 %. The method was successfully applied to the determination of neomycin in water samples, with recoveries ranging from 80 to 120 %. (author)

  15. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Islam, S; Oh, H; Jalal, S

    2009-01-01

    pump protein MexY was determined by real-time PCR and correlated with susceptibilities to amikacin and tobramycin. The chromosomal genes mexZ, rplY, galU, PA5471 and nuoG, which were found to have a role in the gradual increase in MICs of aminoglycoside antibiotics in laboratory mutants of P....... aeruginosa, were analysed. MexY mRNA overproduction was found in 17/20 isolates collected in 1994 and 1997, and was correlated with decreased susceptibility to aminoglycosides. Alteration of the MexXY-OprM efflux system has been the main mechanism of resistance to aminoglycoside antibiotics in CF P......In total, 40 Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients were included in this study. Twenty of these were collected in 1994 and 1997, from six CF patients, and the rest were collected from different CF patients in 2000 and 2001. The relative expression of mRNA for the efflux...

  16. Heparin interferes with the radioenzymatic and homogeneous enzyme immunoassays for aminoglycosides

    International Nuclear Information System (INIS)

    Krogstad, D.J.; Granich, G.G.; Murray, P.R.; Pfaller, M.A.; Valdes, R.

    1981-01-01

    Heparin interferes with measurement of aminoglycosides in serum by biological, radioenzymatic, and homogeneous enzyme immunoassay techniques, but not with radioimmunoassay. At concentrations greater than or equal to 10 5 and greater than or equal to 3 X 10 6 USP units/L, respectively, it interferes with the radioenzymatic assay by inhibiting the gentamicin 3-acetyltransferase and kanamycin 6'-acetyltransferase enzymes used in the assay. It interferes with the homogeneous enzyme immunoassays for gentamicin and tobramycin (at concentrations greater than or equal to 10 5 and greater than or equal to10 4 USP units/L, respectively), but not with the commercially available homogeneous enzyme immunoassays for other drugs. Heparin interference with the homogeneous enzyme immunoassay for aminoglycosides requires both the heparin polyanion and glucose-6-phosphate dehydrogenase bound to a cationic aminoglycoside. This interference can be reproduced with dextran sulfate (but not dextran), and does not occur with free enzyme (glucose-6-phosphate dehydrogenase) alone. Heparin interference with these two assays and at concentrations that may be present in intravenous infusions or in seriously underfilled blood-collection tubes is described

  17. Impact of aminoglycoside cycling in six tertiary intensive care units: prospective longitudinal interventional study.

    Science.gov (United States)

    Francetić, Igor; Kalenić, Smilja; Huić, Mirjana; Mercep, Iveta; Makar-Ausperger, Ksenija; Likić, Robert; Erdeljić, Viktorija; Tripković, Vesna; Simić, Petra

    2008-04-01

    To determine the effect of aminoglycoside cycling in six tertiary intensive care units (ICU) on the rates of sepsis, aminoglycoside resistance patterns, antibiotic consumption, and costs. This was a prospective longitudinal interventional study that measured the effect of change from first-line gentamicin usage (February 2002-February 2003) to amikacin usage (February 2003-February 2004) on the aminoglycoside resistance patterns, number of patients with gram-negative bacteremia, consumption of antibiotics, and the cost of antimicrobial drugs in 6 tertiary care ICUs in Zagreb, Croatia. The change from first-line gentamicin to amikacin usage led to a decrease in the overall gentamicin resistance of gram-negative bacteria (GNB) from 42% to 26% (PAcinetobacter baumanni (P=0.014). Sepsis rate in ICUs was reduced from 3.6% to 2.2% (P<0.001; chi(2) test), with a decline in the number of nosocomial bloodstream infections from 55/100 patient-days to 26/100 patient-days (P=0.001, chi(2) test). Furthermore, amikacin use led to a 16% decrease in the overall antibiotic consumption and 0.1 euro/patient/d cost reduction. Exclusive use of amikacin significantly reduced the resistance of GNB isolates to gentamicin and netilmicin, the number of GNB nosocomial bacteremias, and the cost of total antibiotic usage in ICUs.

  18. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    2016-01-01

    Full Text Available This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR. Out of 98 isolates, 71 (72.45% isolates were identified as E. coli and the remaining 27 (27.55% as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  19. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India.

    Science.gov (United States)

    Mir, Abdul Rouf; Bashir, Yasir; Dar, Firdous Ahmad; Sekhar, M

    This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  20. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Sheikhalizadeh, Vajihe; Hasani, Alka; Ahangarzadeh Rezaee, Mohammad; Rahmati-Yamchi, Mohammad; Hasani, Akbar; Ghotaslou, Reza; Goli, Hamid Reza

    2017-02-01

    Therapeutic resistance towards most of the current treatment regime by Acinetobacter baumannii has reduced the prescribing antibiotic pattern and option is being re-shifted towards more toxic agents including aminoglycosides. The present investigation aimed at to study various mechanisms towards aminoglycoside non-susceptibility in clinical isolates of A. baumannii. The bacteria were subjected to genetic basis assessment for the presence of aminoglycoside modifying enzymes (AME), 16S rRNA methylase encoding genes and relative expression of AdeABC and AbeM efflux pumps in relation to their susceptibility to five aminoglycosides. When isolates were subjected to typing by repetitive extragenic palindromic (REP) PCR, isolates could be separated into thirteen definite clones. The majority of isolates (94%) were positive for AME encoding genes. Possession of ant(2')-Ia correlated with non-susceptibility towards gentamicin, amikacin, kanamycin, tobramycin; while, presence of aph(3')-VIa attributed to resistance towards amikacin, kanamycin; possession of aac(3')-Ia allied with non-susceptibility to amikacin, tobramycin and presence of aac(3')IIa correlated with kanamycin non-susceptibility. Presence of armA was detected in 34.4%, 34.2%, 29.2%, 40.3%, and 64.2% of isolates showing non-susceptibility to gentamicin, amikacin, kanamycin, tobramycin and netilmicin, respectively. No isolates were found to carry rmtB or rmtC. Amikacin non-susceptibility in comparison to other aminoglycosides correlated with over production of adeB. Overall, the results represented a definitive correlation between presence of AME encoding genes as well as armA and resistance of A. baumannii towards aminoglycosides. On the other hand, the up-regulation of AdeABC and AbeM systems was found to have only the partial role in development of aminoglycoside resistance. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All

  1. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    Science.gov (United States)

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  2. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  3. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina.

    Science.gov (United States)

    Goldmann, Tobias; Rebibo-Sabbah, Annie; Overlack, Nora; Nudelman, Igor; Belakhov, Valery; Baasov, Timor; Ben-Yosef, Tamar; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2010-12-01

    The human Usher syndrome (USH) is the most frequent cause of inherited combined deaf-blindness. USH is clinically and genetically heterogeneous, assigned to three clinical types. The most severe type is USH1, characterized by profound inner ear defects and retinitis pigmentosa. Thus far, no effective treatment for the ophthalmic component of USH exists. The p.R31X nonsense mutation in USH1C leads to a disease causing premature termination of gene translation. Here, we investigated the capability of the novel synthetic aminoglycoside NB30 for the translational read-through of the USH1C-p.R31X nonsense mutation as a retinal therapy option. Read-through of p.R31X by three commercial, clinically applied aminoglycosides and the synthetic derivative NB30 was validated in vitro, in cell culture, and in retinal explants. Restoration of harmonin functions was monitored in GST pull-downs (scaffold function) and by F-actin bundling analysis in HEK293T cells. Biocompatibility of aminoglycosides was determined in retinal explants by TUNEL assays. In vitro translation and analyses of transfected HEK293T cells revealed a dose-dependent read-through by all aminoglycosides. In addition, gentamicin, paromomycin, and NB30 induced read-through of p.R31X in mouse retinal explants. The read-through of p.R31X restored harmonin protein function. In contrast to all commercial aminoglycosides NB30 showed good biocompatibility. Commercial aminoglycosides and NB30 induced significant read-through of the USH1C-p.R31X nonsense mutation. However, the observed read-through efficiency, along with its significantly reduced toxicity and good biocompatibility, indicate that the novel derivate NB30 represents a better choice than commercial aminoglycosides in a read-through therapy of USH1C and other ocular diseases.

  4. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  5. Structural Analysis of the Tobramycin and Gentamicin Clinical Resistome Reveals Limitations for Next-generation Aminoglycoside Design.

    Science.gov (United States)

    Bassenden, Angelia V; Rodionov, Dmitry; Shi, Kun; Berghuis, Albert M

    2016-05-20

    Widespread use and misuse of antibiotics has allowed for the selection of resistant bacteria capable of avoiding the effects of antibiotics. The primary mechanism for resistance to aminoglycosides, a broad-spectrum class of antibiotics, is through covalent enzymatic modification of the drug, waning their bactericidal effect. Tobramycin and gentamicin are two medically important aminoglycosides targeted by several different resistance factors, including aminoglycoside 2″-nucleotidyltransferase [ANT(2″)], the primary cause of aminoglycoside resistance in North America. We describe here two crystal structures of ANT(2″), each in complex with AMPCPP, Mn(2+), and either tobramycin or gentamicin. Together these structures outline ANT(2″)'s specificity for clinically used substrates. Importantly, these structures complete our structural knowledge for the set of enzymes that most frequently confer clinically observed resistance to tobramycin and gentamicin. Comparison of tobramycin and gentamicin binding to enzymes in this resistome, as well as to the intended target, the bacterial ribosome, reveals surprising diversity in observed drug-target interactions. Analysis of the diverse binding modes informs that there are limited opportunities for developing aminoglycoside analogs capable of evading resistance.

  6. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Gorbacheva, Marina A.; Korzhenevskiy, Dmitry A. [National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Alekseeva, Maria G.; Mavletova, Dilara A.; Zakharevich, Natalia V.; Elizarov, Sergey M.; Rudakova, Natalia N.; Danilenko, Valery N. [Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, 119333 (Russian Federation); Popov, Vladimir O. [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation)

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.

  7. Collateral sensitivity between aminoglycosides and beta-lactam antibiotics depends on active proton pumps.

    Science.gov (United States)

    Azimi, Leila; Rastegar Lari, Abdolaziz

    2017-11-01

    Selection inversion is the hypothesis for antibiotic resistant inhabitation in bacteria and collateral sensitivity is one of the proposed phenomena for achievement of this hypothesis. The presence of collateral sensitivity associated with the proton motivation pump between the aminoglycosides and beta-lactam group of antibiotics is one of the examples of collateral sensitivity in some studies. The aim of this study was to demonstrate that collateral sensitivity between aminoglycosides and beta-lactam antibiotics associated with proton motivation pump may not be true in all cases. In this study, 100 Pseudomonas aeruginosa were surveyed. Gentamicin and imipenem-resistant strains were confirmed by disc diffusion method and MIC. Active proton motivation pumps were screened by pumps inhibitor. Semi-quantitative Real-Time PCR assay was used to confirm gene overexpression. Seventy-six and 79 out of 100 strains were resistant to gentamicin and imipenem, respectively. Seventy-five strains were resistant to both gentamicin and imipenem. The results of proton pump inhibitor test showed the involvement of active proton motivation pump in 22 of 75 imipenem- and gentamicin-resistant strains. According to Real - Time PCR assay, mexX efflux gene was overexpressed in the majority of isolates tested. The collateral sensitivity effect cannot explain the involvement of active proton motivation pumps in both imipenem and gentamicin-resistant strains simultaneously. Active and/or inactive proton pump in gentamicin-sensitive and/or resistant strains cannot be a suitable example for explanation of collateral sensitivity between aminoglycosides and beta-lactam antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Crystallization and preliminary crystallographic analysis of an aminoglycoside kinase from Legionella pneumophila

    International Nuclear Information System (INIS)

    Lemke, Christopher T.; Hwang, Jiyoung; Xiong, Bing; Cianciotto, Nicholas P.; Berghuis, Albert M.

    2005-01-01

    Two crystal forms of the antibiotic resistance enzyme APH(9)-Ia from L. pneumophila are reported. 9-Aminoglycoside phosphotransferase type Ia [APH(9)-Ia] is a resistance factor in Legionella pneuemophila, the causative agent of legionnaires’ disease. It is responsible for providing intrinsic resistance to the antibiotic spectinomycin. APH(9)-Ia phosphorylates one of the hydroxyl moieties of spectinomycin in an ATP-dependent manner, abolishing the antibiotic properties of this drug. Here, the crystallization and preliminary X-ray studies of this enzyme in two crystal forms is reported. One of the these crystal forms provides diffraction data to a resolution of 1.7 Å

  9. Sublethal Triclosan Exposure Decreases Susceptibility to Gentamicin and Other Aminoglycosides in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Christensen, Ellen Gerd; Gram, Lone; Kastbjerg, Vicky Gaedt

    2011-01-01

    (containing quaternary ammonium compound) in four consecutive cultures did not alter the frequency of antibiotic-tolerant isolates, as determined by plating on 2x the MIC for a range of antibiotics. Exposure of eight strains of L. monocytogenes to 1 and 4 µg/ml triclosan did not alter triclosan sensitivity...... resistance remained at a high level also after five subcultures without triclosan or gentamicin. Aminoglycoside resistance can be caused by mutations in the target site, the 16S rRNA gene. However, such mutations were not detected in the N53-1-resistant isolates. A combination of gentamicin and ampicillin...

  10. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county

    DEFF Research Database (Denmark)

    Norskov-Lauritsen, N.; Sandvang, Dorthe; Hedegaard, J.

    2001-01-01

    During 1997, attention was drawn to an increased frequency of aminoglycoside-resistant Citrobacter freundii in a Danish county, when a total of 24 resistant C. freundii isolates was detected. In this study, 15 such isolates were typed by pulsed-field gel electrophoresis, riboprinting and partial...... with a dihydrofolate reductase gene in a class I integron. The source of the strain remains unresolved. Representative isolates were obtained from various specimens from hospitals and general practice throughout the county, with no evidence of patient-to-patient transmission....

  11. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia.

    Science.gov (United States)

    Cox, Georgina; Stogios, Peter J; Savchenko, Alexei; Wright, Gerard D

    2015-01-06

    The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of aminoglycosides by the ANT(2″)-Ia enzyme. ANT(2″)-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2″-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two Mg(2+) ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural analysis revealed that ANT(2″)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4')-Ia, ANT(4″)-Ib, and ANT(6)-Ia. There is also similarity between the nucleotidyltransferase fold of ANT(2″)-Ia and DNA polymerase β. This similarity is consistent with evolution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct molecules. IMPORTANCE  : To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against resistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular

  13. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Science.gov (United States)

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    International Nuclear Information System (INIS)

    Toth, Marta; Vakulenko, Sergei B.; Smith, Clyde A.

    2012-01-01

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of enzymatic deactivation of the drugs. The aminoglycoside N-acetyltransferases (AACs) are a large family of bacterial enzymes that are responsible for coenzyme-A-facilitated acetylation of aminoglycosides. The gene encoding one of these enzymes, AAC(6′)-Im, has been cloned and the protein (comprising 178 amino-acid residues) was expressed in Escherichia coli, purified and crystallized as the kanamycin complex. Synchrotron diffraction data to approximately 2.0 Å resolution were collected from a crystal of this complex on beamline BL12-2 at SSRL (Stanford, California, USA). The crystals belonged to the hexagonal space group P6 5 , with approximate unit-cell parameters a = 107.75, c = 37.33 Å, and contained one molecule in the asymmetric unit. Structure determination is under way using molecular replacement

  15. Aminoglycoside-Resistant Aeromonas hydrophila as Part of a Polymicrobial Infection following a Traumatic Fall into Freshwater▿

    Science.gov (United States)

    Shak, Joshua R.; Whitaker, Jennifer A.; Ribner, Bruce S.; Burd, Eileen M.

    2011-01-01

    Amikacin is a first-line treatment for Aeromonas infection due to high efficacy. There are few reports of aminoglycoside-resistant Aeromonas spp. We report a soft tissue infection containing multiple pathogens, including a strain of Aeromonas hydrophila resistant to amikacin, tobramycin, and multiple cephalosporins. PMID:21209173

  16. Aminoglycoside-resistant Aeromonas hydrophila as part of a polymicrobial infection following a traumatic fall into freshwater.

    Science.gov (United States)

    Shak, Joshua R; Whitaker, Jennifer A; Ribner, Bruce S; Burd, Eileen M

    2011-03-01

    Amikacin is a first-line treatment for Aeromonas infection due to high efficacy. There are few reports of aminoglycoside-resistant Aeromonas spp. We report a soft tissue infection containing multiple pathogens, including a strain of Aeromonas hydrophila resistant to amikacin, tobramycin, and multiple cephalosporins.

  17. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    International Nuclear Information System (INIS)

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin

    2006-01-01

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA Ser(UCN) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families

  18. Investigation into complexing of phthalexone S with praseodymium ions and some aminoglycoside antibiotics

    International Nuclear Information System (INIS)

    Alykov, N.M.

    1981-01-01

    Complex formation of phthalexone S (Phth) with praseodymium ion and some aminoglycoside antibiotics (Ab) in aqueous ethanol solutions (1:1) has been examined photometrically at 619 mm. It has been shown that compounds with the ratios of Ab:Pr:Phth=1:2:8, 1:1:4, 1:1:3 are formed depending on the number of amino groups and structure of the antibiotics. The molar absorptivities and solubility products for the complexes have been calculated. The complex formation scheme is given. A procedure has been developed of determining 0.01-10 μg of antibiotics in 1 ml of a biological material with a relative error of less than 10% [ru

  19. Comparative Study of Erythrocyte Sedimentation Rate after Aminoglycoside and Aminocyclitol Treatment in Goats (Capra hircus

    Directory of Open Access Journals (Sweden)

    Toncho DINEV

    2016-07-01

    Full Text Available The aim of the present study was to follow up the erythrocyte sedimentation rate (ESR in healthy female goats during and after 5-day parenteral treatment with amikacin (10 mg/kg, tobramycin (5 mg/kg, apramycin (20 mg/kg, gentamicin (4 mg/kg, kanamycin (10 mg/kg and spectinomycin (20 mg/kg. Gentamicin and tobramycin caused an initial increase followed by a significant decrease of ESR on the 5th day for gentamicin and the 10th day for tobramycin, respectively, followed by recovery after the treatment. Reversely, amikacin and especially spectinomycin produced an increase of ESR without recovery several days post treatment. Kanamycin caused decrease of ESR on the 5th day without recovery in the subsequent days. Only apramycin did not give rise to increasing of ESR. In conclusion the aminoglycosides, especially tobramycin and gentamicin, caused more severe alterations of ESR than the aminocyclitols.

  20. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    Science.gov (United States)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  1. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    Science.gov (United States)

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides.

    Science.gov (United States)

    Podin, Yuwana; Sarovich, Derek S; Price, Erin P; Kaestli, Mirjam; Mayo, Mark; Hii, KingChing; Ngian, Hieung; Wong, SeeChang; Wong, IngTien; Wong, JinShyan; Mohan, Anand; Ooi, MongHow; Fam, TemLom; Wong, Jack; Tuanyok, Apichai; Keim, Paul; Giffard, Philip M; Currie, Bart J

    2014-01-01

    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.

  3. A Simple Model for Inducing Optimal Increase of SDF-1 with Aminoglycoside Ototoxicity

    Directory of Open Access Journals (Sweden)

    Hyun Mi Ju

    2017-01-01

    Full Text Available Objectives. As a homing factor of stem cell, stromal derived factor-1 (SDF-1 is important for the regenerative research in ototoxicity. Mice models with aminoglycoside ototoxicity have been widely used to study the regeneration capacity of MSCs in repair of cochlear injury. We developed a mouse model with maximal increase in SDF-1 levels in the inner ear, according to the “one-shot” doses of kanamycin and furosemide. Methods. C57BL/6 mice had kanamycin (420, 550, and 600 mg/kg dissolved in PBS, followed by an intraperitoneal injection of furosemide (130 mg/kg. The injuries of inner ear were measured with hearing thresholds, histology, and outer hair cell counts at 0, 3, 5, 7, 10, and 14 days before the sacrifice. The levels of SDF-1 in the inner ear were tested by real-time RT-PCR and immunohistochemistry. Results. There were a significant reduction in hearing thresholds and a maximal increase of SDF-1 levels in the furosemide 130 mg/kg + kanamycin 550 mg/kg group, but severe hearing deterioration over time was observed in the furosemide 130 mg/kg + kanamycin 600 mg/kg group and four mice were dead. SDF-1 was detected mostly in the stria vascularis and organ of Corti showing the highest increase in expression. Conclusion. We observed optimal induction of the stem cell homing factor in the newly generated aminoglycoside-induced ototoxicity mouse model using a “one-shot” protocol. This study regarding high SDF-1 levels in our mouse model of ototoxicity would play a major role in the development of therapeutic agents using MSC homing.

  4. Occurrence of aminoglycoside-modifying enzymes among isolates of Escherichia coli exhibiting high levels of aminoglycoside resistance isolated from Korean cattle farms.

    Science.gov (United States)

    Belaynehe, Kuastros Mekonnen; Shin, Seung Won; Hong-Tae, Park; Yoo, Han Sang

    2017-08-01

    This study investigated 247 Escherichia coli isolates collected from four cattle farms to characterize aminoglycoside-modifying enzyme (AME) genes, their plasmid replicons and transferability. Out of 247 isolates a high number of isolates (total 202; 81.78%) were found to be resistant to various antibiotics by disc diffusion. Of the 247 strains, 139 (56.3%) were resistant to streptomycin, and other antibiotic resistances followed as tetracycline (12.15%), ampicillin (7%), chloramphenicol (5.7%) and trimethoprim-sulfamethoxazole (0.8%). Among 247 isolates B1 was the predominant phylogenetic group identified comprising 151 isolates (61.1%), followed by groups A (27.9%), D (7%) and B2 (4%). Out of 139 isolates investigated for AME, 130 (93.5%) isolates carried at least one AME gene. aph3″-1a and aph3″-1b (46%) were the principal genes detected, followed by aac3-IVa (34.5%). ant2″-1a was the least detected gene (2.2%). Nine (6.5%) strains carried no AME genes. Twelve (63.2%) among 19 isolates transferred an AME gene to a recipient and aph3΄-1a was the dominant transferred gene. Transferability mainly occurred via the IncFIB replicon type (52.6%). Pulsed-field gel electrophoresis typing demonstrated a higher degree of diversity with 14 distinct cluster types. This result suggests that commensal microflora from food-producing animals has a tremendous ability to harbor and transfer AME genes, and poses a potential risk by dissemination of resistance to humans through the food chain. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A case of aminoglycosides induced retinal toxicity treated with megadoses of steroids and an intravitreal dexamethasone implant (Ozurdex(®)).

    Science.gov (United States)

    Hernández Pardines, F; Tapia-Quijada, H; Hueso-Abancens, J R

    2016-06-01

    The case is described of a patient who had a sudden loss of vision in her right eye after glaucoma surgery. A diagnosis of retinal toxicity due to tobramycin (an aminoglycoside) was reached, which was characterised by retinal whitening with a red cherry stain, macular oedema, and vasculitis that progressed to papillary and macular atrophy with arteriolar sclerosis. Given the severity of symptoms an early attempt was made with megadoses of steroids and an intravitreal dexamethasone implant (Ozurdex®, Allergan S.A.), without response. Aminoglycoside toxicity is a rare, idiosyncratic, very serious complication for which there is no effective treatment. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    Science.gov (United States)

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  7. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  8. Novel Tn916-like elements confer aminoglycoside/macrolide co-resistance in clinical isolates of Streptococcus gallolyticus ssp. gallolyticus.

    Science.gov (United States)

    Kambarev, Stanimir; Pecorari, Frédéric; Corvec, Stéphane

    2018-02-09

    Streptococcus gallolyticus ssp. gallolyticus (Sgg) is a commensal bacterium and an opportunistic pathogen. In humans it has been clinically associated with the incidence of colorectal cancer (CRC) and epidemiologically recognized as an emerging cause of infective endocarditis (IE). The standard therapy of Sgg includes the administration of a penicillin in combination with an aminoglycoside. Even though penicillin-resistant isolates have still not been reported, epidemiological studies have shown that this microbe is a reservoir of multiple acquired genes, conferring resistance to tetracyclines, aminoglycosides, macrolides and glycopeptides. However, the underlying antibiotic resistance mobilome of Sgg remains poorly understood. To investigate the mobile genetic basis of antibiotic resistance in multiresistant clinical Sgg. Isolate NTS31106099 was recovered from a patient with IE and CRC at Nantes University Hospital, France and studied by Illumina WGS and comparative genomics. Molecular epidemiology of the identified mobile element(s) was performed using antibiotic susceptibility testing (AST), PCR, PFGE and WGS. Mobility was investigated by PCR and filter mating. Two novel conjugative transposons, Tn6263 and Tn6331, confer aminoglycoside/macrolide co-resistance in clinical Sgg. They display classical family Tn916/Tn1545 modular architecture and harbour an aph(3')-III→sat4→ant(6)-Ia→erm(B) multiresistance gene cluster, related to pRE25 of Enterococcus faecium. These and/or closely related elements are highly prevalent among genetically heterogeneous clinical isolates of Sgg. Previously unknown Tn916-like mobile genetic elements conferring aminoglycoside/macrolide co-resistance make Sgg, collectively with other gut Firmicutes such as enterococci and eubacteria, a potential laterally active reservoir of these antibiotic resistance determinants among the mammalian gastrointestinal microbiota. © The Author(s) 2018. Published by Oxford University Press on behalf

  9. Novel Aminoglycoside Resistance Transposons and Transposon-Derived Circular Forms Detected in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates

    Science.gov (United States)

    Dwibedi, Chinmay Kumar; Sjöström, Karin; Edquist, Petra; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2016-01-01

    Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to blaOXA-23 (20 isolates), blaOXA-24/40-like (6 isolates), blaOXA-467 (1 isolate), and ISAba1-blaOXA-69 (1 isolate). Ceftazidime resistance was associated with blaPER-7 in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, ΔTn6279, Ab-ST3-aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite transposons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes. PMID:26824943

  10. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo.

    Science.gov (United States)

    Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin

    2015-01-01

    Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  11. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.

    Science.gov (United States)

    Stewart, C E; Hudspeth, A J

    2000-01-04

    The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6-5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification.

  13. Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor

    Directory of Open Access Journals (Sweden)

    Felipe S. Ferreira

    2011-05-01

    Full Text Available Boa constrictor is widely used in traditional communities in many different folk remedies and products derived from it are sold in public markets throughout northeastern Brazil and as its body fat has many different therapeutic indications as a folk remedy. The present work evaluates the antibacterial activity of the body fat from the snake Boa constrictor when employed either alone or in combination with antibiotics and discusses the ecological implications of the use of this traditional remedy. Oil (OBC was extracted from body fat located in the ventral region of B. constrictor using hexane as a solvent. The antibacterial activity of OBC was tested against standard as well as multi-resistant lines, either alone and in combination with antibiotics. OBC did not demonstrate any relevant antibacterial activity against standard or multidrug-resistant bacterial strains. OBC showed synergistic activity when combined with the aminoglycoside antibiotics. Our results indicate that the body fat of Boa constrictor does not possess bactericidal activity, from the clinical point of view, but when combined with an antibiotic, the fat demonstrated a significant synergistic activity.

  14. Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor

    Directory of Open Access Journals (Sweden)

    Felipe S. Ferreira

    2011-06-01

    Full Text Available Boa constrictor is widely used in traditional communities in many different folk remedies and products derived from it are sold in public markets throughout northeastern Brazil and as its body fat has many different therapeutic indications as a folk remedy. The present work evaluates the antibacterial activity of the body fat from the snake Boa constrictor when employed either alone or in combination with antibiotics and discusses the ecological implications of the use of this traditional remedy. Oil (OBC was extracted from body fat located in the ventral region of B. constrictor using hexane as a solvent. The antibacterial activity of OBC was tested against standard as well as multi-resistant lines, either alone and in combination with antibiotics. OBC did not demonstrate any relevant antibacterial activity against standard or multidrug-resistant bacterial strains. OBC showed synergistic activity when combined with the aminoglycoside antibiotics. Our results indicate that the body fat of Boa constrictor does not possess bactericidal activity, from the clinical point of view, but when combined with an antibiotic, the fat demonstrated a significant synergistic activity.

  15. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    Science.gov (United States)

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  16. Pure tone audiograms and possible aminoglycoside-induced hearing loss in belugas (Delphinapterus leucas)

    Science.gov (United States)

    Finneran, James J.; Carder, Donald A.; Dear, Randall; Belting, Traci; McBain, Jim; Dalton, Les; Ridgway, Sam H.

    2005-06-01

    A behavioral response paradigm was used to measure pure-tone hearing sensitivities in two belugas (Delphinapterus leucas). Tests were conducted over a 20-month period at the Point Defiance Zoo and Aquarium, in Tacoma, WA. Subjects were two males, aged 8-10 and 9-11 during the course of the study. Subjects were born in an oceanarium and had been housed together for all of their lives. Hearing thresholds were measured using a modified up/down staircase procedure and acoustic response paradigm where subjects were trained to produce audible responses to test tones and to remain quiet otherwise. Test frequencies ranged from approximately 2 to 130 kHz. Best sensitivities ranged from approximately 40 to 50 dB re 1 μPa at 50-80 kHz and 30-35 kHz for the two subjects. Although both subjects possessed traditional ``U-shaped'' mammalian audiograms, one subject exhibited significant high-frequency hearing loss above 37 kHz compared to previously published data for belugas. Hearing loss in this subject was estimated to approach 90 dB for frequencies above 50 kHz. Similar ages, ancestry, and environmental conditions between subjects, but a history of ototoxic drug administration in only one subject, suggest that the observed hearing loss was a result of the aminoglycoside antibiotic amikacin. .

  17. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  18. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers

  19. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    Science.gov (United States)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  20. Potentiation of antibiotic activity of aminoglycosides by natural products from Cordia verbenacea DC.

    Science.gov (United States)

    Matias, Edinardo F F; Alves, Erivania F; Silva, Maria K N; Carvalho, Victoria R A; Medeiros, Cassio R; Santos, Francisco A V; Bitu, Vanessa C N; Souza, Celestina E S; Figueredo, Fernando G; Boligon, Aline A; Athayde, Margareth L; Costa, José G M; Coutinho, Henrique D M

    2016-06-01

    Medicinal plants are often the only therapeutic resource for many communities and ethnic groups. Cordia verbenacea DC., "Erva-baleeira," is one of the species of plants currently used to produce a phytotherapeutic product extracted from its leaves. The present study aimed to establish its chemical profile, antibacterial activity and resistance-modulating potential. The C. verbenacea extracts were prepared from fresh leaves using solvents as methanol and hexane. Ethyl Acetate was used for the preparation of the fraction. Phytochemical screening was carried out using HPLC-DAD for determination and quantification of the secondary metabolites present in the fractions. Antibacterial and resistance-modulation assays were performed to determine minimum inhibitory concentration (MIC) using a microdilution assay. The data were subjected to statistical analysis with two-way ANOVA and Bonferroni posttests. Results of phytochemical prospecting and HPLC analysis of the fractions were in agreement with the literature. The natural products presented moderate antibacterial activity when considering the clinical relevance of a MIC of 256 μg/mL against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, and 512 μg/mL against P. aeruginosa. However, when the fractions were combined with antibiotics we observed a synergic effect, as natural products enhanced the antibacterial effect of aminoglycosides, significantly decreasing the MIC of antibiotics at 12.5%-98.4%. We believe that the data obtained from phytochemical analysis and from antibacterial and resistance modulation assays of C. verbenacea extracts new can open perspectives in the search for new alternatives for the treatment of bacterial infections and stimulate the renewed use of antibiotics with reduced effectiveness due to resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J.

    2012-01-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH 4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  2. Aminoglycoside exposure and renal function before lung transplantation in adult cystic fibrosis patients.

    Science.gov (United States)

    Novel-Catin, Etienne; Pelletier, Solenne; Reynaud, Quitterie; Nove-Josserand, Raphaele; Durupt, Stephane; Dubourg, Laurence; Durieu, Isabelle; Fouque, Denis

    2018-04-18

    Patients with cystic fibrosis (CF) are at risk of kidney injury even before undergoing lung transplantation, because of prolonged exposure to aminoglycosides (AGs), chronic dehydration and complications of diabetes mellitus. The usual equations estimating the glomerular filtration rate (GFR), such as Cockcroft-Gault and Modification of Diet in Renal Disease, are not adapted to the CF population due to patients' low body weight and reduced muscle mass. The aim of this study was to precisely measure GFR in adult CF patients and to see whether repeated AG treatment would impair renal function before lung transplantation. Inulin or iohexol clearances were performed in 25 adult CF patients when they entered the lung transplant waiting list. No patient was treated with AGs at the time of GFR measurement. Body mass index (BMI), history of diabetes mellitus and blood pressure were recorded. Exposure to intravenous (IV) AGs within 5 years prior to the GFR measurement was obtained from the patient's medical files. Urine samples were collected to check for albuminuria and proteinuria. The population was predominantly female (67%). The mean age was 32 years, the mean BMI was 19 kg/m2 and 28% had CF-related diabetes. Median exposure to IV AG within 5 years before GFR measurement was 155 days with a mean dosage of 7.7mg/kg/day. The mean measured GFR was 106 mL/min/1.73 m2 and the mean estimated GFR according to the Chronic Kidney Disease Epidemiology Collaboration formula was 124 mL/min/1.73 m2. Despite prolonged exposure to high-dose IV AG, no decline in GFR was observed in these patients.

  3. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase.

    Science.gov (United States)

    Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier

    2014-02-01

    Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.

  4. Effect of basic amino acids and aminoglycosides on 3H-gentamicin uptake in cortical slices of rat and human kindney

    International Nuclear Information System (INIS)

    Bennett, W.M.; Plamp, C.E.; Elliott, W.C.; Parker, R.A.; Porter, G.A.

    1982-01-01

    The uptake of 3 H-gentamicin was assessed in renal cortical slices of Fischer 344 male rats and four human cadaver kidneys not utilized for renal transplantation. In both species the uptake was maximal at 90 min and maintained a steady state therafter. The characteristics of the energy-dependent component of 3 H-gentamicin uptake were not altered by various basic amino acids, but competitive inhibition was induced by other aminoglycosides in a dose-dependent fashion. Thus aminoglycosides appear to share a transport process that is distinct from those of organic bases or other cationic substances. In addition, under the experimental conditions employed, the basolateral membranes of the tubular cell is capable of energy-dependent uptake of gentamicin. The role of this route of cellular uptake of aminoglycoside in clinical nephrotoxicity is speculative

  5. Synergy of aminoglycoside antibiotics by 3-Benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Zuo, G Y; Han, Z Q; Hao, X Y; Han, J; Li, Z S; Wang, G C

    2014-06-15

    The in vitro antimicrobial activities of three 3-Benzylchroman derivatives, i.e. Brazilin (1), Brazilein (2) and Sappanone B (3) from Caesalpinia sappan L. (Leguminosae) were assayed, which mainly dealt with synergistic evaluation of aminoglycoside and other type of antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by the three compounds through the Chequerboard and Time-kill curve methods. The results showed that Compounds 1-3 alone exhibited moderate to weak activity against methicillin-susceptible S. aureus (MSSA) and other standard strains by MICs/MBCs ranged from 32/64 to >1024/>1024 μg/ml, with the order of activity as 1>2>3. Chequerboard method showed significant anti-MRSA synergy of 1/Aminoglycosides (Gentamicin, Amikacin, Etimicin and Streptomycin) combinations with (FICIs)50 at 0.375-0.5. The combined (MICs)50 values (μg/ml) reduced from 32-128/16-64 to 4-8/4-16, respectively. The percent of reduction by MICs ranged from 50% to 87.5%, with a maximum of 93.8% (1/16 of the alone MIC). Combinations of 2 and 3 with Aminoglycosides and the other antibiotics showed less potency of synergy. The dynamic Time-killing experiment further demonstrated that the combinations of 1/aminoglycoside were synergistically bactericidal against MRSA. The anti-MRSA synergy results of the bacteriostatic (Chequerboard method) and bactericidal (time-kill method) efficiencies of 1/Aminoglycoside combinations was in good consistency, which made the resistance reversed by CLSI guidelines. We concluded that the 3-Benzylchroman derivative Brazilin (1) showed in vitro synergy of bactericidal activities against MRSA when combined with Aminoglycosides, which might be beneficial for combinatory therapy of MRSA infection. Copyright © 2014. Published by Elsevier GmbH.

  6. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  7. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel

    2011-01-01

    methyltransferase, as well as by the previously characterized aac(6')-Ii that encodes a 6'-N-aminoglycoside acetyltransferase. Inactivation of efmM in E. faecium increases susceptibility to the aminoglycosides kanamycin and tobramycin, and, conversely, expression of a recombinant version of efmM in Escherichia coli...... confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r...

  8. Aminoglucósidos: mirada actual desde su historia Aminoglycosides: a present look based on their history

    Directory of Open Access Journals (Sweden)

    Miriam Aliño Santiago

    2007-06-01

    Full Text Available Se refiere la historia, mecanismos de acción y eficacia de los aminoglucósidos en los pacientes pediátricos, así como las limitaciones de su utilidad por el surgimiento de resistencias bacterianas originadas por empleo abusivo. Se presenta la estrategia de administración de monodosis, como alternativa frente al método tradicional de dosis fraccionadas, y también las complicaciones más frecuentes y graves de los aminoglucósidos y su sinergismo con otras familias de antimicrobianos. Y se citan investigaciones realizadas en el país en materia de terapia antibiótica.We referred to history, mechanisms of action and efficacy of aminoglycosides in pediatric patients as well as limitations in their use because of the emergence of bacterial resistance caused by overuse. The one-dose administration strategy as an alternative to the traditional methods of fractioned doses, the most frequent and serious complictions of aminoglycosides and their sinergism with other antimicrobial families were presented. We quoted research studies on antibiotic therapy made in the country.

  9. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Song, Min; Tang, Min; Ding, Yinghuan; Wu, Zecai; Xiang, Chengyu; Yang, Kui; Zhang, Zhang; Li, Baolin; Deng, Zhenghua; Liu, Jinbo

    2017-12-16

    Pseudomonas aeruginosan has emerged as an important pathogen elated to serious infections and nosocomial outbreaks worldwide. This study was conducted to understand the prevalence of aminoglycoside (AMG)-resistant P. aeruginosa in our hospital and to provide a scientific basis for control measures against nosocomial infections. Eighty-two strains of P. aeruginosa were isolated from clinical departments and divided into AMG-resistant strains and AMG-sensitive strains based on susceptibility test results. AMG-resistant strains were typed by drug resistance gene typing (DRGT) and protein typing. Five kinds of aminoglycoside-modifying enzyme (AME) genes were detected in the AMG-resistant group. AMG-resistant P. aeruginosa strains were classified into three types and six subtypes by DRGT. Four protein peaks, namely, 9900.02, 7600.04, 9101.25 and 10,372.87 Da, were significantly and differentially expressed between the two groups. AMG-resistant P. aeruginosa strains were also categorised into three types and six subtypes at the distance level of 10 by protein typing. AMG-resistant P. aeruginosa was cloned spread in our hospital; the timely implementation of nosocomial infection prevention and control strategies were needed in preventing outbreaks and epidemic of AMG-resistant P. aeruginosa. SELDI-TOF MS technology can be used for bacterial typing, which provides a new method of clinical epidemiological survey and nosocomial infection control.

  10. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    Science.gov (United States)

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  11. In vitro activity of aminoglycosides against clinical isolates of Acinetobacter baumannii complex and other nonfermentative Gram-negative bacilli causing healthcare-associated bloodstream infections in Taiwan.

    Science.gov (United States)

    Liu, Jyh-You; Wang, Fu-Der; Ho, Mao-Wang; Lee, Chen-Hsiang; Liu, Jien-Wei; Wang, Jann-Tay; Sheng, Wang-Huei; Hseuh, Po-Ren; Chang, Shan-Chwen

    2016-12-01

    Aminoglycosides possess in vitro activity against aerobic and facultative Gram-negative bacilli. However, nationwide surveillance on susceptibility data of Acinetobacter baumannii complex and Pseudomonas aeruginosa to aminoglycosides was limited, and aminoglycoside resistance has emerged in the past decade. We study the in vitro susceptibility of A. baumannii complex and other nonfermentative Gram-negative bacilli (NFGNB) to aminoglycosides. A total of 378 NFGNB blood isolates causing healthcare-associated bloodstream infections during 2008 and 2013 at four medical centers in Taiwan were tested for their susceptibilities to four aminoglycosides using the agar dilution method (gentamicin, amikacin, tobramycin, and isepamicin) and disc diffusion method (isepamicin). A. baumannii was highly resistant to all four aminoglycosides (range of susceptibility, 0-4%), whereas >80% of Acinetobacter nosocomialis and Acinetobacter pittii blood isolates were susceptible to amikacin (susceptibility: 96% and 91%, respectively), tobramycin (susceptibility: 92% and 80%, respectively), and isepamicin (susceptibility: 96% and 80%, respectively). All aminoglycosides except gentamicin possessed good in vitro activity (>94%) against P. aeruginosa. Amikacin has the best in vitro activity against P. aeruginosa (susceptibility, 98%), followed by A. nosocomialis (96%), and A. pittii (91%), whereas tobramycin and isepamicin were less potent against A. pittii (both 80%). Aminoglycoside resistances were prevalent in Stenotrophomonas maltophilia and Burkholderia cepacia complex blood isolates in Taiwan. Genospecies among the A. baumannii complex had heterogeneous susceptibility profiles to aminoglycosides. Aminoglycosides, except gentamicin, remained good in vitro antimicrobial activity against P. aeruginosa. Further in vivo clinical data and continuous resistance monitoring are warranted for clinical practice guidance. Copyright © 2015. Published by Elsevier B.V.

  12. Clinical evaluation and mitochondrial DNA sequence analysis in two Chinese families with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Zhao Lidong; Wang Qiuju; Qian Yaping; Li Ronghua; Cao Juayng; Hart, Laura Christine; Zhai Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families

  13. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK

    DEFF Research Database (Denmark)

    Hidalgo, Laura; Hopkins, Katie L; Gutierrez, Belen

    2013-01-01

    16S rRNA methyltransferases are an emerging mechanism conferring high-level resistance to clinically relevant aminoglycosides and have been associated with important mechanisms such as NDM-1. We sought genes encoding these enzymes in isolates highly resistant (MIC >200 mg/L) to gentamicin and ami...

  14. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim

    2014-01-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of ...... of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides....

  15. The relationship between the use of flucloxacillin, vancomycin, aminoglycosides and ciprofloxacin and the susceptibility patterns of coagulase-negative staphylococci recovered from blood cultures.

    NARCIS (Netherlands)

    Mulder, JG; Kosterink, JGW; Degener, JE

    1997-01-01

    Antibiotic use is a cause of selection of multiresistant bacterial strains. Over three years (1990-1992) we studied the relation between the use of flucloxacillin, vancomycin, aminoglycosides and ciprofloxacin and the susceptibility of coagulase-negative staphylococci (CNS) recovered from blood

  16. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli.

    Science.gov (United States)

    Song, Wooseok; Kim, Yong-Hak; Sim, Se-Hoon; Hwang, Soonhye; Lee, Jung-Hyun; Lee, Younghoon; Bae, Jeehyeon; Hwang, Jihwan; Lee, Kangseok

    2014-04-01

    Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3-8 extra nucleotides at the 5' terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.

  17. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance.

    Science.gov (United States)

    Lollai, S A; Ziccheddu, M; Duprè, I; Piras, D

    2016-10-01

    Mastitis causes economic losses and antimicrobials are frequently used for mastitis treatment. Antimicrobial resistance surveys are still rare in the ovine field and characterization of strains is important in order to acquire information about resistance and for optimization of therapy. Bacterial pathogens recovered in milk samples from mastitis-affected ewes were characterized for resistance to tetracyclines and aminoglycosides, members of which are frequently used antimicrobials in small ruminants. A total of 185 strains of staphylococci, streptococci, and enterococci, common mastitis pathogens, were tested for minimal inhibitory concentration (MIC) to tetracycline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, and for resistance genes by PCR. Effects of different tet genes arrangements on MICs were also investigated. Staphylococci expressed the lowest MIC for tetracycline and tet(K) was the most common gene recovered; tet(M) and tet(O) were also found. Gene content was shown to influence the tetracycline MIC values. Enterococci and streptococci showed higher MICs to tetracyclines and nonsusceptible strains always harboured at least one ribosomal protection gene (MIC above 8 μg ml(-1) ). Streptococci often harboured two or more tet determinants. As regards the resistance to aminoglycosides, staphylococci showed the lowest gentamicin and kanamycin median MIC along with streptomycin high level resistant (HLR) strains (MIC >1024 μg ml(-1) ) all harbouring str gene. The resistance determinant aac(6')-Ie-aph(2″)-Ia was present in few strains. Streptococci were basically nonsusceptible to aminoglycosides but neither HLR isolates nor resistance genes were detected. Enterococci revealed the highest MICs for gentamicin; two str harbouring isolates were shown to be HLR to streptomycin. Evidence was obtained for the circulation of antimicrobial-resistant strains and genes in sheep dairy farming. Tetracycline MIC of 64 μg ml(-1) and high

  18. Detection of Specific Solvent Rearrangement Regions of an Enzyme: NMR and ITC Studies with Aminoglycoside Phosphotransferase(3 )-IIIa

    International Nuclear Information System (INIS)

    Ozen, C.; Norris, Adrianne; Land, Miriam Louise; Tjioe, Elina; Serpersu, Engin H

    2008-01-01

    This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3 and cent;)-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative and cent;H in H2O relative to D2O ( and cent; and cent;H(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative and cent;Cp values were observed for binding of aminoglycosides to APH. and cent;Cp for the APHneomycin complex was -1.6 kcal and acirc;mol-1 and acirc;deg-1. A break at 30 C was observed in the APH-kanamycin complex yielding and cent;Cp values of -0.7 kcal and acirc;mol-1 and acirc;deg-1 and -3.8 kcal and acirc;mol-1 and acirc;deg-1 below and above 30 C, respectively. Neither the change in accessible surface area ( and cent;ASA) nor contributions from heats of ionization were sufficient to explain the large negative and cent;Cp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 C only in the APH-kanamycin complex in spectra collected between 21 C and 38 C. These amino acids represent solVent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect and cent;Cp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site

  19. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  20. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.; Gajadeera, Chathurada S.; Hou, Caixia; Tsodikov, Oleg V.; Posey, James E.; Garneau-Tsodikova, Sylvie

    2016-12-08

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis in complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.

  1. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Denamur, Sophie; Boland, Lidvine [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Beyaert, Maxime [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Verstraeten, Sandrine L. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Fillet, Marianne [University of Liege, CIRM, Department of Pharmacy, Laboratory for the Analysis of Medicines, Quartier Hopital, Avenue Hippocrate, 15, B36, Tower 4, 4000 Liège 1 (Belgium); Tulkens, Paul M. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Bontemps, Françoise [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Mingeot-Leclercq, Marie-Paule [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium)

    2016-10-15

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  2. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    International Nuclear Information System (INIS)

    Denamur, Sophie; Boland, Lidvine; Beyaert, Maxime; Verstraeten, Sandrine L.; Fillet, Marianne; Tulkens, Paul M.; Bontemps, Françoise; Mingeot-Leclercq, Marie-Paule

    2016-01-01

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  3. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library.

    Directory of Open Access Journals (Sweden)

    Fiona Fouhy

    Full Text Available The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investigations into resistance reservoirs are highly pertinent. This study aimed to explore the nascent resistome in antibiotically-naïve infant gut microbiomes, using a combination of metagenomic approaches. Faecal samples from 22 six-month-old infants without previous antibiotic exposure were used to construct a pooled metagenomic library, which was functionally screened for ampicillin and gentamicin resistance. Our library of ∼220Mb contained 0.45 ampicillin resistant hits/Mb and 0.059 gentamicin resistant hits/Mb. PCR-based analysis of fosmid clones and uncloned metagenomic DNA, revealed a diverse and abundant aminoglycoside and β-lactam resistance reservoir within the infant gut, with resistance determinants exhibiting homology to those found in common gut inhabitants, including Escherichia coli, Enterococcus sp., and Clostridium difficile, as well as to genes from cryptic environmental bacteria. Notably, the genes identified differed from those revealed when a sequence-driven PCR-based screen of metagenomic DNA was employed. Carriage of these antibiotic resistance determinants conferred substantial, but varied (2-512x, increases in antibiotic resistance to their bacterial host. These data provide insights into the infant gut resistome, revealing the presence of a varied aminoglycoside and β-lactam resistance reservoir even in the absence of selective pressure, confirming the infant resistome establishes early in life, perhaps even at birth.

  4. Simple measurement of isepamicin, a new aminoglycoside antibiotic, in guinea pig and human plasma, using high-performance liquid chromatography with ultraviolet detection

    International Nuclear Information System (INIS)

    Dionisotti, S.; Bamonte, F.; Scaglione, F.; Ongini, E.

    1991-01-01

    Isepamicin, the 1-N-(S-alpha-hydroxy-beta-aminopropionyl) derivative of gentamicin B, is a new aminoglycoside antibiotic, which not only has most of the properties of amikacin but also is effective against several amikacin-resistant strains of bacteria. The drug was assayed in guinea-pig and human plasma with a high-performance liquid chromatographic procedure using precolumn derivatization with 1-fluoro-2,4-dinitrobenzene and ultraviolet detection. Linearity was established over the range 0.5-40 micrograms/ml using 50 microliters of plasma. Accuracy has a mean relative error of less than 3% and precision a mean coefficient of variation of 5%. Isepamicin was determined without interference from plasma constituents or other drugs commonly prescribed during aminoglycoside therapy. This procedure correlates well with radioimmunoassay and can be used either in experimental studies or therapeutic monitoring of plasma levels

  5. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia

    Science.gov (United States)

    Smith, Clyde A.; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    The bifunctional acetyltransferase(6′)-Ie-phosphotransfer­ase(2′′)-Ia [AAC(6′)-Ie-APH(2′′)-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2′′)-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2′′)-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2′′)-IIa and APH(2′′)-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2′′)-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2′′)-IIIa enzyme. In APH(2′′)-Ia this GTP selectivity is governed by the presence of a ‘gatekeeper’ residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2′′)-Ia into a dual-specificity enzyme. PMID:24914967

  6. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates

    Directory of Open Access Journals (Sweden)

    Claudia Ibacache-Quiroga

    2018-03-01

    Full Text Available Antibiotic resistance is a major concern in public health worldwide, thus there is much interest in characterizing the mutational pathways through which susceptible bacteria evolve resistance. Here we use experimental evolution to explore the mutational pathways toward aminoglycoside resistance, using gentamicin as a model, under low and high mutation supply rates. Our results show that both normo and hypermutable strains of Escherichia coli are able to develop resistance to drug dosages > 1,000-fold higher than the minimal inhibitory concentration for their ancestors. Interestingly, such level of resistance was often associated with changes in susceptibility to other antibiotics, most prominently with increased resistance to fosfomycin. Whole-genome sequencing revealed that all resistant derivatives presented diverse mutations in five common genetic elements: fhuA, fusA and the atpIBEFHAGDC, cyoABCDE, and potABCD operons. Despite the large number of mutations acquired, hypermutable strains did not pay, apparently, fitness cost. In contrast to recent studies, we found that the mutation supply rate mainly affected the speed (tempo but not the pattern (mode of evolution: both backgrounds acquired the mutations in the same order, although the hypermutator strain did it faster. This observation is compatible with the adaptive landscape for high-level gentamicin resistance being relatively smooth, with few local maxima; which might be a common feature among antibiotics for which resistance involves multiple loci.

  7. Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Green, Keith D.; Biswas, Tapan; Chang, Changsoo; Wu, Ruiying; Chen, Wenjing; Janes, Brian K.; Chalupska, Dominika; Gornicki, Piotr; Hanna, Philip C.; Tsodikov, Oleg V.; Joachimiak, Andrzej; Garneau-Tsodikova, Sylvie

    2015-05-26

    Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.

  8. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    Science.gov (United States)

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  9. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    Science.gov (United States)

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  10. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    Science.gov (United States)

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  11. Aminoglycoside antibiotics as a tool for the study of the biological role of calcium ions. Historical overview.

    Science.gov (United States)

    Corrado, A P; de Morais, I P; Prado, W A

    1989-01-01

    Beginning with the pioneering work of Vital-Brazil and Corrado (1957), which suggested a possible interaction between aminoglycoside antibiotics (AGA) and calcium ions at the neuromuscular junction, the authors review the studies that demonstrated the existence of a competitive antagonism between AGA and calcium ions. In view of the low liposolubility of AGA and their inability to cross biological membranes, this antagonism seems to occur exclusively at calcium-binding sites at the level of the outer opening of calcium channels of the N-subtype, which are also the sites of interaction of omega-conotoxin. Being highly water soluble, AGA are easily removed from their binding sites with a consequent rapid reversal of their effects, a factor of primary importance to explain their wide use as tools in the pharmacological analysis of the study of the biological role of calcium ion on the membrane's outer surface. This use has advantages over the use of inorganic di- and trivalent cations such as Mg2+, Mn2+, Cd2+, Ni2+, La3+, etc., since the latter, though they are considered to be the most specific competitive antagonists of calcium ions, may induce biphasic effects due to their ability to cross the membranes and replace calcium and/or increase intracellular calcium concentration. The performance of AGA is also superior when compared with the so-called "specific" organic calcium antagonists--verapamil and nifedipine derivatives--since the latter, in addition to inducing possible biphasic effects, antagonize calcium in a non-competitive manner. Finally, the authors remark that AGA-Ca2+ antagonism relevance is not limited only to basic aspects and that it may have therapeutic implications since it provides alternatives for reducing the toxic adverse effects of this important group of antibiotics.

  12. Detection and characterization of multidrug-resistant enterobacteria bearing aminoglycoside-modifying gene in a university hospital at Rio de Janeiro, Brazil, along three decades.

    Science.gov (United States)

    Dias-Gonçalves, Verônica; Bohrer-Lengruber, Françoise; Oliveira-Fonseca, Bianca; Santos-Pereira, Renata Meirelles; Barbosa de Melo, Luis Dione; Gazos-Lopes, Ulisses; Ribeiro-Bello, Alexandre; Adler-Pereira, José Augusto

    2015-01-01

    Multidrug-resistant Enterobacteriaceae, particularly those resistant to gentamicin, have become one of the most important causes of nosocomial infections. We sought to investigate the presence of genes conferring resistance to aminoglycosides, specially to gentamicin, in Klebsiella pneumoniae and Escherichia coli multidrug-resistant strains isolated from different clinical materials among patients hospitalized in a university hospital in Rio de Janeiro, Brazil. Ten colonization strains and 20 infection strains were evaluated during three decades (1980 to 2010) using selective media containing 8 µg/ml of gentamicin. Thirty strains were tested for antimicrobial susceptibility. Twenty two strains were subjected to plasmid DNA extraction and 12 to hybridization assays using as probe a 1.9 kb plasmid DNA fragment from one of the K. pneumoniae strains isolated from faecal samples. This fragment was sequenced and assigned to the GQ422439 GenBank record. PCR was also performed using oligonucleotides designed for aminoglycoside-modifying enzymes. An accC2 acetylase, besides transposons and insertion sequences, were evidenced. Twenty-four (80%) of the isolates were positive for the aacC2 gene in agreement with antibiotic susceptibility testing profiles, indicating the persistent presence of this gene throughout the three decades. We detected high molecular weight plasmids in 54,5% of the strains. Of the tested strains, 91% showed positive signal in the hybridization assays. A gene codifying for one specific aminoglycoside-modifying enzyme was detected all throughout the three decades. Our data back the adoption of preventive measures, such as a more conscious use of antimicrobial agents in hospital environments, which can contribute to control the dissemination of microorganisms harboring resistance gene plasmids.

  13. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    International Nuclear Information System (INIS)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.; Smith, Clyde A.

    2008-01-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl 2 , 0.1 M Tris–HCl pH 8.5 and 1 mM Mg 2 GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA

  14. Distribution of 16S rRNA Methylases Among Different Species of Aminoglycoside-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Poland.

    Science.gov (United States)

    Piekarska, Katarzyna; Zacharczuk, Katarzyna; Wołkowicz, Tomasz; Rzeczkowska, Magdalena; Bareja, Elżbieta; Olak, Monika; Gierczyński, Rafał

    2016-01-01

    Aminoglycosides are a group of antimicrobial agents still the most commonly used in the treatment of life-threatening bacterial infections in human and animals. The emergence and spread of 16S rRNA methylases, which confer high-level resistance to the majority of clinically relevant aminoglycosides, constitute a major public health concern. Our goal was to evaluate the distribution of 16S rRNA methylases among different species of Enterobacteriaceae during a five month-long survey in a tertiary hospital in Warszawa, Poland. In the survey, a total of 1770 non-duplicate clinical isolates were collected from all hospital wards in a tertiary hospital in Warszawa, Poland. The survey was conducted between 19 April and 19 September 2010. The ability to produce 16S rRNA methylase was examined by determining MICs for gentamicin, kanamycin, amikacin by means of the agar dilution method. The isolates resistant to high concentration of aminoglycosides were PCR tested for genes: armA, rmtA, rmtB and rmtC. PCR products were subjected to DNA sequencing by the Sanger method. The genetic similarity of the ArmA-producing isolates was analysed by pulsed-filed gel electrophoresis (PFGE). ArmA was the only 16S rRNA methylase detected in 20 of 1770 tested isolates. The overall prevalence rate of ArmA was 1.13%. In K. pneumoniae (n = 742), P. mirabilis (n = 130), and E. cloacae (n = 253) collected in the survey, the prevalence of ArmA was 0.4%, 0.8% and 5.9%, respectively. The PFGE revealed both horizontal and clonal spread of the armA gene in the hospital. The prevalence of 16S rRNA methylase ArmA reported in this study is significantly higher than observed in other countries in Europe.

  15. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  16. Analysis of triclosan-selected Salmonella enterica mutants of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates.

    Directory of Open Access Journals (Sweden)

    Ulrike Rensch

    Full Text Available The biocide triclosan (TRC is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8-64-fold higher than MIC values and ranged between 1-16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10(-10-9.9 x 10(-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting

  17. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    International Nuclear Information System (INIS)

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter; Chow, Joseph W.; Lerner, Stephen; Vakulenko, Sergei; Smith, Clyde A.

    2005-01-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P2 1 , with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding

  18. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    Energy Technology Data Exchange (ETDEWEB)

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter [Laboratory of Structural Biology, School of Biological Sciences, University of Auckland, Auckland (New Zealand); Chow, Joseph W.; Lerner, Stephen [Division of Infectious Diseases, Wayne State University School of Medicine and VA Medical Center, Detroit, Michigan 48201 (United States); Vakulenko, Sergei [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Smith, Clyde A., E-mail: csmith@slac.stanford.edu [Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Laboratory of Structural Biology, School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.

  19. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    International Nuclear Information System (INIS)

    Wang Qiuju; Li Qingzhong; Han Dongyi; Zhao Yali; Zhao Lidong; Qian Yaping; Yuan Hu; Li Ronghua; Zhai Suoqiang; Young Wieyen; Guan Minxin

    2006-01-01

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family

  20. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    Directory of Open Access Journals (Sweden)

    Nerissa K. Kirkwood

    2017-09-01

    Full Text Available Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM or berbamine (≥1.55 μM protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h. Protection of zebrafish hair cells against gentamicin (10 μM, 6 h was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC and 2.8 μM (berbamine in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of

  1. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  2. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2007-01-01

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families

  3. Evaluating the Frequency of aac(6')-IIa, ant(2″)-I, intl1, and intl2 Genes in Aminoglycosides Resistant Klebsiella pneumoniae Isolates Obtained from Hospitalized Patients in Yazd, Iran.

    Science.gov (United States)

    Mokhtari, Hesam; Eslami, Gilda; Zandi, Hengameh; Dehghan-Banadkouki, Amin; Vakili, Mahmood

    2018-01-01

    Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that could be resistant to many antimicrobial agents. Resistance genes can be carried among gram-negative bacteria by integrons. Enzymatic inactivation is the most important mechanism of resistance to aminoglycosides. In this study, the frequencies of two important resistance gene aac(6')-II a and ant(2″)-I, and genes coding integrase I and II, in K. pneumoniae isolates resistant to aminoglycosides were evaluated. In this cross-sectional study, an attempt was made to assess the antibiotic susceptibility of 130 K. pneumoniae isolates obtained from different samples of patients hospitalized in training hospitals of Yazd evaluated by disk diffusion method. The frequencies of aac(6')-II a, ant(2″)-I, intl1 , and intl2 genes were determined by PCR method. Data were analyzed by chi-square method using SPSS software (Ver. 16). our results showed that resistance to gentamicin, tobramycin, kanamycin, and amikacin were 34.6, 33.8, 43.8, and 14.6%, respectively. The frequencies of aac (6')-II a, ant(2″)-I, intl1 , and intl2 genes were 44.6, 27.7, 90, and 0%, respectively. This study showed there are high frequencies of genes coding aminoglycosides resistance in K. pneumoniae isolates. Hence, it is very important to monitor and inhibit the spread of antibiotic resistance genes.

  4. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes in two Chinese families

    International Nuclear Information System (INIS)

    Zhu Yi; Qian Yaping; Tang Xiaowen; Wang Jindan; Yang Li; Liao Zhisu; Li Ronghua; Ji Jinzhang; Li Zhiyuan; Chen Jianfu; Choo, Daniel I.; Lu Jianxin; Guan Minxin

    2006-01-01

    We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNA Ser(UCN) gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees

  5. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis

    2013-10-25

    A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.

  6. New plasmid-mediated aminoglycoside 6'-N-acetyltransferase, AAC(6')-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate.

    Science.gov (United States)

    Jin, Wanchun; Wachino, Jun-Ichi; Kimura, Kouji; Yamada, Keiko; Arakawa, Yoshichika

    2015-05-01

    Enterobacteriaceae clinical isolates showing amikacin resistance (MIC 64 to >256 mg/L) in the absence of 16S rRNA methyltransferase (MTase) genes were found. The aim of this study was to clarify the molecular mechanisms underlying amikacin resistance in Enterobacteriaceae clinical isolates that do not produce 16S rRNA MTases. PCR was performed to detect already-known amikacin resistance determinants. Cloning experiments and sequence analyses were performed to characterize unknown amikacin resistance determinants. Transfer of amikacin resistance determinants was performed by conjugation and transformation. The complete nucleotide sequence of the plasmids was determined by next-generation sequencing technology. Amikacin resistance enzymes were purified with a column chromatography system. The enzymatic function of the purified protein was investigated by thin-layer chromatography (TLC) and HPLC. Among the 14 isolates, 9 were found to carry already-known amikacin resistance determinants such as aac(6')-Ia and aac(6')-Ib. Genetic analyses revealed the presence of a new amikacin acetyltransferase gene, named aac(6')-Ian, located on a 169 829 bp transferable plasmid (p11663) of the Serratia marcescens strain NUBL-11663, one of the five strains negative for known aac(6') genes by PCR. Plasmid p11663 also carried a novel ESBL gene, named blaTLA-3. HPLC and TLC analyses demonstrated that AAC(6')-Ian catalysed the transfer of an acetyl group from acetyl coenzyme A onto an amine at the 6'-position of various aminoglycosides. We identified aac(6')-Ian as a novel amikacin resistance determinant together with a new ESBL gene, blaTLA-3, on a transferable plasmid of a S. marcescens clinical isolate. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Beneficial antimicrobial effect of the addition of an aminoglycoside to a β-lactam antibiotic in an E. coli porcine intensive care severe sepsis model.

    Science.gov (United States)

    Skorup, Paul; Maudsdotter, Lisa; Lipcsey, Miklós; Castegren, Markus; Larsson, Anders; Jonsson, Ann-Beth; Sjölin, Jan

    2014-01-01

    This study aimed to determine whether the addition of an aminoglycoside to a ß-lactam antibiotic increases the antimicrobial effect during the early phase of Gram-negative severe sepsis/septic shock. A porcine model was selected that considered each animal's individual blood bactericidal capacity. Escherichia coli, susceptible to both antibiotics, was given to healthy pigs intravenously during 3 h. At 2 h, the animals were randomized to a 20-min infusion with either cefuroxime alone (n = 9), a combination of cefuroxime+tobramycin (n = 9), or saline (control, n = 9). Blood samples were collected hourly for cultures and quantitative polymerase chain reaction (PCR). Bacterial growth in the organs after 6 h was chosen as the primary endpoint. A blood sample was obtained at baseline before start of bacterial infusion for ex vivo investigation of the blood bactericidal capacity. At 1 h after the administration of the antibiotics, a second blood sample was taken for ex vivo investigation of the antibiotic-induced blood killing activity. All animals developed severe sepsis/septic shock. Blood cultures and PCR rapidly became negative after completed bacterial infusion. Antibiotic-induced blood killing activity was significantly greater in the combination group than in the cefuroxime group (pantibiotic groups compared with the controls (pantibiotic groups. Bacterial growth in the liver was significantly less in the combination group than in the cefuroxime group (pantibiotic-induced blood killing activity and less bacteria in the liver than cefuroxime alone. Individual blood bactericidal capacity may have a significant effect on antimicrobial outcome.

  8. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts.

    Science.gov (United States)

    Lehotay, Steven J; Lightfield, Alan R

    2018-01-01

    The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using fewer instruments in the overall monitoring scheme. Traditionally, the highly polar aminoglycoside antibiotics require different chromatographic conditions from other classes of drugs, but in this work, we demonstrate that an ion-pairing reagent (sodium 1-heptanesulfonate) added to the combined final extracts from two sample preparation methods attains good separation of 174 targeted drugs, including 9 aminoglycosides, in the same 10.5-min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The full method was validated in bovine kidney, liver, and muscle tissues according to US regulatory protocols, and 137-146 (79-84%) of the drugs gave between 70 and 120% average recoveries with ≤ 25% RSDs in the different types of tissues spiked at 0.5, 1, and 2 times the regulatory levels of interest (10-1000 ng/g depending on the drug). This method increases sample throughput and the possible number of drugs monitored in the US National Residue Program, and requires only one UHPLC-MS/MS method and instrument for analysis rather than two by the previous scheme. Graphical abstract Outline of the streamlined approach to monitor 174 veterinary drugs, including aminoglycosides, in bovine tissues by combining two extracts of the same sample with an ion-pairing reagent for analysis by UHPLC-MS/MS.

  9. The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure.

    Science.gov (United States)

    Frenzel, Elrike; Kranzler, Markus; Stark, Timo D; Hofmann, Thomas; Ehling-Schulz, Monika

    2015-12-08

    Bacillus cereus is among the microorganisms most often isolated from cases of food spoilage and causes gastrointestinal diseases as well as nongastrointestinal infections elicited by the emetic toxin cereulide, enterotoxins, and a panel of tissue-destructive virulence factors. This opportunistic pathogen is increasingly associated with rapidly fatal clinical infections especially linked to neonates and immunocompromised individuals. Fatality results from either the misdiagnosis of B. cereus as a contaminant of the clinical specimen or from failure of antibiotic therapy. Here we report for the first time that exposure to aminoglycoside antibiotics induces a phenotype switching of emetic B. cereus subpopulations to a slow-growing small colony variant (SCV) state. Along with altered antibiotic resistance, SCVs showed distinct phenotypic and metabolic properties, bearing the risk of antibiotic treatment failure and of clinical misdiagnosis by standard identification tests used in routine diagnostic. The SCV subpopulation is characterized by enhanced production of the toxin cereulide, but it does not secrete tissue-destructive and immune system-affecting enzymes such as sphingomyelinase and phospholipase. SCVs showed significantly prolonged persistence and decreased virulence in the Galleria mellonella model for bacterial infections, indicating diversification concerning their ecological lifestyle. Importantly, diversification into coexisting wild-type and SCV subpopulations also emerged during amikacin pressure during in vivo infection experiments. This study shows for the first time that pathogenic spore-forming B. cereus strains are able to switch to a so far unreported slow-growing lifestyle, which differs substantially in terms of developmental, phenotypic, metabolic, and virulence traits from the wild-type populations. This underpins the necessity of molecular-based differential diagnostics and a well-chosen therapeutic treatment strategy in clinical

  10. Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia.

    Science.gov (United States)

    Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen

    2015-10-15

    One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the

  11. Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase- and Extended-Spectrum-β-Lactamase-Producing Enterobacter Species.

    Science.gov (United States)

    Haidar, Ghady; Alkroud, Ammar; Cheng, Shaoji; Churilla, Travis M; Churilla, Bryce M; Shields, Ryan K; Doi, Yohei; Clancy, Cornelius J; Nguyen, M Hong

    2016-09-01

    We compared the in vitro activities of gentamicin (GEN), tobramycin (TOB), amikacin (AMK), and plazomicin (PLZ) against 13 Enterobacter isolates possessing both Klebsiella pneumoniae carbapenemase and extended-spectrum β-lactamase (KPC+/ESBL+) with activity against 8 KPC+/ESBL-, 6 KPC-/ESBL+, and 38 KPC-/ESBL- isolates. The rates of resistance to GEN and TOB were higher for KPC+/ESBL+ (100% for both) than for KPC+/ESBL- (25% and 38%, respectively), KPC-/ESBL+ (50% and 17%, respectively), and KPC-/ESBL- (0% and 3%, respectively) isolates. KPC+/ESBL+ isolates were more likely than others to possess an aminoglycoside-modifying enzyme (AME) (100% versus 38%, 67%, and 5%; P = 0.007, 0.06, and 1 AME than with ≤1 AME. The presence of at least 2/3 of KPC, SHV, and TEM predicted the presence of AMEs. PLZ MICs against all isolates were ≤4 μg/ml, regardless of KPC/ESBL pattern or the presence of AMEs. In conclusion, GEN and TOB are limited as treatment options against KPC+ and ESBL+ Enterobacter PLZ may represent a valuable addition to the antimicrobial armamentarium. A full understanding of AMEs and other aminoglycoside resistance mechanisms will allow clinicians to incorporate PLZ rationally into treatment regimens. The development of molecular assays that accurately and rapidly predict antimicrobial responses among KPC- and ESBL-producing Enterobacter spp. should be a top research priority. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-lactams Resistance in Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Hui eHuang

    2016-04-01

    RNA expression levels of the efflux pump acrD and mdtA genes, as compared to strain JS△cpxR. Our results indicate that the two-component regulator CpxR contributes to resistance of S. enterica serovar Typhimurium to aminoglycosides and β-lactams by influencing the expression level of the MDR-related genes.

  13. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    Science.gov (United States)

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large

  14. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly.

    Science.gov (United States)

    Wang, Xinran; Yang, Shupeng; Li, Yi; Zhang, Jinzhen; Jin, Yue; Zhao, Wen; Zhang, Yongxin; Huang, Jingping; Wang, Peng; Wu, Cuiling; Zhou, Jinhui

    2018-03-23

    A robust and sensitive method of solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established and performed for the simultaneous determination of eleven aminoglycosides (AGs) in royal jelly and honey. After sample extraction by a phosphate buffer containing trichloroacetic acid (TCA) and ethylenediaminetetracetic acid disodium salt (Na 2 EDTA), the extraction solution was subjected to a parallel solid-phase extraction for clean-up prior to the LC-MS/MS analysis. The same method was applied to analyze two completely different matrices, honey and royal jelly. Good sensitivity, repeatability, and recovery were obtained by using the mobile phase without an ion-pairing reagent such as heptafluorobutyric acid (HFBA) or sodium heptanesulfonate. The calibration curves of the honey and royal jelly samples exhibited a good linear response (R 2  > 0.99) at six concentrations in the range of 10-1000 μg/mL. The limit of quantification (LOQ) of the AGs ranged from 10 to 25 μg/kg in the honey and from 12.5 to 25 μg/kg in the royal jelly. The recoveries of the AGs for the honey and royal jelly samples were in the range of 79.48% to 108.95% and 74.61% to 113.70% respectively and the relative standard deviations (RSDs) were between 1.23% and 9.59%, and between 1.51% and 9.98%, respectively. The proposed approach has been allowed in China as a reference method for the simultaneous determination of eleven AGs in honey and royal jelly. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Aminoglycoside induced ototoxicity associated with mitochondrial ...

    African Journals Online (AJOL)

    Joseph Foster II

    2016-06-16

    Jun 16, 2016 ... while current methods to mitigate the risk of ototoxic injury are in various stages of ... of preemptive audiometry provides the most readily available method to ..... current characterization of the MET channel has already led.

  16. Occurrence of aminoglycoside-modifying enzymes genes (aac(6 ...

    African Journals Online (AJOL)

    Department of Microbiology University of Lagos, Akoka Lagos. 2. Department of ... Environmental Microbiology Section, Indian Institute of Toxicology Research, Lucknow, India. Abstract ..... Manual of Clinical Microbiology. 8th edition.

  17. Preventing Ototoxic Synergy of Prior Noise Trauma during Aminoglycoside Therapy

    Science.gov (United States)

    2017-06-01

    Hongzhe Li, PhD CONTRACTING ORGANIZATION: Loma Linda Veterans Association for Research and Education Redlands, CA 92373-5181 REPORT DATE: June...Veterans Association for Research and Education Redlands, CA 92373-5181 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...sound exposure, is particularly associated with military environments, especially when sustaining blast injuries. These injuries are frequently treated

  18. Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity.

    Science.gov (United States)

    Zhou, Shuang; Sun, Yanhui; Kuang, Xiao; Hou, Shanshan; Yang, YinXian; Wang, Zhenjie; Liu, Hongzhuo

    2018-04-21

    We report a proof-of-concept for the development of mitochondria-targeting nanoparticles (NPs) loaded with geranylgeranylacetone (GGA) to protect against a wide range of gentamicin-induced ototoxicity symptoms in a zebrafish model. The polymeric NPs were functionalized with a mitochondrial-homing peptide (d‑Arg‑Dmt‑Orn‑Phe‑NH 2 ) and exhibited greater mitochondrial uptake and lower gentamicin uptake in hair cells via mechanotransduction (MET) channels and tuned machinery in the hair bundle than the ordinary NPs did. Blockade of MET channels rapidly reversed this effect, indicating the reversible responses of hair cells to the targeting NPs were mediated by MET channels. Pretreatment of hair cells with mitochondria-targeting GGA-loaded NPs exhibited a superior acute or chronic protective efficacy against subsequent exposure to gentamicin compared with unmodified formulations. Mitochondrial delivery regulating the death pathway of hair cells appeared to cause the therapeutic failure of untargeted NPs. Thus, peptide-directed mitochondria-targeting NPs may represent a novel therapeutic strategy for mitochondrial dysfunction-linked diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs

    DEFF Research Database (Denmark)

    Gutierrez, Belen; Douthwaite, Stephen Roger; Gonzalez-Zorn, Bruno

    2013-01-01

    (housekeeping) modifications at m (4)Cm1402, m (3)U1498, m (2)G1516, m (6) 2A1518, and m (6) 2A1519; helix 69 is modified at m (3)Ψ1915, with m (5)U1939 and m (5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m (3)Ψ1915, where about 80% of r...

  20. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Jin-zhou Ye

    2018-01-01

    Full Text Available Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

  1. Is the addition of aminoglycosides to beta-lactams in cancer patients with febrile neutropenia needed?

    OpenAIRE

    Valeria Contreras; Sebastián Sepúlveda; Ana Heredia

    2016-01-01

    En pacientes con cáncer que se presentan con neutropenia febril existe controversia sobre si es mejor utilizar una combinación de antibióticos betalactámicos y aminoglicósidos o si bastaría la monoterapia con betalactámicos de amplio espectro como tratamiento empírico inicial. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en 30 bases de datos, identificamos tres revisiones sistemáticas que en conjunto incluyen 14 estudios aleatorizados pertinentes a esta p...

  2. Spectrophotometric Determination of Aminoglycoside Antibiotics Based on their Oxidation by Potassium Permanganate

    International Nuclear Information System (INIS)

    El-Didamony, A. M.; Ghoneim, A. K.; Telebany, A. M.; Amin, A. S.

    2006-01-01

    A rapid, simple and sensitive validated spectrophotometric methods have been described for the assay of neomycin and streptomycin either in pure form or in pharmaceutical formulations. The proposed methods were based on the oxidation of the studied drugs by a known excess of potassium permanganate in acidic medium and estimating the unreacted permanganate with amaranth dye (method A), acid orange II (method B), indigocarmine (method C), and methylene blue (method D), in the same acid medium at a suitable λ max =521, 485, 610 and 664 nm, respectively. Beer's law is obeyed in the concentration range of 5-10 and 2-7 mg mL -1 for neomycin and streptomycin, respectively. The apparent molar absorptivity and sandell sensitivity values are in the range 5.47-6.20x10 4 , 2.35-2.91x10 5 L mol -1 cm -1 and 7.57-8.59, 5.01-6.2 ng cm -2 for neomycin and streptomycin, respectively. Different variables affecting the reaction were studied and optimized. The proposed methods were applied successfully to the determination of the examined drugs either in a pure or pharmaceutical dosage forms with good accuracy and precision. No interferences were observed from excipients and the results obtained were in good agreement with those obtained using the official methods

  3. Is the addition of aminoglycosides to beta-lactams in cancer patients with febrile neutropenia needed?

    Directory of Open Access Journals (Sweden)

    Valeria Contreras

    2016-03-01

    Full Text Available En pacientes con cáncer que se presentan con neutropenia febril existe controversia sobre si es mejor utilizar una combinación de antibióticos betalactámicos y aminoglicósidos o si bastaría la monoterapia con betalactámicos de amplio espectro como tratamiento empírico inicial. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en 30 bases de datos, identificamos tres revisiones sistemáticas que en conjunto incluyen 14 estudios aleatorizados pertinentes a esta pregunta. Realizamos un metanálisis y tablas de resumen de los resultados utilizando el método GRADE. Concluimos que adicionar aminoglicósidos a los betalactámicos en el tratamiento de la neutropenia febril en pacientes con cáncer aumenta la nefrotoxicidad y podría aumentar la mortalidad en comparación con la monoterapia con betalactámicos.

  4. Constants of acid‒base equilibria in an aqueous amikacin aminoglycoside solution at 298 K

    Science.gov (United States)

    Alekseev, V. G.; Markova, E. V.

    2016-03-01

    The acid dissociation constants of form p K 1 = 7.34 ± 0.01, p K 2 = 7.84 ± 0.01, p K 3 = 8.77 ± 0.01, p K 4 = 9.49 ± 0.01, and p K 5 = 10.70 ± 0.02 of cationic amikacin are determined by pH-metric titration at 25°C against the background of 0.1 mol/L KNO3. K 1, K 2, K 3, and K 4 correspond to the dissociation of protons coordinated to amino groups, while K 5 characterizes the dissociation of the hydroxyl hydrogen atom, testifying to the amphoteric character of amikacin molecules. Applying density functional theory (DFT) with the B3LYP hybrid functional and the 6-311G**++ basis set, the partial charges on the atoms of an amikacin molecule are calculated. It is concluded that the dissociation of H(55)hydrogen atom occurs with a greatest partial charge of +0.53631.

  5. Multiple paths towards reduced membrane potential and concomitant reduction in aminoglycoside susceptibility in staphylococcus aureus

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Nøhr-Meldgaard, Katrine; Ingmer, Hanne

    2018-01-01

    susceptibility to gentamicin. 9 mutants were confirmed by E-test to display between 2 and 16-fold reduced susceptibility to this antibiotic. All of the identified genes were associated with the electron transport chain and energy metabolism. Four mutant strains (menD, hemB, aroC and SAUSA300_0355) conferred...

  6. Evaluation of Antibacterial Activity of Aminoglycosides and Modulating the Essential Oil of Cymbopogon citratus (DC. Stapf

    Directory of Open Access Journals (Sweden)

    Saulo R. TINTINO

    2015-01-01

    Vários trabalhos vêm demonstrando a importância do estudo de produtos naturais como fonte alternativa para novos antimicrobianos ou que venham potencializar os já existentes. Neste contexto este trabalho teve como objetivo investigar a atividade antibacteriana e as possíveis interações entre o óleo essencial de Cymbopogon citratus combinados a aminoglicosídeos frente a linhagens padrões e multirresistentes de S. aureus, E. coli e de P. aeruginosa provenientes de isolados clínicos. Um ensaio de microdiluição foi realizado para verificar a atividade antibacteriana e as possíveis interacções entre o produto natural e os antibióticos, utilizando uma concentração sub-inibitória. Através dos resultados foi constatado a interferência sinérgica dos aminoglicosídeos quando associados com o óleo essencial em uma concentração de CIM/8, com redução das CIMs em até quatro pontos frente às linhagens de S. aureus 358, E. coli 27 e P. aeruginosa-143. Mas nenhuma atividade modificadora foi observada frente a P. aeruginosa 78 e P. aeruginosa 91. Através dos resultados pode-se concluir que o óleo essencial de Cymbopogon citratus pode ser uma fonte alternativa de produtos naturais com atividade antibacteriana. Vários trabalhos vêm demonstrando a importância do estudo de produtos naturais como fonte alternativa para novos antimicrobianos ou que venham potencializar os já existentes. Neste contexto este trabalho teve como objetivo investigar a atividade antibacteriana e as possíveis interações entre o óleo essencial de Cymbopogon citratus combinados a aminoglicosídeos frente a linhagens padrões e multirresistentes de S. aureus, E. coli e de P. aeruginosa provenientes de isolados clínicos. Um ensaio de microdiluição foi realizado para verificar a atividade antibacteriana e as possíveis interacções entre o produto natural e os antibióticos, utilizando uma concentração sub-inibitória. Através  dos resultados foi constatado a interferência sinérgica  dos aminoglicosídeos quando associados com o óleo essencial em uma concentração de CIM/8, com redução das CIMs em  até quatro pontos frente  às linhagens de S. aureus 358, E. coli 27 e P. aeruginosa-143. Mas nenhuma atividade modificadora foi observada frente a P. aeruginosa 78 e P. aeruginosa 91. Através dos resultados pode-se concluir que o óleo essencial de Cymbopogon citratus pode ser uma fonte alternativa de produtos naturais com atividade antibacteriana.

  7. Tolerance of Norway spruce (Picea abies [L.] Karst.) embryogenic tissue to penicillin, carbapenem and aminoglycoside antibiotics

    Czech Academy of Sciences Publication Activity Database

    Malá, J.; Pavingerová, Daniela; Cvrčková, H.; Bříza, Jindřich; Dostál, J.; Šíma, P.

    2009-01-01

    Roč. 55, č. 4 (2009), s. 156-161 ISSN 1212-4834 R&D Projects: GA MZe QH71290 Institutional research plan: CEZ:AV0Z50510513 Keywords : somatic embryogenesis * Norway spruce * penicillin antibiotics * Agrobacterium tumefaciens * carbapenem antibiotics Subject RIV: EB - Genetics ; Molecular Biology

  8. The Cyclops for pulmonary delivery of aminoglycosides; A new member of the Twincer™ family

    NARCIS (Netherlands)

    Hoppentocht, M.; Akkerman, O. W.; Hagedoorn, P.; Frijlink, H. W.; de Boer, A. H.

    Patients infected with pathogenic bacteria have to be treated with antibiotics. When the infection is in the lungs, as for instance in cystic fibrosis, bronchiectasis and tuberculosis, inhaled antibiotics have certain advantages over systemically administered antibiotics. In this study, it is shown

  9. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    Science.gov (United States)

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  10. DEVELOPMENT OF CAPILLARY ELECTROPHORESIS BASED METHODS WITH DIFFERENT DETECTION APPROACHES FOR DETERMINATION OF ORGANOTINS, STROBILURINS AND AMINOGLYCOSIDES

    OpenAIRE

    CABRINI FERRAZ DE SOUZA

    2013-01-01

    Neste trabalho, métodos baseados em diferentes abordagens em eletroforese capilar (CE) foram propostos. No caso da determinação de compostos organoestanhos ou OTs (difenilestanho e monofenilestanho) em fluidos biológicos, foi usada abordagem de eletroforese capilar por zona (CZE) hifenada com a espectrometria de massas (do tipo quadrupolo) com fonte de plasma indutivamente acoplado (CE-ICP-MS). As condições de análise foram estudadas no modo univariado visando otimizar a composição da solu...

  11. EPR studies of free radicals decay and survival in gamma irradiated aminoglycoside antibiotics: sisomicin, tobramycin and paromomycin.

    Science.gov (United States)

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2012-02-14

    Radiation sterilization technology is more actively used now that any time because of its many advantages. Gamma radiation has high penetrating power, relatively low chemical reactivity and causes small temperature rise. But on the other hand radiosterilization can lead to radiolytic products appearing, in example free radicals. Free radicals in radiative sterilized sisomicin, tobramycin and paromomycin were studied by electron paramagnetic resonance (EPR) spectroscopy. Dose of gamma irradiation of 25kGy was used. Concentrations and properties of free radicals in irradiated antibiotics were studied. EPR spectra were recorded for samples stored in air and argon. For gamma irradiated antibiotics strong EPR lines were recorded. One- and two-exponential functions were fitted to experimental points during testing and researching of time influence of the antibiotics storage to studied parameters of EPR lines. Our study of free radicals in radiosterilized antibiotics indicates the need for characterization of medicinal substances prior to sterilization process using EPR values. We propose the concentration of free radicals and other spectroscopic parameters as useful factors to select the optimal type of sterilization for the individual drug. The important parameters are i.a. the τ time constants and K constants of exponential functions. Time constants τ give us information about the speed of free radicals concentration decrease in radiated medicinal substances. The constant K(0) shows the free radicals concentration in irradiated medicament after long time of storage. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Pasteurellaceae bacteria from the oral cavity of Tasmanian devils (Sarcophilus Harrisii) show high minimum inhibitory concentration values towards aminoglycosides and clindamycin

    DEFF Research Database (Denmark)

    Gutman, N.; Hansen, Mie Johanne; Bertelsen, M. F.

    2016-01-01

    of the oral microbiota. In medical management of such bite wounds, antimicrobial susceptibility profiles are crucial. Prior to this investigation, no available data on minimal inhibitory concentration (MIC) values existed. A total of 26 isolates obtained from the oral cavity of 26 healthy Tasmanian devils...... for antimicrobial therapy against bite wound infections caused by Pasteurellaceae originating from the oral cavity of Tasmanian devils....

  13. Outbreak of Serratia marcescens Coproducing ArmA and CTX-M-15 Mediated High Levels of Resistance to Aminoglycoside and Extended-Spectrum Beta-Lactamases, Algeria.

    Science.gov (United States)

    Batah, Rima; Loucif, Lotfi; Olaitan, Abiola Olumuyiwa; Boutefnouchet, Nafissa; Allag, Hamoudi; Rolain, Jean-Marc

    2015-08-01

    Serratia marcescens is one of the most important pathogens responsible for nosocomial infections worldwide. Here, we have investigated the molecular support of antibiotic resistance and genetic relationships in a series of 54 S. marcescens clinical isolates collected from Eastern Algeria between December 2011 and July 2013. The 54 isolates were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Antibiotic susceptibility testing was performed by disc diffusion and E-test methods. Antibiotic resistance genes were detected by polymerase chain reaction (PCR). The genetic transfer of antibiotic resistance was performed by conjugation using azide-resistant Escherichia coli J53 as the recipient strain, and plasmid analysis was done by PCR-based replicon typing. The relatedness of our isolates was determined by phylogenetic analysis based on partial sequences of four protein-encoding genes (gyrB, rpoB, infB, and atpD) and then compared to MALDI-TOF MS clustering. Thirty-five out of 54 isolates yielded an extended-spectrum β-lactamase (ESBL) phenotype and carried bla(CTX-M-15) (n=32), bla(TEM-1) (n=26), bla(TEM-71) (n=1), bla(SHV-1a) (n=1), and bla(PER-2) (n=12). Among these isolates, we identified a cluster of 15 isolates from a urology unit that coharbored ESBL and the 16S rRNA methyltransferase armA. Conjugation was successful for five selected strains, demonstrating the transferability of a conjugative plasmid of incompatibility group incL/M type. Phylogenetic analysis along with MALDI-TOF clustering likely suggested an outbreak of such isolates in the urology unit. In this study, we report for the first time the co-occurrence of armA methyltransferase with ESBL in S. marcescens clinical isolates in Eastern Algeria.

  14. Nouveaux sélecteurs chiraux à base d'aminoglycosides pour la séparation chirale par échange de ligands

    OpenAIRE

    Zaher , Mustapha

    2010-01-01

    The resolution of racemates is necessary in the pharmaceutical, chemical and food fields. The lipophilic derivatives of neamine have been used as a new class of ligands. The aim of this work was to study the enantioselective properties of the lipophilic derivatives of neamine by HPLC and CE. Many derivatives of neamine (4'- mono C18-neamine, 5-mono C18 -neamine, 6-mono C18-neamine, 3 ', 6-di C18-neamine, 4 ', 5-di C18-neamine, or 3′,6-di-O-2-methylnaphthalene-neamine), have been synthesized b...

  15. Concomitant gentamicin‑induced nephrotoxicity and bilateral ...

    African Journals Online (AJOL)

    ... injections of gentamicin. Coexisting ototoxicity and nephrotoxicity from aminoglycosides can occur, though rare. Adverse effects of aminoglycosides are better prevented by a careful exercise of discretion by prescribers. Keywords: Acute kidney injury, aminoglycosides, co‑occurrence, gentamicin, nephrotoxicity, ototoxicity ...

  16. Occurence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in extended-spectrum β-lactamases producing Escherichia coli in Algerian hospitals.

    Directory of Open Access Journals (Sweden)

    Amel Ayad

    2016-09-01

    Full Text Available The aim of this study was to characterize the extended-spectrum-β-lactamases (ESBLs producing clinical strains of Escherichia coli isolated between January 2009 and June 2012 from Algerian hospitals and to determine the prevalence of 16S rRNA methylase among them. Sixty-seven ESBL-producers were detected among the 239 isolates included: 52 CTX-M-15-producers, 5 CTX-M-3-producers, 5 CTX-M-1-producers, 2 CTX-M-14-producers, 2 SHV-12-producers and one TEM-167-producer. Among the ESBL-producing strains twelve harboured 16S rRNA methylase genes: 8 rmtB and 4 armA. rmtB was located on a IncFIA plasmid and armA was located either on a IncL/M or a IncFIA plasmid. RmtB-producing isolates were genotypically related and belonged to the sequence type ST 405 whereas ArmA-producing isolates belonged to ST10, ST 167 and ST 117. This first description of 16S rRNA methylases among E. coli in Algerian hospitals pointed out the necessity to establish control measures to avoid their dissemination.

  17. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  18. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  19. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ] ... pdb|1M4I|B Chain B, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis...ain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex W...se From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Ribostamycin ... pdb|1M4G|A... Chain A, Aminoglycoside ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis... ... 2'-N-Acetyltransferase From Mycobacterium ... Tuberculosis-Complex With Coenzyme A And Tob

  20. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Mitochondrial mutation m.1555A>G as a risk factor for failed newborn hearing screening in a large cohort of preterm infants

    OpenAIRE

    Göpel, Wolfgang; Berkowski, Sandra; Preuss, Michael; Ziegler, Andreas; Küster, Helmut; Felderhoff-Müser, Ursula; Gortner, Ludwig; Mögel, Michael; Härtel, Christoph; Herting, Egbert

    2014-01-01

    Background The mitochondrial m.1555A>G mutation is associated with a high rate of permanent hearing loss, if aminoglycosides are given. Preterm infants have an increased risk of permanent hearing loss and are frequently treated with aminoglycoside antibiotics. Methods We genotyped preterm infants with a birth weight below 1500 grams who were prospectively enrolled in a large cohort study for the m.1555A>G mutation. Treatment with aminoglycoside antibiotics in combination with mitochondrial m....

  2. NCBI nr-aa BLAST: CBRC-MLUC-01-0102 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0102 ref|ZP_01913749.1| aminoglycoside adenylyltransferase [Limnobacter... sp. MED105] gb|EDM84810.1| aminoglycoside adenylyltransferase [Limnobacter sp. MED105] ZP_01913749.1 7.2 45% ...

  3. Low efficacy of tobramycin in experimental Staphylococcus aureus endocarditis

    DEFF Research Database (Denmark)

    Lerche, C. J.; Christophersen, L. J.; Trøstrup, H.

    2015-01-01

    The empiric treatment of infective endocarditis (IE) varies widely and, in some places, a regimen of penicillin in combination with an aminoglycoside is administered. The increasing incidence of Staphylococcus aureus IE, poor tissue penetration by aminoglycosides and low frequency of penicillin...

  4. Synthesis and antibacterial activity of 1-N-(1,3-dihydroxy-2-propyl)kanamycin B (UK-31,214).

    Science.gov (United States)

    Richardson, K; Brammer, K W; Jevons, S; Plews, R M; Wright, J R

    1979-10-01

    1-N-(1,3-Dihydroxy-2-propyl)kanamycin B was prepared and its in vitro activity against aminoglycoside-sensitive and aminoglycoside-resistant organisms was compared with that of kanamycin B and gentamicin. This kanamycin B derivative (code No. UK-31,214) demonstrated potent activity in all of these tests and gave good protection in experimental infections in mice.

  5. Synthesis and antibacterial activities of 1-N [(S)-omega-amino-2-hydroxyalkyl] kanamycin A derivatives.

    Science.gov (United States)

    Richardson, K; Jevons, S; Moore, J W; Ross, B C; Wright, J R

    1977-10-01

    Four 1-N-aminohydroxy-alkyl derivatives of kanamycin A were prepared and their in vitro activities against aminoglycoside-sensitive and aminoglycoside-resistant organisms were compared with amikacin. 1-N-[(S)-4-Amino-2-hydroxybutyl] kanamycin A (Fig. 1, compound 2, code no. UK-18,892) was equipotent to amikacin in all these tests and in mouse protection studies.

  6. Atividade da gama glutamil transpeptidase urinária, dosagens séricas de uréia e creatinina como meios diagnósticos auxiliares na nefrotoxicidade induzida por aminoglicosídeo em cães Urinary gamma glutamyl transpeptidase activity, urinalysis, bun and creatinine serum dosages as a auxiliary diagnostic mean in dogs nephrotoxicity induced by aminoglycosides

    Directory of Open Access Journals (Sweden)

    Carla Rosane de Aguiar Hennemann

    1997-06-01

    Full Text Available Foram utilizados 11 cães, hígidos, com idade entre 1 e 5 anos. Inicialmente procedeu-se à determinação dos valores basais através de cinco colheitas diárias de urina e sangue, e realizou-se a urinálise, determinação da atividade da gama glutamil transpeptidase urinária, dosagens sérica de uréia e creatinina. A nefrotoxicidade foi induzida com a utilização de10mg/kg de gentamicina, 3 vezes ao dia, durante 14 dias. As colheitas de urina foram realizadas a cada 24 hors e o sangue foi colhido a cada 48 horas, durante 14 dias. Após este período os cães foram submetidos à eutanásia, procedendo-se à necropsia, e estudo histopatológico dos rins. Os sinais clínicos apresentados foram apatia, anorexia, poliúria, oligúria, anúria, polidipsia, vômito e diarréia. Pela urinálise observou-se a ocorrência de proteinúria, glicosúria, hematúria, cilindrúria, celulúria e isostenúria; os valores de gama glutamil transpeptidase urinária elevaram-se de forma crescente a partir de 24 horas de administração da gentamicina até o final do experimento, a azotemia foi observada no 12° e 14° dias da pesquisa. Na avaliação histopatológica observou-se nefrose tubular aguda. Com base nos resultados obtidos pode-se concluir que a mensuração da atividade da gama glutamil transpeptidase urinária é um sensível indicador de lesão tubular renal possibilitando o diagnóstico precoce, juntamente com a urinálise.Eleven healthy dogs, ranging from one to five years old, were used for this study. Base line values were determined through five daily samples of urine for urinalysis and urinary gamma glutamyl transpeptidase activity, and blood for serum dosage of BUN and creatinine. Nephrotoxicity was induced using 10mg/kg of gentamicin, 3 times a day (tid, for 14 days. Urine samples were drawn every 24 hours and blood samples every 48 hours, for 14 days. After this period, the dogs were euthanized and necropsy was done for further histopathologic study. The clinical signs shown by the dogs were lethargy, anorexy, polyuria, oliguria, anuria, polydypsia, vomiting and diarrhea. Urinalysis findings were proteinuria, glucosuria, hematuria, cilindruria, celluria and decrease of urinary specific gravity and crescent values of urinary gamma glutamyl transpeptidase from 24 hours after gentamicin administration until the "end of" the experiment. Azotemia was noticed on the 12th and 14th days of the study. Acute tubular nephrosis was established in the histological evaluation. Based on the results found on this study, the measurement of the urinary gamma glutamyl transpeptidase activity might be considered a sensitive indicator of renal tubular damage allowing early diagnosis of the lesion.

  7. N-Acetylcysteine in the prevention of ototoxicity

    DEFF Research Database (Denmark)

    Tepel, Martin

    2007-01-01

    Prevention of ototoxicity after the administration of aminoglycoside antibiotics has been notably difficult, in particular in patients with chronic kidney disease. Feldman et al. report that oral administration of 600 mg N-acetylcysteine twice daily significantly ameliorates gentamicin-induced ot......-induced ototoxicity in hemodialysis patients. That approach may help to prevent aminoglycoside-induced hearing loss in these high-risk patients in daily practice.......Prevention of ototoxicity after the administration of aminoglycoside antibiotics has been notably difficult, in particular in patients with chronic kidney disease. Feldman et al. report that oral administration of 600 mg N-acetylcysteine twice daily significantly ameliorates gentamicin...

  8. Concomitant gentamicin-induced nephrotoxicity and bilateral ...

    African Journals Online (AJOL)

    2015-11-20

    Nov 20, 2015 ... author is credited and the new creations are licensed under the identical terms. For reprints .... of aminoglycosides varies from center to center. The ... underlying age‑related reduced renal reserve and impaired hearing ability.

  9. Coagulation Factors Test

    Science.gov (United States)

    ... Blood Testing Alpha-1 Antitrypsin Alpha-fetoprotein (AFP) Tumor Marker AMAS Aminoglycoside Antibiotics Ammonia Amniocentesis Amylase ANCA/MPO/ ... Beta-2 Microglobulin Kidney Disease Beta-2 Microglobulin Tumor Marker Bicarbonate (Total CO2) Bilirubin Blood Culture Blood Gases ...

  10. ASO: Antistreptolysin O titer

    Science.gov (United States)

    ... Phosphatase (ALP) Allergy Blood Testing Alpha-1 Antitrypsin Alpha-fetoprotein (AFP) Tumor Marker AMAS Aminoglycoside Antibiotics Ammonia Amniocentesis Amylase ANCA/MPO/PR3 Antibodies Androstenedione Angiotensin-Converting Enzyme ( ...

  11. Mosaic Structure of a Multiple-Drug-Resistant, Conjugative Plasmid from Campylobacter jejuni

    National Research Council Canada - National Science Library

    Nirdnoy, Warawadee; Mason, Carl J; Guerry, Patricia

    2005-01-01

    ..., where it apparently integrated into the chromosome and expressed high-level resistance to multiple aminoglycoside antibiotics. This work provides new information about both the nature of drug resistance in C...

  12. Characterization of 3 Strains of Yersinia Pestis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    .... Antibiotic sensitivities showed that the 3 strains were sensitive to aminoglycosides, the cephalosporins/ cephams, most of the beta lactams/penicillins (e.g. ampicillin) and quinolones (e.g. ciprofloxacin...

  13. Torsemide

    Science.gov (United States)

    ... sure to mention any of the following: aminoglycoside antibiotics such as amikacin, gentamicin (Garamycin), or tobramycin (Bethkis, Tobi), aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (Advil, Motrin, others) ...

  14. Adefovir

    Science.gov (United States)

    ... ever taken any of the following medications: aminoglycoside antibiotics such as amikacin, gentamicin, kanamycin, neomycin, streptomycin, and tobramycin (Tobi,); aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (Advil, Motrin) and ...

  15. Coproduction of Novel 16S rRNA Methylase RmtD and Metallo-β-Lactamase SPM-1 in a Panresistant Pseudomonas aeruginosa Isolate from Brazil▿

    OpenAIRE

    Doi, Yohei; de Oliveira Garcia, Doroti; Adams, Jennifer; Paterson, David L.

    2006-01-01

    Serious infections with Pseudomonas aeruginosa are frequently treated with the combination of a β-lactam antimicrobial and an aminoglycoside. P. aeruginosa strain PA0905 was isolated in 2005 from an inpatient in Brazil. It showed a panresistant phenotype that included resistance to β-lactams, aminoglycosides, and fluoroquinolones. The β-lactam resistance was conferred by the production of the metallo-β-lactamase SPM-1. No inhibitory zone was observed when a disk diffusion test was performed w...

  16. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    Directory of Open Access Journals (Sweden)

    Zhou Jianjin

    2011-01-01

    Full Text Available Abstract Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S r

  17. Synthesis of Netilmicin and Apramycin Derivatives for the Treatment of Multidrug-Resistant Infectious Diseases

    Science.gov (United States)

    Sonousi, Amr

    The ever-growing bacterial resistance to existing antibiotics is alarming to humanity. Many researchers decided to revisit aminoglycosides with renewed emphasis on chemical modification as they have long been used as highly potent antibiotics for treating severe bacterial infections. The bactericidal effect of aminoglycosides is mainly due to protein synthesis inhibition by binding to the A-site of the bacterial ribosomes. However, the high potency and the broad spectrum of aminoglycosides has been outweighed by their side effects, especially ototoxicity, and by the resistance of pathogens. The goal of this research was the modification of existing aminoglycosides to develop derivatives which are less toxic and that evade resistance. The chapters in the thesis discuss the chemical synthesis as well as the biological evaluation of the newly synthesized analogs. This study has focused on the modification of aminoglycosides netilmicin and apramycin. Chapter one introduces the MDR bacterial infection problem and its influence. Chapter one also introduces the aminoglycosides elaborating their history, classifications, and their mechanism of action. The resistance mechanisms against aminoglycosides and their adverse effects, as well as the ways to prevent them are briefly explained. Chapter two discusses modifications of netilmicin at the 4'-position conducted with a view to reducing the ototoxicity but not the antibiotic activity, as was previously done in the 4,5-series with paromomycin. The antibacterial activity and antiribosomal activity of the six netilmicin derivatives synthesized were determined. The 4'-position is more sensitive to modification in 4,6-series than in the 4,5-series to the extent that such modifications are ineffective. Chapter two also highlights the use of phenyl triazenes as selective protecting groups for secondary amines in the presence of primary amines. Several polyamine substrates were selectively protected as phenyl triazenes, and primary

  18. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  19. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity

    Directory of Open Access Journals (Sweden)

    Chao-Hui Yang

    2017-10-01

    Full Text Available Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC inhibitors (vorinostat/SAHA, belinostat, and panobinostat as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM-induced hair cell loss in a dose-dependent fashion in explants. In vivo, however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  20. Vectorization efforts to increase Gram-negative intracellular drug concentration: a case study on HldE-K inhibitors.

    Science.gov (United States)

    Atamanyuk, Dmytro; Faivre, Fabien; Oxoby, Mayalen; Ledoussal, Benoit; Drocourt, Elodie; Moreau, François; Gerusz, Vincent

    2013-03-14

    In this paper, we present different strategies to vectorize HldE kinase inhibitors with the goal to improve their gram-negative intracellular concentration. Syntheses and biological effects of siderophoric, aminoglycosidic, amphoteric, and polycationic vectors are discussed. While siderophoric and amphoteric vectorization efforts proved to be disappointing in this series, aminoglycosidic and polycationic vectors were able for the first time to achieve synergistic effects of our inhibitors with erythromycin. Although these effects proved to be nonspecific, this study provides information about the required stereoelectronic arrangement of the polycationic amines and their basicity requirements to fulfill outer membrane destabilization resulting in better erythromycin synergies.

  1. Prevalence and characteristics of chronic kidney disease among Danish adults with cystic fibrosis

    DEFF Research Database (Denmark)

    Berg, Kristina H; Ryom, Lene; Faurholt-Jepsen, Daniel

    2018-01-01

    median duration of chronic pulmonary infection (28.3 (20.0-35.8) vs. 20.0 (9.9-34.7) years; p=0.008) and with longer intravenous aminoglycosides use (606 (IQR, 455-917) vs. 273 (IQR, 91-826) days, p=0.005). CONCLUSIONS: The CKD prevalence is high and related to age, diabetes, chronic infection...

  2. Evaluation of the Tissue Culture Standard and Correlation with DNA probes and ELISA for the Detection of Chlamydia Trachomatis

    Science.gov (United States)

    1988-08-01

    include the aminoglycosides, the aminocyclitols (spectinomycin), nalidixic acid, trimethoprim, vancomycin, metronidazole , lincomycin, cephalosporins...and antifungal agents such as nystatin and amphotericin B. This is why gentamicin, streptomycin, vancomycin and antifungals may be used in...often used are gentamicin or streptomycin, vancomycin, and amphotericin B or nystatin . Using 2-SP with antimicrobials will keep over 99% of cell

  3. A water-soluble pillar[5]arene as a new carrier for an old drug.

    Science.gov (United States)

    Barbera, Lucia; Franco, Domenico; De Plano, Laura M; Gattuso, Giuseppe; Guglielmino, Salvatore P P; Lentini, Germana; Manganaro, Nadia; Marino, Nino; Pappalardo, Sebastiano; Parisi, Melchiorre F; Puntoriero, Fausto; Pisagatti, Ilenia; Notti, Anna

    2017-04-11

    The remarkable affinity of deca-carboxylatopillar[5]arene WP5 towards the aminoglycoside antibiotic, amikacin, in aqueous media is reported; in vitro studies on Gram-positive bacteria (Staphylococcus aureus) show that drug entrapment inside WP5 also takes place in the presence of the microrganisms, thus pointing to WP5 as an appealing carrier for amikacin targeted delivery.

  4. Options for treating carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Rafailidis, Petros I; Falagas, Matthew E

    2014-12-01

    To address the therapeutic management of carbapenem-resistant Enterobacteriaceae on the basis of literature of the last 12 months. Retrospective and prospective (nonrandomized noncontrolled) studies provide data regarding the management of infections due to carbapenem-resistant Enterobacteriaceae. The combination of a carbapenem with colistin or high-dose tigecycline or aminoglycoside or even triple carbapenem-containing combinations if the minimum inhibitory concentration (MIC) range of carbapenem (meropenem and imipenem) resistance is 8 mg/l or less seems to have an advantage over monotherapy with either colistin or tigecycline or fosfomycin. For Enterobacteriaceae with MIC for carbapenems over 8 mg/l, combination regimens involve colistin, tigecycline usually administered in a double dose than that suggested by its manufacturer, fosfomycin and aminoglycosides in various combinations. Suggestions based on the limited literature cannot be made safely. Combination regimens involving carbapenems for Enterobacteriaceae with MICs 8 mg/l or less for carbapenems (in dual combination with colistin or high-dose tigecycline or aminoglycoside or even triple combinations) seem to confer some therapeutic advantage over monotherapy. For Enterobacteriaceae with higher than the above-mentioned MICs, a combination of two or even three antibiotics among colistin, high-dose tigecycline, aminoglycoside and fosfomycin seems to confer decreased mortality.

  5. Validation of the register-based lifetime antimicrobial usage measurement for finisher batches based on comparison with recorded antimicrobial usage at farm level

    DEFF Research Database (Denmark)

    Dalhoff Andersen, Vibe; Munk, Patrick; de Knegt, Leonardo

    2018-01-01

    for aminoglycosides, lincosamides, tetracyclines and decreased estimates of statistical model fit for macrolides. The estimates of statistical model fit for sulfonamides and broad-spectrum penicillins remained the same. Through refined data transformation, VetStat-records can be used to calculate a daily amount...

  6. Sugammadex Improves Neuromuscular Function in Patients ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... aminoglycosides), history of allergy to neuromuscular blocking agents, opioids or other drugs, and alcohol and drug dependence. Patients were divided into two ... titration microcalorimetry investigated the likelihood of the formation of complexes between sugammadex and other steroidal and nonsteroidal ...

  7. Antibiotic resistant enterococci—Tales of a drug resistance gene trafficker

    DEFF Research Database (Denmark)

    Werner, Guido; Coque, Teresa M.; Franz, Charles M.A.P.

    2013-01-01

    Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) ...

  8. Bacteremia and candidemia in hematological malignancies

    DEFF Research Database (Denmark)

    Bruun, B; Bangsborg, Jette Marie; Hovgaard, D

    1988-01-01

    of coagulase-negative staphylococci was higher in the latter period while that of Staphylococcus aureus was lower. Of 67 strains of Enterobacteriaceae tested for an aminoglycoside, 6% were found to be resistant, whereas 8% of 48 Enterobacteriaceae strains were found to be cefotaxime resistant. Methicillin...

  9. Whole genome sequencing-based characterization of extensively drug resistant (XDR strains of Mycobacterium tuberculosis from Pakistan

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    2015-01-01

    Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and genotypic testing, the results would be rifampicin (100%, isoniazid (89%, fluoroquinolones (95%, aminoglycoside (81% and ethambutol (61%. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.

  10. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  11. Draft Genome Sequence of a Multidrug-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Isolate from a Clinical Source

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Egon A.; Morris, Andrew R.; Krapp, Fiorella; Henry, Christopher S.; Tyo, Keith E.; Lathem, Wyndham W.; Hauser, Alan R.

    2016-05-26

    We report here the draft genome sequence of a multidrug-resistant clinical isolate ofKlebsiella quasipneumoniaesubsp.similipneumoniae, KP_Z4175. This strain, isolated as part of a hospital infection-control screening program, is resistant to multiple β-lactam antibiotics, aminoglycosides, and trimethoprim-sulfamethoxazole.

  12. Molecular characterization and antimicrobial susceptibility profile of New Delhi metallo-beta-lactamase-1-producing Escherichia coli among hospitalized patients

    Directory of Open Access Journals (Sweden)

    Anjali Agarwal

    2018-01-01

    CONCLUSION: There is an increased prevalence of NDM-1 gene-producing E. coli isolates. These carbapenemase-producing isolates are more resistant to other group of antibiotics (aminoglycosides, fluoroquinolones along with β-lactam group. Early detection of bla NDM-1 gene can help in choosing the effective treatment options for hospitalized patients in time, thereby reducing the risk of mortality.

  13. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  14. R-plasmic transfer from Serratia liquefaciens to Escherichia coli in vitro and in vivo in the digestive tract of gnotobiotic mice associated with human fecal flora.

    OpenAIRE

    Duval-Iflah, Y; Raibaud, P; Tancrede, C; Rousseau, M

    1980-01-01

    It was shown that a strain of Serratia liquefaciens harbors a conjugative R-plasmid responsible for reistance to the following 14 antibiotics: ampicillin, carbenicillin, cephalothin, butirosin, neomycin, paramomycin, kanamycin, lividomycin, gentamicin, tobramycin, streptomycin, tetracycline, sulfonamide, and chloramphenicol, which belong to five families, the beta-lactamines, the aminoglycosides, the tetracyclines, the sulfonamides, and the phenicols. Resistance to th 14 antibiotics was cotra...

  15. Instrumental characterization of the smectite clay–gentamicin hybrids

    Indian Academy of Sciences (India)

    This paper focusses on the intercalation of clay mineral with gentamicin (an aminoglycoside antibiotic). The smectite clay–gentamicin hybrids were prepared by a solution intercalation at 60°C and the process was carried out on unmodified smectite clay and on smectite after Na+ ionic activation. The resulting ...

  16. Risk factors for hearing loss in neonates

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Maharani

    2016-11-01

    Full Text Available Background An estimated 6 of 1,000 children with live births suffer from permanent hearing loss at birth or the neonatal period. At least 90% of cases occur in developing countries. Hearing loss should be diagnosed as early as possible so that intervention can be done before the age of 6 months. Objective To determine risk factors for hearing loss in neonates. Methods We performed a case-control study involving 100 neonates with and without hearing loss who were born at Sanglah Hospital, Denpasar from November 2012 to February 2013. Subjects were consisted of 2 groups, those with hearing loss (case group of 50 subjects and without hearing loss (control group of 50 subjects. The groups were matched for gender and birth weight. We assessed the following risk factors for hearing loss: severe neonatal asphyxia, hyperbilirubinemia, meningitis, history of aminoglycoside therapy, and mechanical ventilation by Chi-square analysis. The results were presented as odds ratio and its corresponding 95% confidence intervals. Results Seventy percent of neonates with hearing loss had history of aminoglycoside therapy. Multivariable analysis revealed that aminoglycoside therapy of 14 days or more was a significant risk factor for hearing loss (OR 2.7; 95%CI 1.1 to 6.8; P=0.040. There were no statistically significant associations between hearing loss and severe asphyxia, hyperbilirubinemia, meningitis, or mechanical ventilation. Conclusion Aminoglycoside therapy for >=14 days was identified as a risk factor for hearing loss in neonates.

  17. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  18. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical shift editing of 1H-1H COSY spectra

    International Nuclear Information System (INIS)

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P.

    1989-01-01

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with 13 C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs

  19. The fate of inhaled antibiotics after deposition in cystic fibrosis: How to get drug to the bug?

    Science.gov (United States)

    Bos, Aukje C; Passé, Kimberly M; Mouton, Johan W; Janssens, Hettie M; Tiddens, Harm A W M

    2017-01-01

    Chronic airway infections in patients with cystic fibrosis (CF) are most often treated with inhaled antibiotics of which deposition patterns have been extensively studied. However, the journey of aerosol particles does not end after deposition within the bronchial tree. To review how local conditions affect the clinical efficacy of antibiotic aerosol particles after deposition in the airways of patients with CF. Electronic databases were searched from inception to September 2015. Original studies describing the effect of CF sputum or bacterial factors on antibiotic efficacy and formulations to increase efficacy were included. 35 articles were included which mostly described in vitro studies and mainly investigated aminoglycosides. After deposition, diffusion through the mucus layer was reduced for aminoglycosides, β-lactam antibiotics and fluoroquinolones. Within CF mucus, low oxygen tension adversely affected aminoglycosides, β-lactam antibiotics, and chloramphenicol; and molecules inactivated aminoglycosides but not β-lactam antibiotics. Finally, the alginate layer surrounding Pseudomonas aeruginosa was an important factor in the resistance against all antibiotics. After deposition in the airways, the local efficacy of inhaled antibiotics can be reduced by molecules within CF mucus and the alginate layer surrounding P. aeruginosa. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  20. Systemic ototoxicity: a review | Shine | East African Medical Journal

    African Journals Online (AJOL)

    Objectives: To review the literature pertaining to the ototoxic potential of three frequently prescribed systemic medications in the sub-Saharan setting; quinine, furosemide and aminoglycoside antibiotics. The pathophysiology, clinical manifestations and risk factors and risk minimisation strategies regarding the ototoxicity ...

  1. 78 FR 29049 - Streptomycin; Pesticide Tolerances for Emergency Exemptions

    Science.gov (United States)

    2013-05-17

    ... determine whether this document applies to them. Potentially affected entities may include: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide....40 ppm. Streptomycin is an antibiotic of the aminoglycoside class and is produced by the bacteria...

  2. Determinants of antibiotic prescription in paediatric patients: The ...

    African Journals Online (AJOL)

    ... differences (p>0.05) in the prescription rates of the hospitals. The most commonly used antibiotics were beta-lactams (57.3%), aminoglycosides (28.3%) and co-trimoxazole (9.4%). Antibiotics were prescribed in all cases of bronchopneumonia, fever, sepsis and acute gastroenteritis. For malaria and undefined diagnoses, ...

  3. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  4. Southern African Journal of HIV Medicine - Vol 12, No 1 (2011)

    African Journals Online (AJOL)

    The risks of concurrent treatment with tenofovir and aminoglycosides in patients with HIV-associated tuberculosis · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. C Kenyon, N Wearne, R Burton, G Meintjes, 43-45. http://dx.doi.org/10.4102/sajhivmed.v12i1.214 ...

  5. Enterococcus faecalis infective endocarditis

    DEFF Research Database (Denmark)

    Dahl, Anders; Rasmussen, Rasmus V; Bundgaard, Henning

    2013-01-01

    Because of the nephrotoxic effects of aminoglycosides, the Danish guidelines on infective endocarditis were changed in January 2007, reducing gentamicin treatment in enterococcal infective endocarditis from 4 to 6 weeks to only 2 weeks. In this pilot study, we compare outcomes in patients...... with Enterococcus faecalis infective endocarditis treated in the years before and after endorsement of these new recommendations....

  6. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis

    NARCIS (Netherlands)

    Touw, D J

    The disposition of many drugs in cystic fibrosis is abnormal compared with healthy individuals. In general, changes include an increased volume of distribution expressed in liters per kg bodyweight for highly hydrophilic drugs such as aminoglycosides, and, to a lesser extent, for penicillins and

  7. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    Science.gov (United States)

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Activation of the SOS response increases the frequency of small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Ingmer, Hanne

    2015-01-01

    BACKGROUND: In Staphylococcus aureus sub-populations of slow-growing cells forming small colony variants (SCVs) are associated with persistent and recurrent infections that are difficult to eradicate with antibiotic therapies. In SCVs that are resistant towards aminoglycosides, mutations have been...... with different mechanism of action influence the formation of SCVs that are resistant to otherwise lethal concentrations of the aminoglycoside, gentamicin. We found that exposure of S. aureus to fluoroquinolones and mitomycin C increased the frequency of gentamicin resistant SCVs, while other antibiotic classes...... failed to do so. The higher proportion of SCVs in cultures exposed to fluoroquinolones and mitomycin C compared to un-exposed cultures correlate with an increased mutation rate monitored by rifampicin resistance and followed induction of the SOS DNA damage response. CONCLUSION: Our observations suggest...

  9. Structure and function of the human megalin receptor

    DEFF Research Database (Denmark)

    Dagil, Robert

    . The extracellular domain of megalin consists of several modular domains, of which the most abundant are the ligand binding complement type (CR) domains, that are divided into four clusters separated by YWTD -propeller domains. The broad ligand binding profile has associated megalin with the unwanted cellular uptake...... of aminoglycosides during antibacterial treatment, which can lead to nephro- and ototoxic side-effects. This thesis presents new insights into the structure-function relation of the megalin receptor. The interaction between megalin and several natural protein ligands as well as the aminoglycoside gentamicin...... were involved in binding, which utilizes the commonly found ligand binding motif. The details of the atomic resolutionmodel will aid the future design of effective megalin antagonists, however, since the common ligand binding motif of CR domains is used to bind gentamicin this may not be a trivial task...

  10. Coexistence of blaOXA-23 with armA in quinolone-resistant Acinetobacter baumannii from a Chinese university hospital.

    Science.gov (United States)

    Shen, Min; Luan, Guangxin; Wang, Yanhong; Chang, Yaowen; Zhang, Chi; Yang, Jingni; Deng, Shanshan; Ling, Baodong; Jia, Xu

    2016-03-01

    A total of 101 Acinetobacter baumannii isolates were collected to determine the mechanisms of quinolone resistance and investigate the occurrence of carbapenem and high-level aminoglycoside resistance genes among quinolone-resistant strains. Among 77 quinolone-resistant A. baumannii harbored mutations of gyrA and parC, 41 isolates, which belonged to European clone II, had resistance to aminoglycosides and carbapenems due to the expression of armA and acquisition of blaOXA-23. Most of sequence type belonged to clonal complex 92. These results suggested hospital dissemination of multidrug-resistant A. baumannii carrying blaOXA-23, armA, and mutations of quinolone resistance-determining regions in western China. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. THE STUDY OF ANTIBIOTIC- AND FAGOSENSITIVITY OF NOSOCOMIAL STRAINS BACTERIA ISOLATED FROM TRANSPLANTED PATIENTS

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielan

    2011-01-01

    Full Text Available Antibiotic and fagosensitivity most etiologically important nosocomial strains of bacteria – Pseudomonas aeru- ginosa, Klebsiella pneumoniae, E. coli, Proteus spp., Staphylococcus spp. were studied. Multiple drug-resistant bacteria as gram-positive and gram-negative, isolated from 8 substrates, had been demonstrated. With regard to the sensitivity of Pseudomonas aeruginosa >40% was observed in 40–50% of the strains to aminoglycosides – aztreonam, amikacin, netilmicin, and only 23–25% of the strains – to gentamicin and levofloxacin (an average of antibiotic susceptibility was 27%. All strains of ESBL Klebsiella drew up and were sensitive only to imipenem, meropenem and aminoglycosides. Specific phages lysed 43–48% of the strains Pseudomonas aeruginosa and Klebsiella pneumoniae, E. coli, Pro- teus spp., multidrug resistant strains of Staphylococcus spp. It is proposed to introduce the use of phages in clinical practice. 

  12. Radioimmunoassay, acetylating radio-enzymatic assay, and microbioassay of gentamicin: a comparative study

    International Nuclear Information System (INIS)

    Stevens, P.; Young, L.S.; Hewitt, W.L.

    1975-01-01

    Gentamicin is an aminoglycoside antibiotic widely used to treat gram-negative bacillary infections. Because it has a low therapeutic index, monitoring of serum levels may help to insure adequacy of dosage and avoid toxicity. Microbiological assays are relatively slow and can be complicated by the presence of other antimicrobials. Radioimmunoassay (RIA) and acetylating radio-enzymatic assay (ARA) are new methods for gentamicin assay which offer the following advantages: rapidity (less than 3 hours); no interference by other antibiotics; RIA is extremely sensitive and ARA is versatile (being useful in the measurement of other aminoglycosides). Correlation coefficients determined by linear regression analysis of assays on 36 patient samples performed in duplicate on 2 different days demonstrated no significant difference in measurement of gentamicin by each of the methods. Factors such as numbers of specimens, cost, and time involved will affect the decision of the method to be applied in individual laboratories. (U.S.)

  13. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad

    Science.gov (United States)

    2018-01-01

    One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides. PMID:29632894

  14. Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains.

    Science.gov (United States)

    Rossolini, Gian Maria; Mantengoli, Elisabetta; Docquier, Jean-Denis; Musmanno, Rosa Anna; Coratza, Grazietta

    2007-07-01

    Microbial drug resistance is a growing problem of global magnitude. In gram-negative pathogens, the most important resistance problems are encountered in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter, with increasing trends observed for all major anti-gram-negative agents (beta-lactams, fluoroquinolones and aminoglycosides). A matter of major concern is the emergence of new beta-lactamases capable of degrading the expanded-spectrum cephalosporins and/or carbapenems, such as the extended-spectrum beta-lactamases (ESBLs) and the carbapenemases. These beta-lactamase genes are often associated with resistance determinants to non-beta-lactam agents (e.g. aminoglycosides and fluoroquinolones), and strains producing ESBLs or carbapenemases often exhibit complex multidrug resistant phenotypes and sometimes are panresistant. The problem is worsened by the dearth of new agents active on multidrug-resistant Gram-negatives in the pipeline. The importance to develop better strategies to control resistance is underscored.

  15. Amikacin-induced type 5 Bartter-like syndrome with severe hypocalcemia

    Directory of Open Access Journals (Sweden)

    Chrispal A

    2009-01-01

    Full Text Available Aminoglycoside-induced renal toxicity is well known and may manifest with nonoliguric renal failure or renal tubular dysfunction. Aminoglycoside-induced renal tubular dysfunction could result in diffuse damage or manifest as a Fanconi-like syndrome, Bartter-like syndrome, or distal renal tubular acidosis. We discuss a patient who developed severe renal tubular dysfunction secondary to short-term therapy with Amikacin, resulting in refractory hypokalemia, hypocalcemia, hypomagnesemia, metabolic alkalosis, and polyuria. This constellation of biochemical abnormalities mimic Type 5 Bartter′s syndrome, where there is activating mutation of the calcium sensing receptor in the thick ascending loop of Henle and the distal tubule. In this case this activation of the calcium sensing receptor was triggered by amikacin. This phenomenon has been described with gentamicin though never with amikacin. Recovery of the tubular dysfunction took 15 days following cessation of the offending drug, Amikacin.

  16. Antimicrobial susceptibilities of Stomatococcus mucilaginosus and of Micrococcus spp.

    OpenAIRE

    von Eiff, C; Herrmann, M; Peters, G

    1995-01-01

    The in vitro susceptibilities of 63 isolates of Stomatococcus mucilaginosus and of 188 isolates of Micrococcus spp. to 18 antimicrobial agents were determined by the agar dilution method. Many beta-lactams, imipenem, rifampin, and the glycopeptides were shown to be active in vitro against Stomatococcus and Micrococcus isolates, whereas the activities of antibiotics such as some aminoglycosides, erythromycin, and fosfomycin against an important number of these microorganisms are limited.

  17. Antimicrobial susceptibilities of Stomatococcus mucilaginosus and of Micrococcus spp.

    Science.gov (United States)

    von Eiff, C; Herrmann, M; Peters, G

    1995-01-01

    The in vitro susceptibilities of 63 isolates of Stomatococcus mucilaginosus and of 188 isolates of Micrococcus spp. to 18 antimicrobial agents were determined by the agar dilution method. Many beta-lactams, imipenem, rifampin, and the glycopeptides were shown to be active in vitro against Stomatococcus and Micrococcus isolates, whereas the activities of antibiotics such as some aminoglycosides, erythromycin, and fosfomycin against an important number of these microorganisms are limited. PMID:7695321

  18. Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacter spp.

    Science.gov (United States)

    Kaye, Keith S.; Cosgrove, Sara; Harris, Anthony; Eliopoulos, George M.; Carmeli, Yehuda

    2001-01-01

    Among 477 patients with susceptible Enterobacter spp., 49 subsequently harbored third-generation cephalosporin-resistant Enterobacter spp. Broad-spectrum cephalosporins were independent risk factors for resistance (relative risk [OR] = 2.3, P = 0.01); quinolone therapy was protective (OR = 0.4, P = 0.03). There were trends toward decreased risk for resistance among patients receiving broad-spectrum cephalosporins and either aminoglycosides or imipenem. Of the patients receiving broad-spectrum cephalosporins, 19% developed resistance. PMID:11502540

  19. Improved Therapeutic Regimens for Treatment of Post-Traumatic Ocular Infections

    Science.gov (United States)

    2011-05-01

    cystoid macular oedema in uveitis . Clin. Exp. Ophthalmol. 29, 2–6 (2001). 36 Campochiaro PA, Lim JI. Aminoglycoside toxicity in the treatment of...TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Improved Therapeutic Regimens for Treatment of...injury and adequate treatment . This proposal was designed to analyze the effectiveness of antibiotics, anti-inflammatory drugs, and non-conventional

  20. Antibiotic rezistance genes in soil actinobacteria

    OpenAIRE

    Patrmanová, Tereza

    2016-01-01

    Actinobacteria are important members of the soil ecosystems, where they are involved in organic matter decomposition. It is worth mentioning that their secondary metabolism allows them to produce a variety of different compounds. These compounds include antibiotics, among them aminoglycosides have a place in clinical practice. These antibiotics are significant due to a broad spectrum of activities against both gram-negative and gram-positive bacteria. However, their use currently carries a ri...

  1. Farmacokinetiek van geneesmiddelen bij vogels en de toepassingen en beperkingen van dosisextrapolatie

    OpenAIRE

    Houben, Renée; Antonissen, Gunther; Croubels, Siska; De Backer, Patrick; Devreese, Mathias

    2016-01-01

    The pharmacokinetic processes of drugs, i.e. absorption, distribution, metabolization and elimination, differ between birds and mammals. For instance, the clearance and volume of the distribution of aminoglycosides are lower in birds than in mammals. These pharmacokinetic differences are caused by differences in anatomy, biochemistry and physiology between birds and mammals. The species differences in pharmacokinetics and differences in the observed and predicted pharmacokinetic parameters of...

  2. Escherichia coli producing CMY-2 β-lactamase in bovine mastitis milk.

    Science.gov (United States)

    Endimiani, Andrea; Bertschy, Isabelle; Perreten, Vincent

    2012-01-01

    An Escherichia coli isolate producing the CMY-2 β-lactamase was found in the milk of a cow with recurrent subclinical mastitis. The isolate was resistant to the antibiotics commonly used for intramammary mastitis treatment, such as penicillins, cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, tetracyclines, and sulfonamides. This is the first report of a plasmid-mediated AmpC-producing Enterobacteriaceae in bovine milk.

  3. Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil

    Directory of Open Access Journals (Sweden)

    Carolina Silva Nodari

    Full Text Available Abstract Serratia marcescens is a Gram-negative rod intrinsically resistant to polymyxins and usually associated with wound, respiratory and urinary tract infections. The whole genome of the first GES-5-producing S. marcescens isolated from a Brazilian patient was sequenced using Ion Torrent PGM System. Besides blaGES-5, we were able to identify genes encoding for other β-lactamases, for aminoglycoside modifying enzymes and for an efflux pump to tetracyclines.

  4. In Vitro Antibiotic Susceptibilities of Burkholderia mallei (Causative Agent of Glanders) Determined by Broth Microdilution and E-Test

    Science.gov (United States)

    Heine, Henry S.; England, Marilyn J.; Waag, David M.; Byrne, W. Russell

    2001-01-01

    In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents. PMID:11408233

  5. Surveillance of multidrug resistant suppurative infection causing bacteria in hospitalized patients in an Indian tertiary care hospital

    OpenAIRE

    Nabakishore Nayak; Rajesh K. Lenka; Rabindra N. Padhy

    2014-01-01

    Objective: To examine antibiograms of a cohort of suppurative bacteria isolated from wound-swabs from hospitalized patients of all economic groups of a typical Indian teaching hospital. Methods: In surveillance, antibiotic resistance patterns of 10 species of suppurative bacteria isolated from wound-swabs over a period of 24 months were recorded. Those were subjected to antibiotic sensitivity test, using 16 prescribed antibiotics of 5 different groups (3 aminoglycosides, 4 beta-lactams, 3 ...

  6. Cisplatin Ototoxicity Blocks Sensory Regeneration in the Avian Inner Ear

    OpenAIRE

    Slattery, Eric L.; Warchol, Mark E.

    2010-01-01

    Cisplatin is a chemotherapeutic agent that is widely-used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy, and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was al...

  7. Ultrasonic Enhancement of Antibiotic Action on Escherichia coli Biofilms: an In Vivo Model

    OpenAIRE

    Rediske, Andrea M.; Roeder, Beverly L.; Brown, Maren K.; Nelson, Jared L.; Robison, Rachel L.; Draper, David O.; Schaalje, G. Bruce; Robison, Richard A.; Pitt, William G.

    1999-01-01

    Biofilm infections are a common complication of prosthetic devices in humans. Previous in vitro research has determined that low-frequency ultrasound combined with aminoglycoside antibiotics is an effective method of killing biofilms. We report the development of an in vivo model to determine if ultrasound enhances antibiotic action. Two 24-h-old Escherichia coli (ATCC 10798) biofilms grown on polyethylene disks were implanted subcutaneously on the backs of New Zealand White female rabbits, o...

  8. [INHALED ANTIBIOTICS IN TREATMENT OF NOSOCOMIAL PNEUMONIA].

    Science.gov (United States)

    Kuzovlev, A N; Moroz, V V; Golubev, A M

    2015-01-01

    Nosocomial pneumonia is the most common infection in intensive care units. Currently the problem of resistance of noso-comial pathogens to miost of antibiotics is crucial. Using of inhaled antibiotics in combination with intravenous drugs is eff ective and safe method for treatment of nosocomial pneumonia. The literature review describes current opportunities of ihhaled antibiotic therapy of nosocomial pneumonia, descriptions of drugs, the advantages and disadvantages of this treatment. Special attention is paid for using inhaled aminoglycosides for nosocomial pneumonia.

  9. In Vitro Synergistic Effects of Double and Triple Combinations of β-Lactams, Vancomycin, and Netilmicin against Methicillin-Resistant Staphylococcus aureus Strains

    Science.gov (United States)

    Rochon-Edouard, Stéphanie; Pestel-Caron, Martine; Lemeland, Jean-François; Caron, François

    2000-01-01

    Several studies have previously reported synergistic effects between vancomycin and a given β-lactam or a given aminoglycoside against methicillin-resistant Staphylococcus aureus (MRSA) strains. The aim of our study was to exhaustively compare the effects of different combinations of a β-lactam, vancomycin, and/or an aminoglycoside against 32 clinical MRSA strains with different aminoglycoside susceptibility patterns. The effects of 26 different β-lactam–vancomycin and 8 different aminoglycoside-vancomycin combinations were first studied using a disk diffusion screening method. The best interactions with vancomycin were observed with either imipenem, cefazolin, or netilmicin. By checkerboard studies, imipenem-vancomycin and cefazolin-vancomycin each provided a synergistic bacteriostatic effect against 22 strains; the mean fractional inhibitory concentration (FIC) indexes were 0.35 and 0.46 for imipenem-vancomycin and cefazolin-vancomycin, respectively. The vancomycin-netilmicin combination provided an indifferent effect against all of the 32 strains tested; the mean of FIC index was 1.096. The mean concentrations of imipenem, cefazolin, netilmicin, and vancomycin at which FIC indexes were calculated were clinically achievable. Killing experiments were then performed using imipenem, cefazolin, netilmicin, and vancomycin at one-half of the MIC, alone and in different combinations, against 10 strains. The vancomycin-netilmicin regimen was rarely bactericidal, even against strains susceptible to netilmicin. The imipenem-vancomycin and cefazolin-vancomycin combinations were strongly bactericidal against six and five strains, respectively. The addition of netilmicin markedly enhanced the killing activity of the combination of cefazolin or imipenem plus vancomycin, but only for the MRSA strains against which the β-lactam–vancomycin combinations had no bactericidal effect. It is noteworthy that the latter strains were both susceptible to netilmicin and

  10. Chitosan Prevents Gentamicin-Induced Nephrotoxicity via a Carbonyl Stress-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Chu-Kung Chou

    2015-01-01

    Full Text Available Aminoglycosides are widely used to treat infections; however, their applications are limited by nephrotoxicity. With the increase of antibiotic resistance, the use of aminoglycosides is inevitable. Low-molecular-weight chitosan (LMWC has shown renal protective effects in dialysis patients. However, no study has evaluated LMWC for preventing aminoglycoside-induced nephrotoxicity or determined the mechanisms underlying the renal protective effects. In this study, LMWC (165 or 825 mg/kg/day or metformin (100 mg/kg/day was orally administered for 13 days to rats with nephropathy induced by gentamicin (GM, a kind of aminoglycoside (150 mg/kg/day i.p. for 6 days. Both LMCW doses improved renal function. Serum creatinine levels improved in rats treated with 165 and 825 mg/kg/day LMWC (from 2.14 ± 0.74 mg/dL to 1.26 ± 0.46 mg/dL and 0.69 ± 0.12 mg/dL, resp., P < 0.05. Blood urea nitrogen levels were also improved in these rats (from 73.73 ± 21.13 mg/dL to 58.70 ± 22.71 mg/dL and 28.82 ± 3.84 mg/dL, resp., P < 0.05. Additionally, renal tissue morphology improved after LMWC treatment, and accumulation of renal methylglyoxal, a damage factor associated with carbonyl stress, was reversed. These results show that LMWC prevents GM-induced renal toxicity via a carbonyl stress-dependent pathway.

  11. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa

    OpenAIRE

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-01-01

    Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) aga...

  12. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  13. Acquired Bartter syndrome following gentamicin therapy

    Directory of Open Access Journals (Sweden)

    J Singh

    2016-01-01

    Full Text Available Aminoglycoside nephrotoxicity may manifest as nonoliguric renal failure or tubular dysfunction, such as Fanconi-like syndrome, Bartter-like syndrome (BS, or distal renal tubular acidosis. We report a case who developed severe renal tubular dysfunction on the the 7 th day of gentamicin therapy, resulting in metabolic alkalosis, refractory hypokalemia, hypocalcemia, hypomagnesemia, and polyuria. The patient was diagnosed as a case of transient BS associated with gentamicin exposure. The patient recovered with conservative management.

  14. Acquired Bartter syndrome following gentamicin therapy.

    Science.gov (United States)

    Singh, J; Patel, M L; Gupta, K K; Pandey, S; Dinkar, A

    2016-01-01

    Aminoglycoside nephrotoxicity may manifest as nonoliguric renal failure or tubular dysfunction, such as Fanconi-like syndrome, Bartter-like syndrome (BS), or distal renal tubular acidosis. We report a case who developed severe renal tubular dysfunction on the the 7 th day of gentamicin therapy, resulting in metabolic alkalosis, refractory hypokalemia, hypocalcemia, hypomagnesemia, and polyuria. The patient was diagnosed as a case of transient BS associated with gentamicin exposure. The patient recovered with conservative management.

  15. The Novel Kasugamycin 2′-N-Acetyltransferase Gene aac(2′)-IIa, Carried by the IncP Island, Confers Kasugamycin Resistance to Rice-Pathogenic Bacteria

    OpenAIRE

    Yoshii, Atsushi; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-01-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the ...

  16. Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: Implication for early detection and prevention of deafness

    International Nuclear Information System (INIS)

    Dai Pu; Liu Xin; Han Dongyi; Qian Yaping; Huang Deliang; Yuan Huijun; Li Weiming; Yu Fei; Zhang Ruining; Lin Hongyan; He Yong; Yu Youjun; Sun Quanzhu; Qin Huaiyi; Li Ronghua; Zhang Xin; Kang Dongyang; Cao Juyang; Young Wieyen; Guan Minxin

    2006-01-01

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of 16 Chinese pedigrees (a total of 246 matrilineal relatives) with aminoglycoside-induced impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: being bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss, ranging from 4% to 18%, with an average of 8%. In particular, nineteen of 246 matrilineal relatives in these pedigrees had aminoglycoside-induced hearing loss. Mutational analysis of the mtDNA in these pedigrees showed the presence of homoplasmic 12S rRNA A1555G mutation, which has been associated with hearing impairment in many families worldwide. The extremely low penetrance of hearing loss in these Chinese families carrying the A1555G mutation strongly supports the notion that the A1555G mutation itself is not sufficient to produce the clinical phenotype. Children carrying the A1555G mutation are susceptible to the exposure of aminoglycosides, thereby inducing or worsening hearing impairment, as in the case of these Chinese families. Using those genetic and molecular approaches, we are able to diagnose whether children carry the ototoxic mtDNA mutation. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside therapy, and eventually to decrease the incidence of deafness

  17. The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh.

    Science.gov (United States)

    Murray, Ewan J; Stanley-Wall, Nicola R

    2010-12-01

    Abh is a transition state regulator of Bacillus subtilis that controls biofilm formation and the production of several diverse antimicrobial compounds. Using a high-throughput non-biased technique, we show for the first time that Abh influences the sensitivity of B. subtilis to diverse antimicrobial compounds. Following up on these findings with a combination of classical genetics and antibiotic susceptibility assays, we demonstrate that Abh influences cellular processes such as the remodelling of the cell wall. We present data demonstrating that the extracytoplasmic function sigma factor σ(X) controls resistance to β-lactam antibiotics by activating abh transcription. Downstream from Abh, activation of slrR expression by Abh is responsible for controlling the sensitivity of B. subtilis to such antibiotics due to the role that SlrR plays in regulating autolysin biosynthesis. The abh mutant additionally exhibits increased resistance to aminoglycoside antimicrobials. We confirm that aminoglycoside killing of B. subtilis is likely to be caused by oxidative damage but rule out the possibility that the increased resistance of the abh mutant to aminoglycosides is due to a general increase in resistance to oxidative stress.

  18. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  19. Measurement of total phospholipids in urine of patients treated with gentamicin.

    Science.gov (United States)

    Saunders, D A; Begg, E J; Kirkpatrick, C M; Yeo, J; Graham, G G; Bailey, R R

    1997-04-01

    The excretion of phospholipids in urine may be a marker of the early renal toxicity of the aminoglycoside antibiotics. Urinary phospholipids are formed in myeloid bodies which develop in the lysosomes of proximal tubules during treatment with the aminoglycosides, and overflow into the urine. Published assays were modified in order to measure the total phospholipid concentrations in human urine. Phospholipids were extracted from freeze-dried urine samples, digested in concentrated sulphuric acid, and the inorganic phosphorus content determined by complexing with ammonium molybdate and measuring the absorbance at 820 nm. Ten septicaemic patients treated with gentamicin for 5-7 days had significantly higher urine phospholipid concentrations than 10 healthy untreated control subjects (P < 0.0001). There was a negative linear relationship between phospholipid excretion and creatinine clearance (r2 = 0.71). In 34 patients with acute pyelonephritis, increased phospholipid concentrations were observed prior to treatment compared with healthy controls (P < 0.001) and did not alter during treatment with gentamicin. However, the phospholipid concentrations decreased significantly after treatment was completed (P < 0.03). These studies suggest that urinary phospholipids may indicate early aminoglycoside toxicity but with poor specificity, as many of the infections being treated may themselves be associated with phospholipiduria.

  20. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment

    International Nuclear Information System (INIS)

    Sousa de Moraes, Vanessa Cristine; Alexandrino, Fabiana; Andrade, Paula Baloni; Camara, Marilia Fontenele; Sartorato, Edi Lucia

    2009-01-01

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  1. Unusual Complication of Multidrug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2017-01-01

    Full Text Available Introduction. Capreomycin is a second-line drug often used for multidrug-resistant tuberculosis which can result in nephrotoxic effects similar to other aminoglycosides. We describe a case of capreomycin induced Bartter-like syndrome with hypocalcemic tetany. Case Report. 23-year-old female patient presented with carpopedal spasms and tingling sensations in hands. Patient was being treated with capreomycin for two months for tuberculosis. On further investigation, hypocalcemia, hyponatremia, hypomagnesemia, hypokalemia, and hypochloremic metabolic alkalosis were noted. Vitamin D and serum PTH levels were within normal limits. Hypercalciuria was confirmed by urine calcium/creatinine ratio. Calcium, potassium, and magnesium supplementation was given and capreomycin was discontinued. Electrolytes normalized in two days after cessation of capreomycin with no further abnormalities on repeat investigations. Discussion. Aminoglycosides can result in renal tubular dysfunction leading to Fanconi syndrome, Bartter syndrome, and distal tubular acidosis. Impaired mitochondrial function in the tubular cells has been hypothesized as the possible cause of these tubulopathies. Acquired Bartter-like syndrome phenotypically resembles autosomal dominant type 5 Bartter syndrome. Treatment consists of correction of electrolyte abnormalities, indomethacin, and potassium-sparing diuretics. Prompt diagnosis and treatment of severe dyselectrolytemia are warranted in patients on aminoglycoside therapy.

  2. Conjugal transfer of aac(6')Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR.

    Science.gov (United States)

    Jaimee, G; Halami, P M

    2017-09-01

    High level aminoglycoside resistance (HLAR) in the lactic acid bacteria (LAB) derived from food animals is detrimental. The aim of this study was to investigate the localization and conjugal transfer of aminoglycoside resistance genes, aac(6')Ie-aph(2″)Ia and aph(3')IIIa in different Enterococcus species. The cross resistance patterns in Enterococcus faecalis MCC3063 to clinically important aminoglycosides by real time PCR were also studied. Southern hybridization experiments revealed the presence of aac(6')Ie-aph(2 ″ )Ia and aph(3')IIIa genes conferring HLAR in high molecular weight plasmids except in Lactobacillus plantarum. The plasmid encoded bifunctional aac(6')Ie-aph(2″)Ia gene was transferable from Enterococcus avium (n = 2), E. cecorum (n = 1), E. faecalis (n = 1) and Pediococcus lolii (n = 1) species into the recipient strain; E. faecalis JH2-2 by filter mating experiments thus indicating the possible risks of gene transfer into pathogenic strains. Molecular analysis of cross resistance patterns in native isolate of E. faecalis MCC3063 carrying aac(6')Ie-aph(2″)Ia and aph(3')IIIa gene was displayed by quantification of the mRNA levels in this study. For this, the culture was induced with increasing concentrations of gentamicin, kanamycin and streptomycin (2048, 4096, 8192, 16384 μg/mL) individually. The increasing concentrations of gentamicin and kanamycin induced the expression of the aac(6')Ie-aph(2″)Ia and aph(3')IIIa resistance genes, respectively. Interestingly, it was observed that induction with streptomycin triggered a significant fold increase in the expression of the aph(3')IIIa gene which otherwise was not known to modify the aminoglycoside. This is noteworthy as streptomycin was found to confer cross resistance to structurally unrelated kanamycin. Also, expression of the aph(3')IIIa gene when induced with streptomycin, revealed that bacteria harbouring this gene will be able to overcome streptomycin bactericidal action at

  3. A guinea pig model of selective severe high-frequency hearing loss.

    Science.gov (United States)

    Havenith, Sarah; Klis, Sjaak F L; Versnel, Huib; Grolman, Wilko

    2013-10-01

    Using an appropriate dose of an aminoglycoside antibiotic cotreated with a loop diuretic a guinea pig model of high-frequency loss can be obtained mimicking cochlear implant candidates with low-frequency residual hearing. We examined the stability of this model over time. A well-established method to create an animal model for profound deafness is cotreatment with an aminoglycoside antibiotic and a loop diuretic. Recent data indicated that reduction of the aminoglycoside dose might yield selective high-frequency hearing loss. Such a model is relevant for studies related to hybrid cochlear implant devices, for example, with respect to preservation of residual hearing. Guinea pigs received an electrode for chronic recording of compound action potentials to tones to assess thresholds. They were treated with a coadministration of kanamycin (200 mg/kg) and furosemide (100 mg/kg), after which, the animals were sacrificed for histologic analysis at 2, 4, or 7 weeks. After 2 to 7 weeks threshold shifts were greater than 50 dB for 8 to 16 kHz in 15 of 17 animals, whereas threshold shifts at 2 kHz or lower were less than 50 dB in 13 animals. Major threshold shifts occurred the first 2 to 4 days; subsequently, some spontaneous recovery occurred and, after 2-3 weeks thresholds, remained stable. Inner hair cell loss still progressed between 2 and 4 weeks in the most basal cochlear region; thereafter, hair cell loss was stable. An appropriate animal model for selective severe high-frequency hearing loss was obtained, which is stable at 4 weeks after ototoxic treatment.

  4. Treatment of Mycobacterium paratuberculosis infection in ruminants.

    Science.gov (United States)

    St-Jean, G; Jernigan, A D

    1991-11-01

    Paratuberculosis is a chronic, debilitating, fatal condition that usually is clinically undetectable until the onset of copious diarrhea. Paratuberculosis is caused by an acid-fast organism, M. paratuberculosis. Successful eradication of paratuberculosis depends on the early detection of infected animals, thereby allowing removal of carrier animals from the herd. Treatment for paratuberculosis is therefore rarely indicated or undertaken; however, treatment may be considered for animals of exceptional genetic value or companion animals. Antimicrobials reviewed in this article for the treatment of paratuberculosis include isoniazid, rifampin, streptomycin, amikacin, clofazimine, and dapsone. Treatment of paratuberculosis requires daily medication for extended periods and results in palliation of the disease rather than a definitive cure. The treatment for paratuberculosis recommended by the authors is isoniazid at 20 mg/kg administered orally every 24 hours for the rest of the animal's life. When the animal has acute onset of diarrhea, rifampin at 20 mg/kg every 24 hours is also administered orally. In severe, imminently life-threatening cases, an aminoglycoside should be administered concurrently for 3 to 8 weeks. This protocol (isoniazid, rifampin, and an aminoglycoside) will help ensure that Mycobacteria organisms are sensitive to at least two of the antibiotics. Rifampin treatment can be discontinued if clinical signs of paratuberculosis disappear and the cost of therapy is judged excessive. The combined therapeutic approach has been used in three animals, and the results are presented in this article. Because isoniazid, rifampin, and some aminoglycosides are not approved for use in food animals in the United States of America, the meat or milk from treated animals should not be used for human consumption.

  5. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines

    Directory of Open Access Journals (Sweden)

    Vaks Lilach

    2011-12-01

    Full Text Available Abstract Background Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. Results With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. Conclusion Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.

  6. Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation

    International Nuclear Information System (INIS)

    Young Wieyen; Zhao Lidong; Qian Yaping; Wang Qiuju; Li Ning; Greinwald, John H.; Guan Minxin

    2005-01-01

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of four Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss (5.2%, 4.8%, 4.2%, and 13.3%, respectively, and with an average 8% penetrance). In particular, four of all five affected matrilineal relatives of these pedigrees had aminoglycoside-induced hearing loss. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical homoplasmic A1555G mutation, associated with hearing impairment in many families from different genetic backgrounds. The fact that mtDNA of those pedigrees belonged to different haplogroups R9a, N9a, D4a, and D4 suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. These data imply that the nuclear background or/and mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycoside appears to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families

  7. Antibiotic resistant Escherichia coli in southeastern Australian pig herds and implications for surveillance.

    Science.gov (United States)

    van Breda, L K; Dhungyel, O P; Ward, M P

    2018-02-01

    To investigate public health implications of antibiotics to control post-weaning scours, we surveyed 22 commercial pig herds in southeastern Australia. Fifty faecal samples per herd were collected from pre- and post-weaned piglets. Presumptive Escherichia coli isolates were confirmed by MALDI-TOF MS. Isolates (n = 325) were screened for susceptibility to 19 veterinary antibiotics using MIC broth microdilution. All 325 E. coli isolates underwent further testing against 27 antibiotics used in human medicine and were screened for ETEC adhesin and enterotoxin genes (F4 (K88), F5 (K99), F6 (987P), F18, F41, STa, STb, Stx2e and LT) by multiplex PCR. Isolates identified as phenotypically resistant to third-generation cephalosporin (3GC) and aminoglycoside antibiotics were screened by multiplex PCR/reverse line blot to detect common β-lactam and aminoglycosides resistance genes, confirmed by sequencing. Twenty (6.1%) of the E. coli isolates were resistant to 3GC antibiotics and 24 (7.4%) to the aminoglycoside antibiotic gentamicin. Genetic analysis revealed six different extended spectrum β-lactamase (ESBL) genes (blaCTX-M-1, -14, -15, -27, blaSHV-12 and blaCMY-2-like genes), four of which have not been previously reported in Australian pigs. Critically, the prevalence of 3GC resistance was higher in non-pathogenic (non-ETEC) isolates and those from clinically normal (non-diarrhoeal) samples. This highlights the importance of non-ETECE. coli as reservoirs of antimicrobial resistance genes in piglet pens. Antimicrobial resistance surveillance in pig production focused on diagnostic specimens from clinically-affected animals might be potentially misleading. We recommend that surveillance for emerging antimicrobial resistance such as to 3GC antibiotics should include clinically healthy pigs. © 2017 Blackwell Verlag GmbH.

  8. Characterization of Acinetobacter baumannii clinical isolates carrying bla(OXA-23) carbapenemase and 16S rRNA methylase armA genes in Yemen.

    Science.gov (United States)

    Bakour, Sofiane; Alsharapy, Samer Ahmed; Touati, Abdelaziz; Rolain, Jean-Marc

    2014-12-01

    The aim of this study was to investigate the molecular support of resistance to carbapenems, aminoglycosides, and fluoroquinolones in Acinetobacter baumannii clinical isolates collected from Yemen hospital. Three A. baumannii were isolated in February 2013 from three patients hospitalized at Al-Thawra University Hospital in Sana'a, Yemen. Antibiotic susceptibility testing was performed using the disk diffusion and E-test methods. Carbapenemase production was carried out by the modified Hodge test (MHT) and imipenem-ethylenediaminetetraacetic acid (EDTA) methods. Carbapenem, aminoglycoside, and fluoroquinolone resistance determinants were studied by polymerase chain reaction and sequencing. The epidemiological relatedness of the three strains was studied using multilocus sequence typing (MLST). The isolates were resistant to almost all antibiotics tested with very high imipenem, amikacin, and ciprofloxacin minimum inhibitory concentrations (>32, >256, and >32 mg/L, respectively). The microbiological tests showed that the three A. baumannii were MHT positive, besides, the activity of β-lactamases was not inhibited by EDTA. All the three isolates contained the naturally occurring bla(OXA-51)-like gene and the bla(OXA-23)-like carbapenemase-encoding gene. The 16S rRNA methylase armA gene was detected in the three isolates. In addition, screening for genes encoding the aminoglycoside-modifying enzymes (AMEs) demonstrated that one isolate contained the acetyltransferase gene aac(6')-Ib. Fluoroquinolone resistance was associated with a single mutation Ser83Leu in the quinolone resistance determining region of the gyrA gene in all isolates. The MLST showed that the sequence type (ST) obtained corresponds to ST2 for the three strains. Here we report the first identification of multidrug-resistant A. baumannii isolates harboring the bla(OXA-23)-like gene, AMEs [aac(6')-Ib], and the 16S rRNA methylase (armA) in the Yemen hospital.

  9. Single daily dosing of antibiotics: importance of in vitro killing rate, serum half-life, and protein binding.

    Science.gov (United States)

    Potel, G; Chau, N P; Pangon, B; Fantin, B; Vallois, J M; Faurisson, F; Carbon, C

    1991-10-01

    The relative importance of pharmacokinetic and pharmacodynamic parameters for the feasibility of a single daily dose (SDD) of antibiotics remains to be established. Therefore, we studied the relationship between in vitro bacteriological parameters (MIC, MBC, and killing rate [KR], defined as the reduction in the inoculum within 3 h), pharmacokinetic parameters (t1/2 and protein binding [PB], and in vivo antibacterial effect of a single antibiotic dose in an experimental rabbit model of Escherichia coli endocarditis. Nine antibiotics were investigated: two aminoglycosides, two quinolones, and five beta-lactams. For each drug, the minimal effective dose (MED) (in milligrams per kilogram) was defined as the lowest dose able to achieve a significant difference (P less than 0.05) of CFU in the vegetations in comparison with controls 24 h after a single intravenous injection. Aminoglycosides and quinolones had the lowest MEDs, followed by beta-lactams. Univariate regression analysis showed that KR was the major determinant of MED. A stepwise regression analysis showed that t1/2 significantly improved the predictive value of KR, while PB, MIC, and MBC did not. The final equation was MED = 1,586-238 KR-297 t1/2 (r = 0.90, P = 0.01). We concluded that the pharmacodynamic parameters (especially the high KR) of aminoglycosides and quinolones explained their low MEDs and might allow SDD. In contrast, the low KR of beta-lactams emphasized the critical importance of a long t1/2, as for ceftriaxone, allowing the use of this beta-lactam alone in SDD.

  10. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    Science.gov (United States)

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  11. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study.

    Science.gov (United States)

    Gasparini, Giorgio; De Gori, Marco; Calonego, Giovanni; Della Bora, Tommaso; Caroleo, Benedetto; Galasso, Olimpio

    2014-11-01

    High-dose antibiotic-loaded acrylic cement (ALAC) is used for managing peri-prosthetic joint infections (PJIs). The marked increase in resistant high-virulence bacteria is drawing the attention of physicians toward alternative antimicrobial formulations loaded into acrylic bone cement. The aim of this in vitro study was to determine the elution kinetics of 14 different high-dose ALACs. All ALAC samples showed a burst release of antibiotics in the first hour, progressively decreasing over time, and elution curves strictly adhered to a nonlinear regression analysis formula. Among aminoglycosides, commonly seen as the most appropriate antibiotics to be loaded into the bone cement, the highest elution rate was that of tobramycin. Among the glycopeptides, a class of antibiotics that should be considered to treat PJIs because of the prevalence of aminoglycoside resistance, vancomycin showed better elution than teicoplanin. Clindamycin, which can be associated with aminoglycosides to prepare ALACs and represents a useful option against the most common pathogens responsible for PJIs, showed the highest absolute and relative elutions among all the tested formulations. A noticeable elution was also detected for colistin, an antibiotic of last resort for treating multidrug-resistant bacteria. The current study demonstrates theoretical advantages in the preparation of ALAC for some antibiotics not routinely used in the clinical setting for PJIs. The use of these antibiotics based on the infecting bacteria sensitivity may represent a useful option for physicians to eradicate PJIs. In vivo testing should be considered in the future to confirm the results of this study. Copyright 2014, SLACK Incorporated.

  12. [Utilization of antibiotics according to most frequent indications at Hungarian hospitals and results of surveys].

    Science.gov (United States)

    Ternák, G; Almási, I

    1997-05-25

    Antibiotic utilisation of 8 Hungarian hospitals was analyzed examining the case histories of patients who were discharged between January 1 and 31, 1995. Usage of antibiotics in the most frequent indications is reported in this paper. Majority of the prescriptions for the treatment of upper and lower respiratory tract infections were broad spectrum beta lactams. Higher rate of penicillin usage was found only in tonsillitis cases. Besides II. generation cephalosporins (22.7% of 730 prescriptions), beta-lactamase inhibitor + aminopenicillin combinations (13.4%) and III. generation cephalosporins (9.5%) considerable quantity of aminoglycosides (14.9%) and quinolones (9.5%) were found in pneumonia. Relatively high rate of aminoglycosides in the treatment of lower respiratory infections is inconsistent with therapeutic guidelines in force. Co-trimoxazol and quinolones were most frequently prescribed for the treatment of lower urinary tract infections. Traditional urodesinficients were on the first place only at one hospital. Treatment of frequently occurring nosocomial infections was compared with those of community acquired at the same site. There was not significant difference in the utilisation rates of the most of antibiotic groups regarding place of disease acquisition. 44% of the 1373 prescriptions for perioperative profilaxis was indicated for clean operations where benefit of antibiotic administration is questionable. Duration of antibiotic profilaxis was more than 48 hours in 59% of prescriptions. Drugs most frequently used for perioperative profilaxis were II. generation cephalosporins (23.7%), metronidazol (16.7%), aminoglycosides (9.6%) and III. generation cephalosporines (9.6%). The authors compare their results to the literature. They suggest the setting up of "infection control committees" to organise the antibiotic policies in hospitals.

  13. Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations.

    Science.gov (United States)

    Nagel-Wolfrum, Kerstin; Möller, Fabian; Penner, Inessa; Wolfrum, Uwe

    2014-09-01

    The eye has become an excellent target for gene therapy, and gene augmentation therapy of inherited retinal disorders has made major progress in recent years. Nevertheless, a recent study indicated that gene augmentation intervention might not stop the progression of retinal degeneration in patients. In addition, for many genes, viral-mediated gene augmentation is currently not feasible due to gene size and limited packaging capacity of viral vectors as well as expression of various heterogeneous isoforms of the target gene. Thus, alternative gene-based strategies to stop or delay the retinal degeneration are necessary. This review focuses on an alternative pharmacologic treatment strategy based on the usage of translational read-through inducing drugs (TRIDs) such as PTC124, aminoglycoside antibiotics, and designer aminoglycosides for overreading in-frame nonsense mutations. This strategy has emerged as an option for up to 30-50% of all cases of recessive hereditary retinal dystrophies. In-frame nonsense mutations are single-nucleotide alterations within the gene coding sequence resulting in a premature stop codon. Consequently, translation of such mutated genes leads to the synthesis of truncated proteins, which are unable to fulfill their physiologic functions. In this context, application of TRIDs facilitates the recoding of the premature termination codon into a sense codon, thus restoring syntheses of full-length proteins. So far, clinical trials for non-ocular diseases have been initiated for diverse TRIDs. Although the clinical outcome is not analyzed in detail, an excellent safety profile, namely for PTC124, was clearly demonstrated. Moreover, recent data demonstrated sustained read-through efficacies of nonsense mutations causing retinal degeneration, as manifested in the human Usher syndrome. In addition, a strong retinal biocompatibility for PTC124 and designer aminoglycosides has been demonstrated. In conclusion, recent progress emphasizes the

  14. Mass spectrometric approaches for the identification of anthracycline analogs produced by actinobacteria.

    Science.gov (United States)

    Bauermeister, Anelize; Zucchi, Tiago Domingues; Moraes, Luiz Alberto Beraldo

    2016-06-01

    Anthracyclines are a well-known chemical class produced by actinobacteria used effectively in cancer treatment; however, these compounds are usually produced in few amounts because of being toxic against their producers. In this work, we successfully explored the mass spectrometry versatility to detect 18 anthracyclines in microbial crude extract. From collision-induced dissociation and nuclear magnetic resonance spectra, we proposed structures for five new and identified three more anthracyclines already described in the literature, nocardicyclins A and B and nothramicin. One new compound 8 (4-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]oxy-2,5,7,12-tetrahydroxy-3,10-dimethoxy-2-methyl-3,4-dihydrotetracene-1,6,11-trione) was isolated and had its structure confirmed by (1) H nuclear magnetic resonance. The anthracyclines identified in this work show an interesting aminoglycoside, poorly found in natural products, 3-methyl-rhodosamine and derivatives. This fact encouraged to develop a focused method to identify compounds with aminoglycosides (rhodosamine, m/z 158; 3-methyl-rhodosamine, m/z 172; 4'-O-acethyl-3-C-methyl-rhodosamine, m/z 214). This method allowed the detection of four more anthracyclines. This focused method can also be applied in the search of these aminoglycosides in other microbial crude extracts. Additionally, it was observed that nocardicyclin A, nothramicin and compound 8 were able to interact to DNA through a DNA-binding study by mass spectrometry, showing its potential as anticancer drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii).

    Science.gov (United States)

    Fan, Chunxin; Zou, Sha; Wang, Jian; Zhang, Bo; Song, Jiakun

    2016-05-01

    The lateral line found in some amphibians and fishes has two distinctive classes of sensory organs: mechanoreceptors (neuromasts) and electroreceptors (ampullary organs). Hair cells in neuromasts can be damaged by aminoglycoside antibiotics and they will regenerate rapidly afterward. Aminoglycoside sensitivity and the capacity for regeneration have not been investigated in ampullary organs. We treated Siberian sturgeon (Acipenser baerii) larvae with neomycin and observed loss and regeneration of sensory hair cells in both organs by labeling with DASPEI and scanning electron microscopy (SEM). The numbers of sensory hair cells in both organs were reduced to the lowest levels at 6 hours posttreatment (hpt). New sensory hair cells began to appear at 12 hpt and were regenerated completely in 7 days. To reveal the possible mechanism for ampullary hair cell regeneration, we analyzed cell proliferation and the expression of neural placodal gene eya1 during regeneration. Both cell proliferation and eya1 expression were concentrated in peripheral mantle cells and both increased to the highest level at 12 hpt, which is consistent with the time course for regeneration of the ampullary hair cells. Furthermore, we used Texas Red-conjugated gentamicin in an uptake assay following pretreatment with a cation channel blocker (amiloride) and found that entry of the antibiotic was suppressed in both organs. Together, our results indicate that ampullary hair cells in Siberian sturgeon larvae can be damaged by neomycin exposure and they can regenerate rapidly. We suggest that the mechanisms for aminoglycoside uptake and hair cell regeneration are conserved for mechanoreceptors and electroreceptors. J. Comp. Neurol. 524:1443-1456, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. AN IMPORTED CASE OF ACUTE MELIOIDOSIS CAUSED BY ST881 BURKHOLDERIA PSEUDOMALLEI.

    Science.gov (United States)

    Zong, Zhiyong; Wang, Xiaohui; Deng, Yiyun

    2016-03-01

    A previously healthy Chinese male working in Malaysia returned to China with high fever. A blood culture showed Burkholderia pseudomallei strain WCBP1. This isolate was sequenced, showing type, ST881, which appears to be present in Malaysia. WCP1 had unusual susceptibility to aminoglycosides and habored the Yersinia-like fimbrial gene cluster for virulence. The patient's condition deteriorated rapidly but he recovered after receiving meropenem and intensive care support. Melioidosis is a potential problem among Chinese imigrant workers with strains new to China being identified.

  17. Radioimmunological determination of gentamycin and tobramycin in surgical intensive medicine

    International Nuclear Information System (INIS)

    Glaubitt, D.; Drechsler, H.J.; Staedtische Krankenanstalten Krefeld

    1979-01-01

    In 119 patients aged 16-86 who, within the framwork of surgical intensive care because of infections dangerous to life, had been treated with the aminoglucoside antibiotics gentamycin or tobramycin and who partly had renal dysfunction, gentamycin or tobramycin in plasma or in serum were determined radioimmunologically, either daily or at intervals of several days. Efforts were made to keep the concentration of the aminoglycoside antibiotic within the therapeutic range. This control of the therapy was particularly useful in short-term changes of the renal function because it facilitates the quick adaptation of the dosage of gentamycin or tobramycin to the assumed requirements. (orig.) [de

  18. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  19. In vitro susceptibility of Actinobacillus pleuropneumoniae strains to 42 antimicrobial agents.

    Science.gov (United States)

    Gutiérrez, C B; Píriz, S; Vadillo, S; Rodríguez Ferri, E F

    1993-04-01

    Minimal inhibitory concentration of 42 antimicrobial agents was determined against 57 field strains of Actinobacillus pleuropneumoniae isolated from pigs in Spain. Penicillins, aminoglycosides, and tetracyclines had irregular activity; ticarcillin, tobramycin, and doxycycline were the most active of each group, respectively. Macrolides, vancomycin, dapsone, and tiamulin, to which strains had high rate of resistance, were almost ineffective. Thiamphenicol, colistin, rifampin, fosfomycin, mupirocin, and metronidazole had good activity, with resistance ranging between 0 and 8.8%. Finally, cephalosporins (except cephalexin) and quinolones (especially ciprofloxacin, enrofloxacin, and sparfloxacin) were the most active antibiotics against A pleuropneumoniae.

  20. In vitro susceptibility of Pasteurella multocida subspecies multocida strains isolated from swine to 42 antimicrobial agents.

    Science.gov (United States)

    Gutiérrez Martin, C B; Rodríguez Ferri, E F

    1993-08-01

    The minimal inhibitory concentrations (MICs) of 42 antimicrobial agents were determined against 59 strains of Pasteurella multocida subspecies multocida, all isolated from swine lungs with lesions indicative of pneumonia. Penicillins (except cloxacillin), aminoglycosides, tetracyclines, erythromycin, josamycin, thiamphenicol, colistin, rifampin and mupirocin showed good activities, with ranging resistance between 0 and 6.8%. Higher resistance was observed for spiramycin and fosfomycin. Tylosin, vancomycin, metronidazole, dapsone and tiamulin, to which strains showed high rates of resistance, were ineffective. Cephalosporins (especially the third-generation cephalosporins) and quinolones (especially the fluorinated quinolones) were the most effective antimicrobial agents against P. multocida subsp. multocida strains and they might be of value for in vivo use.

  1. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Jonathan [Ames Laboratory (AMES), Ames, IA (United States)

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  2. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella spp. from Companion Animals in Italy

    DEFF Research Database (Denmark)

    Donati, Valentina; Feltrin, Fabiola; Hendriksen, Rene S.

    2014-01-01

    also for the aac(6')-Ib-cr gene. All Klebsiella isolates showed multiresistance towards aminoglycosides, sulfonamides, tetracyclines, trimethoprim and amphenicols, mediated by strA/B, aadA2, aadB, ant (2")-Ia, aac(6')-Ib, sul, tet, dfr and cat genes in various combinations. The emergence in pets...... of multidrug-resistant Klebsiella with ESBL, AmpC and PMQR determinants, poses further and serious challenges in companion animal therapy and raise concerns for possible bidirectional transmission between pets and humans, especially at household level....

  3. Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil.

    Science.gov (United States)

    Nodari, Carolina Silva; Siebert, Marina; Matte, Ursula da Silveira; Barth, Afonso Luís

    Serratia marcescens is a Gram-negative rod intrinsically resistant to polymyxins and usually associated with wound, respiratory and urinary tract infections. The whole genome of the first GES-5-producing S. marcescens isolated from a Brazilian patient was sequenced using Ion Torrent PGM System. Besides bla GES-5 , we were able to identify genes encoding for other β-lactamases, for aminoglycoside modifying enzymes and for an efflux pump to tetracyclines. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Biased agonism of the calcium-sensing receptor

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Hvidtfeldt, Maja; Bräuner-Osborne, Hans

    2012-01-01

    After the discovery of molecules modulating G protein-coupled receptors (GPCRs) that are able to selectively affect one signaling pathway over others for a specific GPCR, thereby "biasing" the signaling, it has become obvious that the original model of GPCRs existing in either an "on" or "off...... through recruitment of ß-arrestins. Next, by measuring activity of all three signaling pathways we found that barium, spermine, neomycin, and tobramycin act as biased agonist in terms of efficacy and/or potency. Finally, polyamines and aminoglycosides in general were biased in their potencies toward ERK1...

  5. Antibacterianos de acción sistémica: Parte II. Otros grupos de antibióticos

    Directory of Open Access Journals (Sweden)

    Manuel Cué Brugueras

    1998-08-01

    Full Text Available Se presenta la segunda parte de una revisión bibliográfica sobre los antibacterianos de acción sistémica, la cual incluye grupos de antibióticos tan importantes como aminociclitoles, aminoglucósidos, diaminopirimidinas, estreptograminas, fosfomicinas, fusidanos, glicopéptidos, lincosamidas, macrólidos, nitrofuranos, nitroimidazoles, polipéptios, quinolonas y rifamicinasThe second part of the literature review on systemic antibacterial drugs is presented. It deals with such important groups of antibiotics as aminociclitol, aminoglycosides, diaminopirimidine, streptogramin, fosfomycin, fusidane, glycopeptides, lincosamides, macrolides, nitrofurans, nitroimidazols, polypeptides, quinolones, and rifamycins

  6. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone

    DEFF Research Database (Denmark)

    López-Causapé, Carla; Madsen Sommer, Lea Mette; Cabot, Gabriel

    2017-01-01

    ) and resistome of a widespread clone (CC274), in isolates from two highly-distant countries, Australia and Spain, covering an 18-year period. The coexistence of two divergent CC274 clonal lineages was revealed, but without evident geographical barrier; phylogenetic reconstructions and mutational resistome...... for the first time that high-level aminoglycoside resistance in CF is likely driven by mutations in fusA1/fusA2, coding for elongation factor G. Altogether, our results provide valuable information for understanding the evolution of the mutational resistome of CF P. aeruginosa....

  7. [Etiology of acute and chronic pyelonephritis in children in Khabarovsk region].

    Science.gov (United States)

    Kozlova, E A; Kholodok, G N; Alekseeva, I N; Kozlov, V K

    2008-01-01

    Microflora of urinary tract was studied in 419 children aged 1 - 17 years and hospitalized due to acute or chronic pyelonephritis. Etiology of inflammatory process was established in 57.8% of cases. According to our study, etiologic structure of causative agents of pyelonephritis did not differ from all-Russian data. The leading positions belonged to Gram-negative microorganisms from Enterobacteriaceae family: Escherichia coli, Proteus mirabilis, and Klebsiella spp. Results of the study point to high susceptibility of main causative agents of pyelonephritis to cephalosporins, aminoglycosides, and fluoroquinolones. High resistance to aminopenicillines was noted. In several isolates from Enterobacteriaceae family significant resistance to nalidixic acid and furazidin was observed.

  8. Infective endocarditis due to Enterobacter cloacae resistant to third- and fourth-generation cephalosporins.

    Science.gov (United States)

    Yoshino, Yusuke; Okugawa, Shu; Kimura, Satoshi; Makita, Eiko; Seo, Kazunori; Koga, Ichiro; Matsunaga, Naohisa; Kitazawa, Takatoshi; Ota, Yasuo

    2015-04-01

    We report the case of using a long-term combination of meropenem and amikacin to treat infective endocarditis caused by Enterobacter cloacae resistant to third- and fourth-generation cephalosporins. Multi-drug resistant Gram-negative bacilli, such as the E. cloacae in our study, may become possible pathogens of infective endocarditis. Our experience with this case indicates that long-term use of a combination of β-lactam and aminoglycosides might represent a suitable management option for future infective endocarditis cases due to non-Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella spp. (HACEK group) Gram-negative bacilli such as ours. Copyright © 2012. Published by Elsevier B.V.

  9. Recurrent Chronic Ambulatory Peritoneal Dialysis-Associated Infection due to Rothia dentocariosa

    Directory of Open Access Journals (Sweden)

    Shaun K Morris

    2004-01-01

    Full Text Available Rothia dentocariosa is a commensal organism of the human oropharynx. Clinical infection due to this organism is rare. A case of recurrent peritoneal dialysis-related peritonitis caused by R dentocariosa and a review of the literature is reported. Isolation of R dentocariosa from dialysate fluid should not be dismissed as a contaminant. Although there are no interpretive criteria for antimicrobial susceptibility testing, R dentocariosa appears to be susceptible to a variety of antibiotics including beta-lactams, vancomycin and aminoglycosides. Optimal therapy of peritoneal dialysis peritonitis caused by this organism may also require removal of the catheter.

  10. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a Chinese teaching hospital

    Directory of Open Access Journals (Sweden)

    Zhang Xue-qing

    2010-06-01

    Full Text Available Abstract Background Recently, production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations. Therefore, the spread of high-level aminoglycoside resistance determinants has become a great concern. Methods Between January 2006 and July 2008, 680 distinct Escherichia coli clinical isolates were collected from a teaching hospital in Wenzhou, China. PCR and DNA sequencing were used to identify 16S rRNA methylase and extended-spectrum β-lactamase (ESBL genes, including armA and rmtB, and in situ hybridization was performed to determine the location of 16S rRNA methylase genes. Conjugation experiments were subsequently performed to determine whether aminoglycoside resistance was transferable from the E. coli isolates via 16S rRNA methylase-bearing plasmids. Homology of the isolates harboring 16S rRNA methylase genes was determined using pulse-field gel electrophoresis (PFGE. Results Among the 680 E. coli isolates, 357 (52.5%, 346 (50.9% and 44 (6.5% isolates were resistant to gentamicin, tobramycin and amikacin, respectively. Thirty-seven of 44 amikacin-resistant isolates harbored 16S rRNA methylase genes, with 36 of 37 harboring the rmtB gene and only one harboring armA. The positive rates of 16S rRNA methylase genes among all isolates and amikacin-resistant isolates were 5.4% (37/680 and 84.1% (37/44, respectively. Thirty-one isolates harboring 16S rRNA methylase genes also produced ESBLs. In addition, high-level aminoglycoside resistance could be transferred by conjugation from four rmtB-positive donors. The plasmids of incompatibility groups IncF, IncK and IncN were detected in 34, 3 and 3 isolates, respectively. Upstream regions of the armA gene contained ISCR1 and tnpU, the latter a putative transposase gene,. Another putative transposase gene, tnpD, was located within a region downstream of armA. Moreover, a

  11. Dissemination of antibiotic resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant S aureus strains isolated from hospital effluents.

    Science.gov (United States)

    Mandal, Santi M; Ghosh, Ananta K; Pati, Bikas R

    2015-12-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) and methicillin-resistant S aureus (MRSA) strains were examined in hospital effluents. Most S aureus strains are resistant to methicillin (MRSA), followed by tetracycline. Approximately 15% of MRSA strains are also resistant to vancomycin (VRSA). All VRSA strains developed a VanR/VanS-regulated 2-component system of VanA-type resistance in their genome. Results indicate that there is a possibility of developing resistance to aminoglycosides by VRSA strains in the near future. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. The association between measurements of antimicrobial use and resistance in the faeces microbiota of finisher batches.

    Science.gov (United States)

    Andersen, V D; DE Knegt, L V; Munk, P; Jensen, M S; Agersø, Y; Aarestrup, F M; Vigre, H

    2017-10-01

    The objectives were to present three approaches for calculating antimicrobial (AM) use in pigs that take into account the rearing period and rearing site, and to study the association between these measurements and phenotypical resistance and abundance of resistance genes in faeces samples from 10 finisher batches. The AM use was calculated relative to the rearing period of the batches as (i) 'Finisher Unit Exposure' at unit level, (ii) 'Lifetime Exposure' at batch level and (iii) 'Herd Exposure' at herd level. A significant effect on the occurrence of tetracycline resistance measured by cultivation was identified for Lifetime Exposure for the AM class: tetracycline. Furthermore, for Lifetime Exposure for the AM classes: macrolide, broad-spectrum penicillin, sulfonamide and tetracycline use as well as Herd Unit Exposure for the AM classes: aminoglycoside, lincosamide and tetracycline use, a significant effect was observed on the occurrence of genes coding for the AM resistance classes: aminoglycoside, lincosamide, macrolide, β-lactam, sulfonamide and tetracycline. No effect was observed for Finisher Unit Exposure. Overall, the study shows that Lifetime Exposure is an efficient measurement of AM use in finisher batches, and has a significant effect on the occurrence of resistance, measured either by cultivation or metagenomics.

  13. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Hölzel, Christina S.; Müller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schäfer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-01-01

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  14. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  15. Van ‘t Hoff global analyses of variable temperature isothermal titration calorimetry data

    International Nuclear Information System (INIS)

    Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.

    2012-01-01

    Highlights: ▶ We developed a global fitting strategy for ITC data collected at multiple temperatures. ▶ This method does not require prior knowledge of the binding mechanism. ▶ Monte Carlo simulations show that the approach improves the accuracy of extracted thermodynamic parameters. ▶ The method is used to study coupled folding/binding in aminoglycoside 6′-N-acetyltransferase-Ii. - Abstract: Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, K A , and enthalpy changes, ΔH A . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived K A and ΔH A values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.

  16. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism.

    Science.gov (United States)

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D; Baasov, Timor; Wu, Qi

    2016-03-29

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.

  17. Prevalence and bacterial susceptibility of hospital acquired urinary tract infection

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infection is the most common nosocomially acquired infection. It is important to know the etiology and antibiotic susceptibility infectious agents to guide the initial empirical treatment. OBJECTIVE: To determine the prevalence of bacterial strains and their antibiotic susceptibility in nosocomially acquired urinary tract infection in a university hospital between January and June 2003. METHODS: We analyzed the data of 188 patients with positive urine culture (= 10(5 colony-forming units/mL following a period of 48 hours after admission. RESULTS: Half of patients were male. Mean age was 50.26 ± 22.7 (SD, range 3 months to 88 years. Gram-negative bacteria were the agent in approximately 80% of cases. The most common pathogens were E. coli (26%, Klebsiella sp. (15%, P. aeruginosa (15% and Enterococcus sp. (11%. The overall bacteria susceptibility showed that the pathogens were more sensible to imipenem (83%, second or third generation cephalosporin and aminoglycosides; and were highly resistant to ampicillin (27% and cefalothin (30%. It is important to note the low susceptibility to ciprofloxacin (42% and norfloxacin (43%. CONCLUSION: This study suggests that if one can not wait the results of urine culture, the best choices to begin empiric treatment are imipenem, second or third generation cephalosporin and aminoglycosides. Cefalothin and ampicillin are quite ineffective to treat these infections.

  18. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater.

    Science.gov (United States)

    Tang, Mei; Dou, Xiaomin; Wang, Chunyan; Tian, Zhe; Yang, Min; Zhang, Yu

    2017-12-01

    The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P  0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2  = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  19. Adverse drug reaction and toxicity caused by commonly used antimicrobials in canine practice

    Directory of Open Access Journals (Sweden)

    K. Arunvikram

    2014-05-01

    Full Text Available An adverse drug reaction (ADR is a serious concern for practicing veterinarians and other health professionals, and refers to an unintended, undesired and unexpected response to a drug that negatively affects the patient's health. It may be iatrogenic or genetically induced, and may result in death of the affected animal. The ADRs are often complicated and unexpected due to myriad clinical symptoms and multiple mechanisms of drug-host interaction. Toxicity due to commonly used drugs is not uncommon when they are used injudiciously or for a prolonged period. Licosamides, exclusively prescribed against anaerobic pyoderma, often ends with diarrhoea and vomiting in canines. Treatment with Penicillin and β-lactam antibiotics induces onset of pemphigious vulgare, drug allergy or hypersensitivity. Chloroamphenicol and aminoglycosides causes Gray's baby syndrome and ototoxicity in puppies, respectively. Aminoglycosides are very often associated with nephrotoxicity, ototoxicity and neuromuscular blockage. Injudicious use of fluroquinones induces the onset of arthropathy in pups at the weight bearing joints. The most effective therapeutic measure in managing ADR is to treat the causative mediators, followed by supportive and symptomatic treatment. So, in this prospective review, we attempt to bring forth the commonly occurring adverse drug reactions, their classification, underlying mechanism, epidemiology, treatment and management as gleaned from the literature available till date and the different clinical cases observed by the authors.

  20. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area

    Science.gov (United States)

    Rabbia, Virginia; Bello-Toledo, Helia; Jiménez, Sebastián; Quezada, Mario; Domínguez, Mariana; Vergara, Luis; Gómez-Fuentes, Claudio; Calisto-Ulloa, Nancy; González-Acuña, Daniel; López, Juana; González-Rocha, Gerardo

    2016-06-01

    Antibiotic resistance is a problem of global concern and is frequently associated with human activity. Studying antibiotic resistance in bacteria isolated from pristine environments, such as Antarctica, extends our understanding of these fragile ecosystems. Escherichia coli strains, important fecal indicator bacteria, were isolated on the Fildes Peninsula (which has the strongest human influence in Antarctica), from seawater, bird droppings, and water samples from inside a local wastewater treatment plant. The strains were subjected to molecular typing with pulsed-field gel electrophoresis to determine their genetic relationships, and tested for antibiotic susceptibility with disk diffusion tests for several antibiotic families: β-lactams, quinolones, aminoglycosides, tetracyclines, phenicols, and trimethoprim-sulfonamide. The highest E. coli count in seawater samples was 2400 cfu/100 mL. Only strains isolated from seawater and the wastewater treatment plant showed any genetic relatedness between groups. Strains of both these groups were resistant to β-lactams, aminoglycosides, tetracycline, and trimethoprim-sulfonamide.In contrast, strains from bird feces were susceptible to all the antibiotics tested. We conclude that naturally occurring antibiotic resistance in E. coli strains isolated from Antarctic bird feces is rare and the bacterial antibiotic resistance found in seawater is probably associated with discharged treated wastewater originating from Fildes Peninsula treatment plants.

  1. Role of Bacterioferritin & Ferritin in M. tuberculosis Pathogenesis and Drug Resistance: A Future Perspective by Interactomic Approach

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-06-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis, one of the most successful and deadliest human pathogen. Aminoglycosides resistance leads to emergence of extremely drug resistant strains of M. tuberculosis. Iron is crucial for the biological functions of the cells. Iron assimilation, storage and their utilization is not only involved in pathogenesis but also in emergence of drug resistance strains. We previously reported that iron storing proteins (bacterioferritin and ferritin were found to be overexpressed in aminoglycosides resistant isolates. In this study we performed the STRING analysis of bacterioferritin & ferritin proteins and predicted their interactive partners [ferrochelatase (hemH, Rv1877 (hypothetical protein/probable conserved integral membrane protein, uroporphyrinogen decarboxylase (hemE trigger factor (tig, transcriptional regulatory protein (MT3948, hypothetical protein (MT1928, glnA3 (glutamine synthetase, molecular chaperone GroEL (groEL1 & hsp65, and hypothetical protein (MT3947]. We suggested that interactive partners of bacterioferritin and ferritin are directly or indirectly involved in M. tuberculosis growth, homeostasis, iron assimilation, virulence, resistance, and stresses.

  2. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    Science.gov (United States)

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sedation, sucralfate, and antibiotic use are potential means for protection against early-onset ventilator-associated pneumonia.

    Science.gov (United States)

    Bornstain, C; Azoulay, E; De Lassence, A; Cohen, Y; Costa, M A; Mourvillier, B; Descorps-Declere, A; Garrouste-Orgeas, M; Thuong, M; Schlemmer, B; Timsit, J-F

    2004-05-15

    To examine risk factors for early-onset ventilator-associated pneumonia (EOP) in patients requiring mechanical ventilation (MV), we performed a prospective cohort study that included 747 patients. Pneumonia was defined as a positive result for a protected quantitative distal sample. EOP was defined as pneumonia that occurred from day 3 to day 7 of MV. Eighty patients (10.7%) experienced EOP. Independent predictors of EOP were male sex (odds ratio [OR], 2.06; 95% confidence interval [CI], 1.18-3.63), actual Glasgow Coma Scale value of 6-13 (OR, 1.95; 95% CI, 1.2-3.18), high Logistic Organ Dysfunction score at day 2 (OR, 1.12 per point; 95% CI, 1.02-1.23), unplanned extubation (OR, 3.19; 95% CI, 1.28-7.92), and sucralfate use (OR, 1.81; 95% CI, 1.01-3.26). Protection occurred with use of aminoglycosides (OR, 0.36; 95% CI, 0.17-0.76), beta -lactams and/or beta -lactamase inhibitors (OR, 0.47; 95% CI, 0.28-0.83), or third-generation cephalosporins (OR, 0.33; 95% CI, 0.16-0.74). Sucralfate use and unplanned extubation are independent risk factors for EOP. Use of aminoglycosides, beta-lactams/ beta-lactamase inhibitors, or third-generation cephalosporins protects against EOP.

  4. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  5. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  6. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-01-01

    The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3 2 21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein

  7. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    Science.gov (United States)

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  8. Polymorphism of antibiotic-inactivating enzyme driven by ecology expands the environmental resistome.

    Science.gov (United States)

    Kim, Dae-Wi; Thawng, Cung Nawl; Choi, Jung-Hye; Lee, Kihyun; Cha, Chang-Jun

    2018-01-01

    The environmental resistome has been recognized as the origin and reservoir of antibiotic resistance genes and considered to be dynamic and ever expanding. In this study, a targeted gene sequencing approach revealed that the polymorphic diversity of the aminoglycoside-inactivating enzyme AAC(6')-Ib was ecological niche-specific. AAC(6')-Ib-cr, previously known as a clinical variant, was prevalent in various soils and the intestines of chickens and humans, suggesting that this variant might not have arisen from adaptive mutations in the clinic but instead originated from the environment. Furthermore, ecologically dominant polymorphic variants of AAC(6')-Ib were characterized and found to display different substrate specificities for quinolones and aminoglycosides, conferring the altered resistance spectra. Interestingly, a novel variant with the D179Y substitution showed an extended resistance spectrum to the recently developed fluoroquinolone gemifloxacin. Our results suggest that soil and animal microbiomes could be major reservoirs of antibiotic resistance; polymorphic diversity expands the antibiotic resistome in the environment, resulting in the potential emergence of novel resistance.

  9. [Therapeutics strategies for the management of urinary tract infection in children].

    Science.gov (United States)

    Launay, E; Bingen, E; Cohen, R

    2012-11-01

    Urinary tract infections is one of the most common bacterial infections in pediatrics The increasing involvement of multiresistant bacteria including E. coli producing extended spectrum ß-lactamase (ESBL) makes its management difficult. The purpose of this article is to evaluate the state of the art and to propose ways of thinking about the management of E. coli urinary tract infection in children. The current percentage (less than 10%) of E. coli strains resistant to third generation cephalosporins and the relative efficiency of the latter, should not led to an immediate change of our protocols. Nevertheless, we should verify as soon as possible susceptibility of E. coli responsible for urinary tract infections and consider other therapeutic options for initial therapy and adaptation after obtaining antibiogram. The use of an aminoglycosid as initial treatment seems very interesting. Aminoglycosides have a very good distribution in the renal parenchyma and are still working on the majority of ESBL-producing bacteria. A rapid oral relay after 48 to 72 hours may be proposed according to the results of the susceptibility with either cotrimoxazole, cefixime, ciprofloxacin or an association cefixime-amoxicilline/clavulanate. The treatment of cystitis due to ESBL E. coli is much less problematic given the good urinary beta-lactam antibiotics diffusion. If clinical improvement occurs, even if antibiogram shows that the strain is resistant to the antibiotic prescribed, it is usually unnecessary to change treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Evaluation of multiplex polymerase chain reaction as an alternative to conventional antibiotic sensitivity test

    Directory of Open Access Journals (Sweden)

    K. Rathore

    2018-04-01

    Full Text Available Aim: This study was designed to evaluate the potential of the use of multiplex polymerase chain reaction (PCR as an alternative to conventional antibiotic sensitivity test. Materials and Methods: Isolates of Staphylococcus aureus (total = 36 from clinical cases presented to Teaching Veterinary Clinical Complex of College of Veterinary and Animal Sciences (CVAS, Navania, Udaipur, were characterized by morphological, cultural, and biochemical methods. Then, the isolates were further subjected to molecular characterization by PCR targeting S. aureus-specific sequence (107 bp. Phenotypic antibiotic sensitivity pattern was analyzed by Kirby Bauer disc diffusion method against 11 commonly used antibiotics in veterinary medicine in and around Udaipur region. The genotypic antibiotic sensitivity pattern was studied against methicillin, aminoglycosides, and tetracycline targeting the gene mecA, aacA-aphD, and tetK by multiplex PCR. Results: There was 100% correlation between the phenotype and genotype of aminoglycoside resistance, more than 90% correlation for methicillin resistance, and 58.3% in the case tetracycline resistance. Conclusion: As there is a good correlation between phenotype and genotype of antibiotic resistance, multiplex PCR can be used as an alternative to the conventional antibiotic susceptibility testing, as it can give a rapid and true prediction of antibiotic sensitivity pattern.

  11. Geldanamycin induces production of heat shock protein 70 and partially attenuates ototoxicity caused by gentamicin in the organ of Corti explants

    Directory of Open Access Journals (Sweden)

    Haupt Heidemarie

    2009-09-01

    Full Text Available Abstract Background Heat shock protein 70 (HSP70 protects inner ear cells from damage and death induced by e.g. heat or toxins. Benzoquinone ansamycin antibiotic geldanamycin (GA was demonstrated to induce the expression of HSP70 in various animal cell types. The aim of our study was to investigate whether GA induces HSP70 in the organ of Corti (OC, which contains the auditory sensory cells, and whether GA can protect these cells from toxicity caused by a common aminoglycoside antibiotic gentamicin. Methods To address these questions, we used the OC explants isolated from p3-p5 rats. As a read-out, we used RT-PCR, ELISA and immunofluorescence. Results We found that GA at the concentration of 2 μM efficiently induced HSP70 expression on mRNA and protein level in the OC explants. Confocal microscopy revealed that HSP70 induced by GA is expressed by hair cells and interdental cells of spiral limbus. Preincubation of explants with 2 μM GA prior to adding gentamicin (500 μM significantly reduced the loss of outer but not inner hair cells, suggesting different mechanisms of otoprotection needed for these two cell types. Conclusion GA induced HSP70 in the auditory sensory cells and partially protected them from toxicity of gentamicin. Understanding the molecular mechanisms of GA otoprotection may provide insights for preventative therapy of the hearing loss caused by aminoglycoside antibiotics.

  12. Gut-sparing treatment of urinary tract infection in patients at high risk of Clostridium difficile infection.

    Science.gov (United States)

    Staley, Christopher; Vaughn, Byron P; Graiziger, Carolyn T; Sadowsky, Michael J; Khoruts, Alexander

    2017-02-01

    Recipients of faecal microbiota transplantation (FMT) in treatment of recurrent Clostridium difficile infection (RCDI) remain at markedly increased risk of re-infection with C. difficile with new antibiotic provocations. Urinary tract infections (UTIs) are common indications for antibiotics in these patients, often resulting in C. difficile re-infection. We present a case series of 19 patients treated with parenteral aminoglycosides for UTI following FMT for RCDI. A 3 day outpatient regimen of once-daily intramuscular administration of gentamicin was used to treat 18 consecutive FMT recipients with uncomplicated UTI. One other patient was treated for a complicated UTI with intravenous amikacin. Profiling of 16S rRNA genes was used to track changes in faecal microbial community structure during this regimen in three patients. The protocol was highly effective in treating UTI symptoms. None of the patients suffered a re-infection with C. difficile The faecal microbial communities remained undisturbed by treatment with intramuscular administration of gentamicin. Despite falling out of favour in recent years, aminoglycoside antibiotics given parenterally have the advantage of minimal penetration into the gut lumen. A brief (3 day) course of parenteral gentamicin was safe and effective in curing UTI in patients at high risk of C. difficile infection without perturbing their gut microbiota. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Antibacterial, modulatory activity of antibiotics and toxicity from Rhinella jimi (Stevaux, 2002) (Anura: Bufonidae) glandular secretions.

    Science.gov (United States)

    Sales, Débora Lima; Morais-Braga, Maria Flaviana Bezerra; Santos, Antonia Thassya Lucas Dos; Machado, Antonio Judson Targino; Araujo Filho, João Antonio de; Dias, Diógenes de Queiroz; Cunha, Francisco Assis Bezerra da; Saraiva, Rogério de Aquino; Menezes, Irwin Rose Alencar de; Coutinho, Henrique Douglas Melo; Costa, José Galberto Martins; Ferreira, Felipe Silva; Alves, Rômulo Romeu da Nóbrega; Almeida, Waltécio de Oliveira

    2017-08-01

    The increase in microorganisms with resistance to medications has caused a strong preoccupation within the medical and scientific community. Animal toxins studies, such as parotoid glandular secretions from amphibians, possesses a great potential in the development of drugs, such as antimicrobials, as these possess bioactive compounds. It was evaluated Rhinella jimi (Stevaux, 2002) glandular secretions against standard and multi-resistant bacterial strains; the effect of secretions combined with drugs; and determined the toxicity using two biologic in vivo models, and a in vitro model with mice livers. Standard strains were used for the determination of the Minimum Inhibitory Concentration (MIC), while for the modulatory activity of antibiotics, the clinical isolates Escherichia coli 06, Pseudomonas aeruginosa 03 and Staphylococcus aureus 10 were used. Modulatory activity was evaluated by the broth microdilution method with aminoglycosides and β-lactams as target antibiotics. The secretions in association with the antibiotics have a significant reduction in MIC, both the aminoglycosides and β-lactams. The toxicity and cytotoxicity results were lower than the values used in the modulation. R. jimi glandular secretions demonstrated clinically relevant results regarding the modulation of the tested antimicrobials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    Science.gov (United States)

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  15. Translational read-through of a nonsense mutation causing Bartter syndrome.

    Science.gov (United States)

    Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il

    2013-06-01

    Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.

  16. Combination Therapy of Sophoraflavanone B against MRSA: In Vitro Synergy Testing

    Directory of Open Access Journals (Sweden)

    Su-Hyun Mun

    2013-01-01

    Full Text Available Sophoraflavanone B (SPF-B, a known prenylated flavonoid, was isolated from the roots of Desmodium caudatum. The aim of this study was to determine the antimicrobial synergism of SPF-B combined with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA. MRSA, a multidrug-resistant pathogen, causes both hospital- and community-acquired infections worldwide. The antimicrobial activity of SPF-B was assessed by the broth microdilution method, checkerboard dilution test, and time-kill curve assay. The MIC of SPF-B for 7 strains of S. aureus ranges from 15.6 to 31.25 μg/mL determined. In the checkerboard method, the combinations of SPF-B with antibiotics had a synergistic effect; SPF-B markedly reduced the MICs of the β-lactam antibiotics: ampicillin (AMP and oxacillin (OXI; aminoglycosides gentamicin (GET; quinolones ciprofloxacin (CIP and norfloxacin (NOR against MRSA. The time-kill curves assay showed that a combined SPF-B and selected antibiotics treatment reduced the bacterial counts below the lowest detectable limit after 24 h. These data suggest that the antibacterial activity of SPF-B against MRSA can be effectively increased through its combination with three groups of antibiotics (β-lactams, aminoglycosides, and quinolones. Our research can be a valuable and significant source for the development of a new antibacterial drug with low MRSA resistance.

  17. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin.

    Science.gov (United States)

    Qi, Meihao; Qiu, Yang; Zhou, Xueying; Tian, Keyong; Zhou, Ke; Sun, Fei; Yue, Bo; Chen, Fuquan; Zha, Dingjun; Qiu, Jianhua

    2018-06-02

    In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Protective effects of nettle (Urtica dioica extract against acute kidney injury induced by gentamycin in the rat

    Directory of Open Access Journals (Sweden)

    سید پژمان مرتضوی

    2017-11-01

    Full Text Available Aminoglycosides are often used in combination with beta-lactam antibiotics and have a rapid bactericidal effect, are available at an affordable cost and have less incidence of resistance, making them a drug of choice for treatment of several life-threatening infections. However, the nephrotoxic effects of aminoglycosides prevent their long term use. The use of herbal extracts in order to decrease injuries of injurious materials has long been considered. The present study was conducted in order to investigate the protective effects of nettle (Urtica dioica extract against gentamicin induced kidney injuries in the rat. Forty five male Wistar rats were divided into 9 groups consisting of: 1-healthy control group, 2- negative control group that received tween 20 (extract solvent, 3- patient control group which received onlygentamicin at 100 mg/kg, experimental healthy groups 4-6 which received nettle extract at 50, 100 and 200 mg/kg and patient experimental groups 7-9 which received nettle extract along with gentamicin at 100 mg/kg. At the end of the experiment (28 days, blood samples were obtained, and the kidneys were removed for histopathologic investigations. The results showed that gentamicin alone induced renal tissue damage and significantly increased the serum levels of creatinine and urea (p

  19. Hierarchical Cluster Analysis of Semicircular Canal and Otolith Deficits in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Alexander A. Tarnutzer

    2018-04-01

    Full Text Available BackgroundGait imbalance and oscillopsia are frequent complaints of bilateral vestibular loss (BLV. Video-head-impulse testing (vHIT of all six semicircular canals (SCCs has demonstrated varying involvement of the different canals. Sparing of anterior-canal function has been linked to aminoglycoside-related vestibulopathy and Menière’s disease. We hypothesized that utricular and saccular impairment [assessed by vestibular-evoked myogenic potentials (VEMPs] may be disease-specific also, possibly facilitating the differential diagnosis.MethodsWe searched our vHIT database (n = 3,271 for patients with bilaterally impaired SCC function who also received ocular VEMPs (oVEMPs and cervical VEMPs (cVEMPs and identified 101 patients. oVEMP/cVEMP latencies above the 95th percentile and peak-to-peak amplitudes below the 5th percentile of normal were considered abnormal. Frequency of impairment of vestibular end organs (horizontal/anterior/posterior SCC, utriculus/sacculus was analyzed with hierarchical cluster analysis and correlated with the underlying etiology.ResultsRates of utricular and saccular loss of function were similar (87.1 vs. 78.2%, p = 0.136, Fisher’s exact test. oVEMP abnormalities were found more frequent in aminoglycoside-related bilateral vestibular loss (BVL compared with Menière’s disease (91.7 vs. 54.6%, p = 0.039. Hierarchical cluster analysis indicated distinct patterns of vestibular end-organ impairment, showing that the results for the same end-organs on both sides are more similar than to other end-organs. Relative sparing of anterior-canal function was reflected in late merging with the other end-organs, emphasizing their distinct state. An anatomically corresponding pattern of SCC/otolith hypofunction was present in 60.4% (oVEMPs vs. horizontal SCCs, 34.7% (oVEMPs vs. anterior SCCs, and 48.5% (cVEMPs vs. posterior SCCs of cases. Average (±1 SD number of damaged sensors was 6.8 ± 2.2 out of 10

  20. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa.

    Science.gov (United States)

    Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza

    2015-04-01

    The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the

  1. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  2. Outcome and prognostic factors of patients with right-sided infective endocarditis requiring intensive care unit admission.

    Science.gov (United States)

    Georges, Hugues; Leroy, Olivier; Airapetian, Norair; Lamblin, Nicolas; Zogheib, Elie; Devos, Patrick; Preau, Sebastien

    2018-02-21

    Right-sided infective endocarditis (RSIE) is an uncommon diagnosis accounting for less than 10% of cases of infective endocarditis. Optimal management for severely ill patients with RSIE remains challenging because few studies reported on management and outcome. The goal of our study was to determine outcome and associated prognostic factors in a population of ICU patients with a diagnosis of definite, active and severe RSIE. We performed a retrospective study in 10 French ICUs between January 2002 and December 2012. Main outcome was mortality at 30 days after ICU admission. Significant variables associated with 30-days mortality in the bivariate analysis were included in a logistic regression analysis. A total of 37 patients were studied. Mean age was 47.9 ± 18.4 years. Mean SAPS II, SOFA score and Charlson comorbidity index were 32.4 ± 17.4, 6.3 ± 4.4 and 3.1 ± 3.4, respectively. Causative pathogens, identified in 34 patients, were mainly staphylococci (n = 29). The source of endocarditis was a catheter related infection in 10 patients, intravenous drug abuse in 8 patients, cutaneous in 7 patients, urinary tract related in one patient and has an unknown origin in 7 patients. Vegetation size was higher than 20 mm for 14 patients. Valve tricuspid regurgitation was classified as severe in 11 patients. All patients received initial appropriate antimicrobial therapy. Aminoglycosides were delivered in combination with β-lactam antibiotics or vancomycin in 22 patients. Surgical procedure was performed in 14 patients. Eight patients (21.6%) died within 30 days following ICU admission. One independent prognostic factor was identified: use of aminoglycosides was associated with improved outcome (OR = 0.1; 95%CI = 0.0017-0.650; p = 0.007). Mortality of patients with RSIE needing ICU admission is high. Aminoglycosides used in combination with β-lactam or vancomycin could reduce 30 days mortality.

  3. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra

    2015-03-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  4. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny.

    Science.gov (United States)

    Lee, Sa Mi; Kang, Kyungsu; Chung, Hyungsup; Yoo, Soon Hee; Xu, Xiang Ming; Lee, Seung-Bum; Cheong, Jong-Joo; Daniell, Henry; Kim, Minkyun

    2006-06-30

    The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

  5. IncA/C Plasmid Carrying bla(NDM-1), bla(CMY-16), and fosA3 in a Salmonella enterica Serovar Corvallis Strain Isolated from a Migratory Wild Bird in Germany.

    Science.gov (United States)

    Villa, L; Guerra, B; Schmoger, S; Fischer, J; Helmuth, R; Zong, Z; García-Fernández, A; Carattoli, A

    2015-10-01

    A Salmonella enterica serovar Corvallis strain was isolated from a wild bird in Germany. This strain carried the IncA/C2 pRH-1238 plasmid. Complete sequencing of the plasmid was performed, identifying the blaNDM-1, blaCMY-16, fosA3, sul1, sul2, strA, strB, aac(6')-Ib, aadA5, aphA6, tetA(A), mphA, floR, dfrA7, and merA genes, which confer clinically relevant resistance to most of the antimicrobial classes, including β-lactams with carbapenems, fosfomycin, aminoglycosides, co-trimoxazole, tetracyclines, and macrolides. The strain likely originated from the Asiatic region and was transferred to Germany through the Milvus migrans migratory route. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Listeria monocytogenes endophthalmitis following keratoconjunctivitis.

    Science.gov (United States)

    Shoughy, Samir S; Tabbara, Khalid F

    2014-01-01

    Endophthalmitis due to endogenous or exogenous bacteria is a rare infection of the eye. We report a case of endophthalmitis following Listeria monocytogenes keratoconjunctivitis in a 27-year-old healthy white male presenting with hand motion visual acuity, right eye mucopurulent conjunctivitis, elevated intraocular pressure, and pigmented hypopyon 6 months post-keratectomy. The conjunctivitis was unresponsive to a 5-day course of topical tobramycin eye drops, and the patient developed keratitis with pain that progressed to endophthalmitis after 21 days. Diagnostic B-scan revealed vitreous exudates. Intraocular fluid specimen showed Gram-positive organisms and the aqueous culture grew penicillin-/aminoglycoside-sensitive L. monocytogenes. The patient was given intravitreal and systemic vancomycin and ceftazidime. The eye was unresponsive to intravenous penicillin and gentamicin; the anterior chamber progressively flattened and developed phthisis bulbi. L. monocytogenes keratoconjunctivitis may lead to bacterial endophthalmitis. Prompt culture and early antibiotic therapy are recommended.

  7. Neomycin inhibits PDGF-induced IP3 formation and DNA synthesis but not PDGF-stimulated uptake of inorganic phosphate in C3H/10T1/2 fibroblasts.

    Science.gov (United States)

    Vassbotn, F S; Langeland, N; Holmsen, H

    1990-09-01

    Porcine PDGF was found to increase [3H]inositol trisphosphate, [3H]thymidine incorporation and 32P-labelling of polyphosphoinositides in C3H/10T1/2 Cl 8 fibroblasts. These responses to PDGF stimulation were all inhibited by 5 mM neomycin, a polycationic aminoglycoside formerly known to inhibit polyphosphoinositide turnover. PDGF also markedly increased the cellular uptake of inorganic [32P]Pi. This response of PDGF was not inhibited by neomycin (5 mM). Thus, neomycin inhibited PDGF-induced IP3 formation, 32P-labelling of polyphosphoinositides and DNA synthesis, but not cellular uptake of inorganic phosphate. These effects of neomycin suggest a bifurcation of the initial part of the PDGF-induced signal transduction, separating at the receptor level or before phospholipase C activation.

  8. Pear transformed with a lytic peptide gene for disease control affects nontarget organism, pear psylla (Homoptera: Psyllidae).

    Science.gov (United States)

    Puterka, Gary J; Bocchetti, Chris; Dang, Phat; Bell, R L; Scorza, Ralph

    2002-08-01

    The biology and behavior of pear psylla, Cacopsylla pyricola Foerster, on a transgenic clone of 'Bartlett' pear, Pyrus communis L., containing a synthetic antimicrobial gene, D5C1, was compared with that of a nontransgenic parental clone to determine whether there were any nontarget effects. The gene construct also contained the marker gene nptII (aminoglycoside 3'-phosphotransferase II) that encodes for antibiotic resistance to identify transformed plants. The purpose of the original transformation was to enhance pear resistance to the bacterial disease fireblight caused by Erwinia amylovora (Burr.) Winslow et al. The biology and behavior of pear psylla on a transgenic clone were compared with a nontransgenic parental pear clone in short- (crops.

  9. Management of bacteriuria in pregnancy.

    Science.gov (United States)

    Pedler, S J; Bint, A J

    1987-04-01

    Bacteriuria of pregnancy is a common condition which, although usually asymptomatic, may give rise to potentially serious sequelae. All pregnant women should therefore be screened for the presence of bacteriuria, which if detected should be treated with an antimicrobial agent believed to be safe for use in pregnancy. Appropriate antimicrobial drugs include penicillins, cephalosporins and nitrofurantoin. Nalidixic acid, aminoglycosides and sulphonamides may be used under certain circumstances and with some precautions. Tetracyclines, trimethoprim and co-trimoxazole (trimethoprim-sulphamethoxazole) should be avoided. There is some evidence that short-course therapy in pregnant women is less effective than longer courses, and we continue to recommend a 7-day course. Follow-up after completing a treatment course is an essential part of managing bacteriuria of pregnancy.

  10. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece.

    Science.gov (United States)

    Maraki, Sofia; Vardakas, Konstantinos Z; Samonis, George; Perdikis, Dimitrios; Mavromanolaki, Viktoria Eirini; Kofteridis, Diamantis P; Falagas, Matthew E

    2017-06-01

    To study the evolution in the susceptibility of Enterobacter spp. in Crete, Greece from 2010 to 2015. Non-duplicate isolates were studied using automated systems. Phenotypic confirmatory tests were applied. A total of 939 Enterobacter isolates were included. Colistin was the most active antibiotic (97.9%) followed by imipenem (96.1%), gentamicin (95.7%), tigecycline (91.8%), cefepime (89.4%), chloramphenicol (85.8%), fosfomycin (85.5%), trimethoprim/sulfamethoxazole (83.3%) and piperacillin/tazobactam (73.3%). Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility was observed among multidrug-resistant strains and carbapenem-nonsusceptible isolates. AmpC was the most common resistant mechanism (21%); carbapenemases (3.7%) and aminoglycoside-modifying enzymes (6.5%) were also detected. A significant proportion of Enterobacter spp. was resistant to several antibiotics, most notably β-lactams.

  11. Resistance to K. pneumoniae in young children with congenital heart defects

    Directory of Open Access Journals (Sweden)

    V. N. Ilina

    2015-10-01

    Full Text Available Klebsiella pneumoniae is one of the leading agents of nosocomial infections (NI. In Russia, Klebsiella pneumoniae is the third in frequency of gram-negative pathogen NI. For a long time one of the major clinically relevant mechanisms of acquired resistance to K. pneumoniae is multidrug resistance caused by extended spectrum -lactamase production (ESBL. Carbapenems show the greatest resistance to the action of ESB. However, now there exist registered strains of K.pneumoniae resistant to carbapenems. In connection with this in 2008 we conducted a prospective study on resistance to K. pneumoniae in young children being treated at ICU. It was found out that resistance to III-IV-generation cephalosporines, fluoroquinolones, aminoglycosides is determined by production of ESBL, while resistance to carbapenems occurs due to reduction of permeability of cell membranes, in combination with production of ESBL. Some features of patients colonized with multidrug-resistant strains of K. pneumoniae are described.

  12. Combination antibiotic therapy for the treatment of infective endocarditis due to enterococci.

    Science.gov (United States)

    Leone, Sebastiano; Noviello, Silvana; Esposito, Silvano

    2016-06-01

    Enterococci are common causes of infective endocarditis (IE) in both health care and community-based setting. Enterococcal IE requires bactericidal therapy for an optimal outcome. For decades, cell-wall-active antimicrobial agents (penicillins or vancomycin) in combination with aminoglycosides were the cornerstone of the treatment; however, the emergence of antibiotic resistance has significantly reduced the efficacy of these regimens. Data for this review were identified by searches of MEDLINE and references from relevant articles on antibiotic combination regimens for the treatment of enterococcal IE. Abstracts presented in scientific conferences were not searched for. New effective and safe combination treatments, including double-β-lactam and daptomycin/β-lactam combination, are proving useful for the management of IE due to enterococci.

  13. Menadione (vitamin K enhances the antibiotic activity of drugs by cell membrane permeabilization mechanism

    Directory of Open Access Journals (Sweden)

    Jacqueline C. Andrade

    2017-01-01

    Full Text Available Menadione, vitamin K3, belongs to the class of lipid-soluble vitamins and lipophilic substances as menadione cause disturbances in the bacterial membrane, resulting in damage to the fundamental elements for the integrity of the membrane, thus allowing increased permeability. Accordingly, the aim of this study was to evaluate in vitro the antibiotic-modifying activity of menadione in multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, with a gradual increase in its subinhibitory concentration. In addition, menadione was compared with cholesterol and ergosterol for similarity in mechanism of drug modulatory action. Antibiotic-modifying activity and antibacterial effect were determined by the broth microdilution assay. Menadione, cholesterol and ergosterol showed modulatory activity at clinically relevant concentrations, characterizing them as modifiers of bacterial drug resistance, since they lowered the MIC of the antibiotics tested. This is the first report of the antibacterial activity of menadione and its potentiation of aminoglycosides against multiresistant bacteria.

  14. [New antibacterial agents on the market and in the pipeline].

    Science.gov (United States)

    Kern, W V

    2015-11-01

    After some years of stagnation there have been several new successful developments in the field of antibacterial agents. Most of these new developments have been in conventional antibacterial classes. New drugs among the beta-lactam agents are methicillin-resistant Staphylococcus aureus (MRSA) active cephalosporins (ceftaroline and ceftobiprole) and new combinations of beta-lactam with beta-lactamase inhibitors (ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/relebactam and meropenem/RPX7009). New developments can also be observed among oxazolidinones (tedizolid, radezolid, cadazolid and MRX-I), macrolides/ketolides (modithromycin and solithromycin), aminoglycosides (plazomicin), quinolones (nemonoxacin, delafloxacin and avarofloxacin), tetracyclines (omadacycline and eravacycline) as well as among glycopeptides and lipopeptides (oritavancin, telavancin, dalbavancin and surotomycin). New agents in a very early developmental phase are FabI inhibitors, endolysines, peptidomimetics, lipid A inhibitors, methionyl-tRNA synthetase inhibitors and teixobactin.

  15. Antimicrobial resistance in Salmonella spp. recovered from patients admitted to six different hospitals in Tehran, Iran from 2007 to 2008

    DEFF Research Database (Denmark)

    Tajbakhsh, Mercedeh; Hendriksen, Rene S.; Nochi, Zahra

    2012-01-01

    were screened for the presence of Salmonella, serotyped, tested for antimicrobial susceptibility using disk diffusion and examined for the presence of relevant resistance genes and integrons by PCR. A total of 1,120 patients were screened for the presence of Salmonella. Out of 71 Salmonella isolates...... recovered, the following serovars were identified: 17 Typhi, 14 Paratyphi C, 13 Enteritidis, 11 Paratyphi B, 10 Paratyphi A and six Infantis. Most resistance was observed towards sulfamethoxazole (30%), tetracyclines (25%), nalidixic acid (22%), spectinomycin (17%), trimethoprim (15%), ampicillin (14......%) and kanamycin (14%). The tetracycline resistance genes tet(A), tet(B), and tet(G) were found in 28%, 14% and 6% of the tetracycline resistant isolates, respectively. The genes aadA, aadB, strA, strB and aphA1-Iab were present in 83%, 55%, 34%, 1% and 17% of the aminoglycoside resistant isolates, respectively...

  16. Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: relationship between cytosolic translation and longevity in filamentous fungi.

    Science.gov (United States)

    Gagny, B; Rossignol, M; Silar, P

    1997-12-01

    We have cloned and sequenced the gene encoding the translation elongation factor eEF1A from two filamentous fungi, Podospora curvicolla and Sordaria macrospora. These fungi are close relatives of Podospora anserina and also show senescence syndromes. Comparison of the sequences of the deduced proteins with that of P. anserina reveals that the three proteins differ in several positions. Replacement of the P. anserina gene by either of the two exogenous genes does not entail any modification in P. anserina physiology; the longevity of the fungus is not affected. No alteration of in vivo translational accuracy was detected; however, the exogenous proteins nonetheless promoted a modification of the resistance to the aminoglycoside antibiotic paromomycin. These data suggest that optimization of life span between these closely related fungi has likely not been performed during evolution through modifications of eEF1A activity, despite the fact that mutations in this factor can drastically affect longevity. Copyright 1997 Academic Press.

  17. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    Science.gov (United States)

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  18. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  19. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Bieri, Philipp; Leibundgut, Marc; Leitner, Alexander; Aebersold, Ruedi; Boehringer, Daniel; Ban, Nenad

    2015-04-17

    Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity. Copyright © 2015, American Association for the Advancement of Science.

  20. Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics.

    Science.gov (United States)

    Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon

    2017-06-15

    Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Characterization of RbmD (glycosyltransferase in ribostamycin gene cluster) through neomycin production reconstituted from the engineered Streptomyces fradiae BS1.

    Science.gov (United States)

    Nepal, Keshav Kumar; Oh, Tae-Jin; Subba, Bimala; Yoo, Jin Cheol; Sohng, Jae Kyung

    2009-01-31

    Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

  2. Genetic complexity of fusidic acid-resistant small colony variants (SCV in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jonas Lannergård

    Full Text Available FusE mutants are fusidic acid-resistant small colony variants (SCVs of Staphylococcus aureus that can be selected with aminoglycosides. All FusE SCVs have mutations in rplF, encoding ribosomal protein L6. However, individual FusE mutants including some with the same mutation in rplF display auxotrophy for either hemin or menadione, suggesting that additional mutations are involved. Here we show that FusE SCVs can be divided into three genetic sub-groups and that some carry an additional mutation, in one of the genes required for hemin biosynthesis, or in one of the genes required for menadione biosynthesis. Reversion analysis and genome sequencing support the hypothesis that these combinations of mutations in the rplF, hem, and/or men genes can account for the SCV and auxotrophic phenotypes of FusE mutants.

  3. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

    Science.gov (United States)

    Schwarz, S; Chaslus-Dancla, E

    2001-01-01

    This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation.

  4. Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis.

    Science.gov (United States)

    Gurung, Mamata; Tamang, Migma Dorji; Moon, Dong Chan; Kim, Su-Ran; Jeong, Jin-Ha; Jang, Geum-Chan; Jung, Suk-Chan; Park, Yong-Ho; Lim, Suk-Kyung

    2015-07-01

    Characterization of 227 Streptococcus suis strains isolated from pigs during 2010 to 2013 showed high levels of resistance to clindamycin (95.6%), tilmicosin (94.7%), tylosin (93.8%), oxytetracycline (89.4%), chlortetracycline (86.8%), tiamulin (72.7%), neomycin (70.0%), enrofloxacin (56.4%), penicillin (56.4%), ceftiofur (55.9%), and gentamicin (55.1%). Resistance to tetracyclines, macrolides, aminoglycosides, and fluoroquinolone was attributed to the tet gene, erm(B), erm(C), mph(C), and mef(A) and/or mef(E) genes, aph(3')-IIIa and aac(6')-Ie-aph(2″)-Ia genes, and single point mutations in the quinolone resistance-determining region of ParC and GyrA, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing

    DEFF Research Database (Denmark)

    Lee, Seungmin; Rose, Simon; Metodiev, Metodi D

    2015-01-01

    maternally inherited traits. The pathophysiology induced by mtDNA mutations has traditionally been attributed to deficient oxidative phosphorylation, which causes energy crisis with functional impairment of multiple cellular processes. In contrast, it was recently reported that signaling induced......Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood. Non-syndromic deafness and predisposition to aminoglycoside-induced deafness can be caused by specific mutations in the 12S rRNA gene of mtDNA and are thus...... by 'hypermethylation' of two conserved adenosines of 12S rRNA in the mitoribosome is of key pathophysiological importance in sensorineural deafness. In support for this concept, it was reported that overexpression of the essential mitochondrial methyltransferase TFB1M in the mouse was sufficient to induce...

  6. Position statement of the Slovenian society of anaesthesiology and intensive care medicine on the use of sugammadex

    Directory of Open Access Journals (Sweden)

    Neva Požar Lukanović

    2018-06-01

    Full Text Available We present our position statement for the use of sugammadex, a specific binder for aminosteroid muscle relaxants, in the most common clinical circumstances (in the case of an emergency intubation, when the patient cannot be ventilated or intubated; in patients with neuro-muscular disease, in patients with liver failure, in patients with renal failure, in patients with allergic reaction to sugammadex or to rocuronium, in cases of residual muscle relaxation and when we have to use a muscle relaxant short time after sugammadex application. Sugammadex is the drug of choice in cases of cardiac arhythmia, COPD, asthma, neuro-muscular diseases, pathological obesity, intraoperative use of continuous infusion of aminoglycoside muscle relaxants. It is therefore necessary to control the neuro-muscular block during surgery due to different response of patients to the muscle relaxant. Clinical tests alone are not an adequate substitute for objective control of muscular strength recovery.

  7. Moellerella wisconsensis: identification, natural antibiotic susceptibility and its dependency on the medium applied.

    Science.gov (United States)

    Stock, Ingo; Falsen, Enevold; Wiedemann, Bernd

    2003-01-01

    The present study establishes a data compilation on biochemical features and natural antibiotic susceptibilities of Moellerella wisconsensis strains. 17 moellerellae isolated from humans (n = 11), food (n = 5) and water (n = 1) were tested. Identification was carried out using two commercially available systems and conventional tests. MIC determinations of 74 antibiotics were performed applying a microdilution procedure in Cation-adjusted Mueller Hinton broth and IsoSensitest broth. M. wisconsensis was naturally sensitive to doxycycline, minocycline, all tested aminoglycosides, numerous beta-lactams, all fluoroquinolones, folate-pathway inhibitors, chloramphenicol and nitrofurantoin. Natural resistance was found with oxacillin, penicillin G, all tested macrolides, lincomycin, streptogramins, ketolides, glycopeptides, fusidic acid, linezolid and rifampicin. Medium-dependent differences in susceptibility affecting clinical assessment criteria were seen with tetracycline, clindamycin and fosfomycin. From the data of the present study it is possible that some moellerellae are misidentified as Klebsiella pneumoniae subsp. ozaenae.

  8. Nocardia transvalensis Disseminated Infection in an Immunocompromised Patient with Idiopathic Thrombocytopenic Purpura

    Directory of Open Access Journals (Sweden)

    Jorge García-Méndez

    2016-01-01

    Full Text Available Nocardia transvalensis complex includes a wide range of microorganisms with specific antimicrobial resistance patterns. N. transvalensis is an unusual Nocardia species. However, it must be differentiated due to its natural resistance to aminoglycosides while other Nocardia species are susceptible. The present report describes a Nocardia species involved in an uncommon clinical case of a patient with idiopathic thrombocytopenic purpura and pulmonary nocardiosis. Microbiological and molecular techniques based on the sequencing of the 16S rRNA gene allowed diagnosis of Nocardia transvalensis sensu stricto. The successful treatment was based on trimethoprim-sulfamethoxazole and other drugs. We conclude that molecular identification of Nocardia species is a valuable technique to guide good treatment and prognosis and recommend its use for daily bases diagnosis.

  9. Subcutaneously administered antibiotics: a national survey of current practice from the French Infectious Diseases (SPILF) and Geriatric Medicine (SFGG) society networks.

    Science.gov (United States)

    Forestier, E; Paccalin, M; Roubaud-Baudron, C; Fraisse, T; Gavazzi, G; Gaillat, J

    2015-04-01

    A national survey was performed to explore antibiotic prescription by the subcutaneous (sc) route among French infectious diseases and geriatric practitioners. Among the participating physicians, 367 (96.1%) declared administering sc antibiotics at some point. Ceftriaxone was prescribed sc by all but one, and ertapenem, teicoplanin, aminoglycosides and amoxicillin by 33.2%, 39.2%, 35.1% and 15.3%, respectively. The sc route was resorted to mainly in case of unavailable oral, intravenous or intramuscular routes, especially during palliative care. Pain, skin necrosis and lack of efficacy were the main adverse effects, reported by 70.8%, 12.8% and 19.9% of practitioners, respectively. Further studies are needed to precise the indications, modalities and tolerance of sc antibiotic use. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Assessment of tobramycin RIA for drug monitoring and dosage regimen. Comparison with other assay technics

    International Nuclear Information System (INIS)

    Takahashi, S.; Shinozaki, K.; Tsujino, D.; Ohhara, H.; Tanaka, Y.; Arai, S.; Someya, K.; Sasaki, Y.

    1983-01-01

    Because of wide range of inter-individual difference of pharmacokinetic parameter, importance of monitoring blood concentration of aminoglycoside antibiotics in each patient has been recognized. With the purpose to use for monitoring of serum tobramycin (TOB) levels and for adequate dosage regimen RIA of TOB was evaluated in comparison with other assay technics. Gamma Coat TOB RIA kits (Clinical Assay-Travenol Japan) were used for RIA of TOB. The TOB concentrations in the same samples were also measured by two kinds of enzyme immunoassay (EIA) (EMIT EIA and SLFIA EIA), High Performance Liquid Chromatography (HPLC) and bioassay (BA). RIA of TOB is a useful assay method with high sensitivity and reasonably good precision to be used for drug monitoring and adequate dosage regimen. Modification of the method for rapid assay of a small number of samples will increase the clinical usefulness in individualized drug monitoring

  11. AFRRI reports. First Quarter, January-March 1991. Scientific report

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    Ionizing radiation reduces the host's defenses to infection (1) and enhances its susceptibility to systemic infection due to endogenous and exogenous organisms. Klebsiella pneumoniae is one of the most frequent causes of gram-negative bacteremia, and is especially prevalent in immunocompromised patients. Therapy for severe systemic infection due to gram-negative bacteria generally involves the use of aminoglycosides in combination with beta lactam antibiotics. However, several recently developed quinolone compounds have exhibited high in vitro bactericidal activity against most gram negative bacteria. including K. pneumoniae. In this study, the authors evaluated the efficacy of oral therapy with several quinolones in a model of experimental septicemia due to orally ingested K pneumoniae in irradiated mice.

  12. Osteomyelitis of the base of the skull

    International Nuclear Information System (INIS)

    Chandler, J.R.; Grobman, L.; Quencer, R.; Serafini, A.

    1986-01-01

    Infection in the marrow of the temporal, occipital, and sphenoid bones is an uncommon, but increasing occurrence. It is usually secondary to infections beginning in the external auditory canal and is caused almost uniformly by the gram negative Pseudomonas aeruginosa bacteria. Technetium and gallium scintigraphy help in the early detection of such infections while CT scans demonstrate dissolution of bone in well-developed cases. Headache is the predominant symptom. Dysphagia, hoarseness, and aspiration herald the inevitable march of cranial nerves. We have diagnosed and treated 17 cases of osteomyelitis of the skull base. Although the total mortality rate is 53%, it is now a curable disease. Six of our last 8 patients remain alive, although 1 is still under treatment. Treatment is medical and requires the long-term concomitant intravenous administration of an aminoglycoside and a broad spectrum semisynthetic penicillin effective against the causative organism

  13. Characterization of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Bruun, Morten Sichlau; Larsen, J.L.

    2001-01-01

    Class 1 integrons were found in 26 of 40 antibiotic-resistant isolates of the fish pathogen Aeromonas salmonicida from Northern Europe and North America. Three different dhfr genes, conferring trimethoprim resistance, and one ant(3 " )1a aminoglycoside resistance gene were identified as gene...... inserts. The gene cassettes tended to be conserved among isolates from a particular geographical area. Nineteen isolates transferred R- plasmids carrying different tet determinants to Escherichia coli in filter mating assays, and in 15 cases, the class 1 integrons were co-transferred. Transferable...... sulphadiazine, trimethoprim and streptomycin resistances were invariably encoded by integrons. It thus appears that integron-encoded antibiotic resistance genes contribute substantially to the horizontal spread of antimicrobial resistance within this species, being associated with conjugative plasmids....

  14. Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data

    DEFF Research Database (Denmark)

    dos Santos, Teresa Pires; Damborg, Peter; Moodley, Arshnee

    2016-01-01

    Background and rationale: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of infections in dogs, also posing a zoonotic risk to humans. This systematic review aimed to determine the global epidemiology of MRSP and provide new insights into the population structure...... the MLST database for this species. Analysis of MLST data was performed with eBURST and ClonalFrame, and the proportion of MRSP isolates resistant to selected antimicrobial drugs was determined for the most predominant clonal complexes. Results: Fifty-eight studies published over the last 10 years were....... In Europe, CC258, which is more frequently susceptible to enrofloxacin and aminoglycosides, and more frequently resistant to sulphonamides/trimethoprim than CC71, is increasingly reported in various countries. CC68, previously described as the epidemic North American clone, is frequently reported...

  15. A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues

    Directory of Open Access Journals (Sweden)

    Young-Sik Choe

    2016-12-01

    Full Text Available Abstract As a novel strategy to remove β-lactam antibiotic residues from fish tissues, utilization of β-lactamase, enzyme that normally degrades β-lactam structure-containing drugs, was explored. The enzyme (TEM-52 selectively degraded β-lactam antibiotics but was completely inactive against tetracycline-, quinolone-, macrolide-, or aminoglycoside-structured antibacterials. After simultaneous administration of the enzyme with cefazolin (a β-lactam antibiotic to the carp, significantly lowered tissue cefazolin levels were observed. It was confirmed that the enzyme successfully reached the general circulation after intraperitoneal administration, as the carp serum obtained after enzyme injection could also degrade cefazolin ex vivo. These results suggest that antibiotics-degrading enzymes can be good candidates for antibiotic residue depuration.

  16. Pediatric melioidosis in Sarawak, Malaysia: Epidemiological, clinical and microbiological characteristics.

    Science.gov (United States)

    Mohan, Anand; Podin, Yuwana; Tai, Nickson; Chieng, Chae-Hee; Rigas, Vanessa; Machunter, Barbara; Mayo, Mark; Wong, Desiree; Chien, Su-Lin; Tan, Lee-See; Goh, Charles; Bantin, Reginal; Mijen, Alexander; Chua, Wen-Yi; Hii, King-Ching; Wong, See-Chang; Ngian, Hie-Ung; Wong, Jin-Shyan; Hashim, Jamilah; Currie, Bart J; Ooi, Mong-How

    2017-06-01

    Melioidosis is a serious, and potentially fatal community-acquired infection endemic to northern Australia and Southeast Asia, including Sarawak, Malaysia. The disease, caused by the usually intrinsically aminoglycoside-resistant Burkholderia pseudomallei, most commonly affects adults with predisposing risk factors. There are limited data on pediatric melioidosis in Sarawak. A part prospective, part retrospective study of children aged Sarawak between 2009 and 2014. We examined epidemiological, clinical and microbiological characteristics. Forty-two patients were recruited during the 6-year study period. The overall annual incidence was estimated to be 4.1 per 100,000 children Sarawak has a very high incidence of pediatric melioidosis, caused predominantly by gentamicin-susceptible B. pseudomallei strains. Children frequently presented with disseminated disease and had an alarmingly high death rate, despite the absence of any apparent predisposing risk factor.

  17. USAGE RATE OF THE UNLICENSED MEDICATIONS IN NEONATOLOGY: DATA OF THE PHARMACO EPIDEMIOLOGICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    A.S. Kolbin

    2007-01-01

    Full Text Available In recent years clinical pharmacologists working in the field of pediatrics all across the world scrutinize the application issues of unlicensed medications among children. Based on the example of a group of patients consisting of 449 premature infants and with the aid of the pharma coepidemiological research, the authors showed the usage rate of unlicensed anti infectious medications in neonatology. The analysis embraced the 9 year long period of work of the largest neonatal center in northwest. As a result they uncovered that the anti infectious medications which were prescribed most often were aminoglycoside and cephalosporin antibiotics. The applied medications were referred to the unlicensed in neonatology in 21% of cases, and in 8% of cases they were used off label. Further more, it was noted that there was a general trend towards the considerable increase of application of the banned medications for the analyzed period.Key words: very low birth infants, unlicensed drugs.

  18. Assessment of antibiotic resistance genes and integrons in commensal Escherichia coli from the Indian urban waste water: Implications and significance for public health

    Directory of Open Access Journals (Sweden)

    Nambram Somendro Singh

    2017-10-01

    Full Text Available Antibiotics like β-lactams, quinolones/fluoroquinolones, aminoglycosides and tetracycline constitute the major mainstay of treatment against most infectious diseases including Escherichia coli. Indiscriminate use of antibiotics for human and animal well-being has generated an enormous evolutionary pressure on bacteria especially E.coli, which has a highly plastic/evolving genome. Though, antibiotic resistance (AR has been extensively studied in pathogenic E.coli, commensal strains have been studied less owing to lesser clinical significance. However, commensal strains pose a serious threat as reservoirs and transmitters of resistance genes to other bacteria. Therefore, the present study was undertaken to investigate the prevalence of resistance genes and integrons in commensal E.coli isolated from river Yamuna, Delhi, India, which receives plentiful urban waste water. Eighty three well-characterized E.coli strains of phylogroups A and B1 isolated from river Yamuna were investigated. Antimicrobial susceptibilities and minimal inhibitory concentrations (MICs for β-lactams, aminoglycosides, tetracycline and quinolone/fluoroquinolone were determined by disk diffusion and Etest, according to Clinical and Laboratory Standards Institute (CLSI guidelines. Production of Extended spectrum β-lactamases (ESBL and AmpC was investigated. Prevalence of antibiotic-resistance genes for β-lactams (blaTEM,blaSHV, blaCTX-M, blaOXA, blaCMY-42, aminoglycosides (rmtA, rmtB, rmtC, armA, str, aacC2, tetracycline (tetA, tetR, tetM, tetW, and plasmid-mediated quinolone resistance, PMQR (qnrA, qnrB, qnrC, qnrD, qnrS, qep, aac were assessed. Integrons and  gene-cassette arrays were characterized. Commensal E.coli strains showed a higher resistance to ampicillin (95%, less to cefazolin (45% and still lesser to tetracycline (15%. About 19% of these strains showed multidrug resistant (three or more classes of antibiotics, of which 15% also produced ESBLs. None of the

  19. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  20. Severe necrotizing myocarditis caused by serratia marcescens infection in an axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Del-Pozo, J; Girling, S; Pizzi, R; Mancinelli, E; Else, R W

    2011-05-01

    This report provides the first account of the pathological changes associated with infection by Serratia marcescens in an adult male axolotl. The infection resulted in septicaemia with severe multifocal necrotizing myocarditis. The latter lesion evolved to cardiac rupture, haemopericardium and death resulting from cardiac tamponade. This animal was exposed to higher than usual temperatures (24-25 °C) 2 weeks before the onset of disease and this may have resulted in immunocompromise and opportunistic bacterial infection. S. marcescens was isolated from the coelomic and pericardial cavity. Both isolates were identical and were resistant to β-lactam antibiotics, but not to aminoglycosides or fluoroquinolones. The production of red prodigiosin pigment by the bacterium suggested an environmental origin. Overall, the clinical and histopathological presentation suggests that S. marcescens should be included in the list of aetiological agents of the 'red-leg'/bacterial dermatosepticaemia syndrome of amphibians. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Multiple drug resistance of Aeromonas hydrophila isolates from Chicken samples collected from Mhow and Indore city of Madhyapradesh

    Directory of Open Access Journals (Sweden)

    Kaskhedikar

    2009-02-01

    Full Text Available Fourteen antibacterial agents belonging to 9 different groups of antibiotics viz. aminoglycosides, cephalosporins, nitrofurantoin, fluroquinolones, chloramphenicol, sulphonamides, tetracyclines, penicillin and polymixin were used for in vitro sensitivity testing of Aeromonas hydrophila isolated from fifteen samples of chicken collected from retail shops in Mhow city. The sensitivity (100% was attributed to ciprofloxacin, cefuroxime, ceftriaxone, cephotaxime, chloramphenicol, gentamycin, kanamycin, nitrofurantoin, nalidixic acid and ofloxacin followed by oxytetracycline (50%. All the isolates were resistant to ampicillin and colistin antibiotics. That means, none of the isolates were found to be sensitive for penicillin and polymixin group of antibiotics. Multiple drug resistance was also observed in all A. hydrophila isolates. Out of total isolates, 100% were resistant to two antimicrobial drugs and 50% to three drugs. [Vet. World 2009; 2(1.000: 31-32

  2. Synthesis of nonionic surfactants with azole ring bearing N-glycosides and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    Fawzia Taieb Brahimi

    2017-05-01

    Full Text Available Six azoles with n-pentyl side chain 6–9, 11 and 12 were synthesized from n-hexanoic acid. Three N-glycosides namely: 5-pentyl-2-(d-amino arabinoside-1,3,4-oxadiazole (13, 5-pentyl-2-(d-aminoglycoside-1,3,4-thiadiazole (14, and 3-pentyl-4-(d-amino xyloside-4H-1,2,4-triazole-5-thiol (15 were prepared from already synthesized n-pentyl azoles 6, 7 and 11, respectively. Surface activity properties of water soluble synthesized compounds 6, 7, and 11–15 were studied in terms of surface tension, cloud point and critical micelle concentration. The antibacterial activities were assessed using the paper disk diffusion and broth dilution methods against gram-positive and gram-negative bacteria. Some of the synthetic compounds showed promising activity against microorganisms under test in comparison to commercially available antibiotics polymixine and oxytetracycline.

  3. Potentiation of antibiotic activity by Eugenia uniflora and Eugenia jambolanum.

    Science.gov (United States)

    Coutinho, Henrique D M; Costa, José G M; Falcão-Silva, Vivyanne S; Siqueira-Júnior, José P; Lima, Edeltrudes O

    2010-08-01

    This is the first report about the modifying antibiotic activity of Eugenia uniflora L. and Eugenia jambolanum L. In this study the ethanol extract of E. uniflora and E. jambolanum was tested for their antimicrobial activity against strains of Escherichia coli. The growth of the two strains of E. coli bacteria tested was not inhibited in a clinically relevant form by the extract. The minimal inhibitory concentration was >or=1,024 microg/mL for both strains of E. coli assayed. Synergism between this extract and gentamicin was demonstrated. In the same extract synergism was observed between chlorpromazine and kanamycin and between amikacin and tobramycin, indicating the involvement of an efflux system in the resistance to these aminoglycosides. It is therefore suggested that extracts from E. uniflora L. and E. jambolanum L. could be used as a source of plant-derived natural products with modifying antibiotic activity to gentamicin.

  4. Prevention of cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hayati Fatemeh

    2016-01-01

    Full Text Available Cisplatin has a well-established role in the treatment of broad spectrum of malignancies; however its use is limited because of cisplatin-induced nephrotoxicity (CIN which can be progressive in more than 50% of cases. The most important risk factors for CIN include higher doses of cisplatin, previous cisplatin chemotherapy, underlying kidney damage and concurrent treatment with other potential nephrotoxin agents, such as aminoglycosides, nonsteroidal anti-inflammatory agents, or iodinated contrast media. Different strategies have been offered to diminish or prevent nephrotoxicity of cisplatin. The standard approach for prevention of CIN is the administration of lower doses of cisplatin in combination with full intravenous hydration prior and after cisplatin administration. Cisplatin-induced oxidative stress in the kidney may be prevented by natural antioxidant compounds. The results of this review show that many strategies for prevention of CIN exist, however, attention to the administration of these agent for CIN is necessary.

  5. Fatal septicemia caused by Chromobacterium violaceum in a child from Colombia Septicemia mortal causada por Chromobacterium violaceum en una paciente pediátrica de Colombia

    Directory of Open Access Journals (Sweden)

    Pedro Martinez

    2007-12-01

    Full Text Available A 4-year old child living in Colombia presented with a history of fever and severe abdominal pain for four days. The patient developed pneumonia, septic shock, multiple organ failure and died on the fifth day of hospitalization. Chromobacterium violaceum was isolated from admission blood cultures and was resistant to ampicillin, cephalosporins, carbapenems and aminoglycosides.Una niña de 4 años que vivía en Colombia presentó historia de fiebre y dolor abdominal severo por cuatro días. La paciente desarrollo neumonía, shock séptico, múltiple falla de órganos y muerte el quinto día de hospitalización. Chromobacterium violaceum fue aislado de cultivos de sangre y mostró resistencia a ampicilina, cefalosporinas, carbapenems y aminoglicosidos.

  6. Brucellosis - diagnostic dilemma: Case report

    Directory of Open Access Journals (Sweden)

    Bojić Biljana

    2002-01-01

    Full Text Available The authors present a case of a 20-year old student from Belgrade, who was admitted to the Institute of Infectious Diseases with fever, muscle and spine pains, strong headacke and malice. During the clinical examination bilateral sacroileitis was found. Serological analyses confirmed brucellosis. Epidemiological data showed that she lived in Kosovo and Metohia in 1997, where she consumed diary products from domestic animals this might be the reason of the acquired infection. With appropriate antibiotic therapy (aminoglycoside, doxicyclin, rifampicin, symptomatic therapy and rehabilitation the disease had favorable outcome; there was no recidive. The authors point out the importance of specific microbiological examinations of patients with fever of unknown origin, especially if the patient has the symptoms that are compatible with brucellosis. In our case it was sacroileitis, as a characteristic complication. As brucellosis is endemic in some parts of our country, there is always a possibility of brucellosis in general medical practice.

  7. OPTIMIZING ANTIMICROBIAL PHARMACODYNAMICS: A GUIDE FOR YOUR STEWARDSHIP PROGRAM

    Directory of Open Access Journals (Sweden)

    Joseph L. Kuti, PharmD

    2016-09-01

    Full Text Available Pharmacodynamic concepts should be applied to optimize antibiotic dosing regimens, particularly in the face of some multidrug resistant bacterial infections. Although the pharmacodynamics of most antibiotic classes used in the hospital setting are well described, guidance on how to select regimens and implement them into an antimicrobial stewardship program in one's institution are more limited. The role of the antibiotic MIC is paramount in understanding which regimens might benefit from implementation as a protocol or use in individual patients. This review article outlines the pharmacodynamics of aminoglycosides, beta-lactams, fluoroquinolones, tigecycline, vancomycin, and polymyxins with the goal of providing a basis for strategy to select an optimized antibiotic regimen in your hospital setting.

  8. Genome-based insights into the resistome and mobilome of multidrug-resistant Aeromonas sp. ARM81 isolated from wastewater.

    Science.gov (United States)

    Adamczuk, Marcin; Dziewit, Lukasz

    2017-01-01

    The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1 . The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81. Four plasmids, of which two carry phenotypic modules (i.e., genes encoding a zinc transporter ZitB and a putative glucosyltransferase), and 28 putative transposase genes were identified. The mobility of three insertion sequences (isoforms of previously identified elements ISAs12, ISKpn9 and ISAs26) was confirmed using trap plasmids.

  9. Antibiotic resistance patterns of pediatric community-acquired urinary infections

    Directory of Open Access Journals (Sweden)

    Eliana Biondi Medeiros Guidoni

    Full Text Available Knowledge about antimicrobial resistance patterns of the etiological agents of urinary tract infections (UTIs is essential for appropriate therapy. Urinary isolates from symptomatic UTI cases attended at Santa Casa University Hospital of São Paulo from August 1986 to December 1989 and August 2004 to December 2005 were identified by conventional methods. Antimicrobial resistance testing was performed by Kirby Bauer's disc diffusion method. Among the 257 children, E. coli was found in 77%. A high prevalence of resistance was observed against ampicillin and TMP/SMX (55% and 51%. The antibiotic resistance rates for E. coli were: nitrofurantoin (6%, nalidixic acid (14%, 1st generation cephalosporin (13%, 3rd generation cephalosporins (5%, aminoglycosides (2%, norfloxacin (9% and ciprofloxacin (4%. We found that E. coli was the predominant bacterial pathogen of community-acquired UTIs. We also detected increasing resistance to TMP/SMX among UTI pathogens in this population.

  10. Practices and Factors Influencing the Use of Antibiotics in Selected Poultry Farms in Ghana

    DEFF Research Database (Denmark)

    Boamah, VE; Odoi, H; Dalsgaard, Anders

    2016-01-01

    and to assess factors influencing farmers’ choice of antibiotics for use on their farms. A cross-sectional survey using questionnaires and semistructured interviews was conducted among 400 poultry farms in the Ashanti, Brong-Ahafo and Greater Accra regions of Ghana. Data was analysed using IBM SPSS...... and Microsoft Excel. Multivariate analyses were used to evaluate correlations between farm variables and the dependency of antibiotic use on internal and external farm characteristics. Farmers reported the use of 35 different antimicrobial agents for management of conditions such as Newcastle, fowl pox......, coccidiosis, and coryza. From these agents, 20 essential antibiotics belonging to 10 antibiotic classes were extracted. Frequently employed antibiotics were tetracyclines (24.17%), aminoglycosides (17.87%), penicillins (16.51%) and fluoroquinolones (10.55%). Only 63% of the farms completed recommended...

  11. In Vitro and In Vivo Activities of Antimicrobials against Nocardia brasiliensis

    Science.gov (United States)

    Gomez-Flores, Alejandra; Welsh, Oliverio; Said-Fernández, Salvador; Lozano-Garza, Gerardo; Tavarez-Alejandro, Roman Erick; Vera-Cabrera, Lucio

    2004-01-01

    In Mexico mycetomas are mostly produced by Nocardia brasiliensis, which can be isolated from about 86% of cases. In the present work, we determined the sensitivities of 30 N. brasiliensis strains isolated from patients with mycetoma to several groups of antimicrobials. As a first screening step we carried out disk diffusion assays with 44 antimicrobials, including aminoglycosides, cephalosporins, penicillins, quinolones, macrolides, and some others. In these assays we observed that some antimicrobials have an effect on more than 66% of the strains: linezolid, amikacin, gentamicin, isepamicin, netilmicin, tobramycin, minocycline, amoxicillin-clavulanic acid, piperacillin-tazobactam, nitroxolin, and spiramycin. Drug activity was confirmed quantitatively by the broth microdilution method. Amoxicillin-clavulanic acid, linezolid, and amikacin, which have been used to treat patients, were tested in an experimental model of mycetoma in BALB/c mice in order to validate the in vitro results. Linezolid showed the highest activity in vivo, followed by the combination amoxicillin-clavulanic acid and amikacin. PMID:14982772

  12. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Leng, Bingfeng

    2016-01-01

    Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby...... limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried...... mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500...

  13. Nosocomial bloodstream infections in a Turkish university hospital: study of Gram-negative bacilli and their sensitivity patterns.

    Science.gov (United States)

    Köseoğlu , O; Kocagöz, S; Gür, D; Akova, M

    2001-06-01

    Treatment of nosocomial bacteraemia is usually governed by the surveillance results of the particular unit. Such results are especially important when antimicrobial resistance rates are high. Multiresistant isolates including Gram-negatives producing extended-spectrum beta-lactamases have been frequently reported in tertiary care units in Turkey. In this study, antimicrobial susceptibilities of Gram-negative blood isolates (n=348) were determined by microbroth dilution tests. The results showed carbapenems (meropenem and imipenem) to be uniformly more potent in vitro than any other drug against the Enterobacteriaceae. Quinolone antibiotics were more active in vitro than aminoglycosides against a range of bacteria. Gram-negative bloodstream isolates were highly resistant to many antimicrobial agents in the hospital. In order to prevent hospital infection and antimicrobial resistance, surveillance of aetiological agents must be performed regularly.

  14. 125I-radioimmunoassay of amikacin and comparison with a microbioassay

    International Nuclear Information System (INIS)

    Stevens, P.; Young, L.S.; Hewitt, W.L.

    1976-01-01

    A radioimmunoassay (RIA) has been developed using 125 I-amikacin. Amikacin was iodinated by a modified Bolton and Hunter method. Dextran-charcoal was used to separate bound from free drug. The standard curve was linear on a logit-log plot in the range of 0.5 ng to 4 ng amikacin per tube. There was no cross-reactivity of amikacin antisera to the aminoglycosides gentamicin, tobramycin, netilmicin, and sisomicin but a 70% cross-reaction was observed with kanamycin, the compound from which amikacin is synthetically derived. Correlation of the RIA with a microbioassay for the determination of serum amikacin levels in 18 patient samples was excellent (r=0.94). This new RIA technique is more sensitive, rapid, versatile, and less costly than the RIA using 3 H-amikacin, and is far more sensitive and faster than microbioassay. (auth.)

  15. INFLUENCE OF DOXORUBICIN ON ADHESIVE PROPERTIES OF E.COLI

    Directory of Open Access Journals (Sweden)

    O.G. Shapoval

    2008-09-01

    Full Text Available Influence ofantineoplastic drug doxorubicin and amikacin, the aminoglycoside family on adhesive activity of Escherichia coli was studied. Antimicrobialactivity(minimum inhibitory concentration-MIC ofboth drugs against experimental strains using serial two-fold dilution method was determined. Susceptibility of E.coli to amikacin in the presence of Sand j MIC doxorubicin was studied. After 10 passages in beef-extract broth with constant and increasing doxorubicin concentrations in the presence of Sand j MIC doxorubicin, the adhesive activity of initial and passage variants according to theirability to absorb human erythrocytes 1(0 Rh+ was determined. Itwas observed that experimental strains were susceptible to amikacin (MIC 1,5-6,2 mkg/ml butwere resistantto doxorubicin (MIC 1000 mkg/ml. Subinhibitory concentrations of this cytostatic (S and j MIC raised the sensitivity of experimental strains to amikacin and differently effected on adhesive activity of passage variants of E.coli.

  16. Sinus of Valsalva Pseudoaneurysm as a Sequela to Infective Endocarditis.

    Science.gov (United States)

    Lee, Chin C; Siegel, Robert J

    2016-02-01

    Pseudoaneurysm is an uncommon sequela of infective endocarditis. We treated a 44-year-old man who had an active case of group B streptococcal infective endocarditis of the aortic valve despite no evidence of valvular dysfunction or vegetation on his initial transesophageal echocardiogram. After completing 6 weeks of intravenous antibiotic therapy, the patient developed a sinus of Valsalva pseudoaneurysm and severe aortic regurgitation caused by partial detachment of the left coronary cusp. We used a pericardial patch to close the pseudoaneurysm and repair the coronary cusp. This case shows the importance of routine clinical follow-up evaluation in infective endocarditis, even after completion of antibiotic therapy. Late sequelae associated with infective endocarditis or its therapy include recurrent infection, heart failure caused by valvular dysfunction (albeit delayed), and antibiotic toxicity such as aminoglycoside-induced nephropathy and vestibular toxicity.

  17. Antibiotic resistance pattern in uropathogens

    Directory of Open Access Journals (Sweden)

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  18. Neonatal Meningoventriculitis Due to Proteus Mirabilis – A Case Report

    Science.gov (United States)

    Juyal, Deepak; Rathaur, Vyas Kumar; Sharma, Neelam

    2013-01-01

    A five day old full term born baby was admitted to our Neonatal Intensive Care Unit with seizures, opisthotonous posture and was icteric upto thigh. Baby had a three day history of poor feeding, lethargy and abnormal body movements. Mother was a 29 years old primigravida and had a normal vaginal delivery at home. Sepsis profile of the patient was requested, lumbar puncture and ventricular tap was performed. Patient was put on third generation cephalosporins, aminoglycosides and phenobarbitone. Culture and sensitivity report of blood, Cerebro spinal fluid and ventricular fluid showed Proteus mirabilis. Computerized Tomography scan showed a large parenchymal lesion in the right frontal lobe and diffuse ependymal enhancement along both the lateral ventricles suggestive of meningoventriculitis. We hereby present a fatal case of neonatal meningoventriculitis due to Proteus mirabilis. PMID:23543669

  19. Pitfalls in diagnosing brain death in infancy

    International Nuclear Information System (INIS)

    Toffol, G.J.; Lansky, L.L.; Hughes, J.R.; Blend, M.J.; Pavel, D.G.; Kecskes, S.A.; Ortega, R.E.; Tan, W.S.

    1987-01-01

    A 3-year-old child with phenotypic trisomy 18 syndrome survived 26 days after a cardiopulmonary arrest, secondary to an acute viral illness. The child was deeply comatose. No barbiturates, other sedatives, or aminoglycoside antibiotics had been recently administered. The child was normothermic with adequate cardiovascular function. Brain stem function was absent, as assessed by testing of brain stem reflexes. Serial cerebral radionuclide angiograms (CRAG) documented intact cerebral blood flow while electrocerebral silence (ECS) was present on two consecutive EEG recordings within 24 hours. Preservation of intracranial circulation was confirmed by rapid rotational computed tomographic (CT) scans. Cranial CT scans also revealed communicating hydrocephalus, and bilateral basal ganglia hemorrhages. This unusual case illustrates discordance between apparent irreversible loss of cortical function as indicated by electrocerebral silence with preserved cerebral blood flow. The implications of these apparent paradoxical events will be discussed in the context of defining brain death in children

  20. Otoconia biogenesis, phylogeny, composition and functional attributes

    Science.gov (United States)

    Fermin, C. D.; Lychakov, D.; Campos, A.; Hara, H.; Sondag, E.; Jones, T.; Jones, S.; Taylor, M.; Meza-Ruiz, G.; Martin, D. S.

    1998-01-01

    This work consolidates data about these interesting organic crystals of vertebrate inner ears. It addresses 5 aspects of inner ear otoliths not completely understood to date: 1) embryological data that explains the formation of the crystals, 2) the significance of the organic and the inorganic phase of the otolith and the changing patterns of otoconia formation along the evolutionary tree, 3) otoliths contribution for detecting linear acceleration, 4) the effect that altered gravity and aminoglycosides have on the development and adult shape of the crystals, and the evolutionary significance of a changing shape of the crystals from primitive forms (lamprey) to high vertebrate birds and mammals is discussed, 5) functional attributes of the otolithic organs and morphological modifications of the otoliths by physical and chemical insults are presented with an extensive discussion of the most relevant literature published and available to us.

  1. EFFECTIVENESS OF MRSA DETECTION METHODS IN THE LABORATORY PRACTICE – A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Neli M. Ermenlieva

    2016-06-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA are bacteria, responsible for severe and hard-to-manage infections in human. They are resistant to beta-lactam antibiotics – penicillins (methicillin, dicloxacillin, nafcillin, and oxacillin, cephalosporins and carbapenems, but can also be resistant to the new-generation MRSA-active cephalosporins (such as ceftaroline or other groups of antibiotics, including aminoglycosides, macrolides, clindamycin, amphenicols, quinolones and tetracyclines. MRSA bacteria are pandemic and are often isolated in medical practice and nosocomial infections. The MRSA detection is a challenge to any clinical microbiology laboratory and demands implementation of strict protocols for active screening. While more expensive molecular techniques have the potential of offering highly sensitive and rapid results, the cultural methods require longer time but can achieve a comparable sensitivity for lower price.

  2. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth

    2011-01-01

    in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight......The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing...... calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...

  3. Analysis of the Kanamycin in Raw Milk Using the Suspension Array

    Directory of Open Access Journals (Sweden)

    Yanfei Wang

    2013-01-01

    Full Text Available With the monoclonal antibody against kanamycin being prepared successfully, a bead-based indirect competitive fluorescent immunoassay was developed to detect kanamycin in milk. The fact that there was no significant cross-reaction with other aminoglycoside antibiotics implied that the monoclonal antibody was highly specific for kanamycin. The limit of detection (LOD and the 50% inhibition concentration (IC50 in raw milk were 3.2 ng/mL and 52.5 ng/mL, respectively. Using the method developed in this study, the kanamycin concentrations were monitored in raw milk after the intramuscular administration of kanamycin in sick cows. Compared to the conventional enzyme-linked immunosorbent assay (ELISA, the method using the suspension array system was more sensitive. The results obtained in the present study showed a good correlation with that of the ELISA.

  4. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    Science.gov (United States)

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  5. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  6. Molecular structures enumeration and virtual screening in the chemical space with RetroPath2.0.

    Science.gov (United States)

    Koch, Mathilde; Duigou, Thomas; Carbonell, Pablo; Faulon, Jean-Loup

    2017-12-19

    Network generation tools coupled with chemical reaction rules have been mainly developed for synthesis planning and more recently for metabolic engineering. Using the same core algorithm, these tools apply a set of rules to a source set of compounds, stopping when a sink set of compounds has been produced. When using the appropriate sink, source and rules, this core algorithm can be used for a variety of applications beyond those it has been developed for. Here, we showcase the use of the open source workflow RetroPath2.0. First, we mathematically prove that we can generate all structural isomers of a molecule using a reduced set of reaction rules. We then use this enumeration strategy to screen the chemical space around a set of monomers and predict their glass transition temperatures, as well as around aminoglycosides to search structures maximizing antibacterial activity. We also perform a screening around aminoglycosides with enzymatic reaction rules to ensure biosynthetic accessibility. We finally use our workflow on an E. coli model to complete E. coli metabolome, with novel molecules generated using promiscuous enzymatic reaction rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate interfacing our workflow with OpenMS through the KNIME Analytics Platform. We provide an easy to use and modify, modular, and open-source workflow. We demonstrate its versatility through a variety of use cases including molecular structure enumeration, virtual screening in the chemical space, and metabolome completion. Because it is open source and freely available on MyExperiment.org, workflow community contributions should likely expand further the features of the tool, even beyond the use cases presented in the paper.

  7. Occurrence of transferable antibiotic resistances in commercialized ready-to-eat mealworms (Tenebrio molitor L.).

    Science.gov (United States)

    Osimani, Andrea; Cardinali, Federica; Aquilanti, Lucia; Garofalo, Cristiana; Roncolini, Andrea; Milanović, Vesna; Pasquini, Marina; Tavoletti, Stefano; Clementi, Francesca

    2017-12-18

    The present study aimed to assess the occurrence of transferable determinants conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, beta-lactams, and aminoglycosides in 40 samples of commercialized edible mealworms (Tenebrio molitor L.) purchased from European Union (EU) and non-EU producers. A high prevalence of tet(K) was observed in all of the samples assayed, with percentages of PCR-based positivity that ranged from 80% (samples from Thailand) to 100% (samples from the Netherlands, Belgium and France). For macrolides, erm(B) prevailed, being detected in 57.5% of the samples assayed, whereas erm(A) and erm(C) were detected with lower frequencies. Genes for resistance to vancomycin were only detected in samples produced in France and Belgium, with 90% and 10% of the samples being positive for vanA, respectively. Beta-lactamase genes were found with low occurrence, whereas the gene aac-aph, conferring high resistance to aminoglycosides, was found in 40% of the samples produced in the Netherlands and Belgium and 20% of the samples produced in Thailand. The results of Principal Coordinate Analysis and Principal Component Analysis depicted a clean separation of the samples collected from the four producers based on the distribution of the 12 AR determinants considered. Given the growing interest on the use of mealworms as a novel protein source, AR detection frequencies found in the present study suggest further investigation into the use of antibiotics during rearing of this insect species and more extensive studies focused on the factors that can affect the diffusion of transferable ARs in the production chain. Until such studies are completed, prudent use of antibiotics during rearing of edible insects is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Nicolas Barraud

    Full Text Available The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF, suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.

  9. Simultaneous antibacterial and anticoagulant properties of polypropylene non-woven textiles Elaboration d'un textile polypropylène non-tissé présentant simultanément des propriétés antibactériennes et anticoagulantes

    Directory of Open Access Journals (Sweden)

    Jimenez Maude

    2013-11-01

    Full Text Available The aim of this work was to prepare a non-woven Polypropylene (PP textile functionalized with bioactive molecules to improve simultaneously its anticoagulation and antibacterial properties. The immobilization of either heparin (anticoagulation agent or gentamicin (aminoglycoside antibiotic was already proven to be effective on non-woven PP textiles. This work details how we managed to immobilize both gentamicin and heparin on the textile [1]. The immobilization times were studied in order to determine the best compromise between cytocompatibility, anticoagulant effect and antimicrobial activity. Cetté étude décrit le procédé de fonctionnalisation d'un textile polypropylène (PP non-tissé afin d'améliorer à la fois ses propriétés antibactériennes et anticoagulantes. Dans des précédents travaux, l'immobilisation soit de l'héparine (agent anticoagulant, soit de la gentamicine (agent antibiotique aminoglycoside a déjà été reportée. Des effets respectivement anticoagulants et antibactériens ont été obtenus. Cette étude décrit la faç on d'immobiliser ces deux principes actifs sur un même textile. L'effet des temps d'imprégnation sur les propriétés antibactériennes et anticoagulantes a été étudié afin d'obtenir le meilleur compromis possible en termes de cytocompatibilité, effet anticoagulant et activité antimicrobienne.

  10. Profile of urinary tract infections in paediatric patients

    Directory of Open Access Journals (Sweden)

    Palak Gupta

    2015-01-01

    Full Text Available Background & objectives: This cross-sectional study was conducted at a tertiary care centre in Puducherry, south India, with the aim of finding the profile of the paediatric urinary tract infection (UTI, bacterial pathogens involved, and also to observe vesicoureteric reflux (VUR and renal scarring in these patients. Methods: A total of 524 paediatric patients ≤13 yr, suspected to have UTI, were included in the study. Urine samples were collected, processed for uropathogen isolation and antibiotic susceptibility test was performed as per the Clinical and Laboratory Standards Institute (CLSI guidelines. Thirty two culture proven children with UTI underwent micturating cysto-urethrography (MCU and dimercaptosuccinic acid (DMSA scanning was done for 69 children. Results: o0 f the 524 children, 186 (35.4% had culture proven UTI with 105 (56.4% being infants, 50 (27.4% between 1-5 yr, 30 (16.12% between 5-13 yr and 129 (69.35% males. Posterior urethral valve (PUV was noted in three, hydronephrosis in one, VUR in 18 and renal scarring in 33. VUR as well as renal scarring were more in males >1 yr of age. A significant association (P=0.0054 was noted with a combined sensitivity and specificity of these investigations being 83 and 90 per cent, respectively of the MCU and DMSA scans for detecting VUR. Escherichia coli was the most common pathogen isolated, sensitive to nitrofurantoin, followed by cefoperazone-sulbactam, aminoglycosides and meropenem. Interpretation & conclusions: Our results indicate that UTI varies with age and gender and extensive evaluation is required in boys under one year of age with UTI. This study also highlights the better efficacy of aminoglycosides, cefoperazone-sulbactam and nitrofurantoin in vitro compared with meropenem in Gram-negative uropathogens.

  11. Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms.

    Science.gov (United States)

    Tacão, Marta; Correia, António; Henriques, Isabel S

    2015-10-01

    Carbapenems are last-resort antibiotics to handle serious infections caused by multiresistant bacteria. The incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have emerged. The dissemination of carbapenem resistance in the environment has been overlooked. The main goal of this research was to assess the prevalence and diversity of carbapenem-resistant bacteria in riverine ecosystems. The presence of frequently reported carbapenemase-encoding genes was inspected. The proportion of imipenem-resistant bacteria was on average 2.24 CFU/ml. Imipenem-resistant strains (n=110) were identified as Pseudomonas spp., Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium haemolyticum, Shewanella xiamenensis, and members of Enterobacteriaceae. Carbapenem-resistant bacteria were highly resistant to other beta-lactams such as quinolones, aminoglycosides, chloramphenicol, tetracyclines, and sulfamethoxazole/trimethoprim. Carbapenem resistance was mostly associated with intrinsically resistant bacteria. As intrinsic resistance mechanisms, we have identified the blaCphA gene in 77.3% of Aeromonas spp., blaL1 in all S. maltophilia, and blaOXA-48-like in all S. xiamenensis. As acquired resistance mechanisms, we have detected the blaVIM-2 gene in six Pseudomonas spp. (5.45%). Integrons with gene cassettes encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b), and carbapenems (blaVIM-2) were found in Pseudomonas spp. Results suggest that carbapenem resistance dissemination in riverine ecosystems is still at an early stage. Nevertheless, monitoring these aquatic compartments for the presence of resistance genes and its host organisms is essential to outline strategies to minimize resistance dissemination.

  12. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    Science.gov (United States)

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels.

  13. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study.

    Science.gov (United States)

    Vieira, Antonio R; Collignon, Peter; Aarestrup, Frank M; McEwen, Scott A; Hendriksen, Rene S; Hald, Tine; Wegener, Henrik C

    2011-12-01

    In addition to medical antimicrobial usage, the use of antimicrobials in food animals contributes to the occurrence of resistance among some bacterial species isolated from infections in humans. Recently, several studies have indicated that a large proportion of Escherichia coli causing infections in humans, especially those resistant to antimicrobials, have an animal origin. We analyzed the correlation between the prevalence of antimicrobial resistance in E. coli isolates from blood stream infections in humans and in E. coli isolates from poultry, pigs, and cattle between 2005 and 2008 for 11 countries, using available surveillance data. We also assessed the correlation between human antimicrobial usage and the occurrence of resistance in E. coli isolates from blood stream infections. Strong and significant correlations between prevalences of resistance to ampicillin (r=0.94), aminoglycosides (r=0.72), third-generation cephalosporins (r=0.76), and fluoroquinolones (r=0.68) were observed for human and poultry E. coli isolates. Similar significant correlations were observed for ampicillin (r=0.91), aminoglycosides (r=0.73), and fluoroquinolone resistance (r=0.74) in pig and human isolates. In cattle isolates, only ampicillin resistance (r=0.72) was significantly correlated to human isolates. When usage of antimicrobials in humans was analyzed with antimicrobial resistance among human isolates, only correlations between fluoroquinolones (r=0.90) and third-generation cephalosporins (r=0.75) were significant. Resistance in E. coli isolates from food animals (especially poultry and pigs) was highly correlated with resistance in isolates from humans. This supports the hypothesis that a large proportion of resistant E. coli isolates causing blood stream infections in people may be derived from food sources.

  14. Characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urine of nonhospitalized patients in the Zagreb region

    Directory of Open Access Journals (Sweden)

    Branka Bedenić,

    2010-02-01

    Full Text Available Aim To determine the prevalence of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urine of nonhospitalized patients during a three-year period, to determine their antibiotic susceptibility, investigate the transfer of ESBL genes with cotransfer of resistance and to characterize isolated beta-lactamases. Methods Antimicrobial susceptibility was determined by disk diffusion and broth microdilution methods. The double-disk test was used for ESBL detection. Transfer of resistance was performed by broth mating method and characterization of isolated beta-lactamases by polymerase chain reaction. Results The prevalence of ESBL-producing E. coli was 1.5% and of K. pneumoniae 4.1% with its different distribution according to patients`age and gender. ESBL-producing K. pneumoniae showed high resistance rates to aminoglycosides, cotrimoxazole, nitrofurantoin and quinolones while ESBL-producing E. coli isolates, with exception of high aminoglycoside resistance, showed low resistance rates to other antibiotics. Successful conjugation of ESBL genes was obtained with 25% E. coli and 76.2% K. pneumoniae strains. Comparing to E. coli, K. pneumoniae strains showed higher rates of aminoglycosideand cotrimoxazole resistance cotransfer. Beta-lactamases of investigated strains belonged to TEM, SHV and CTX-M families.Conclusion The existence of multiple-resistant ESBL-producing E. coli and K. pneumoniae strains was confirmed in observed outpatient population. ESBL-producing K. pneumoniae isolates, in contrast toESBL-producing E. coli, showed higher resistance rates to non-beta-lactam antibiotics, probably caused by cotransfer of resistance genes located on the same plasmid as ESBL genes. It is important to monitor the prevalence of such strains and their possible spreading in the outpatient population of the Zagreb region

  15. Practices related to late-onset sepsis in very low-birth weight preterm infants.

    Science.gov (United States)

    Bentlin, Maria Regina; Rugolo, Ligia M S S; Ferrari, Ligia S L

    2015-01-01

    To understand the practices related to late-onset sepsis (LOS) in the centers of the Brazilian Neonatal Research Network, and to propose strategies to reduce the incidence of LOS. This was a cross-sectional descriptive multicenter study approved by the Ethics Committee. Three questionnaires regarding hand hygiene, vascular catheters, and diagnosis/treatment of LOS were sent to the coordinator of each center. The center with the lowest incidence of LOS was compared with the others. All 16 centers answered the questionnaires. Regarding hand hygiene, 87% use chlorhexidine or 70% alcohol; alcohol gel is used in 100%; 80% use bedside dispensers (50% had one dispenser for every two beds); practical training occurs in 100% and theoretical training in 70% of the centers, and 37% train once a year. Catheters: 94% have a protocol, and 75% have a line insertion team. Diagnosis/treatment: complete blood count and blood culture are used in 100%, PCR in 87%, hematological scores in 75%; oxacillin and aminoglycosides is the empirical therapy in 50% of centers. Characteristics of the center with lowest incidence of LOS: stricter hand hygiene; catheter insertion and maintenance groups; use of blood culture, PCR, and hematological score for diagnosis; empirical therapy with oxacillin and aminoglycoside. The knowledge of the practices of each center allowed for the identification of aspects to be improved as a strategy to reduce LOS, including: alcohol gel use, hand hygiene training, implementation of catheter teams, and wise use of antibiotic therapy. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. MALDI-TOF MS as a Tool To Detect a Nosocomial Outbreak of Extended-Spectrum-β-Lactamase- and ArmA Methyltransferase-Producing Enterobacter cloacae Clinical Isolates in Algeria.

    Science.gov (United States)

    Khennouchi, Nour Chems el Houda; Loucif, Lotfi; Boutefnouchet, Nafissa; Allag, Hamoudi; Rolain, Jean-Marc

    2015-10-01

    Enterobacter cloacae is among the most important pathogens responsible for nosocomial infections and outbreaks. In this study, 77 Enterobacter isolates were collected: 27 isolates from Algerian hospitals (in Constantine, Annaba, and Skikda) and 50 isolates from Marseille, France. All strains were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method. PCR was used to detect extended-spectrum-beta-lactamase (ESBL)-encoding, fluoroquinolone resistance-encoding, and aminoglycoside-modifying enzyme (AME) genes. Epidemiological typing was performed using MALDI-TOF MS with data mining approaches, along with multilocus sequence typing (MLST). Sixty-eight isolates (27 from Algeria, 41 from Marseille) were identified by MALDI-TOF MS as E. cloacae. Resistance to antibiotics in the Algerian isolates was significantly higher than that in the strains from Marseille, especially for beta-lactams and aminoglycosides. Eighteen of the 27 Algerian isolates and 11 of the 41 Marseille isolates possessed at least one ESBL-encoding gene: blaCTX-M and/or blaTEM. AME genes were detected in 20 of the 27 Algerian isolates and 8 of the 41 Marseille isolates [ant(2″)-Ia, aac(6')-Ib-cr, aadA1, aadA2, and armA]. Conjugation experiments showed that armA was carried on a transferable plasmid. MALDI-TOF typing showed three separate clusters according to the geographical distribution and species level. An MLST-based phylogenetic tree showed a clade of 14 E. cloacae isolates from a urology unit clustering together in the MALDI-TOF dendrogram, suggesting the occurrence of an outbreak in this unit. In conclusion, the ability of MALDI-TOF to biotype strains was confirmed, and surveillance measures should be implemented, especially for Algerian patients hospitalized in France. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. [Left-sided endocarditis due to gram-negative bacilli: epidemiology and clinical characteristics].

    Science.gov (United States)

    Noureddine, Mariam; de la Torre, Javier; Ivanova, Radka; Martínez, Francisco José; Lomas, Jose María; Plata, Antonio; Gálvez, Juan; Reguera, Jose María; Ruiz, Josefa; Hidalgo, Carmen; Luque, Rafael; García-López, María Victoria; de Alarcón, Arístides

    2011-04-01

    The aim of this study is to describe the epidemiological, clinical characteristics, and outcome of patients with left-side endocarditis caused by gram-negative bacteria. Prospective multicenter study of left-sided infective endocarditis reported in the Andalusian Cohort for the Study of Cardiovascular Infections between 1984 and 2008. Among the 961 endocarditis, 24 (2.5%) were caused by gram-negative bacilli. The most common pathogens were Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Native valves (85.7%) were mainly affected, most of them with previous valve damage (57%). Comorbidity was greater (90% vs 39%; P=.05) than in endocarditis due to other microorganism, the most frequent being, diabetes, hepatic cirrhosis and neoplasm. A previous manipulation was found in 47.6% of the cases, and 37% were considered hospital-acquired. Renal failure (41%), central nervous system involvement (33%) and ventricular dysfunction (45%) were the most frequent complications. Five cases (21%) required cardiac surgery, mostly due to ventricular dysfunction. More than 50% of cases were treated with aminoglycosides, but this did not lead to a better outcome or prognosis. Mortality (10 patients) was higher than that reported with other microorganisms (41% vs 35%; P=.05). Left-sided endocarditis due to gram-negative bacilli is a rare disease, which affects patients with major morbidities and often with a previous history of hospital manipulations. Cardiac, neurological and renal complications are frequent and associated with a high mortality. The association of aminoglycosides in the antimicrobial treatment did not involve a better outcome or prognosis. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  18. The management of multidrug-resistant Enterobacteriaceae.

    Science.gov (United States)

    Bassetti, Matteo; Peghin, Maddalena; Pecori, Davide

    2016-12-01

    Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.

  19. Rapid increase in resistance to third generation cephalosporins, imipenem and co-resistance in Klebsiella pneumoniae from isolated from 7,140 blood-cultures (2010-2014) using EARS-Net data in Spain.

    Science.gov (United States)

    Aracil-García, Belén; Oteo-Iglesias, Jesús; Cuevas-Lobato, Óscar; Lara-Fuella, Noelia; Pérez-Grajera, Isabel; Fernández-Romero, Sara; Pérez-Vázquez, María; Campos, José

    2017-10-01

    An analysis was made about the evolution of resistance to 3rd generation cephalosporins, imipenem, and other antibiotics in invasive isolates of Klebsiella pneumoniae (K. pneumoniae) according to the Spanish EARS-Net database (2010-2014). Forty-two hospitals from 16 Autonomous Communities with an approximate population coverage of 33% participated. A total 7,140 pneumoniae corresponding to the same number of patients were studied. Overall resistance percentages (I+R) were: cefotaxime 15.8%, ceftazidime 13.7%, imipenem 1.7%, ciprofloxacin 20.1%, tobramycin 14.1%, gentamicin 10.4%, and amikacin 1.9%. Resistance to 3rd generation cephalosporins increased from 9.8% (2010) to 19% (2014); to ciprofloxacin from 15.4% (2010) to 19.6% (2014); to gentamicin from 6.2% (2010) to 10.3% (2014) and to tobramycin from 7.1% (2010) to 14.2% (2014) (presistance to 3rd generation cephalosporins, ciprofloxacin, and aminoglycosides increased from 3.3% (2010) to 9.7% (2014) (pResistance to imipenem also increased from 0.27% (2010) to 3.46% (2014) (presistant to imipenem, of which 104 (86%) produced carbapenemases: 74 OXA-48, 14 VIM, 9 KPC (6 KPC-2 and 3 KPC-3), 6 IMP, and 1 GES. Over the 5 year period (2010-2014), resistance to 3rd generation cephalosporins in invasive K. pneumoniae in Spain has doubled. The combined resistance to 3rd generation cephalosporins, ciprofloxacin, and aminoglycosides has tripled, and imipenem resistance has increased almost 13 times, mostly due to the spread of carbapenemase-producing isolates. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Effects of Gentamicin on Urinary Electrolyte Excretion in Admitted Neonate

    Directory of Open Access Journals (Sweden)

    B. Falakolaflaki

    2008-01-01

    Full Text Available Introduction & Objective: Gentamicin is an aminoglycoside antibiotic widely used during the neonatal period. It is associated with nephrotoxic effects in neonates, including glomerular impairment and renal tubular dysfunction. Electrolyte balance is very important, especially in the sick premature neonate receiving aminoglycosides. The purpose of this study was early diagnosis of gentamicin nephrotoxicity. Materials & Methods: This quasi-experimental study was performed on 23 neonates (11 full – term and 12 preterm with suspected sepsis who were admitted and treated with gentamicin. Blood and urine samples were collected before infusion and on the 3rd day of treatment. Serum and urine concentration of Na, K, creatinine (Cr and urine concentration of Ca were measured. Then fractional excretion of Na and K were estimated. Ca excretion was estimated as the UCa/UCr ratio. Then the collected data were analyzed using SPSS package.Results: In all neonates, increase in fractional excretion of Na and UCa/UCr, in the 3rd day of treatment were observed as compared to those of before infusion (P=0.01 and P=0.02 respectively. Serum creatinine levels decreased in all patients. Serum level of electrolytes during therapy was normal.Conclusion: The results of this study clearly demonstrate an effect of gentamicin infusion on renal sodium and calcium excretion. These results may be of clinical importance especially for sick preterm neonates receiving treatment with gentamicin. These babies are usually salt-losers and are also more susceptible to early onset hypocalcemia. Gentamicin can aggravate these complications.

  1. The Novel Kasugamycin 2′-N-Acetyltransferase Gene aac(2′)-IIa, Carried by the IncP Island, Confers Kasugamycin Resistance to Rice-Pathogenic Bacteria

    Science.gov (United States)

    Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-01-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2′)-IIa, encoding a KSM 2′-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2′)-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2′)-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2′)-IIa gene were detected. These results indicate that the aac(2′)-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2′)-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM. PMID:22660700

  2. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria.

    Science.gov (United States)

    Yoshii, Atsushi; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-08-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.

  3. Correlations between Income inequality and antimicrobial resistance.

    Science.gov (United States)

    Kirby, Andrew; Herbert, Annie

    2013-01-01

    The aim of this study is to investigate if correlations exist between income inequality and antimicrobial resistance. This study's hypothesis is that income inequality at the national level is positively correlated with antimicrobial resistance within developed countries. Income inequality data were obtained from the Standardized World Income Inequality Database. Antimicrobial resistance data were obtained from the European antimicrobial Resistance Surveillance Network and outpatient antimicrobial consumption data, measured by Defined daily Doses per 1000 inhabitants per day, from the European Surveillance of antimicrobial Consumption group. Spearman's correlation coefficient (r) defined strengths of correlations of: > 0.8 as strong, > 0.5 as moderate and > 0.2 as weak. Confidence intervals and p values were defined for all r values. Correlations were calculated for the time period 2003-10, for 15 European countries. Income inequality and antimicrobial resistance correlations which were moderate or strong, with 95% confidence intervals > 0, included the following. Enterococcus faecalis resistance to aminopenicillins, vancomycin and high level gentamicin was moderately associated with income inequality (r= ≥0.54 for all three antimicrobials). Escherichia coli resistance to aminoglycosides, aminopenicillins, third generation cephalosporins and fluoroquinolones was moderately-strongly associated with income inequality (r= ≥0.7 for all four antimicrobials). Klebsiella pneumoniae resistance to third generation cephalosporins, aminoglycosides and fluoroquinolones was moderately associated with income inequality (r= ≥0.5 for all three antimicrobials). Staphylococcus aureus methicillin resistance and income inequality were strongly associated (r=0.87). As income inequality increases in European countries so do the rates of antimicrobial resistance for bacteria including E. faecalis, E. coli, K. pneumoniae and S. aureus. Further studies are needed to confirm these

  4. Inhibitory effects of antimicrobial agents against Fusarium species.

    Science.gov (United States)

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. © The Author 2015. Published by Oxford University Press on

  5. Effects of selective digestive decontamination (SDD) on the gut resistome.

    Science.gov (United States)

    Buelow, Elena; Gonzalez, Teresita Bello; Versluis, Dennis; Oostdijk, Evelien A N; Ogilvie, Lesley A; van Mourik, Maaike S M; Oosterink, Els; van Passel, Mark W J; Smidt, Hauke; D'Andrea, Marco Maria; de Been, Mark; Jones, Brian V; Willems, Rob J L; Bonten, Marc J M; van Schaik, Willem

    2014-08-01

    Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Antibiotic sensitivity and resistance in children with urinary tract infection in Sanliurfa.

    Science.gov (United States)

    Abuhandan, Mahmut; Güzel, Bülent; Oymak, Yeşim; Çiftçi, Halil

    2013-06-01

    This study aimed to evaluate antibiotic resistance in the province of Şanliurfa and to observe any difference between antibiotic resistance rates. The study comprised 107 children who presented at the pediatric polyclinic with complaints of urinary tract infection with the diagnosis of urinary tract infection and whose urine cultures exhibited bacterial growth. The patients were analyzed with respect to the frequency of proliferating pathogens, sensitivity to the antibiotics used and the rates of developed resistance to the antibiotics. A total of 107 patients aged between 1 year and 15 years were included in the study, encompassing 14 (13.1%) males and 93 (86.9%) females. According to the urine culture results, proliferation of Escherichia coli (E. coli) was observed in 69 (64.5%), Klebsiella spp. in 13 (12.1%), Proteus mirabilis in 9 (8.4%), Staphylococcus aureus in 5 (4.7%), Pseudomonas aeruginosa in 5 (4.7%), Acinetobacter spp. in 3 (2.8%) and Enterococcus spp. in 3 (2.8%) patients. For proliferating E. coli, high resistance rates to ceftriaxone (39.5%), nitrofurantoin (19.7%), ampicillin-sulbactam (64.1%), co-trimoxazole (41.5%), amoxicillinclavulanate (51.7%) and cefuroxime (38.1%) were observed. All of isolated microorganisms were resistant to ampicillin-sulbactam, amoxicillin-clavulanate, co-trimoxazole, ceftriaxone, cefuroxime and cefoxitin in decreasing frequencies. The most effective antimicrobial agents were determined to be imipenem, sulpera-zone, quinolone and aminoglycosides. In our region, parenteral antibiotics that should be selected for the empirical treatment of UTIs in all age groups are the aminoglycosides and 3(rd) generation cephalosporines. In contrast to other studies, these results suggest that co-trimoxazole should be used for children aged 0-1, and 2(nd) generation cephalosporins should be used for the oral treatment of children aged 1-5 due to the low rate of resistance to nitrofurantoin in patients aged over 5 years.

  7. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections

    Directory of Open Access Journals (Sweden)

    Eleonora Pistella

    2016-12-01

    Full Text Available In the nosocomial setting, antimicrobial-resistant Enterobacteriaceae are a growing challenge, and alarming trends in resistance are currently reported all over the world. Isolates of Enterobacteriaceae producing ampC β-lactamases and extended spectrum β-lactamases are endemic in many hospitals, and are frequently resistant also to other classes of antibiotics, such as fluoroquinolones and aminoglycosides. The risk of infections due to multi-drug resistant strains should be considered also for outpatients who have had recent contact with the health system. Both nosocomial and health-care associated infections should be treated with a combination of antibiotics active against multi-drug resistant Gram negative and methicillin-resistant Staphylococcus aureus. In the absence of effective antimicrobial stewardship programs, this aggressive therapeutic approach might lead to abuse of broad-spectrum antibiotics, with consequent increase in resistances. To contain the possible antibiotic overuse, several decisional strategies, often based on risk-score systems supporting the clinical decisions, have been proposed. In this context of high antibiotic selection pressure, carbapenem-resistant pathogens recently began to spread in many hospitals. Carbapenem-resistant Klebsiella pneumoniae, as well as carbapenem-resistant Acinetobacter baumannii and P. aeruginosa, represent the new major challenges to patient safety. Against these organisms the initial empiric treatment is generally ineffective. The poor clinical outcome associated with carbapenem- resistant K. pneumoniae infections is probably due to the delete in the beginning of an appropriate antibiotic treatment, rather than to the increased virulence of pathogens. Only few therapeutic options are available, including colistin, tigecycline, aminoglycosides and carbapenems in selected cases. Several combinations of these antibiotics have been used, but no ideal regimen has been currently established.

  8. Antibiotic resistance profile of Pseudomonas aeruginosa isolated from aquaculture and abattoir environments in urban communities

    Directory of Open Access Journals (Sweden)

    Isoken Henrietta Igbinosa

    2017-01-01

    Full Text Available Objective: To characterize multiple antibiotic resistance profile of Pseudomonas aeruginosa from aquaculture and abattoir environments. Methods: Wastewater samples were obtained from the abattoir and aquaculture environments between May 2016 and July 2016 and analysed using standard phenotypic, biochemical and PCR-based methods. Results: The mean pseudomonads count ranged from (4 × 102 ± 1.01 to (2 × 104 ± 0.10 colony-forming unit/mL in the aquaculture environment and (3 × 103 ± 0.00 to (1 × 105 ± 1.00 colony-forming unit/mL in the abattoir environment. A total of 96 isolates of Pseudomonas aeruginosa confirmed by PCR were thereafter selected from both aquaculture and abattoir environments and further characterized for their antimicrobial susceptibility profile by adopting the disc diffusion method. High level of resistance was observed against the aminoglycosides [gentamycin 64/96 (66.67% and kanamycin 52/96 (54.17%], monobactams [aztreonam 76/96 (79.17%], carbapenems [meropenem 52/96 (54.17%], tetracyclines [tetracycline 72/96 (75.00%] and cephems [ceftazidime 72/96 (75.00% and cefuroxime 48/96 (50.00%]. Multiple antibiotic resistant index of the respective isolates ranged from 0.4 to 0.8 while multidrug resistant profile of the isolates revealed that 28 of the respective isolates were resistant to ceftazidime, cefuroxime, gentamycin, kanamycin, aztreonam which belongs to cephems, aminoglycosides and monobactam class of antimicrobials. Conclusions: Findings from the present study therefore underscores the need for effective monitoring of the abattoir and aquaculture environments as they could be the significant source for spreading antibiotic resistant bacteria within the environment.

  9. Pattern of antimicrobial usage in livestock animals in south-western Nigeria: The need for alternative plans

    Directory of Open Access Journals (Sweden)

    Hezekiah K. Adesokan

    2015-04-01

    Full Text Available Resistance to antibiotics has continued to increase, placing future animal and human disease management in real danger. The developing countries characterised by widespread indiscriminate antibiotic use and in which ‘third-generation’ antibiotics are not readily available or affordable are the worst affected. A 3-year (2010–2012 retrospective survey of antibiotic usage in livestock production in three selected states of south-western Nigeria was conducted. Data obtained from eight purposively selected licensed veterinary pharmaceutical sales establishments in the area, based on keeping detailed sales records for the study period, were analysed using Stata Version 12. Results showed that tetracyclines (33.6%, fluoroquinolones (26.5% and beta-lactams/aminoglycosides (20.4% constituted the majority of the antibiotics used over the 3 years. The differences in the quantities of antibiotic types used within each antimicrobial class were statistically significant for tetracyclines (F = 59.87; p < 0.0001 and fluoroquinolones (F = 43.97; p < 0.0001 but not for beta-lactams/aminoglycosides (F = 3.21; p = 0.148. Furthermore, antibiotic consumption increased by 40.4% between 2010 and 2012. Although statistically insignificant (F = 0.277; p = 0.762, the increasing trend across the years was at rates of 23.5% between 2010 and 2011 and 13.8% between 2011 and 2012. In addition, the findings show a significantly higher consumption rate (t = 15.21; df = 5; p < 0.0001 during the rainy (52.5% than the dry (47.5% seasons. The current increasing trend in antibiotic usage holds a serious danger for the future and therefore calls for alternative plans to safeguard future livestock production, food security and human health. This becomes more imperative considering emerging resistance against tetracyclines and fluoroquinolones, the foremost remedies for livestock diseases in most developing countries.

  10. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series

    Science.gov (United States)

    2013-01-01

    Background Bacterial infections account for most peritoneal dialysis (PD)-associated peritonitis episodes. However, anaerobic PD peritonitis is extremely rare and intuitively associated with intra-abdominal lesions. In this study, we examined the clinical characteristics of PD patients who developed anaerobic peritonitis. Methods We retrospectively identified all anaerobic PD peritonitis episodes from a prospectively collected PD registry at a single center between 1990 and 2010. Only patients receiving more than 3 months of PD were enrolled. We analyzed clinical features as well as outcomes of anaerobic PD peritonitis patients. Results Among 6 patients, 10 episodes of PD-associated peritonitis were caused by anaerobic pathogens (1.59% of all peritonitis episodes during study the period), in which the cultures from 5 episodes had mixed growth. Bacteroides fragilis was the most common species identified (4 isolates). Only 3 episodes were associated with gastrointestinal lesions, and 4 episodes were related to a break in sterility during exchange procedures. All anaerobic pathogens were susceptible to clindamycin and metronidazole, but penicillin resistance was noted in 4 isolates. Ampicillin/sulbactam resistance was found in 2 isolates. In 5 episodes, a primary response was achieved using the first-generation cephalosporin and ceftazidime or aminoglycoside. In 3 episodes, the first-generation cephalosporin was replaced with aminoglycosides. Tenckhoff catheter removal was necessary in 2 episodes. Only one episode ended with mortality (due to a perforated bowel). Conclusion Anaerobic PD-associated peritonitis might be predominantly caused by contamination, rather than intra-abdominal events. Half of anaerobic PD-associated peritonitis episodes had polymicrobial growth. The overall outcome of anaerobic peritonitis is fair, with a high catheter survival rate. PMID:23705895

  11. Profile of urinary tract infections in paediatric patients

    Science.gov (United States)

    Gupta, Palak; Mandal, Jharna; Krishnamurthy, Sriram; Barathi, Deepak; Pandit, Nandini

    2015-01-01

    Background & objectives: This cross-sectional study was conducted at a tertiary care centre in Puducherry, south India, with the aim of finding the profile of the paediatric urinary tract infection (UTI), bacterial pathogens involved, and also to observe vesicoureteric reflux (VUR) and renal scarring in these patients. Methods: A total of 524 paediatric patients ≤13 yr, suspected to have UTI, were included in the study. Urine samples were collected, processed for uropathogen isolation and antibiotic susceptibility test was performed as per the Clinical and Laboratory Standards Institute (CLSI) guidelines. Thirty two culture proven children with UTI underwent micturating cysto-urethrography (MCU) and dimercaptosuccinic acid (DMSA) scanning was done for 69 children. Results: of the 524 children, 186 (35.4%) had culture proven UTI with 105 (56.4%) being infants, 50 (27.4%) between 1-5 yr, 30 (16.12%) between 5-13 yr and 129 (69.35%) males. Posterior urethral valve (PUV) was noted in three, hydronephrosis in one, VUR in 18 and renal scarring in 33. VUR as well as renal scarring were more in males >1 yr of age. A significant association (P=0.0054) was noted with a combined sensitivity and specificity of these investigations being 83 and 90 per cent, respectively of the MCU and DMSA scans for detecting VUR. Escherichia coli was the most common pathogen isolated, sensitive to nitrofurantoin, followed by cefoperazone-sulbactam, aminoglycosides and meropenem. Interpretation & conclusions: Our results indicate that UTI varies with age and gender and extensive evaluation is required in boys under one year of age with UTI. This study also highlights the better efficacy of aminoglycosides, cefoperazone-sulbactam and nitrofurantoin in vitro compared with meropenem in Gram–negative uropathogens. PMID:26112850

  12. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  13. [Detection of auditory impairment in the offsprings caused by drug treatment of the dams].

    Science.gov (United States)

    Kameyama, T; Nabeshima, T; Itoh, J

    1982-12-01

    To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.

  14. Surveillance of nosocomial infections in Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 1999-2002

    Directory of Open Access Journals (Sweden)

    Djoko Widodo

    2004-06-01

    Full Text Available Nosocomial infection are one of the main problem in hospital which are associated with significant morbidity, mortality and increased economic cost. Surveillance should be attempted regularly to obtain local data of incidence of nosocomial infections, types of infection, pathogen and resistance pattern. We reported the results of nosocomial surveillance in Dr. Cipto Mangunkusumo National General Hospital, Jakarta, in year 1999 to 2002. The data were obtained from surveillance, conducted by Nosocomial Infection Control Committee. Surveillance were performed to patient in risk of nosocomial infections such as underwent surgical procedure, urinary catheter, peripheral or central venous catheter, ventilator and other invasive procedure. Criteria for nosocomial infection which were used, based on technical guidelines of nosocomial infection in Dr. Cipto Mangunkusumo National General Hospital, year 1999; which referred to CDC definition of nosocomial infections. Incidence rate of nosocomial infections in year 1999, 2000, 2001 and 2002 were 1.1, 0.9, 0.6 and 0.4 % respectively. Type of nosocomial infection include catheter related, surgical wound, urinary tract and respiratory tract infections, ranged between 0 to 5.6 %. Gram negative bacteria consist of Pseudomonas sp, Enterobacter aerogenes, Escherichia coli, Proteus mirabilis were the most common nosocomial pathogen. Gram positive bacteria consist of Staphylococcus epidermidis, Staphylococcus aureus and Streptococcus anhemolyticus. Trend of increasing incidence of Gram positive nosocomial infection also showed in our surveillance. Mostly Gram negative bacteria had been resistant to penicillin, co amoxicillin-clavulanic acid and 3rd generation cephalosporin, but still sensitive to 4th generation cephalosporin and aminoglycoside. The Gram positive bacteria were still sensitive to penicillin, co amoxicillin-clavulanic acid, 4th generation cephalosporin and aminoglycoside. (Med J Indones 2004; 13: 107

  15. Systematic Review and Meta-Analysis of Randomized Clinical Trials in the Treatment of Human Brucellosis

    Science.gov (United States)

    Solís García del Pozo, Julián; Solera, Javier

    2012-01-01

    Background Brucellosis is a persistent health problem in many developing countries throughout the world, and the search for simple and effective treatment continues to be of great importance. Methods and Findings A search was conducted in MEDLINE and in the Cochrane Central Register of Controlled Trials (CENTRAL). Clinical trials published from 1985 to present that assess different antimicrobial regimens in cases of documented acute uncomplicated human brucellosis were included. The primary outcomes were relapse, therapeutic failure, combined variable of relapse and therapeutic failure, and adverse effect rates. A meta-analysis with a fixed effect model was performed and odds ratio with 95% confidence intervals were calculated. A random effect model was used when significant heterogeneity between studies was verified. Comparison of combined doxycycline and rifampicin with a combination of doxycycline and streptomycin favors the latter regimen (OR = 3.17; CI95% = 2.05–4.91). There were no significant differences between combined doxycycline-streptomycin and combined doxycycline-gentamicin (OR = 1.89; CI95% = 0.81–4.39). Treatment with rifampicin and quinolones was similar to combined doxycycline-rifampicin (OR = 1.23; CI95% = 0.63–2.40). Only one study assessed triple therapy with aminoglycoside-doxycycline-rifampicin and only included patients with uncomplicated brucellosis. Thus this approach cannot be considered the therapy of choice until further studies have been performed. Combined doxycycline/co-trimoxazole or doxycycline monotherapy could represent a cost-effective alternative in certain patient groups, and further studies are needed in the future. Conclusions Although the preferred treatment in uncomplicated human brucellosis is doxycycline-aminoglycoside combination, other treatments based on oral regimens or monotherapy should not be rejected until they are better studied. Triple therapy should not be considered the current

  16. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  17. Optimization of serious bacterial infections intensive therapy in children in Anesthesiology and Intensive Care Department

    Directory of Open Access Journals (Sweden)

    M. Yu. Kurochkin

    2014-08-01

    Full Text Available Effective selection of antibiotics in children with severe bacterial infections is often difficult because of microflora resistance. Extracorporeal detoxication methods, particularly discrete plasmapheresis are usually used for septic shock and total organ failure prevention. The aim of research. To conduct microbiological monitoring and to study a dynamics of medium molecular peptides in discrete plasmapheresis for intensive care optimization in children with severe bacterial infections in Anesthesiology and Intensive Care Department (AICU. Materials and methods. We investigated respiratory tract microflora by bacteriological method in 120 newborns and 30 children from 1 month with severe bacterial infections at admission and during prolonged stay in AICU. Discrete plasmapheresis was held in four children. Dynamic of medium molecular peptides was studied at admission, before discrete plasmapheresis and after it. Statistical data processing was performed using the Microsoft Excel software package. Results. It was found that in AICU in older children in admission grampositive and gramnegative flora was defined in equal quantity. The best sensitivity of the respiratory tract microflora was for the glycopeptides, oxazolidinones , II generation cephalosporins and macrolides, more than 60% - for aminoglycosides and lincosamides. However, when children spent more than 7-14 days in the department, nosocomial microflora was represented primarily by gram-negative organisms (80%, especially Pseudomonas aeruginosa. It was found to be inappropriate to use cephalosporins and macrolides in AICU for older children after their long stay there; the sensitivity to aminoglycosides was less than 60%, to anti-pseudomonal carbapenems not more than 30%. In AICU of newborns grampositive flora was found in 95%, mostly Staphylococcus haemolyticus. It was entirely sensitive for glycopeptides, oxazolidinones, fluoroquinolones, carbapenems, and also for co-trimoxazole and

  18. Factores de riesgo en el uso de los aminoglucósidos en pacientes oncológicos

    Directory of Open Access Journals (Sweden)

    Luis Alberto Rubio Hernández

    2002-08-01

    affect the response of patients to treatment with aminoglycosides, to determine the frequency of indication of serum creatinine test, to assess the dosage level and to detect potential drug interactions in drug-therapeutic profiles. A retrospective study, which comprised 157 cases selected from oncological patients admitted to the National Institute of Oncology and Radiobiology was conducted. These patients were indistinctively prescribed amykacin, gentamicin and kanamycin. Necessary data for research were taken from medical histories and data collection forms were designed. The risk factors of higher incidence were age over 59 years (45,9%, major surgery 72 hours before treatment (45,2%, potential drug interactions (42%, smoking (40,7%, renal failure (32,5% and recent nephrotoxics (35%. Each of these percentages is related to the whole sample. Those patients with two or more risk factors predominated (83%. Serum creatinine test was indicated in 98 patients (62,4%. It is necessary to underline that this biological indicator, a very important one for assessing the kidney functioning, was only measured in 38 patients for seven days before the treatment with aminoglycosides, which represents 24% of the whole sample. Dosage level could only be evaluated in 21% of the whole sample due to the lack of basic elements such as serum creatinine, weight and height. Potential drug interactions produced by aminoglycosides were detected in 41% of patients; the highest frequency of these interactions was found in betalactams (37%.

  19. Rastreamento da mutação mitocondrial A1555G em pacientes com deficiência auditiva sensorioneural Screening of the mitochondrial A1555G mutation in patients with sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Luciano Pereira Maniglia

    2008-10-01

    Full Text Available A mutação mitocondrial A1555G é a principal alteração associada à surdez ocasionada pelo uso de aminoglicosídeos. OBJETIVO: Investigar a prevalência da mutação A1555G em pacientes com deficiência auditiva sensorioneural com e sem uso de antibióticos aminoglicosídeos. MATERIAL E MÉTODO: Estudo em amostras de 27 pacientes com surdez, como casos, e em 100 neonatos, com audição normal, como grupo controle. O DNA foi extraído de leucócitos de amostras de sangue e "primers" específicos foram utilizados para amplificar o gene do citocromo b e a região que abrange a mutação A1555G do DNA mitocondrial, usando as técnicas da Reação em Cadeia da Polimerase e do Polimorfismo no Comprimento de Fragmentos de Restrição. DESENHO CIENTÍFICO: Estudo de casos em corte transversal. RESULTADOS: A região do gene do citocromo b foi amplificada, sendo confirmada a presença do DNA mitocondrial em todas as 127 amostras do estudo. A mutação A1555G não foi identificada nos 27 pacientes com deficiência auditiva e no grupo controle (100 neonatos. CONCLUSÕES: Os resultados são concordantes com estudos que relatam que a mutação A1555G não é prevalente nas Américas. Há interesse na determinação da real prevalência dessa mutação e na investigação de outras mutações que possam ocasionar deficiência auditiva associada ou não ao uso de aminoglicosídeos na população brasileira.The A1555G mitochondrial mutation is the main alteration associated with aminoglycoside-induced deafness. AIM: to investigate the prevalence of the A1555G mutation in patients sensorineural hearing loss patients with and without aminoglycosides antibiotic use. MATERIAL AND METHOD: a study of 27 cases with deafness as the sample, and 100 neonates with normal hearing as the control group. DNA was extracted from blood leukocyte samples, and specific oligonucleotide primers were designed to amplify the cytochrome b gene and the region which encloses the A1555

  20. Antibacterial-induced nephrotoxicity in the newborn.

    Science.gov (United States)

    Fanos, V; Cataldi, L

    1999-03-01

    Antibacterials are the primary cause of drug-induced kidney disease in all age groups and these agents bring about renal damage by 2 main mechanisms, namely, direct and immunologically mediated. For some antibacterials (aminoglycosides and vancomycin) nephrotoxicity is very frequent but generally reversible upon discontinuation of the drug. However, the development of acute renal failure with these agents is possible and its incidence in the newborn seems to be increasing. Antibacterials are very often used in the neonatal period especially in very low birthweight neonates. The role of neonatal age in developing nephrotoxicity has still to be defined. Since the traditional laboratory parameters of nephrotoxicity are abnormal only in the presence of substantial renal damage, the identification of early non-invasive markers of the renal damage (urinary microglobulins, enzymes and growth factors) is of importance. Aminoglycosides and glycopeptides are still frequently used, either alone or in combination, despite their low therapeutic index. Numerous factors intervene in bringing about the kidney damage induced by these 2 classes of antibacterials, such as factors related to the antibacterial itself and others related to the associated pathology as well as pharmacological factors. Nephrotoxicity can be caused by the beta-lactams and related compounds. Their potential to cause nephrotoxicity decreases in the order: carbapenems > cephalosporins > penicillins > monobactams. Third generation cephalosporins are frequently used in neonates. However, they are well tolerated compounds at the renal level. The nephrotoxicity of other classes of antibacterials is not discussed either because they are only used in neonates in exceptional circumstances, for example, chloramphenicol and cotrimoxazole (trimethoprim-sulfamethoxazole) or are not associated with significant nephrotoxicity, for example macrolides, clindamicin, quinolones, rifampicin (rifampin) and metronidazole

  1. Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014.

    Science.gov (United States)

    Rimoldi, Sara Giordana; Gentile, Bernardina; Pagani, Cristina; Di Gregorio, Annamaria; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Pittiglio, Valentina; Ridolfo, Anna Lisa; Gismondo, Maria Rita; Rizzardini, Giuliano; Lista, Florigio

    2017-10-10

    The emergence of carbapenem-resistant Klebsiella pneumoniae strains is threatening antimicrobial treatment. Sixty-eight carbapenemase-producing K. pneumoniae strains isolated at Luigi Sacco University Hospital-ASST Fatebenefratelli Sacco (Milan, Italy) between 2012 and 2014 were characterised microbiologically and molecularly. They were tested for drug susceptibility and carbapenemase phenotypes, investigated by means of repetitive extra-genic palindromic polymerase chain reaction (REP-PCR), and fully sequenced by means of next-generation sequencing for the in silico analysis of multi-locus sequence typing (MLST), their resistome, virulome and plasmid content, and their core single nucleotide polymorphism (SNP) genotypes. All of the samples were resistant to carbapenems, other β-lactams and ciprofloxacin; many were resistant to aminoglycosides and tigecycline; and seven were resistant to colistin. Resistome analysis revealed the presence of blaKPC genes and, less frequently blaSHV, blaTEM, blaCTX-M and blaOXA, which are related to resistance to carbapenem and other β-lactams. Other genes conferring resistance to aminoglycoside, fluoroquinolone, phenicol, sulphonamide, tetracycline, trimethoprim and macrolide-lincosamide-streptogramin were also detected. Genes related to AcrAB-TolC efflux pump-dependent and pump-independent tigecycline resistance mechanisms were investigated, but it was not possible to clearly correlate the genomic features with tigecycline resistance because of the presence of a common mutation in susceptible, intermediate and resistant strains. Concerning colistin resistance, the mgrB gene was disrupted by an IS5-like element, and the mobile mcr-1 and mcr-2 genes were not detected in two cases. The virulome profile revealed type-3 fimbriae and iron uptake system genes, which are important during the colonisation stage in the mammalian host environment. The in silico detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), Col

  2. Study of aac(6'Ie-aph(2″Ia Gene in Clinical Strain of Enterococci and Identification of High-Level Gentamicin Resistante Enterococci

    Directory of Open Access Journals (Sweden)

    N. Dadfarma

    2010-10-01

    Full Text Available Introduction & Objective: Enterococci have emerged as the leading nosocomial pathogens. In addition to natural resistance to many agents, enterococci have also developed plasmid- and transposon-mediated resistance to high concentrations of aminoglycosides. High-level gentamicin resistance (HLGR of enterococci results in the failure of drug synergism with an aminoglycoside plus cell-wall-active agents. HLGR (MIC=500μg/ml strains is usually due to the presence of the aac(6'Ie-aph(2″Ia gene . Materials & Methods: In the present experimental study 142 enterococci were isolated from the patients’ species. Identification was done by using standard methods and antimicrobial susceptibility test was performed by disc diffusion technique. MIC of Gentamicin was determined by a broth micro dilution method (NCCLS. PCR was performed to detect the aac(6'Ie-aph(2″Ia gene .Presence of the gene aac(6'-Ie-aph(2″-Ia was confirmed by digest with Sca1 enzyme. A PCR product was sequenced and BLAST analyzed at the NCBI database to be confirmed. Results: 62(43.7% out of the 142 isolates, were found to exhibit HLGR phenotype. MIC ranging from 512 to >1024 μg/ml in 55 HLGR isolates. All resistant isolates except one, were found to harbor the aac(6'Ie-aph(2″Ia gene. In our strain collection, 42% of E. faecalis and 44% of E. faecium were HLGR. In the HLGR isolates the prevalence of resistance to other antibiotics and Multi Drug Resistance (MDR was higher than non–HLGR.This prevalence in E.faecium was higher than E.faecalis. The sequence was compared with a published sequence and confirmed. Conclusion: Our results indicate that high prevalence of MDR and HLGR enterococcal colonization is an important problem in our medical centers.Spread of the aac(6'-Ie-aph(2″-Ia gene was responsible for HLGR among enterococci isolated from the patients in Tehran. (Sci J Hamadan Univ Med Sci 2010;17(3:25-32

  3. [Enterococcal endocarditis: a multicenter study of 76 cases].

    Science.gov (United States)

    Martínez-Marcos, Francisco Javier; Lomas-Cabezas, José Manuel; Hidalgo-Tenorio, Carmen; de la Torre-Lima, Javier; Plata-Ciézar, Antonio; Reguera-Iglesias, José María; Ruiz-Morales, Josefa; Márquez-Solero, Manuel; Gálvez-Acebal, Juan; de Alarcón-González, Arístides

    2009-12-01

    Although enterococci occupy the third position among microorganisms producing infectious endocarditis (IE) following streptococci and Staphylococcus aureus, few multicenter studies have provided an in-depth analysis of enterococcal IE. Description of the characteristics of 76 cases of enterococcal left-sided infectious endocarditis (LSIE) (native: 59, prosthetic: 17) retrieved from the database of the Cardiovascular Infections Study Group of the Andalusian Society of Infectious Diseases, with emphasis on the comparison with non-enterococcal LSIE. Enterococci were the causal agent in 76 of the 696 episodes of LSIE (11%). Compared with non-enterococcal LSIE, enterococcal LSIE was more commonly seen in patients older than 65 (47.4% vs. 27.6%, P<0.0005), and those with chronic diseases (75% vs. 54.6%, P<0.001), calcified valves (18.6% vs. 10%, P<0.05), and previous urinary (30.3% vs. 2.1%, P<0.00001) or abdominal (10.5% vs. 3.1%, P<0.01) infections, and produced a higher rate of relapses (6.6% vs. 2.3%, P<0.05). Enterococcal LSIE was associated with fewer peripheral vascular or skin manifestations (14.5% vs. 27.1%, P<0.05) and fewer immunological phenomena (10.5% vs. 24%, P<0.01). Among the total of patients with enterococcal LSIE, 36.8% underwent valve surgery during hospitalization. In-hospital mortality was 32.9% for enterococcal LSIE, 9.3% for viridans group streptococci (VGS) LSIE and 48.6% for S. aureus LSIE (enterococci vs VGS: P<0.0001; enterococci vs S. aureus: P=0.02). Enterococcal LSIE patients treated with the combination of a penicillin or vancomycin plus an aminoglycoside (n=60) and those treated with ampicillin plus ceftriaxone (n=6) showed similar in-hospital mortality (26.7% vs 33.3%, P=0.66). High-level resistance to gentamicin was detected in 5 of 38 episodes of enterococcal LSIE (13.1%). Enterococcal LSIE appears in patients with well-defined clinical characteristics, and causes few peripheral vascular or skin manifestations and few immunological

  4. Comparative Genotypes, Staphylococcal Cassette Chromosome mec (SCCmec) Genes and Antimicrobial Resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus Isolates from Infections in Humans and Companion Animals.

    Science.gov (United States)

    McManus, Brenda A; Coleman, David C; Deasy, Emily C; Brennan, Gráinne I; O' Connell, Brian; Monecke, Stefan; Ehricht, Ralf; Leggett, Bernadette; Leonard, Nola; Shore, Anna C

    2015-01-01

    This study compares the characteristics of Staphylococcus epidermidis (SE) and Staphylococcus haemolyticus (SH) isolates from epidemiologically unrelated infections in humans (Hu) (28 SE-Hu; 8 SH-Hu) and companion animals (CpA) (12 SE-CpA; 13 SH-CpA). All isolates underwent antimicrobial susceptibility testing, multilocus sequence typing and DNA microarray profiling to detect antimicrobial resistance and SCCmec-associated genes. All methicillin-resistant (MR) isolates (33/40 SE, 20/21 SH) underwent dru and mecA allele typing. Isolates were predominantly assigned to sequence types (STs) within a single clonal complex (CC2, SE, 84.8%; CC1, SH, 95.2%). SCCmec IV predominated among MRSE with ST2-MRSE-IVc common to both Hu (40.9%) and CpA (54.5%). Identical mecA alleles and nontypeable dru types (dts) were identified in one ST2-MRSE-IVc Hu and CpA isolate, however, all mecA alleles and 2/4 dts detected among 18 ST2-MRSE-IVc isolates were closely related, sharing >96.5% DNA sequence homology. Although only one ST-SCCmec type combination (ST1 with a non-typeable [NT] SCCmec NT9 [class C mec and ccrB4]) was common to four MRSH-Hu and one MRSH-CpA, all MRSH isolates were closely related based on similar STs, SCCmec genes (V/VT or components thereof), mecA alleles and dts. Overall, 39.6% of MR isolates harbored NT SCCmec elements, and ACME was more common amongst MRSE and CpA isolates. Multidrug resistance (MDR) was detected among 96.7% of isolates but they differed in the prevalence of specific macrolide, aminoglycoside and trimethoprim resistance genes amongst SE and SH isolates. Ciprofloxacin, rifampicin, chloramphenicol [fexA, cat-pC221], tetracycline [tet(K)], aminoglycosides [aadD, aphA3] and fusidic acid [fusB] resistance was significantly more common amongst CpA isolates. SE and SH isolates causing infections in Hu and CpA hosts belong predominantly to STs within a single lineage, harboring similar but variable SCCmec genes, mecA alleles and dts. Host and

  5. Comparative Genotypes, Staphylococcal Cassette Chromosome mec (SCCmec Genes and Antimicrobial Resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus Isolates from Infections in Humans and Companion Animals.

    Directory of Open Access Journals (Sweden)

    Brenda A McManus

    Full Text Available This study compares the characteristics of Staphylococcus epidermidis (SE and Staphylococcus haemolyticus (SH isolates from epidemiologically unrelated infections in humans (Hu (28 SE-Hu; 8 SH-Hu and companion animals (CpA (12 SE-CpA; 13 SH-CpA. All isolates underwent antimicrobial susceptibility testing, multilocus sequence typing and DNA microarray profiling to detect antimicrobial resistance and SCCmec-associated genes. All methicillin-resistant (MR isolates (33/40 SE, 20/21 SH underwent dru and mecA allele typing. Isolates were predominantly assigned to sequence types (STs within a single clonal complex (CC2, SE, 84.8%; CC1, SH, 95.2%. SCCmec IV predominated among MRSE with ST2-MRSE-IVc common to both Hu (40.9% and CpA (54.5%. Identical mecA alleles and nontypeable dru types (dts were identified in one ST2-MRSE-IVc Hu and CpA isolate, however, all mecA alleles and 2/4 dts detected among 18 ST2-MRSE-IVc isolates were closely related, sharing >96.5% DNA sequence homology. Although only one ST-SCCmec type combination (ST1 with a non-typeable [NT] SCCmec NT9 [class C mec and ccrB4] was common to four MRSH-Hu and one MRSH-CpA, all MRSH isolates were closely related based on similar STs, SCCmec genes (V/VT or components thereof, mecA alleles and dts. Overall, 39.6% of MR isolates harbored NT SCCmec elements, and ACME was more common amongst MRSE and CpA isolates. Multidrug resistance (MDR was detected among 96.7% of isolates but they differed in the prevalence of specific macrolide, aminoglycoside and trimethoprim resistance genes amongst SE and SH isolates. Ciprofloxacin, rifampicin, chloramphenicol [fexA, cat-pC221], tetracycline [tet(K], aminoglycosides [aadD, aphA3] and fusidic acid [fusB] resistance was significantly more common amongst CpA isolates. SE and SH isolates causing infections in Hu and CpA hosts belong predominantly to STs within a single lineage, harboring similar but variable SCCmec genes, mecA alleles and dts. Host and

  6. The development of polymeric pellicles with gentamicine sulfate for therapeutic correction of cervical erosion (pseudoerosion

    Directory of Open Access Journals (Sweden)

    T. M. Litvinenko

    2014-08-01

    Full Text Available Introduction.Cervical erosionsoccur in 12-15%gynaecological diseases. Erosion is a damage of epithelialmucous membrane or skin. Therapy of patients with cervical erosionsis based on selection of pathogeneticsubstantiative method of treatment. Bathes and irrigations with 20% protargol, alum, carbolic acid, potassium permanganate are used. But some authors admit the destructive influence of these procedures. Using of tampons with 10% sintomycine emulsion, cod liver oil, sea-buckthorn oil,kalanchoe sap, propolis, vagotil, cigerol, galantamine also doesn’t give desirable result. Recently polymeric pellicleswith antibacterial substances are widely used. The most perspective in this route are aminoglycoside antibiotics. That is why we chose gentamicine sulfate (broad-spectrum aminoglycoside antibiotic. The aim of study is the development of the optimal composition of vaginal pellicleswith gentamicine sulfate for gynaecological practice, scientifically substantiation of excipients: polymeric base and plasticizer. Results and discussion.Polymeric bases and plasticizers influence on gentamicine sulfate releasing from polimericpellicleshas been studied. Research on choice of optimal composition has been carried out by two-factor experiment plan. The next bases and plasticizers have been used: methylcellulose, sodium carboxymethylcellulose, soluble biopolymer, gelatin; glycerine, propylenglycol, polyethylene glycol, twin 80. Gentamicine sulfate content was 80 mg in one pellicle. Gentamicine sulfate releasing from polimericpellicleshas been investigated by the Kruvchinsky method, concentration of active substance has been detected after 45 min. As a result it has been established that base makes essential influence on the gentamicine sulfate releasing (Fexp.52,88>Ftabl. 3,9. The best plasticizer is glycerin and the most optimal base is gelatin. So the optimal composition for vaginal films has been chosen: Gentamicine sulfate0,08 g Glycerin0,7 g Gelatin0

  7. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.

    Science.gov (United States)

    Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R

    2016-09-20

    Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by

  8. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    Science.gov (United States)

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  9. Rising prevalence of antimicrobial resistance in urinary tract infections during pregnancy: Necessity for exploring newer treatment options

    Directory of Open Access Journals (Sweden)

    Meher Rizvi

    2011-01-01

    Full Text Available Background: Urinary tract infections (UTI are one of the most common medical complications of pregnancy. The emergence of drug resistance and particularly the Extended-spectrum beta-lactamase production by Escherichia coli and methicillin resistance in Staphylococci, limits the choice of antimicrobials. Materials and Methods: Patients in different stages of pregnancy with or without symptoms of urinary tract infection attending the antenatal clinic of obstetrics and gynaecology were screened for significant bacteriuria, by standard loop method on 5% sheep blood agar and teepol lactose agar. Isolates were identified by using standard biochemical tests and antimicrobial susceptibility testing was done using Kirby Bauer disc diffusion method. Results: A total of 4290 (51.2% urine samples from pregnant females showed growth on culture. Prevalence of asymptomatic bacteriuria 3210 (74.8% was higher than symptomatic UTI 1080 (25.2%. Escherichia coli was the most common pathogen accounting for 1800 (41.9% of the urinary isolates. Among the gram-positive cocci, coagulase negative species of Staphylococci 270 (6.4% were the most common pathogen. Significantly high resistance was shown by the gram negative bacilli as well as gram positive cocci to the β-lactam group of antimicrobials, flouroquinolones and aminoglycosides. Most alarming was the presence of ESBL in 846 (47% isolates of Escherichia coli and 344 (36.9% isolates of Klebsiella pneumoniae, along with the presence of methicillin resistance in 41% of Staphylococcus species and high-level aminoglycoside resistance in 45(30% isolates of Enterococcus species. Glycopeptides and carbepenems were the only group of drugs to which all the strains of gram positive cocci and gram negative bacilli were uniformly sensitive, respectively. Conclusions: Regular screening should be done for the presence of symptomatic or asymptomatic bacteriuria in pregnancy and specific guidelines should be issued for testing

  10. Microbiological efficacy of lomefloxacin and other drug's regarding microorganisms isolated from the human conjunctiva Atividade biocida da lomefloxacina em relação aos microorganismos isolados de conjuntiva humana

    Directory of Open Access Journals (Sweden)

    Ana Luísa Hofling-Lima

    2001-04-01

    Full Text Available Purpose: To evaluate and compare the in vitro susceptibility of human conjunctival bacterial isolates to various antimicrobial agents, including lomefloxacin, other fluoroquinolones (ciprofloxacin, norfloxacin, and ofloxacin, aminoglycosides (gentamicin, tobramycin, and amicacin, and cephalosporin (cephalothin. Methods: Antibiotic susceptibility tests conducted over a period of 27 months with 613 bacterial isolates from the conjunctiva were retrospectively analyzed. Results: In relation to the total number of positive isolates, the fluoroquinolones showed greater in vitro effectiveness than the other analyzed antibiotics. All bacterial isolates showed significantly higher susceptibility to ciprofloxacin than to lomefloxacin. Conclusion: The fluoroquinolones are not only equally effective against all conjunctival bacterial isolates, but they also show superior antimicrobial activity in comparison to aminoglycosides and cephalothin. These results suggest that fluoroquinolones, such as lomefloxacin, can be beneficially prescribed for conjunctival infections and also as prophylaxis in ocular surgery.Objetivo: Avaliar e comparar a atividade biocida in vitro de bactérias isoladas da conjuntiva humana à lomefloxacina, a outras fluorquinolonas (ciprofloxacina, norfloxacina e ofloxacina, aos aminoglicosídeos (gentamicina, tobramicina e amicacina e à cefalosporina (cefalotina. Métodos: Foram analisados retrospectivamente os resultados dos antibio-gramas realizados no período de 27 meses com 613 bactérias isoladas da conjuntiva. Resultados: A eficácia in vitro das quinolonas de acordo com o total dos isolamentos positivos foi superior em relação aos outros antibióticos avaliados. A suscetibilidade do total de bactérias à ciprofloxacina foi significantemente mais alta quando comparada à lomefloxacina. Conclusão: Os resultados praticamente equivalentes da suscetibilidade de bactérias isoladas da conjuntiva a fluorquinolonas, associado

  11. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  12. The Challenges of Implementing Next Generation Sequencing Across a Large Healthcare System, and the Molecular Epidemiology and Antibiotic Susceptibilities of Carbapenemase-Producing Bacteria in the Healthcare System of the U.S. Department of Defense.

    Directory of Open Access Journals (Sweden)

    Emil Lesho

    Full Text Available We sought to: 1 provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB collected in the U.S. Department of Defense health system; 2 increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3 illustrate challenges and offer mitigations for implementing next generation sequencing (NGS across large health systems.Prospective surveillance and system-wide implementation of NGS.288-hospital healthcare network.All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious, on-line (ResFinder, and open-source software (Btrim, FLASh, Bowtie2, an Samtools were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed.From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23. These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones.Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and

  13. The Challenges of Implementing Next Generation Sequencing Across a Large Healthcare System, and the Molecular Epidemiology and Antibiotic Susceptibilities of Carbapenemase-Producing Bacteria in the Healthcare System of the U.S. Department of Defense.

    Science.gov (United States)

    Lesho, Emil; Clifford, Robert; Onmus-Leone, Fatma; Appalla, Lakshmi; Snesrud, Erik; Kwak, Yoon; Ong, Ana; Maybank, Rosslyn; Waterman, Paige; Rohrbeck, Patricia; Julius, Michael; Roth, Amanda; Martinez, Joshua; Nielsen, Lindsey; Steele, Eric; McGann, Patrick; Hinkle, Mary

    2016-01-01

    We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems. Prospective surveillance and system-wide implementation of NGS. 288-hospital healthcare network. All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones. Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or

  14. Antimicrobial resistance patterns, clinical features, and risk factors for septic shock and death of nosocomial E coli bacteremia in adult patients with hematological disease: A monocenter retrospective study in China.

    Science.gov (United States)

    Ma, Jie; Li, Ning; Liu, Yajie; Wang, Chong; Liu, Xiaoyan; Chen, Shengmei; Xie, Xinsheng; Gan, Silin; Wang, Meng; Cao, Weijie; Wang, Fang; Liu, Yanfan; Wan, Dingming; Sun, Ling; Sun, Hui

    2017-05-01

    aminoglycoside, especially amikacin, will be helpful to increase the antimicrobial coverage against ESBL-EC while combining tigecycline with aminoglycoside should be considered for seriously carbapenem-resistant infectious patients.

  15. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    Science.gov (United States)

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  16. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  17. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages.

    Science.gov (United States)

    Wimalarathna, Helen M L; Richardson, Judith F; Lawson, Andy J; Elson, Richard; Meldrum, Richard; Little, Christine L; Maiden, Martin C J; McCarthy, Noel D; Sheppard, Samuel K

    2013-07-15

    Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004-5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens.

  18. Circulation of a multiresistant, conjugative, IncA/C plasmid within the nosocomial Providencia stuartii population in the Athens area.

    Science.gov (United States)

    Giakkoupi, Panagiota; Tryfinopoulou, Kyriaki; Polemis, Michalis; Pappa, Olga; Miriagou, Vivi; Vatopoulos, Alkiviadis

    2015-05-01

    The objective of the study is to report a multidrug-resistant outbreak of Providencia stuartii that occurred in inpatients in the Athens area in 2012 resulting from a very successful transmissible A/C multidrug-resistant plasmid. Thirteen multidrug-resistant P. stuartii clinical isolates from 5 hospitals were studied. Molecular typing was performed by pulsed-field gel electrophoresis. Antibiotic resistance genes and their genetic surround were detected by PCR and sequencing. Plasmid analysis included conjugation experiments using liquid cultures, sizing by S1 digestion, and incompatibility replicon typing by PCR. Isolates were grouped into 2 distinct clonal types A and B, exhibiting similarity less than 70%. Isolates of type A were recovered from patients hospitalized in 4 different hospitals with no obvious epidemiological linkage, while isolates of type B were recovered from patients treated in a single hospital. Both clonal types harbored a conjugative plasmid of 130 bp and IncA/C replicon type carrying 5 β-lactamase genes bla(SHV-5), bla(VEB-1), bla(VIM-1), bla(OXA-10), and bla(TEM-1) and aminoglycosides resistant determinants. All β-lactamase genes were included in stable structures as IS26, IS1999, and In-e541. The current plasmid seemed to have many common determinants with previously reported plasmids derived from P. stuartii and Proteus mirabilis clinical isolates and exhibited the ability to circulate in nosocomial bacterial populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The importance of active learning and practice on the students' mastery of pharmacokinetic calculations for the intermittent intravenous infusion dosing of antibiotics

    Directory of Open Access Journals (Sweden)

    Mehvar Reza

    2012-11-01

    Full Text Available Abstract Background Estimation of pharmacokinetic parameters after intermittent intravenous infusion (III of antibiotics, such as aminoglycosides or vancomycin, has traditionally been a difficult subject for students in clinical pharmacology or pharmacokinetic courses. Additionally, samples taken at different intervals during repeated dose therapy require manipulation of sampling times before accurate calculation of the patient-specific pharmacokinetic parameters. The main goal of this study was to evaluate the effectiveness of active learning tools and practice opportunities on the ability of students to estimate pharmacokinetic parameters from the plasma samples obtained at different intervals following intermittent intravenous infusion. Methods An extensive reading note, with examples, and a problem case, based on a patient’s chart data, were created and made available to students before the class session. Students were required to work through the case before attending the class. The class session was devoted to the discussion of the case requiring active participation of the students using a random participation program. After the class, students were given additional opportunities to practice the calculations, using online modules developed by the instructor, before submitting an online assignment. Results The performance of students significantly (P P  Conclusions Despite being a difficult subject, students achieve mastery of pharmacokinetic calculations for the topic of intermittent intravenous infusion when appropriate active learning strategies and practice opportunities are employed.

  20. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons

    Directory of Open Access Journals (Sweden)

    Antonia eGonzález-Garrido

    2015-12-01

    Full Text Available Acid-sensing ion channels (ASICs are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4 that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs. These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations and N,N,N’,N’–tetrakis-(2-piridilmetil-etilendiamina (TPEN increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2 and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  1. Preventive and curative effects of ginger extract against histopathologic changes of gentamicin-induced tubular toxicity in rats

    Directory of Open Access Journals (Sweden)

    Hamid Nasri

    2013-01-01

    Full Text Available Background: Gentamicin (GM is a commonly used aminoglycoside, however, renal toxicity has limited its usage. This study was designed to evaluate the curative and protective effects of Zingiber officinale (ginger against gentamicin tubular toxicity in rats. The phenolic and flavonoid components and antioxidant activity of ginger were also evaluated. Methods: In a preclinical study, 50 male Wistar rats were designated into 5 groups of 10 and treated as follows: Group I: vehicle. Group II: 200 mg/kg/d of ginger for 3 days then, GM (80 mg/kg for 7 days. Group III: 200 mg/kg ginger orally for 3 days, then ginger plus GM for 7 days. Group IV: GM for 7 days. Group V: GM for 10 days. Group VI: GM for 7 days, then 200 mg/kg ginger orally for 10 days. At the end of the study, the animals were sacrificed and their kidneys were histologically evaluated. Results: Ginger could prevent degeneration of the renal cells and reduce the severity of tubular damage caused by gentamicin. However, it could not regenerate the GM degeneration. Conclusions: The results indicate that ginger is effective as a prophylaxis agent, but has not curative effect.

  2. Listeria monocytogenes endophthalmitis following keratoconjunctivitis

    Directory of Open Access Journals (Sweden)

    Shoughy SS

    2014-01-01

    Full Text Available Samir S Shoughy,1 Khalid F Tabbara1–31The Eye Center and The Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia; 2Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 3The Wilmer Ophthalmological Institute of The Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Endophthalmitis due to endogenous or exogenous bacteria is a rare infection of the eye. We report a case of endophthalmitis following Listeria monocytogenes keratoconjunctivitis in a 27-year-old healthy white male presenting with hand motion visual acuity, right eye mucopurulent conjunctivitis, elevated intraocular pressure, and pigmented hypopyon 6 months post-keratectomy. The conjunctivitis was unresponsive to a 5-day course of topical tobramycin eye drops, and the patient developed keratitis with pain that progressed to endophthalmitis after 21 days. Diagnostic B-scan revealed vitreous exudates. Intraocular fluid specimen showed Gram-positive organisms and the aqueous culture grew penicillin-/aminoglycoside-sensitive L. monocytogenes. The patient was given intravitreal and systemic vancomycin and ceftazidime. The eye was unresponsive to intravenous penicillin and gentamicin; the anterior chamber progressively flattened and developed phthisis bulbi. L. monocytogenes keratoconjunctivitis may lead to bacterial endophthalmitis. Prompt culture and early antibiotic therapy are recommended.Keywords: conjunctivitis, L. monocytogenes, endophthalmitis

  3. Multidrug-resistant Acinetobacter meningitis in neurosurgical patients with intraventricular catheters: assessment of different treatments.

    Science.gov (United States)

    Rodríguez Guardado, A; Blanco, A; Asensi, V; Pérez, F; Rial, J C; Pintado, V; Bustillo, E; Lantero, M; Tenza, E; Alvarez, M; Maradona, J A; Cartón, J A

    2008-04-01

    The treatment of multidrug-resistant Acinetobacter baumannii meningitis is a serious therapeutic problem due to the limited penetration of antibiotics into the CSF. We describe the clinical features and the outcome of a group of patients with nosocomial neurosurgical meningitis treated with different therapeutic options. All patients with nosocomial post-surgical meningitis due to A. baumannii diagnosed between 1990 and 2004 were retrospectively reviewed. During the period of study, 51 cases of this nosocomial infection were identified. Twenty-seven patients were treated with intravenous (iv) monotherapy: carbapenems (21 cases), ampicillin/sulbactam (4 cases) and other antibiotics (2 cases). Four patients were treated with iv combination therapy. Nineteen patients were treated with iv and intrathecal regimens: colistin by both routes (8 cases), carbapenems plus iv and intrathecal (4 cases) or only intrathecal (5 cases) aminoglycosides, and others (2 cases). Seventeen patients died due to the infection. One patient died without treatment. The mean (SD) duration of therapy was 17.4 (8.3) days (range 3-44). Although no patients treated with colistin died, we did not observe statistically significant differences in the mortality among the groups with different treatments. Nosocomial Acinetobacter meningitis has a high mortality. Combined therapy with iv and intrathecal colistin is a useful and safe option in the treatment of nosocomial Acinetobacter meningitis.

  4. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rakwalska, Magdalena; Rospert, Sabine

    2004-10-01

    The chaperone homologs RAC (ribosome-associated complex) and Ssb1/2p are anchored to ribosomes; Ssb1/2p directly interacts with nascent polypeptides. The absence of RAC or Ssb1/2p results in a similar set of phenotypes, including hypersensitivity against the aminoglycoside paromomycin, which binds to the small ribosomal subunit and compromises the fidelity of translation. In order to understand this phenomenon we measured the frequency of translation termination and misincorporation in vivo and in vitro with a novel reporter system. Translational fidelity was impaired in the absence of functional RAC or Ssb1/2p, and the effect was further enhanced by paromomycin. The mutant strains suffered primarily from a defect in translation termination, while misincorporation was compromised to a lesser extent. Consistently, a low level of soluble translation termination factor Sup35p enhanced growth defects in the mutant strains. Based on the combined data we conclude that RAC and Ssb1/2p are crucial in maintaining translational fidelity beyond their postulated role as chaperones for nascent polypeptides.

  5. Enterobacter cloacae Complex Isolates Harboring blaNMC-A or blaIMI-Type Class A Carbapenemase Genes on Novel Chromosomal Integrative Elements and Plasmids.

    Science.gov (United States)

    Boyd, David A; Mataseje, Laura F; Davidson, Ross; Delport, Johannes A; Fuller, Jeff; Hoang, Linda; Lefebvre, Brigitte; Levett, Paul N; Roscoe, Diane L; Willey, Barbara M; Mulvey, Michael R

    2017-05-01

    Carbapenem-resistant Enterobacter cloacae complex isolates submitted to a reference laboratory from 2010 to 2015 were screened by PCR for seven common carbapenemase gene groups, namely, KPC, NDM, OXA-48, VIM, IMP, GES, and NMC-A/IMI. Nineteen of the submitted isolates (1.7%) were found to harbor Ambler class A bla NMC-A or bla IMI -type carbapenemases. All 19 isolates were resistant to at least one carbapenem but susceptible to aminoglycosides, trimethoprim-sulfamethoxazole, tigecycline, and ciprofloxacin. Most isolates (17/19) gave positive results with the Carba-NP test for phenotypic carbapenemase detection. Isolates were genetically diverse by pulsed-field gel electrophoresis macrorestriction analysis, multilocus sequence typing, and hsp60 gene analysis. The genes were found in various Enterobacter cloacae complex species; however, bla NMC-A was highly associated with Enterobacter ludwigii Whole-genome sequencing and bioinformatics analysis revealed that all NMC-A ( n = 10), IMI-1 ( n = 5), and IMI-9 ( n = 2) producers harbored the carbapenemase gene on EludIMEX-1-like integrative mobile elements (EcloIMEXs) located in the identical chromosomal locus. Two novel genes, bla IMI-5 and bla IMI-6 , were harbored on different IncFII-type plasmids. Enterobacter cloacae complex isolates harboring bla NMC-A/IMI -type carbapenemases are relatively rare in Canada. Though mostly found integrated into the chromosome, some variants are located on plasmids that may enhance their mobility potential. © Crown copyright 2017.

  6. Increasing Resistance of Coagulase-Negative Staphylococci in Total Hip Arthroplasty Infections: 278 THA-Revisions due to Infection Reported to the Norwegian Arthroplasty Register from 1993 to 2007

    Directory of Open Access Journals (Sweden)

    Olav Lutro

    2014-01-01

    Full Text Available We investigated bacterial findings from intraoperative tissue samples taken during revision due to infection after total hip arthroplasty (THA. The aim was to investigate whether the susceptibility patterns changed during the period from 1993 through 2007. Reported revisions due to infection in the Norwegian Arthroplasty Register (NAR were identified, and 10 representative hospitals in Norway were visited. All relevant information on patients reported to the NAR for a revision due to infection, including bacteriological findings, was collected from the medical records. A total of 278 revision surgeries with bacterial growth in more than 2 samples were identified and included. Differences between three 5-year time periods were tested by the chi-square test for linear trend. The most frequent isolates were coagulase-negative staphylococci (CoNS (41%, 113/278 and Staphylococcus aureus (19%, 53/278. The proportion of CoNS resistant to the methicillin-group increased from 57% (16/28 in the first period, 1993–1997, to 84% (52/62 in the last period, 2003–2007 (P = 0.003. There was also significant increase in resistance for CoNS to cotrimoxazole, quinolones, clindamycin, and macrolides. All S. aureus isolates were sensitive to both the methicillin-group and the aminoglycosides. For the other bacteria identified no changes in susceptibility patterns were found.

  7. Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere.

    Science.gov (United States)

    An, Xin-Li; Chen, Qing-Lin; Zhu, Dong; Su, Jian-Qiang

    2018-08-01

    Struvite recovered from wastewater is promising for recycling phosphorus into soil as fertilizers. However, struvite application may prompt the proliferation of antibiotic resistance in soil and plant. This study examined the impacts of struvite application and biochar amendment on integrons abundance and gene cassette contexts in rhizosphere soil and phyllosphere using quantitative PCR and clone library analysis. Microcosm experiments revealed that class 1 integron was the most prevalent in all samples, with higher concentration and higher relative abundance in rhizosphere than those in phyllosphere. The majority of resistance gene cassettes were associated with genes encoding resistance to aminoglycosides, beta-lactams and chloramphenicols. Struvite application significantly increased the genetic diversity of antibiotic resistance gene cassettes in both rhizosphere and phyllosphere. However, biochar amendment attenuated the increasing effect of struvite application exerting on the class 1 integron antibiotic resistance gene cassette pool in phyllosphere. These findings highlighted human activities to be the source of integron gene cassette pool and raised the possibility of using biochar amendment as an alternative mean for mitigating antibiotic resistance in environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of kasugamycin and validamycin-A residues in cereals by consecutive solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hong; Wang, Chenchen; Li, Huidong; Nie, Yan; Fang, Liping; Chen, Zilei

    2018-03-01

    Two polar aminoglycosides, kasugamycin and validamycin-A, were determined in cereals (brown rice, wheat and corn) by high-performance liquid chromatography-tandem mass spectrometry. The analytes were extracted from samples using methanol and water (70:30, v/v) at pH 5.5, purified using both a hydrophilic-hydrophobic-balanced cartridge and a strong cation-exchange cartridge, and then analysed using multiple reaction monitoring in positive electrospray ionisation mode with a special ReproSil 100 C 18 high-performance liquid chromatography column. This newly proposed method yielded good sensitivity and excellent chromatographic performance. The limits of quantification for kasugamycin and validamycin-A were 4.1 µg/kg and 1.0 µg/kg, respectively. The recoveries for both compounds at three fortification levels (4, 100 and 500 µg/kg for kasugamycin; 1, 10 and 100 µg/kg for validamycin-A) ranged from 75% to 110%, and the relative standard deviations were below 15%.

  9. Complete genome sequence of multidrug-resistant Staphylococcus cohnii ssp. urealyticus strain SNUDS-2 isolated from farmed duck, Republic of Korea.

    Science.gov (United States)

    Han, Jee Eun; Lee, Seungki; Jeong, Dae Gwin; Yoon, Sun-Woo; Kim, Doo-Jin; Lee, Moo-Seung; Kim, Hye Kwon; Park, Sung-Kyun; Kim, Ji Hyung; Park, Se Chang

    2017-09-01

    Staphylococcus cohnii has become increasingly recognized as a potential pathogen of clinically significant nosocomial and farm animal infections. This study was designed to determine the genome of a multidrug-resistant S. cohnii subsp. urealyticus strain SNUDS-2 isolated from a farmed duck in Korea. Genomic DNA was sequenced using the PacBio RS II system. The complete genome was annotated and the presence of antimicrobial resistance and virulence genes were identified. The annotated 2,625,703 bp genome contained various antimicrobial resistance genes conferring resistance to β-lactam, aminoglycosides, fluoroquinolones, phenicols and trimethoprim. The virulence-associated three synergistic hemolysins have been identified in the strain. To the best of our knowledge, this is the first complete genome of S. cohnii, and will provide important insights into the biodiversity of CoNS and valuable information for the control of this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  10. Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa

    Science.gov (United States)

    Masuda, Nobuhisa; Sakagawa, Eiko; Ohya, Satoshi; Gotoh, Naomasa; Tsujimoto, Hideto; Nishino, Takeshi

    2000-01-01

    To find the exact substrate specificities of three species of tripartite efflux systems of Pseudomonas aeruginosa, MexAB-OprM, MexCD-OprJ, and MexXY-OprM, we constructed a series of isogenic mutants, each of which constitutively overproduced one of the three efflux systems and lacked the other two, and their isogenic mutants, which lacked all these systems. Comparison of the susceptibilities of the constructed mutants to 52 antimicrobial agents belonging to various groups suggested the following substrate specificities. All of the efflux systems extrude a wide variety of antimicrobial agent groups, i.e., quinolones, macrolides, tetracyclines, lincomycin, chloramphenicol, most penicillins (all but carbenicillin and sulbenicillin), most cephems (all but cefsulodin and ceftazidime), meropenem, and S-4661, but none of them extrude polymyxin B or imipenem. Extrusion of aminoglycosides is specific to MexXY-OprM, and extrusion of a group of the β-lactams, i.e., carbenicillin, sulbenicillin, ceftazidime, moxalactam, and aztreonam, is specific to MexAB-OprM. Moreover, MexAB-OprM and MexCD-OprJ extrude novobiocin, cefsulodin, and flomoxef, while MexXY-OprM does not. These substrate specificities are distinct from those reported previously. PMID:11083635

  11. High diversity of genes and plasmids encoding resistance to third-generation cephalosporins and quinolones in clinical Escherichia coli from commercial poultry flocks in Italy

    DEFF Research Database (Denmark)

    Niero, Giulia; Bortolaia, Valeria; Vanni, Michele

    2018-01-01

    = 98) and layers (n = 22) between 2008 and 2012. 3GC-resistant isolates were screened for extended-spectrum and AmpC β-lactamase (ESBL/AmpC), while all isolates were tested for plasmid-mediated quinolone resistance (PMQR) genes. ESBL/AmpC- and PMQR-positive isolates were typed by pulsed-field gel......% of isolates from turkeys, broilers and layers, respectively. We identified seven ESBL/AmpC-encoding plasmid types, usually conjugative (78%), with a marked prevalence of IncI1/pST3 plasmids carrying blaCTX-M-1. PMQR occurred less frequently among isolates from turkeys (0.9%) compared to those from broilers (5......%) and layers (4%). The PMQR genes qnrS, qnrB19 and oqxA/B were located on three plasmid types and two non-typeable plasmids, mostly (85%) conjugative. ESBL/AmpC- and PMQR-positive isolates were genetically unrelated and 64% of them were additionally resistant to aminoglycosides, sulfonamides and tetracyclines...

  12. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    Science.gov (United States)

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  13. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  14. Isolation and identification of burn wound superbugs by molecular technique and their susceptibility to silver nanoparticles

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby

    2018-02-01

    Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.

  15. Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide.

    Science.gov (United States)

    Brezden, Anna; Mohamed, Mohamed F; Nepal, Manish; Harwood, John S; Kuriakose, Jerrin; Seleem, Mohamed N; Chmielewski, Jean

    2016-08-31

    Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.

  16. Mounting resistance of uropathogens to antimicrobial agents: A retrospective study in patients with chronic bacterial prostatitis relapse.

    Science.gov (United States)

    Stamatiou, Konstantinos; Pierris, Nikolaos

    2017-07-01

    Despite recent progress in the management of chronic bacterial prostatitis (CBP), many cases relapse. Increased drug resistance patterns of responsible bacteria have been proposed as the most probable causative factor. Driven by the limited number of previous studies addressing this topic, we aimed to study whether antibiotic resistance increases in patients with CBP when relapse occurs. A secondary aim of this study was to determine the resistance patterns of responsible bacteria from patients with CBP. The study material consisted of bacterial isolates from urine and/or prostatic secretions obtained from patients with CBP. Bacterial identification was performed by using the Vitek 2 Compact system and susceptibility testing was performed by disc diffusion and/or the Vitek 2 system. Interpretation of susceptibility results was based on Clinical and Laboratory Standards Institute guidelines. A total of 253 samples from patients diagnosed with CBP for the first time (group A) and 137 samples from relapsing patients with a history of CBP and previous antibiotic treatment (group B) were analyzed. A significant reduction in bacterial resistance to the less used antibiotics (TMP-SMX, tetracyclines, aminoglycosides, penicillins, and macrolides) was noted. An increase in resistance to quinolones of many bacteria that cause CBP was also noted with the increase in resistance of enterococcus strains being alarming. Comparison of the resistance profile of CBP-responsible bacteria between samples from first-time-diagnosed patients and samples from relapsing patients revealed notable differences that could be attributed to previous antibiotic treatment.

  17. [Analysis of resistant genes of beta-lactam antibiotics from Pseudomonas aeruginosa in pediatric patients].

    Science.gov (United States)

    Dong, Fang; Xu, Xi-wei; Song, Wen-qi; Lü, Ping; Yang, Yong-hong; Shen, Xu-zhuang

    2008-11-18

    To analyze the antibiotic resistance of the Pseudomonas aeruginosa (PA) isolated from pediatric patients and the resistant genes of beta-lactam antibiotics thereof. 146 PA strains were isolated from pediatric patients. Agar dilution method recommended by the Clinical and Laboratory Standards Institute was used to examine the minimum inhibitory concentrations (MICs) of 12 antimicrobial agents, including the penicillins, third and fourth genet ration cephalosporins, carbapenemase, Aztreonam, beta-lactamase inhibitors, quinolones, and aminoglycosides. PCR was used to detect the expression of the genes TEM, SHV, OXA, PER, GES, CTX-M, IMP, VIM, DHA, MIR, FOX, and oprD2. The multi-drug resistance rates against different antibiotic were high among the 146 PA strains. The rates of imipenem and meropenem resistance were 41.1% and 35.6% respectively. Among the 146 PA strains, 46 (31.5%) were positive for the MBL genotype; 38 (82.6%) carried the blaIMP gene, 8 (17.4%) carried the blaVIM gene, and 114 (78.1%) were oprD2 negative. The genes TEM, SHV, OXA, CTX-M, PER, VEB, GES, FOX, MIR, and DHA were not found in all strains. Many PA isolated from pediatric patients carry the genes IMP or VIM and losses oprD2 gene related to the expression of the outer membrane porin OprD2. The loss of the gene oprD2 is essential mechanism of beta-lactam antibiotics resistance in PA.

  18. In-feed antibiotic effects on the swine intestinal microbiome

    Science.gov (United States)

    Looft, Torey; Johnson, Timothy A.; Allen, Heather K.; Bayles, Darrell O.; Alt, David P.; Stedtfeld, Robert D.; Sul, Woo Jun; Stedtfeld, Tiffany M.; Chai, Benli; Cole, James R.; Hashsham, Syed A.; Tiedje, James M.; Stanton, Thad B.

    2012-01-01

    Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1–11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses. PMID:22307632

  19. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  20. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin.

    Directory of Open Access Journals (Sweden)

    Li-Ping Bai

    Full Text Available With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18 of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC (14 as well as natural epigallocatechin (EGC, 6. The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.

  1. Clinical features and microbiological in bacterial keratitis in a tertiary referral hospital.

    Science.gov (United States)

    Ruiz Caro, J M; Cabrejas, L; de Hoz, M R; Mingo, D; Duran, S P

    2017-09-01

    To describe the clinical features, bacterial agents, and antibiotic sensitivity of bacterial keratitis in the Ophthalmology Department at the University Hospital Fundación Jiménez Díaz (HUFJD) in Madrid. A retrospective observational descriptive study using clinical records and reports of corneal scrapings in patients with bacterial keratitis at the HUFJD conducted between 2009 and 2014. In a sample of 160 patients, gram-positive bacteria were the most prevalent with 64.3% (n=103). Coagulase negative staphylococcus (20.6%), Staphylococcus aureus (19.4%), and Pseudomonas aeruginosa (12.5%) were the most frequent bacteria. The most common risk factor was the use of contact lenses, followed by disease of the ocular surface, and previous ocular surgeries. The antibiotics to which the bacteria were most commonly susceptible were gentamicin (n=114), cotrimoxazole (n=107), vancomycin (n=106), and ciprofloxacin (n=97). The antibiotics to which the bacteria were most commonly resistant were ampicillin (n=59) and erythromycin (n=45). In the initial management of bacterial keratitis, the sensitivity and resistance of bacteria to antibiotics should be taken into account. Based on our findings, the use of aminoglycosides, vancomycin and fluoroquinolones is recommended, and, although widely used today, the discontinuation of erythromycin. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage.

    Science.gov (United States)

    Shrestha, Shovita; Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Ohara, Hiroshi; Shimada, Kayo; Satou, Kazuhito; Teruya, Kuniko; Nakano, Kazuma; Shiroma, Akino; Sherchand, Jeevan Bdr; Rijal, Basista Psd; Hirano, Takashi; Kirikae, Teruo; Pokhrel, Bharat Mani

    2015-11-01

    The emergence of multidrug-resistant (MDR) Acinetobacter baumannii has become a serious medical problem worldwide. To clarify the genetic and epidemiological properties of MDR A. baumannii strains isolated from a medical setting in Nepal, 246 Acinetobacter spp. isolates obtained from different patients were screened for MDR A. baumannii by antimicrobial disk susceptibility testing. Whole genomes of the MDR A. baumannii isolates were sequenced by MiSeq™ (Illumina), and the complete genome of one isolate (IOMTU433) was sequenced by PacBio RS II. Phylogenetic trees were constructed from single nucleotide polymorphism concatemers. Multilocus sequence types were deduced and drug resistance genes were identified. Of the 246 Acinetobacter spp. isolates, 122 (49.6%) were MDR A. baumannii, with the majority being resistant to aminoglycosides, carbapenems and fluoroquinolones but not to colistin and tigecycline. These isolates harboured the 16S rRNA methylase gene armA as well as bla(NDM-1), bla(OXA-23) or bla(OXA-58). MDR A. baumannii isolates belonging to clonal complex 1 (CC1) and CC2 as well as a novel clonal complex (CC149) have spread throughout a medical setting in Nepal. The MDR isolates harboured genes encoding carbapenemases (OXA and NDM-1) and a 16S rRNA methylase (ArmA). Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Detection of blaOXA-23-like and blaNDM-1 in Acinetobacter baumannii from the Eastern Region, Saudi Arabia.

    Science.gov (United States)

    El-Mahdy, Taghrid S; Al-Agamy, Mohamed H; Al-Qahtani, Ahmed A; Shibl, Atef M

    2017-01-01

    Acinetobacter baumannii is currently considered as one of the most common successful pathogens in the healthcare system due to its ability to quickly develop resistance. Ten carbapenem-resistant A. calcoaceticus-baumannii complex were isolated from the eastern region, Saudi Arabia in 2014. All isolates were resistant to ciprofloxacin, however, 8 of 10 isolates were tigecycline resistant. Susceptibility test was also carried out for three aminoglycosides, resistance to gentamicin was 80%, amikacin was 90%, and tobramycin was 50%. Colistin susceptibility was seen in all isolates. The 10 isolates harbored bla OXA-23-like and ISAba1 and 9 of them also carried bla ADC . Three isolates of 10 harbored bla NDM-1 coding for NDM metallo-β-lactamase (MBL) with coexistence of bla ADC together with either bla GES or bla TEM or both. Those three isolates exhibited negative Etest MBL screening test. Pulsed-field gel electrophoresis revealed the high clonal variability of the isolates, although two isolates were indistinguishable. The risk of dissemination of carbapenem resistance through presence of ISAba1 upstream of OXA-23-like in all isolates raises the concern about emergence of higher carbapenem prevalence rates in the future in our region. This study also demonstrated the importance of molecular surveillance to provide accurate and reliable data about the resistance rates of A. baumannii. Finally, the high incidence of NDM-1 among our isolates requires a routine surveillance to monitor the future prevalence of this enzyme in the region.

  4. Pharmacoeconomic Analysis of Drugs Used in the Treatment of Pneumonia in Paediatric Population in a Tertiary Care Hospital in India-A Cost-of-Illness Study.

    Science.gov (United States)

    Saha, Lekha; Kaur, Sharonjeet; Khosla, Pratibha; Kumari, Sweta; Rani, Alka

    2017-12-11

    The cost of antibiotic therapy for the treatment of pneumonia in the inpatient paediatric population can have a major impact on the healthcare expenditure. We planned to assess the direct and indirect costs of diagnosis and medical treatment of paediatric patients with community acquired pneumonia who are hospitalized in a tertiary care hospital in India. 125 children with a diagnosis of pneumonia who were admitted to the inpatient department of a paediatric hospital receiving antibiotic treatment were observed. Data on clinical presentation and resources consumed were collected and the costs of pneumonia treatment were calculated. Descriptive statistics (mean ± standard deviation (SD)) were used to evaluate data regarding demographics, drugs prescribed and cost (direct and indirect cost). Multivariate regression analysis was used to find out predictors of direct and indirect cost. Among all pneumonia admissions, mild-to-moderate pneumonia constitutes 76.8%, and 23.2% children were admitted with severe pneumonia; 105 children out of 125 (84%) were suffering from associated disorders along with pneumonia. The majority of antibiotics prescribed belonged to beta lactams (52%) followed by aminoglycosides (19%), macrolides (13%) and peptides (11%). Parenteral routes of administration were used in a majority of patients as compared to oral. The average cost per patient in management of pneumonia was 12245 ± 593 INR ($187.34 ± 9.07).

  5. Pharmacoeconomic Analysis of Drugs Used in the Treatment of Pneumonia in Paediatric Population in a Tertiary Care Hospital in India—A Cost-of-Illness Study

    Directory of Open Access Journals (Sweden)

    Lekha Saha

    2017-12-01

    Full Text Available Aims and objectives: The cost of antibiotic therapy for the treatment of pneumonia in the inpatient paediatric population can have a major impact on the healthcare expenditure. We planned to assess the direct and indirect costs of diagnosis and medical treatment of paediatric patients with community acquired pneumonia who are hospitalized in a tertiary care hospital in India. Methods: 125 children with a diagnosis of pneumonia who were admitted to the inpatient department of a paediatric hospital receiving antibiotic treatment were observed. Data on clinical presentation and resources consumed were collected and the costs of pneumonia treatment were calculated. Descriptive statistics (mean ± standard deviation (SD were used to evaluate data regarding demographics, drugs prescribed and cost (direct and indirect cost. Multivariate regression analysis was used to find out predictors of direct and indirect cost. Results: Among all pneumonia admissions, mild-to-moderate pneumonia constitutes 76.8%, and 23.2% children were admitted with severe pneumonia; 105 children out of 125 (84% were suffering from associated disorders along with pneumonia. The majority of antibiotics prescribed belonged to beta lactams (52% followed by aminoglycosides (19%, macrolides (13% and peptides (11%. Parenteral routes of administration were used in a majority of patients as compared to oral. The average cost per patient in management of pneumonia was 12245 ± 593 INR ($187.34 ± 9.07.

  6. A rational quantitative approach to determine the best dosing regimen for a target therapeutic effect: a unified formalism for antibiotic evaluation.

    Science.gov (United States)

    Li, Jun; Nekka, Fahima

    2013-02-21

    The determination of an optimal dosing regimen is a critical step to enhance the drug efficacy and avoid toxicity. Rational dosing recommendations based on mathematical considerations are increasingly being adopted in the process of drug development and use. In this paper, we propose a quantitative approach to evaluate the efficacy of antibiotic agents. By integrating both pharmacokinetic (PK) and pharmacodynamic (PD) information, this approach gives rise to a unified formalism able to measure the cause-effect of dosing regimens. This new pharmaco-metric allows to cover a whole range of antibiotics, including the two well known concentration and time dependent classes, through the introduction of the Hill-dependency concept. As a direct fallout, our formalism opens a new path toward the bioequivalence evaluation in terms of PK and PD, which associates the in vivo drug concentration and the in vitro drug effect. Using this new approach, we succeeded to reveal unexpected, but relevant behaviors of drug performance when different drug regimens and drug classes are considered. Of particular notice, we found that the doses required to reach the same therapeutic effect, when scheduled differently, exhibit completely different tendencies for concentration and time dependent drugs. Moreover, we theoretically confirmed the previous experimental results of the superiority of the once daily regimen of aminoglycosides. The proposed methodology is appealing for its computational features and can easily be applicable to design fair clinical protocols or rationalize prescription decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Therapeutic drug monitoring of antimicrobials

    Science.gov (United States)

    Roberts, Jason A; Norris, Ross; Paterson, David L; Martin, Jennifer H

    2012-01-01

    Optimizing the prescription of antimicrobials is required to improve clinical outcome from infections and to reduce the development of antimicrobial resistance. One such method to improve antimicrobial dosing in individual patients is through application of therapeutic drug monitoring (TDM). The aim of this manuscript is to review the place of TDM in the dosing of antimicrobial agents, specifically the importance of pharmacokinetics (PK) and pharmacodynamics (PD) to define the antimicrobial exposures necessary for maximizing killing or inhibition of bacterial growth. In this context, there are robust data for some antimicrobials, including the ratio of a PK parameter (e.g. peak concentration) to the minimal inhibitory concentration of the bacteria associated with maximal antimicrobial effect. Blood sampling of an individual patient can then further define the relevant PK parameter value in that patient and, if necessary, antimicrobial dosing can be adjusted to enable achievement of the target PK/PD ratio. To date, the clinical outcome benefits of a systematic TDM programme for antimicrobials have only been demonstrated for aminoglycosides, although the decreasing susceptibility of bacteria to available antimicrobials and the increasing costs of pharmaceuticals, as well as emerging data on pharmacokinetic variability, suggest that benefits are likely. PMID:21831196

  8. Increasing antibiotic resistance among uropathogens isolated during years 2006-2009: impact on the empirical management

    Directory of Open Access Journals (Sweden)

    Hamid Mohammad-Jafari

    2012-02-01

    Full Text Available Urinary tract infections (UTI are one of the most common infections with an increasing resistance to antimicrobial agents. PURPOSE: Empirical initial antibiotic treatment of UTI must rely on susceptible data from local studies. MATERIALS AND METHODS: Retrospective analysis of isolated bacteria from children with UTIs was performed at the university hospital during years 2006-2009. The findings were compared with data collected in a similar study carried out in 2002- 2003. RESULTS: A total of 1439 uropathogens were isolated. Escherichia coli (E.coli was the leading cause, followed by Enterobacter, and other gram negative bacilli. It was observed resistance of E.coli to ceftriaxone, cefexime, amikacin, gentamycin, and nalidixic acid; Enterobacter to cefexime; and the resistance of gram negative bacilli to gentamicin and cefexime increased significantly. The highest effective antibiotic was Imipenem, ciprofloxacin, and amikacin with 96.7%, 95% and 91% sensitivity rates , respectively, followed by ceftriaxone 77.2%, gentamicin 77%, nitrofurantoin 76.4%, nalidixic acid 74.3% and cefexime with 70%. CONCLUSION: The use of nitrofurantoin or nalidixic acid as initial empirical antibacterial therapy for cystitis seems appropriate. For cases of simple febrile UTI, the use of initial parenteral therapies with amikacin or ceftriaxone followed by an oral third generation cephalosporin also seemed appropriated, and in cases of severely ill patients or complicated UTI, imipenem as monotherapy or, a combination of Ceftriaxone with an aminoglycoside, are recommended.

  9. Bacterial Aetiology and Antibiotic Resistance Pattern of Community-Acquired Urinary Tract Infections in Children in a Tertiary Care Hospital in Bangladesh

    Directory of Open Access Journals (Sweden)

    Lazina Sharmin

    2017-09-01

    Full Text Available Background: Urinary tract infections (UTIs in children are among the most common bacterial infections. Community-acquired urinary tract infections (CAUTI are often treated empirically with broad-spectrum antibiotics. Pattern of aetiologic agents and their antibiotic sensitivity may vary according to geographical and regional location. So, knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Objectives: To determine the common bacterial aetiologies of CAUTIs and their antibiotic resistance patterns in a tertiary care hospital, Savar. Materials and Methods: This cross-sectional descriptive study was conducted at Enam Medical College Hospital, Savar from May 2016 to April 2017. We collected clean-catch mid-stream urine samples from 257 patients having clinical diagnosis of UTI and submitted to the clinical microbiology laboratory for culture and sensitivity. Results: A total of 120 (46.7% samples were positive for bacterial growth. Escherichia coli (79% was the most common pathogen, followed by Klebsiella spp. (14%. Bacterial isolates showed high prevalence of resistance to multiple antibiotics. Resistance against amoxicillin/clavulanic acid, co-trimoxazole and ciprofloxacin was higher compared to newer quinolones and aminoglycosides. Conclusion: Esch. coli and Klebsiella spp. were the predominant bacterial pathogens. The resistance pattern to commonly prescribed antibiotics was quite high and alarming.

  10. Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals

    Directory of Open Access Journals (Sweden)

    Raymond Lin

    2012-03-01

    Full Text Available Objective: In this study, we molecularly characterized 12 NDM-1 producing clinical Enterobacteriaceae (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae isolates that were part of a collection of non-carbapenem susceptible isolates obtained during a one-year period. These isolates were obtained from four local general hospitals in Singapore.Methods: Polymerase chain reaction (PCR assays and sequencing was used to determine the presence of β-lactamase encoding genes (bla including blaNDM-1 and plasmid-mediated quinolone and aminoglycoside resistance determinants. Conjugation experiments were performed to determine the transferability of blaNDM-1. Isolate relatedness was determined by multilocus sequence typing (MLST.Results: The isolates were completely resistant to the second- and third-generation cephalosporins tested as well as carbapenems. Susceptibility profiling of the isolates indicated that 100% retained susceptibility to tigecycline while 11/12 (91.7% were susceptible to colistin. The blaNDM-1 gene was encoded on plasmids that were easily transferable. None of the patients had a travel history to countries where NDM-1 has been reported. The isolates appear clonally unrelated with MLST, revealing a diversity of clonal types among the K. pneumoniae and E. coli isolates.Conclusion: The ease of NDM-1 plasmid transmissibility may help their dissemination among the Enterobacteriaceae. Although it appears that the isolates are clonally unrelated, epidemiological links cannot be fully excluded without further research.

  11. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics.

    Directory of Open Access Journals (Sweden)

    Dorota Olszańska

    2008-06-01

    Full Text Available Since about twenty years, following the introduction into therapeutic of news beta-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems, a very significant number of new beta-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-beta-enzymes (IMP, VIM, SPM, GIM types are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all beta-lactamases because they confer resistance to carbapenems and all the beta-lactams (with the exception of aztreonam and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended--spectrum antibiotics (e.g. cephalosporins and carbapenems, and therefore care must be taken that these drugs are not used unnecessarily.

  12. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  13. In Vivo Efficacy of Plazomicin Alone or in Combination with Meropenem or Tigecycline against Enterobacteriaceae Isolates Exhibiting Various Resistance Mechanisms in an Immunocompetent Murine Septicemia Model.

    Science.gov (United States)

    Abdelraouf, Kamilia; Kim, Aryun; Krause, Kevin M; Nicolau, David P

    2018-06-04

    Background : Plazomicin is a next-generation aminoglycoside with potent in vitro activity against multidrug- and carbapenem-resistant Enterobacteriaceae. The objective of this study was to assess the efficacy of plazomicin exposure, alone and in combination with meropenem or tigecycline, against Enterobacteriaceae in the immunocompetent murine septicemia model. Methods : ICR mice were inoculated intraperitoneally with bacterial suspensions. Eight Enterobacteriaceae isolates with wide ranges of plazomicin, meropenem and tigecycline MICs were utilized. Treatment mice were administered plazomicin, meropenem or tigecycline human-equivalent doses alone or in combinations of plazomicin/meropenem and plazomicin/tigecycline. Treatments were initiated 1h post-infection and continued for 24h. Efficacy was assessed by survival through 96h. Results : Compared with controls, plazomicin monotherapy produced significant improvement in survival for all isolates (P32 and 2 mg/L, respectively), combination therapies showed significant reduction in mortality compared with any monotherapy (P<0.05). Conclusion : Plazomicin monotherapy resulted in improved survival in the immunocompetent murine septicemia model, notably for isolates with plazomicin MIC ≤4 mg/L. As evidenced by our current data, co-administration of meropenem or tigecycline could potentially lead to further improvement in survival. These data support a role for plazomicin in the management of septicemia due to Enterobacteriaceae with plazomicin MIC ≤4 mg/L, including carbapenem-resistant isolates. Copyright © 2018 American Society for Microbiology.

  14. Phenotypic and Genotypic Antibiotic Resistance of Salmonella from Chicken Carcasses Marketed at Ibague, Colombia

    Directory of Open Access Journals (Sweden)

    D Cortes Vélez

    Full Text Available ABSTRACT Salmonella enterica is responsible for alimentary toxic infections associated with the consumption of contaminated poultry products and the antimicrobial resistant patterns of Salmonella circulating in the Tolima region are currently unknown. To address this issue, both the phenotype and genotype antibiotic resistance patterns of 47 Salmonella isolated from raw chicken carcasses sold at the Ibague city were analyzed by the disc diffusion, microdilution and PCR assays. All 47 Salmonella isolates showed resistance to five or more antimicrobial agents. Resistance to Ampicillin (AMP, Amikacin (AMK, Gentamicin (GEN, Tobramycin (TOB, Cefazoline (CFZ, Cefoxitin (FOX, Nitrofurantoin (NIT, Trimethoprim-Sulfamethoxazole (SXT, Tetracycline (TET, Ciprofloxacin (CIP and Enrofloxacin (ENR was observed in 42.35% of Salmonella isolates. All tested S. Paratyphi B var Java isolates showed resistance to at least 12 antibiotics. S. Hvittingfoss showed resistance to 5 antibiotics, whereas S. Muenster showed resistance to seven antibiotics. Amplification of a number of antibiotic resistance genes showed that blaTEM (100% correlated well with resistance to Ampicilin and Cephalosporin, whereas aadB (87% correlated well with resistance to Aminoglycosides. It is concluded that Salmonella isolated from raw chicken meat marketed at Ibague showed MDR by both phenotypic and genotypic methods and they may represent an important threat to human health. Additional studies are needed to establish the relationship between antibiotic resistance in Salmonella from poultry products and clinical isolates.

  15. Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action

    Directory of Open Access Journals (Sweden)

    Dina Ahmed Mosselhy

    2016-03-01

    Full Text Available Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO2 NPs can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO2-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. In vitro gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO2 NPs prepared by the base-catalyzed precipitation exhibited fast release (21.4% during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO2-gentamicin nanohybrids versus native SiO2 NPs and free gentamicin were performed against Bacillus subtilis (B. subtilis, Pseudomonas fluorescens (P. fluorescens and Escherichia coli (E. coli. SiO2-gentamicin nanohybrids were most effective against B. subtilis. SiO2 NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.

  16. Asymptomatic urinary tract infection among pregnant women receiving ante-natal care in a traditional birth home in Benin City, Nigeria.

    Science.gov (United States)

    Oladeinde, Bankole H; Omoregie, Richard; Oladeinde, Oladapo B

    2015-01-01

    A good proportion of pregnant women patronize traditional birth homes in Nigeria for ante-natal care. This study aimed at determining the prevalence, risk factors, and susceptibility profile of etiologic agents of urinary tract infection among ante-natal attendees in a traditional birth home in Benin City, Nigeria. Clean-catch urine was collected from 220 pregnant women attending a traditional birth home in Benin City, Nigeria. Urine samples were processed, and microbial isolates identified using standard bacteriological procedures. A cross-sectional study design was used. The prevalence of urinary tract infection among pregnant women was 55.0%, significantly affected by parity and gestational age (Pinfection was recorded among 13(10.7%) pregnant women, and was unaffected by maternal age, parity, gravidity, gestational age, and educational status. Irrespective of trimester Escherichia coli was the most prevalent etiologic agent of urinary tract infection, followed by Staphylococcus aureus. The flouroquinolones were the most effective antibacterial agents, while Sulphamethoxazole-trimetoprim, Amoxicillin, Nalidixic acid, and Nitrofurantoin had poor activity against uropathogens isolated. The prevalence of urinary tract infection among pregnant women was 55.0% and significantly affected by gestational age and parity. The most prevalent etiologic agent observed was Escherichia coli. With the exception of the flouroquinolones, aminoglycoside, and Amoxicillin-cluvanate, the activity of other antibiotics used on uropathogens were poor. Health education of the traditional birth attendant and her clients by relevant intervention agencies is strongly advocated.

  17. Antibiotic sensitivity pattern from pregnant women with urinary tract infection in Bangalore, India.

    Science.gov (United States)

    Sibi, G; Kumari, Pinki; Kabungulundabungi, Neema

    2014-09-01

    To determine the antibacterial profile of pregnant women with urinaty tract infections and analyze the antibiotic sensitivity pattern for the effective treatment. A total of 395 urine samples from pregnant women with different gestational age were processed for the isolation of uropathogens and tested against eight groups of antibiotics namely penicillins, cephalosporins, fluoroquinolones, aminoglycosides, macrolides, lincosamides, glycopeptides and sulfonamides. A positive culture percentage of 46.6% was obtained with the highest urinary tract infection in third trimester gestational age. Among the uropathogens isolated, 85.6% were Gram negative and 14.4% were Gram positive with Escherichia coli as the predominant bacteria (43.9%) followed by Klebsiella oxytoca (19.4%) and Klebsiella pneumoniae (13.3%). Antibiotic sensitivity assay revealed that amikacin had the highest overall sensitivity (n=136; 76.7%) and the subsequent highest sensitivity was observed with ciprofloxacin (n=132; 73.3%), clindamycin (n=124; 68.9%), cefotaxime (n=117; 65%) and nalidixic acid (n=115; 63.9%). The findings revealed that uropathogens were more resistant to penicillins, macrolides and glycopeptides which restrict their use in treating urinaty tract infections during pregnancy. In conclusion, common causative bacteria and their antibiotic sensitivity pattern are to be determined along with their safety to mother and fetus for the effective treatment of urinary tract infections during pregnancy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. EFEITO AUXILIAR DO CERUMINOLÍTICO NA TERAPIA TÓPICA DE CÃES (Canis lupus familiaris COM OTITE EXTERNA CERUMINOSA

    Directory of Open Access Journals (Sweden)

    Eduardo Negri Mueller

    2013-03-01

    Full Text Available We evaluated the help effect of ceruminolytic in ceruminous external otitis in dog’s ears. Dogs with bilateral ceruminous external otitis, whose ears were evaluated by palpation, inspection, otoscopy and fungal and bacterial culture were studied. For the treatment, carried out twice a day during 15 days, the animals were divided into two groups, A and B. The animals in group A were treated with ceruminolytic and otological solution, containing, respectively, salicylic acid and aminoglycoside, while the animals in group B were treated only with otological solution. Clinical and microbiologic evaluations were performed on 0 and 15 days of treatment. Twenty dogs (n=40 ears, with at least erythema in the otoscopy and moderate to intense ceruminous exsudate. Besides these, we observed more erythema (n=16 in both groups and exsudate in the acoustic conch (n=14 and n=11, respectively, groups A and B and itch (n=13 and n=11, respectively, groups A and B. On the 15th day, we observed reduction of all clinical signals, except stenosis, which did not change in any of the groups, and pain, which increased in group A. The microorganisms Malassezia pachydermatis e Staphylococcus sp. reduced in treatment B with statistical significance. Bacteria were more sensitive to gentamicin. The use of ceruminolytic associated to otological solution reduced the external ottis clinical signals, mainly exsudate and smell in the acoustic conch and the quantity of cerumen in the otoscopy, without interfering in the microorganisms reduction.

  19. Angina monocitica con sovrainfezione da Prevotella denticola: caso clinico

    Directory of Open Access Journals (Sweden)

    Maria Teresa Allù

    2005-06-01

    Full Text Available Monocytic angina with superinfection of Prevotella denticola: clinical case Monocytic angina is a clinical sindrome caused by Epstein-Barr virus characterized by fever, pharyngitis, exudative tonsillitis, swollen lymphoglands, splenomegaly and hepatomegaly.The inflamed pharynx and necrotic tonsils of infectious mononucleosis are subject to bacterial superinfection initially or during the course of the illness; the reduced PO2 tension and low oxidation-reduction potential that prevail in a vascular and necrotic tissues favour the growth of anaerobes. In this article we reported the clinical case of a ten years old children, who presented fever and tonsillopharyngitis; he was treated with cefotaxime and piperacillin, he did not improve in health. He was admitted to hospital (Department of Otorhinolaryngology. The patient was treated with aminoglycoside (tobramycin, piperacillin and cortisone; the clinical situation deteriorated. Pus sample was collected from the tonsils and cultured. Isolated strain from culture anaerobic was identified biochemically (Rapid-ID32ANA.The microorganism isolated was: Prevotella denticola (oral anaerobic gram-negative rods; β-lactamase production was tested by using the chromogenic cephalosporin disk test.The susceptibility to antibiotics was performed according to NCCLS recommendations. Prevotella denticola (β-lactamase production was resistant to penicillin, cefoxitin, cefotetan, piperacillin, clindamycin and metronidazole it was susceptible to piperacillin-tazobactam, amoxicillin-clavulanate, ticarcillin-clavulanate, imipenem and chloramphenicol. Children was treated with piperacillin-tazobactam, with rapid symptomatic relief.

  20. Isolation and identification of antibiotic resistance genes in Staphylococcus aureus isolates from respiratory system infections in shahrekord, Iran

    Directory of Open Access Journals (Sweden)

    Maryam Reisi

    2014-07-01

    Full Text Available   Introduction : Staphylococcus aureus is considered as one of pathogenic agents in humans, that engages different body parts including respiratory system and causes to spend lots of costs and extending patient’s treatment period. This study which is performed to separate and investigate the pattern of antibiotic resistance in Staphylococcus aureus isolates from upper respiratory system infections in Shahrekord.   Materials and methods: This study was done by sectional-descriptive method On 200 suspicious persons to the upper respiratory system infections who were referred to the Imam Ali clinic in Shahrekord in 2012. After isolation of Staphylococcus aureus from cultured nose discharges, antibiotic resistance genes were identified by polymerase chain reaction (PCR by using defined primer pairs .   Results : Among 200 investigated samples in 60 cases (30% Staphylococcus aureus infection (by culturing and PCR method was determined. Isolates showed the lowest amount of antibiotic resistance to vancomycin (0.5% and the highest amount of resistance to the penicillin G and cefotaxime (100%. mecA gene (encoding methicillin resistance with frequency of 85.18% and aacA-D gene (encoding resistance to aminoglycosides with frequency of 28.33% showed the highest and lowest frequency of antibiotic resistance genes coding in Staphylococcus aureus isolates respectively .   Discussion and conclusion : Notable prevalence of resistant Staphylococcus aureus isolates in community acquired respiratory infections, recommend continuous control necessity to impede the spreading of these bacteria and their infections.  

  1. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    Directory of Open Access Journals (Sweden)

    S. Marasini

    2016-01-01

    Full Text Available Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%, followed by Pseudomonas (21.3%. Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p≤0.05. Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%, cefuroxime (33.3%, and chloramphenicol (94.7% showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51% and ciprofloxacin (98.8% showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  2. Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades

    Science.gov (United States)

    Bainomugisa, Arnold; Lavu, Evelyn; Hiashiri, Stenard; Majumdar, Suman; Honjepari, Alice; Moke, Rendi; Dakulala, Paison; Hill-Cawthorne, Grant A.; Pandey, Sushil; Marais, Ben J.; Coulter, Chris; Coin, Lachlan

    2018-01-01

    An outbreak of multi-drug resistant (MDR) tuberculosis (TB) has been reported on Daru Island, Papua New Guinea. Mycobacterium tuberculosis strains driving this outbreak and the temporal accrual of drug resistance mutations have not been described. Whole genome sequencing of 100 of 165 clinical isolates referred from Daru General Hospital to the Supranational reference laboratory, Brisbane, during 2012–2015 revealed that 95 belonged to a single modern Beijing sub-lineage strain. Molecular dating suggested acquisition of streptomycin and isoniazid resistance in the 1960s, with potentially enhanced virulence mediated by an mycP1 mutation. The Beijing sub-lineage strain demonstrated a high degree of co-resistance between isoniazid and ethionamide (80/95; 84.2 %) attributed to an inhA promoter mutation combined with inhA and ndh coding mutations. Multi-drug resistance, observed in 78/95 samples, emerged with the acquisition of a typical rpoB mutation together with a compensatory rpoC mutation in the 1980s. There was independent acquisition of fluoroquinolone and aminoglycoside resistance, and evidence of local transmission of extensively drug resistant (XDR) strains from 2009. These findings underline the importance of whole genome sequencing in informing an effective public health response to MDR/XDR TB. PMID:29310751

  3. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    Science.gov (United States)

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  4. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  5. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections.

    Science.gov (United States)

    Stephenson, Sam; Brown, P D

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.

  6. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    Science.gov (United States)

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  7. Diversity of carbapenemases in clinical isolates of Enterobacteriaceae in Croatia--the results of a multicentre study.

    Science.gov (United States)

    Zujić Atalić, V; Bedenić, B; Kocsis, E; Mazzariol, A; Sardelić, S; Barišić, M; Plečko, V; Bošnjak, Z; Mijač, M; Jajić, I; Vranić-Ladavac, M; Cornaglia, G

    2014-11-01

    Since the first carbapenem-resistant Klebsiella pneumoniae strain was isolated in 2008, Enterobacteriaceae with reduced susceptibility to one or more carbapenems have emerged sporadically in different geographical regions in Croatia. These observations gave rise to a multicenter study on carbapenem resistance in Enterobacteriaceae from Croatia. Fifty-seven carbapenem-non-susceptible strains of Enterobacteriaceae were collected during 2011-2012 from four large hospital centres in Croatia. Overall, 36 strains produced VIM-1 β-lactamase, three produced NDM-1, and one produced KPC-2. A high degree of clonal relatedness was observed in Enterobacter cloacae and Citrobacter freundii strains, in contrast to K. pneumoniae strains. BlaVIM genes were located within class1 integron which contained genes encoding resistance to aminoglycosides (aacA4 ). The study found strong association between blaVIM and qnrB6 and between blaNDM and qnrA6 genes. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  8. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  9. The Effects of Zataria Multiflora Hydroalcoholic Extract on Gentamicin Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Saeed Hajihashemi

    2015-07-01

    Full Text Available Abstract Background: Gentamicin is an aminoglycoside antibiotic that broadly is used to treat gram negative bacteria infections, although it has side effects such as nephrotoxicity. According to antioxidant, anti-inflammatory and vasodilatory properties of Zataria Multiflora, the effects of co-treatment with zataria Multiflora and hydroalcholic extract on gentamicin induced nephrotoxicitj were investigated. Materials and Methods: In this study, male rats of Vistar race were divided into 4 groups: 1.control group, 2. co-treatment with gentamicin and vehicle group, 3. co-treatment with gentamicin and zataria Multifiora extract group, 4. co-treatment with zataria Multiflora extract and normal saline solution group. Zataria Multiflora hydroalcoholic extract was added to drinking water as 800 PPm concentration. They, systolic blood pressure and renal blood flow (RBF were measured. Also, the amounts of urea, creatinine, sodium, potassium and osmolarity were measured in plasma and urine samples Results: In co-treatment group with zataria Multiflora extract, the amounts of urea, creatinine, absolute sodium excretion and relative sodium and potassium excretion and malondialdehyde (MDA that have been inceased in treatment with gentamicin, significantly were reduced. Creatinine clearance, urine osmolarity, RBF and FRAP that was decreased in gentamicin group in compare to control group, significantly increased. Conclusion: Co-treatment prevents nephrotoxicity induced by gentamicin and attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, So it can be effective to cure rats receiving gentamicin.

  10. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin’s Lymphoma: Case Report and Literature Review of a Difficult Diagnosis

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gallo

    2016-04-01

    Full Text Available Campylobacter jejuni (C. jejuni bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin’s lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy.

  12. The MoxR ATPase RavA and its cofactor ViaA interact with the NADH:ubiquinone oxidoreductase I in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Keith S Wong

    Full Text Available MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37 °C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I. Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex.

  13. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review

    Directory of Open Access Journals (Sweden)

    Nguyen T. Nhung

    2016-11-01

    Full Text Available Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR. We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS, Escherichia coli (E. coli, and Campylobacter spp. (mainly from Vietnam and Thailand, Enterococcus spp. (Malaysia, and methicillin-resistant Staphylococcus aureus (MRSA (Thailand. However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons. The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region.

  14. Multivariable Analysis of the Association Between Antimicrobial Use and Antimicrobial Resistance in Escherichia coli Isolated from Apparently Healthy Pigs in Japan.

    Science.gov (United States)

    Makita, Kohei; Goto, Masaki; Ozawa, Manao; Kawanishi, Michiko; Koike, Ryoji; Asai, Tetsuo; Tamura, Yutaka

    2016-01-01

    The objective of this study was to investigate the association between antimicrobial agent use and antimicrobial resistance in Escherichia coli isolated from healthy pigs using data from 2004 to 2007 in the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM). Fecal E. coli isolates from 250 pigs (one isolate each from a pig per farm) were examined for antimicrobial resistance. Information on the use of antimicrobials within preceding 6 months and types of farms recorded in JVARM was collected and statistically analyzed against the resistance patterns. In the univariate analysis, associations between both therapeutic and feed additive use of antimicrobials, and resistance to dihydrostreptomycin, gentamicin, kanamycin, ampicillin, cefazolin, ceftiofur, oxytetracycline, chloramphenicol, trimethoprim, nalidixic acid, enrofloxacin, colistin, and bicozamycin, and husbandry factors were investigated. In multivariable analysis, generalized estimating equations were used to control geographical intraclass correlation. Confounding for structurally unrelated associations was tested using generalized linear models. The results suggested direct and cross selections in the associations between use of aminoglycosides in reproduction farms and resistance to kanamycin, use of tetracyclines in larger farms and resistance to oxytetracycline, use of beta-lactams and resistance to ampicillin, use of phenicols and resistance to chloramphenicol, and use of fluoroquinolones and resistance to nalidixic acid and enrofloxacin. Coselection was suggested in the use of tetracyclines and chloramphenicol resistance. The associations between use of beta-lactams and dihydrostreptomycin resistance, use of macrolides and ampicillin and oxytetracycline resistance, and use of colistin and kanamycin resistance were significant, but were confounded by the simultaneous use of homologous antimicrobials.

  15. The frequency of resistance to antibiotics of most frequently isolated bacteria from blood cultures during the period 1997-2002

    Directory of Open Access Journals (Sweden)

    Mirović Veljko

    2004-01-01

    Full Text Available The aim of this study was to determine the frequency of resistance to antibiotics of the most frequently isolated bacteria from blood cultures of hospitalized patients during the period 1997-2002. The resistance to antibiotics was determined by disk diffusion method according to National Committee for Clinical Laboratory Standards procedures. The majority of staphylococci isolates were resistant to methicillin, and the proportion of methicillin-resistant Staphylococcus aureus was stable (76.8-81.6%, during the follow-up period. None of the staphylococci isolates were resistant to vancomycin, but there was a very high incidence of high-level resistance of enterococci to aminoglycosides (47.2-72.2%. In 1998, only one strain among enterococci was resistant to vancomycin (Enterococcus faecium, VanA fenotype. Enterococcus spp isolates expressed variable frequency of resistance to ampicillin (15-40.1% during the follow-up period. Among Enterobacteriaceae there were no isolates resistant to imipenem, but dramatic increase of the resistance to ceftriaxone was found from 35.9% in 1997 to 95.9% in 2002 (p<0.001. Extended spectrum beta-lactamases production was found in all the species of enterobacteria isolates. Resistance to imipenem was observed in Acinetobacter spp isolates in 2002 for the first time. Pseudomonas spp isolates expressed high and very variable resistance to all antibiotics tested during the follow-up period.

  16. Resistance patterns of bacterial isolates to antimicrobials from 3 hospitals in the United Arab Emirates

    International Nuclear Information System (INIS)

    AlDhaheri, Ahmed S; AlNiyadi, Mohammed S; AlDhaheri Ahmed D; Bastaki, Salim M

    2009-01-01

    To compare the resistance pattern of common bacterial pathogens to commonly used drugs. Information and statistics of antimicrobial resistance for 1994 and 2005 were collected from the 3 hospital microbiology laboratories in the United Arab Emirates. The resistance patterns of Staphylococcus aureus, Escherichia coli, Klebsiella spp, and Pseudomonas aeruginosa to several front-line drugs were estimated. All laboratories used automatic machines (Vitek 2), which identifies and determines minimum inhibitory concentrations simultaneously. Increased resistance was observed for Staphylococcus aureus, (n=315, 2005) to erythromycin (approximately 6 fold, Al-Ain Hospital only), cloxacillin (Al-Ain Hospital), and gentamicin (more than 3-10 folds in all hospitals). Increased penicillin resistance was not observed. For the common Gram-negative organisms, there was a high resistance to ampicillin, gentamicin, ceftriaxone, ciprofloxacin, and imipenem, which seemed to increase for Escherichia coli, (by 4.2-200%, n=305, 2005); however, there was very little resistance to imipenem (0.4%) in Tawam Hospital. Variable resistance patterns were obtained for Pseudomonas aeruginosa (n=316, 2005) and Klebsiella spp,(n=316, 2005) against aminoglycosides, cephalosporins, ciprofloxacin, and norfloxacin. Overall, there was an obvious increase in resistance of bacteria and the prevalence rate to a number of drugs from 1-120 folds during the 11-year period. (author)

  17. Resistant gram-negative bacilli and antibiotic consumption in zarqa, jordan

    International Nuclear Information System (INIS)

    Bataineh, H.A.; Alrashed, K.M.

    2007-01-01

    To investigate the prevalence of antibiotic resistance among gram-negative bacteria in relation to antibiotic use in Prince Hashem Hospital (PHH), Jordan. One hundred consecutive gram-negative bacterial isolates from different sites were collected from patients admitted to the ICU at PHH. The susceptibilities of the strains to 12 antibiotics were performed and interpreted. The quantities and the numbers of the patients discharged on antibiotics and the quantities consumed were obtained from the hospital pharmacy records. The most common isolate was P. aeruginosa (n=21) The most common site of isolation was the respiratory tract (65%), The highest susceptibility was to piperacillin/ tazobactam(78%), and the lowest was to cefuroxime(34%). The aminoglycosides gentamicin and amikacin were active against 71% and 73% of the isolates respectively, Ciprofloxacin was active against 75% of the isolates. The most frequently used antibiotics were the third-generation cephalosporins ceftriaxone and ceftazidime, followed by imipenem and amikacin. Antibiotic resistance surveillance programs associated with registration of antibiotic consumption are necessary to promote optimal use of antibiotics. Rational prescribing of antibiotics should be encouraged through educational programs, surveillance and audit. Proper infection control measures should be practiced to prevent horizontal transfer of drug-resistant organisms. (author)

  18. Sensitivity patterns of pseudomonas aeruginosa isolates obtained from clinical specimens in peshawar

    International Nuclear Information System (INIS)

    Abbas, S.H.; Khan, M.Z.U.; Naeem, M.

    2015-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is a highly virulent opportunistic pathogen and a leading cause of nosocomial infections.Affected patients are often hospitalized in an intensive care unit, and are immuno-compromised as a result of disease and treatment. Suspected P. aeruginosa require timely, adequate and empirical antibiotic therapy to ensure improved outcomes. The purpose of the study was to find the sensitivity and resistance pattern of P. aeruginosa to various groups of drugs, in clinical isolates collected from two major tertiary care hospitals of Peshawar. Methods: Different clinical isolate were taken from patients admitted in various wards of Khyber Teaching Hospital and Lady Reading Hospital Peshawar. Results: A total of 258 clinical isolates were positive for P. aeruginosa out of 2058 clinical isolates. Pseudomonas showed high degree of resistance to third generation Cephalosporins (Ceftazidime, and Ceftriaxone) and moderate degree of resistance to Quinolones and Aminoglycosides (Ofloxacin, Ciprofloxacin, Levofloxacin and Amikacin). Low resistance was observed to different combinations (Cefoperazone + Sulbactum, Piperacillin + Tazobactum). Meropenem and Imipenem had negligible resistance. Conclusion: There is growing resistance to different classes of antibiotics. Combination drugs are useful approach for empirical treatment in suspected Pseudomonas infection. Imipenem and Meropenem are extremely effective but should be in reserve. (author)

  19. Neonatal suppurative parotitis over the last 4 decades: report of three new cases and review.

    Science.gov (United States)

    Ismail, Essam A; Seoudi, Tarek M; Al-Amir, Mohamad; Al-Esnawy, Ahmad A

    2013-02-01

    Neonatal suppurative parotitis is a rare disease. Only 32 cases were reported in the English-language literature between 1970 and 2004. We searched Medline for acute, neonatal, bacterial, suppurative, parotitis, facial, preauricular swelling starting from 1970, limiting our search to the English-language literature. We reviewed all the reported cases together with three more managed in our department. We identified nine new cases since 2004. The total number of patients reviewed was 44, including our patients. Most of them were male (77%). The majority developed unilateral inflamed parotid swelling (77%) and exuded pus from the ipsilateral Stensen duct. Fever was seen in fewer than half of them (47%). Premature babies constituted a third of the patients. Staphylococcus aureus was the leading causative agent (61%). Most patients responded well to conservative treatment with antibiotics (77%). The most frequently used combination of antibiotics was an anti-staphylococcal agent with either an aminoglycoside or a third-generation cephalosporin. A minority required surgical drainage. No deaths were reported in the group studied after 1970. Neonatal suppurative parotitis is rare but easy to diagnose and if readily treated with appropriate antibiotics the outcome is excellent. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  20. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    Science.gov (United States)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.