WorldWideScience

Sample records for aminobenzenesulfonic acid-para

  1. Diisopropylammonium 4-aminobenzenesulfonate

    Directory of Open Access Journals (Sweden)

    Bougar Sarr

    2016-10-01

    Full Text Available The title molecular salt, C6H16N+·C6H6NO3S−, was synthesized from a neutralization reaction between sulfanilic acid and diisopropylamine. The crystal structure consists of diisopropylammonium cations and 4-aminobenzenesulfonate (sulfanilate anions interacting through a series of N—H...O and C—H...O hydrogen bonds, leading to the formation of a three-dimensional network structure.

  2. (4-Aminobenzenesulfonatoheptaaquagadolinium(III 4-aminobenzenesulfonate nitrate 4,4′-bipyridyl tetrasolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Lujiang Hao

    2010-07-01

    Full Text Available In the title compound, [Gd(C6H6O3S(H2O7](C6H6O3S(NO3·4C10H8N2·2H2O, the GdIII ion is octacoordinated by seven water molecules and one O-bonded 4-aminobenzenesulfonate anion in a square-antiprismatic arrangement. In the crystal, the components are linked by N—H...O, O—H...N and O—H...O hydrogen bonds.

  3. Synthesis, growth and characterization of a new organic three dimensional framework: Piperazin-1-ium 4-aminobenzenesulfonate

    Science.gov (United States)

    Rekha, P.; Peramaiyan, G.; NizamMohideen, M.; Mohan Kumar, R.; Kanagadurai, R.

    2016-05-01

    Piperazinium p-aminobenzenesulfonate (PPABS), a new nonlinear optical material was synthesized and crystals were grown from the methanol solvent by slow evaporation solution growth method. Single crystal X-ray diffraction study elucidated the crystal structure of PPABS. It crystallizes in orthorhombic crystal system with space group of Pbca. UV-vis-NIR spectral study was performed to analyze optical transparency of PPABS crystal and found that the grown crystal has sufficient transparency in the entire visible region with lower cutoff wavelength of 321 nm. The thermal stability and decomposition stages of the sample were studied by TG/DTA analyses. The different environmental carbon and hydrogen atoms of the proposed structure were identified by NMR spectral studies. The electric field response of crystal was determined from the dielectric studies. From the Z-scan measurements, the third order nonlinear optical properties of grown crystal were studied.

  4. Nanopore Long-Read Guided Complete Genome Assembly of Hydrogenophaga intermedia, and Genomic Insights into 4-Aminobenzenesulfonate, p-Aminobenzoic Acid and Hydrogen Metabolism in the Genus Hydrogenophaga.

    Science.gov (United States)

    Gan, Han M; Lee, Yin P; Austin, Christopher M

    2017-01-01

    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia , the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p -aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."

  5. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid/zinc oxide nanoparticles in carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Ghasem Karim-Nezhad

    2017-04-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs and p-aminobenzenesulfonic acid (p-ABSA were used to fabricate a modified electrode, as a highly sensitive and selective voltammetric sensor, for the determination of tartrazine. A fast and easy method for the fabrication of poly p-ABSA (Pp-ABSA/ZnO NPs-carbon paste electrode (Pp-ABSA/ZnO NPs-CPE by cyclic voltammetry was used. By combining the benefits of Pp-ABSA, ZnO NPs, and CPE, the resulted modified electrode exhibited outstanding electrocatalytic activity in terms of tartrazine oxidation by giving much higher peak currents than those obtained for the unmodified CPE and also other constructed electrodes. The effects of various experimental parameters on the voltammetric response of tartrazine were investigated. At the optimum conditions, the sensor has a linear response in the concentration range of 0349–5.44 μM, a good detection sensitivity (2.2034 μA/μM, and a detection limit of 80 nM of tartrazine. The proposed electrode was used for the determination of tartrazine in soft drinks with satisfactory results.

  6. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode.

    Science.gov (United States)

    Karim-Nezhad, Ghasem; Khorablou, Zeynab; Zamani, Maryam; Seyed Dorraji, Parisa; Alamgholiloo, Mahdieh

    2017-04-01

    Zinc oxide nanoparticles (ZnO NPs) and p-aminobenzenesulfonic acid (p-ABSA) were used to fabricate a modified electrode, as a highly sensitive and selective voltammetric sensor, for the determination of tartrazine. A fast and easy method for the fabrication of poly p-ABSA (Pp-ABSA)/ZnO NPs-carbon paste electrode (Pp-ABSA/ZnO NPs-CPE) by cyclic voltammetry was used. By combining the benefits of Pp-ABSA, ZnO NPs, and CPE, the resulted modified electrode exhibited outstanding electrocatalytic activity in terms of tartrazine oxidation by giving much higher peak currents than those obtained for the unmodified CPE and also other constructed electrodes. The effects of various experimental parameters on the voltammetric response of tartrazine were investigated. At the optimum conditions, the sensor has a linear response in the concentration range of 0349-5.44 μM, a good detection sensitivity (2.2034 μA/μM), and a detection limit of 80 nM of tartrazine. The proposed electrode was used for the determination of tartrazine in soft drinks with satisfactory results. Copyright © 2016. Published by Elsevier B.V.

  7. Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H{sub 2}O{sub 2} response

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, Jeseelan [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa); Ozoemena, Kenneth I. [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za

    2009-09-01

    The fabrication of nanostructured platform of poly(m-aminobenzenesulfonic acid) functionalised single-walled carbon nanotubes (SWCNTs-PABS)-iron(II)phthalocyanine nanoparticles (nanoFePc) using layer-by-layer(LBL) self-assembly strategy is described. The substrate build-up, via strong electrostatic interaction, was monitored using atomic force microscopy (AFM) and electrochemical measurements. As the number of bilayers is increased, the electron transfer kinetics of the ferricyaninde/ferrocyanide redox probe is decreased, while the electrochemical reduction of H{sub 2}O{sub 2} at a constant concentration is amplified. The amplification of the electrochemical response to H{sub 2}O{sub 2} detection suggests that this type of electrode could provide an important nano-architectural sensing platform for the development of a sensor.

  8. 21 CFR 74.203 - FD&C Green No. 3.

    Science.gov (United States)

    2010-04-01

    ...-hydroxybenzenesulfonic acid is prepared by the potassium permanganate oxidation of 2,2′-(1,2-ethenediyl)-bis(5-aminobenzenesulfonic acid) to sodium 5-amino-2-formylbenzenesulfonate. This amine is diazotized and the resulting...

  9. Estabilização de solo contaminado com zinco usando zeólitas sintetizadas a partir de cinzas de carvão Stabilization of zinc-contamined soil using zeolites synthesized from coal ashes

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2004-08-01

    Full Text Available The effect of synthetic zeolites on stabilizing Zn-contaminated soil using 0.01 mol L-1 CaCl2 leaching solution in batch experiments was investigated. The zeolites were synthesized from coal ash by hydrothermal treatment with alkaline solution. The additive enhanced the sorption capacity of the soil and reduced leaching. Zinc leaching was reduced by more than 80% using a minimum of 10% additive. The higher cation exchange capacity of the zeolite/soil mixtures and higher pH were responsible for stabilizing Zn in soil. The poly(2-aminobenzenesulfonic acid-coated mercury thin-film electrode was used for the determination of zinc.

  10. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  11. Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions

    International Nuclear Information System (INIS)

    Lebègue, Estelle; Brousse, Thierry; Gaubicher, Joël; Cougnon, Charles

    2013-01-01

    Activated carbon products modified with benzoic, benzenesulfonic and benzylphosphonic acid groups were prepared by spontaneous reduction of aryldiazonium ions in situ generated in water from the corresponding aminobenzene organic acids without addition of an external acid. Electrochemistry and NMR studies show that the advancement of the diazotization reaction depends both on the acidity and the electronic effect of the organic acid substituent, giving a mixture of diazonium, amine and triazene functionalities. Carbon products prepared by reaction of activated carbon Norit with 4-aminobenzenecarboxylic acid, 4-aminobenzenesulfonic acid and (4-aminobenzyl)phosphonic acid were analyzed by chemical elemental analysis and X-ray photoelectron spectroscopy experiments. Results show that this strategy is well suited for the chemical functionalization, giving a maximized grafting yield due to a chemical cooperation of amine and diazonium functionalities

  12. Aging-Resistant Functionalized LDH⁻SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism.

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui; Wang, Xin

    2018-05-18

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH⁻SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH⁻SAS composites. Successful preparation of LDH⁻SAS was confirmed by XRD, TGA and FTIR. LDH⁻SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH⁻SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance.

  13. Aging-Resistant Functionalized LDH–SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism

    Science.gov (United States)

    Li, Tianxiang; Shi, Zhengren; He, Xianru; Jiang, Ping; Lu, Xiaobin; Zhang, Rui

    2018-01-01

    With the aim of improving the anti-aging properties of nitrile-butadiene rubber (NBR), a functional organic filler, namely LDH–SAS, prepared by intercalating 4-amino-benzenesulfonic acid monosodium salt (SAS) into layered double hydroxides (LDHs) through anion exchange, was added to nitrile-butadiene rubber (NBR), giving the NBR/LDH–SAS composites. Successful preparation of LDH–SAS was confirmed by XRD, TGA and FTIR. LDH–SAS was well dispersed in the NBR matrix, owing to its strong interaction with the nitrile group of NBR. The obtained NBR/LDH–SAS composites exhibited excellent thermo-oxidative aging resistance as shown by TGA-DSC. Further investigation by ATR-FTIR indicated that SAS can capture the radical groups, even during the aging process, which largely accounts for the improved aging resistance. PMID:29783656

  14. Antialgal effects of five individual allelochemicals and their mixtures in low level pollution conditions.

    Science.gov (United States)

    Zuo, Shengpeng; Zhou, Shoubiao; Ye, Liangtao; Ding, Ying; Jiang, Xiaofeng

    2016-08-01

    An effective, environmentally friendly, and eco-sustainable approach for removing harmful microalgae is exploiting the allelopathic potential of aquatic macrophytes. In this study, we simulated field pollution conditions in the laboratory to investigate algal inhibition by allelochemicals, thereby providing insights into field practices. We tested five allelochemicals, i.e., coumarin, ρ-hydroxybenzoic acid, protocatechuic acid, stearic acid, and ρ-aminobenzenesulfonic acid, and a typical green alga, Chlorella pyrenoidosa, under two conditions. In the unpolluted treatment, individual allelochemicals had strong algal inhibition effects, where coumarin and ρ-hydroxybenzoic acid had greater potential for algal inhibition than protocatechuic acid, stearic acid, and ρ-aminobenzenesulfonic acid based on the 50 % inhibitory concentration. However, when two or three allelochemicals were mixed in specific proportions, the algal inhibition rate exceeded 80 %, thereby indicating allelopathic synergistic interactions. Mixtures of four or five allelochemicals had weak effects on algal inhibition, which indicated antagonistic interactions. Furthermore, the presence of low lead pollution significantly reduced the antialgal potential of individual allelochemicals, whereas the allelopathic synergistic interactions with mixtures between two or three allelochemicals were changed into antagonistic effects by low pollution. In particular, the allelopathic antagonistic interactions between four or five allelochemicals were increased by pollution. The allelopathic performance of these five allelochemicals may depend on various factors, such as the chemical species, mixture parameters, and algal strain. Thus, we found that low level pollution reduced the allelopathic inhibition of microalgae by allelochemicals. Therefore, the control of algae by the direct addition of allelochemicals should consider various environmental factors.

  15. A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides.

    Science.gov (United States)

    Jiang, Bin; Dong, Pei; Zheng, Jianbin

    2018-06-01

    Using an ionic layer-by-layer self-assembly technique, colloidal gold nanoparticles (AuNPs) and diazo-resins (DAR) were immobilised on the surface of a p-aminobenzenesulfonic acid-modified glassy carbon electrode to form a matrix composite membrane for acetylcholinesterase (AChE) immobilisation. Photo-sensitive DAR was used as the assembly interlayer to convert the ionic bond into a covalent bond to improve the biosensor stability. These fabrication processes were followed by electrochemical impedance spectroscopy and cyclic voltammetry to verify the membrane formation. Because of the introduction of AuNPs/DAR/AChE biofilms, the modified electrode exhibited excellent electron transfer mediation and electrical conductivity. In addition, it exhibited high sensitivity in the range of linear concentration from 1.0 × 10 -8 to 1.0 × 10 -12 g L -1 with the detection limit of 5.12 × 10 -13 and 5.85 × 10 -13 g L -1 for malathion and methyl parathion, respectively. More importantly, the presented biosensor considerably improved stability because the electrostatic interaction was converted into covalent bonds by UV irradiation. It is a simple, cheap and stable method for quantitative detection of organophosphorus pesticides, and this method may pave a way for the sensitive, simple detection of different analytes without the need of expensive instrumentation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sudong; Mi, Hongyu; Ye, Xiangguo [Institute of Applied Chemistry, Xinjiang University, Urumqi 830046 (China); Zhang, Xiaogang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2008-01-03

    To improve the utilization and activity of anodic catalysts for formic acid electrooxidation, palladium (Pd) particles were loaded on the MWCNTs, which were functionalized in a mixture of 96% sulfuric acid and 4-aminobenzenesulfonic acid, using sodium nitrite to produce intermediate diazonium salts from substituted anilines. The composition, particle size, and crystallinity of the Pd/f-MWCNTs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) measurements. The electrocatalytic properties of the Pd/f-MWCNTs catalysts for formic acid oxidation were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in 0.5 mol L{sup -1} H{sub 2}SO{sub 4} solution. The results demonstrated that the catalytic activity was greatly enhanced due to the improved water-solubility and dispersion of the f-MWCNTs, which were facile to make the small particle size (3.8 nm) and uniform dispersion of Pd particles loading on the surface of the MWCNTs. In addition, the functionalized MWCNTs with benzenesulfonic group can provide benzenesulfonic anions in aqueous solution, which may combine with hydrogen cation and then promote the oxidation of formic acid reactive intermediates. So the Pd/f-MWCNTs composites showed excellent electrocatalytic activity for formic acid oxidation. (author)

  17. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  18. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    International Nuclear Information System (INIS)

    Qiu, Shihui; Chen, Cheng; Cui, Mingjun; Li, Wei; Zhao, Haichao; Wang, Liping

    2017-01-01

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  19. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge

    Directory of Open Access Journals (Sweden)

    Daizong Cui

    2016-10-01

    Full Text Available An anaerobic sludge (AS, capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N,N-dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N,N-dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  20. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shihui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Chen, Cheng; Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Li, Wei [Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2017-06-15

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  1. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge.

    Science.gov (United States)

    Cui, Daizong; Zhang, Hao; He, Rubao; Zhao, Min

    2016-10-28

    An anaerobic sludge (AS), capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD) removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N , N -dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N , N -dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid) were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  2. Sulfonated Magnetic Nanocomposite Based on Reactive PGMA-MAn Copolymer@Fe3O4 Nanoparticles: Effective Removal of Cu(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Reza Hasanzadeh

    2016-01-01

    Full Text Available Chelating magnetic nanocomposites have been considered as suitable materials for removal of heavy metal ions for water treatment. In this work poly(glycidyl methacrylate-maleic anhydride copolymer (PGMA-MAn is modified with 4-aminobenzenesulfonic acid (ABSAc and subsequently the product reacted with modified Fe3O4 nanoparticles and 1,2-ethanedithiol (EDT in the presence of ultrasonic irradiation for preparation of tridimensional chelating magnetic nanocomposite. Synthesized magnetic nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, vibrating sample magnetometer (VSM, energy dispersive X-ray analysis (EDX, elemental mapping analysis (EMA, Brunauer-Emmett-Teller (BET, and thermal gravimetric analysis (TGA. The adsorption behavior of Cu(II ions was investigated by synthesized nanocomposite in various parameters such as pH, contact time, metal ion concentration, and adsorbent dosage. The equilibrium distribution coefficient (kd was determined and the findings prove that the kd value is approximately high in the case of all selected metal ions. The synthesized nanocomposite exhibited good tendency for removing Cu(II ions from aqueous solutions even at an acidic pH.

  3. Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data

    Directory of Open Access Journals (Sweden)

    Rafael eBargiela

    2015-11-01

    Full Text Available Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyse the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy amended with natural fertilizer, uric acid (UA, or ammonium (AMM. We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180 to identify potential catabolic differences. A total of 45 (for UA and 65 (AMM gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM, were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered

  4. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    Science.gov (United States)

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  5. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    KAUST Repository

    Bargiela, Rafael

    2015-11-24

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  6. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    Science.gov (United States)

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  7. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    Directory of Open Access Journals (Sweden)

    Nils J. H. Averesch

    2018-03-01

    Full Text Available The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Reconstruction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.

  8. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  9. Flavonoids and phenolic acids from pearl millet (Pennisetum glaucum based foods and their functional implications

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2012-07-01

    Full Text Available Background: Pearl millet (Pennisetum glaucum, considered a poor man’s cereal, may be a repository of dietary antioxidants, especially flavonoids and phenolic acids, which provide bioactive mechanisms to reduce free radical induced oxidative stress and probably play a role in the prevention of ageing and various diseases associated with oxidative stress, such as cancer, cardiovascular, and neurodegenerative diseases.Objective: The present study focused on the identification of individual flavonoids and phenolic acids from seven commercial varieties of pearl millet and five samples of pearl millet-based traditional recipes of Banaskantha, Gujarat, India.Methods: Total phenols were determined by the Folin-Ciocalteu method, and individual polyphenol separation included the isolation and identification of (a flavonoids, (b phenolic acids, and (c glycoflavones involving interaction with diagnostic reagents and paper chromatographic separation of compounds and their UV-visible spectroscopic studies including hypsochromic and bathchromic shifts with reagents such as AlCl3, AlCl3/HCl, NaOMe, NaOAc,and NaOAc/H3PO3. Five traditional recipes consumed in the pearl millet producing belt of Banaskantha, Gujarat, India, were standardized in the laboratory and analyzed for phenol and individual flavonoids. Results: Total phenols in raw samples ranged from 268.5 - 420mg/100g of DW and 247.5 -Functional Foods in Health and Disease 2012, 2(7:251-264335mg/100g of DW in cooked recipes. The commonly identified flavonoids were tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin. Five phenolic acids were identified: namely vanilic acid, syringic acid, melilotic acid, para-hydroxyl benzoic acid, and salicylic acid.Conclusion: The presence of flavonoids, such as tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin, indicate the chemopreventive efficacy of pearl millet. They may be inversely related to mortality from coronary heart disease and to the incidence

  10. Effect of carvacrol on the oxidative stability of palm oil during frying

    Directory of Open Access Journals (Sweden)

    İnanç, T.

    2014-12-01

    Full Text Available Fats and oils deteriorate physically and chemically at frying temperatures due to several reasons. The objective of this study was to assess the effect of carvacrol on the oxidative stability of palm oil during a repeated frying process. Potatoes were serially fried in carvacrol-added palm oil, BHT-added palm oil and a control oil (without any antioxidants. After each tenth frying cycle, several chemical analyses were carried out on collected samples to evaluate deterioration in the oils. The free fatty acid, para-anisidine, iodine, and total polar component values of the fresh oil were 0.080, 2.85, 57.1 and 7.5, respectively. These values changed to 0.165, 11.80, 46.7, 11.0, respectively for the control oil; 0.151, 11.28, 49.2 and 10.5 for BHT-added oil; 0.140, 7.19, 51.7, 10.0 for carvacrol-added oil after 40 frying cycles. The results revealed that the use of carvacrol could significantly improve the oxidative stability of palm oil when compared to the control samples. This effect was also comparable to BHT. Using carvacrol in frying oil slowed down the rate of the formation of conjugated dienes and trienes compared to the oil with BHT and the control. The frying process significantly changed the viscosity of the oil samples.Las grasas y aceites se deterioran física y químicamente a las temperaturas de fritura debido a diferentes razones. El objetivo de este estudio fue evaluar el efecto del carvacrol en la estabilidad oxidativa del aceite de palma durante el proceso de fritura repetida. Se sometió a fritura repetida patatas en el aceite de palma con carvacrol agregado, en aceite de palma con BHT agregado y en aceite control (sin antioxidante. Después de cada décimo ciclo de fritura, se realizaron diferentes análisis sobre las muestras recogidas para evaluar el deterioro de los aceites. Ácidos grasos libre, para-anisidina, índice de yodo y componentes polares totales del aceite fresco fueron: 0,080, 2,85, 57,1 y 7,5, respectivamente

  11. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    Surface-enhanced Raman scattering (SERS) has been established as a versatile tool for probing and labeling in analytical applications, based on the vibrational spectra of samples as well as label molecules in the proximity of noble metal nanostructures. The aim of this work was the construction of novel SERS hybrid probes. The hybrid probes consisted of Au and Ag nanoparticles and reporter molecules, as well as a targeting unit. The concept for the SERS hybrid probe design was followed by experiments comprising characterization techniques such as UV/Vis-spectroscopy (UV/Vis), Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. SERS experiments were performed for studying and optimizing the plasmonic properties of nanoparticles with respect to their enhancement capabilities. The SERS-probes had to meet following requirements: biocompatibility, stability in physiological media, and enhancement of Raman-signals from Raman reporter molecules enabling the identification of different probes even in a complex biological environment. Au and Ag nanoaggregates were found to be the most appropriate SERS substrates for the hybrid probe design. The utilization of Raman reporters enabled the identification of different SERS probes in multiplexing experiments. In particular, the multiplexing capability of ten various reporter molecules para-aminobenzenethiol, 2-naphthalenethiol, crystal violet, rhodamine (B) isothiocyanate, fluorescein isothiocyanate, 5,5'dithiobis(2-nitrobenzoic acid), para-mercaptobenzoic acid, acridine orange, safranine O und nile blue was studied using NIR-SERS excitation. As demonstrated by the results the reporters could be identified through their specific Raman signature even in the case of high structural similarity. Chemical separation analysis of the reporter signatures was performed in a trivariate approach, enabling the discrimination through an automated calculation of specific band ratios. The trivariate