WorldWideScience

Sample records for amino acids peptides

  1. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions.

  2. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  3. PROTEINS, PEPTIDES AND AMINO ACIDS AS MARKERS OF BRONCHOPULMONARY DISEASES

    Directory of Open Access Journals (Sweden)

    V. I. Fyodorov

    2013-01-01

    Full Text Available The article is a review of current literature on a content of proteins, peptides and amino acids in human exhaled breath. The results of proteomics and metabolomics applying for selective detection of individual proteins, peptides and amino acids are described. The study of exhaled breath condensate and exhaled endogenous particles contained lung proteins are considered. The peculiarities of protein, peptide and amino acid content in exhaled breath at various respiratory diseases are described. It is shown that the detectable substances may be specific markers of individual diseases.

  4. Nutritional value of D-amino acids, D-peptides, and amino acid derivatives in mice.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-01-01

    This paper describes a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L -phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino acid for such determinations may be preferable to protein-based diets.

  5. Non-protein amino acids in peptide design

    Indian Academy of Sciences (India)

    S Aravinda; N Shamala; Rituparna S Roy; P Balaram

    2003-10-01

    An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the use -aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments and DPro-Xxx segments for nucleating of -hairpin structures. - and -amino acid residues have been used to expand the range of designed polypeptide structures.

  6. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  7. How Amino Acids and Peptides Shaped the RNA World

    Directory of Open Access Journals (Sweden)

    Peter T.S. van der Gulik

    2015-01-01

    Full Text Available The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.

  8. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  9. The interaction of amino acids, peptides, and proteins with DNA.

    Science.gov (United States)

    Solovyev, Andrey Y; Tarnovskaya, Svetlana I; Chernova, Irina A; Shataeva, Larisa K; Skorik, Yury A

    2015-01-01

    Amino acids that carry charges on their side groups can bind to double stranded DNA (dsDNA) and change the strength of the double helix. Measurement of the DNA melting temperature (Tm) confirmed that acidic amino acids (Glu, Asp) weaken the H-bonds between DNA strands, whereas basic amino acids (Arg, Lys) strengthen the interaction between the strands. A rank correlation exists between the amino acid isoelectric points and the observed changes in Tm. A similar dependence of the hyperchromic effect on the isoelectric point of a protein (pepsin, insulin, cortexin, and protamine) was observed for DNA-protein complexes at room temperature. Short peptides (KE, AEDG, and KEDP) containing a mixture of acidic and basic amino acid residues also affect Tm and the stability of the double helix. A model for binding Glu and Lys to dsDNA was explored by a docking simulation. The model shows that Glu, in an untwisted shape, binds to dsDNA in its major groove and disrupts three H-bonds between the strands, thereby destabilizing the double helix. Lys, in an untwisted shape, binds to the external side of the dsDNA and forms two bonds with O atoms of neighboring phosphodiester groups, thereby strengthening the DNA helix.

  10. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    Science.gov (United States)

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  11. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides.

    Directory of Open Access Journals (Sweden)

    Matthew C T Hartman

    Full Text Available BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides.

  12. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    Science.gov (United States)

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  13. The enthalpies of formation and sublimation of amino acids and peptides

    Science.gov (United States)

    Sagadeev, E. V.; Gimadeev, A. A.; Barabanov, V. P.

    2010-02-01

    The experimental enthalpies of formation of L-amino acids and peptides were analyzed using the additive scheme and group contributions. Group contributions to the enthalpies of formation were calculated (increment denotations corresponded to the Benson-Buss symbols). The thermochemical characteristics of a wide range of amino acids and their derivatives were calculated.

  14. Installing amino acids and peptides on N-heterocycles under visible-light assistance.

    Science.gov (United States)

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-02-02

    Readily available natural α-amino acids are one of nature's most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments.

  15. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    Science.gov (United States)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  16. Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Wenrong Yang

    2001-08-01

    Full Text Available Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

  17. HPLC monitoring of spontaneous non-linear peptidization dynamics of selected amino acids in solution.

    Science.gov (United States)

    Godziek, Agnieszka; Maciejowska, Anna; Sajewicz, Mieczysław; Kowalska, Teresa

    2015-03-01

    This is our new study in a series of publications devoted to exploration of applicability of high-performance liquid chromatography (HPLC) to providing answers to difficult questions from the area of the reaction kinetics and mechanisms with non-linear reactions. Although an excellent analytical performance of HPLC is an indisputable fact, so far its performance as a tool in the kinetic and mechanistic studies has been tested to a lesser extent. In our earlier studies, spontaneous peptidization dynamics of amino acids in solution was demonstrated by means of HPLC upon a few amino acid examples, and on that basis a theoretical model has been developed, anticipating an interdependence of dynamics on chemical structures of amino acids involved. In order to expand the spectrum of experimentally investigated amino acid cases, in this study we present the results valid for three novel amino acids of significant life sciences importance, which differ in terms of peptidization dynamics. Experimental evidence originates from the achiral HPLC with the evaporative light scattering detection and MS detection. A conclusion is drawn that different spontaneous peptidization dynamics of amino acids may significantly influence chemical composition of proteins encountered in living organisms. Hence, a need emerges for systematic physicochemical studies on spontaneous non-linear peptidization dynamics of proteinogenic amino acids in liquid abiotic (but also in the biotic) systems.

  18. Tetrazine-Containing Amino Acid for Peptide Modification and Live Cell Labeling.

    Directory of Open Access Journals (Sweden)

    Zhongqiu Ni

    Full Text Available A novel amino acid derivative 3-(4-(1, 2, 4, 5-tetrazine-3-yl phenyl-2-aminopropanoic acid was synthesized in this study. The compound possessed better water-solubility and was synthesized more easily compared with the well-known and commercially available 3-(p-benzylamino-1, 2, 4, 5-tetrazine. Tetrazine-containing amino acid showed excellent stability in biological media and might be used for cancer cell labeling. Moreover, the compound remained relatively stable in 50% TFA/DCM with little decomposition after prolonged exposure at room temperature. The compound could be utilized as phenylalanine or tyrosine analogue in peptide modification, and the tetrazine-containing peptide demonstrated more significant biological activity than that of the parent peptide. The combination of tetrazine group and amino acid offered broad development prospects of the bioorthogonal labeling and peptide synthesis.

  19. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.

    Science.gov (United States)

    Guerra, Arcadio; Brea, Roberto J; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2012-11-28

    In this study, a novel dimer-forming cyclic peptide composed exclusively by cyclic γ-amino acids with a saccharide-like outer surface is described. The antiparallel β-sheet type hydrogen bonding interactions responsible for the large association constant in non-polar solvents constitute a suitable model for a novel class of self-assembling peptide nanotubes.

  20. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    Science.gov (United States)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  1. Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design.

    Directory of Open Access Journals (Sweden)

    P Douglas Renfrew

    Full Text Available Noncanonical amino acids (NCAAs can be used in a variety of protein design contexts. For example, they can be used in place of the canonical amino acids (CAAs to improve the biophysical properties of peptides that target protein interfaces. We describe the incorporation of 114 NCAAs into the protein-modeling suite Rosetta. We describe our methods for building backbone dependent rotamer libraries and the parameterization and construction of a scoring function that can be used to score NCAA containing peptides and proteins. We validate these additions to Rosetta and our NCAA-rotamer libraries by showing that we can improve the binding of a calpastatin derived peptides to calpain-1 by substituting NCAAs for native amino acids using Rosetta. Rosetta (executables and source, auxiliary scripts and code, and documentation can be found at (http://www.rosettacommons.org/.

  2. Electrochemical properties of tyrosine phenoxy and tryptophan indolyl radicals in peptides and amino acid analogues

    Energy Technology Data Exchange (ETDEWEB)

    DeFelippis, M.R.; Murthy, C.P.; Klapper, M.H. (Ohio State Univ., Columbus (United States)); Broitman, F.; Weinraub, D.; Faraggi, M. (Nuclear Research Centre-Negev, Beer Sheva (Israel))

    1991-04-18

    Reported here are the redox potentials of the tyrosine phenoxy (tyrO{sup {sm bullet}}) and tryptophan indolyl (trp{sup {sm bullet}}) radicals in peptides containing tyrosine or tryptophan residues. These were determined with pulse radiolysis, and the electrochemical techniques of cyclic voltammetry and differential pulse polarography. The pulse radiolytic and electrochemical methods yield comparable results. There are small differences (relative to the free amino acid) in redox potentials among the different tryptophan and tyrosine containing peptides; in the case of tryptophan these changes may correlate with the position of amino acid in the peptide. The authors also present the redox potentials of some tyrosine and tryptophan derivatives and the acid/base properties of the tryptophan radical cation, when both free and peptide bound.

  3. A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto

    2013-01-01

    This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides.

  4. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    Science.gov (United States)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  5. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.

    Science.gov (United States)

    Schweitzer-Stenner, Reinhard; Toal, Siobhan E

    2014-11-07

    As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.

  6. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen.

    Science.gov (United States)

    Ao, Jing; Li, Bo

    2012-10-01

    The amino acid composition and antioxidant activities of different hydrolysates from porcine collagen were analyzed. The gelatin was hydrolyzed for antioxidative peptides with various proteases, namely papain, protease from bovine pancreas, protease from Streptomyces, and cocktail mixture of protease from bovine pancreas and protease from Streptomyces. The hydrolysates were assessed using methods of DPPH radical-scavenging ability, metal-chelating ability and lipid peroxidation inhibition activity. It was found that the collagen hydrolysates by different protease treatments had different amino acid compositions and antioxidant properties. However, the contents of Hyp and Pro were improved and the content of Gly was decreased in each collagen hydrolysate compared with collagen. The hydrolysate prepared with the cocktail mixture of proteases, which exhibited the highest antioxidant activity, was separated into 6 fractions by gel filtration chromatography. Fraction 2 was further separated by ion exchange chromatography. Fraction 2b with abundant basic amino acids and Fraction 2d which was slightly acidic fractions had higher radical-scavenging and metal-chelating activities, and both Fraction 2b and 2d contained more hydrophobic amino acids. The results confirmed that the antioxidative peptides were rich in Hyp, Pro and Gly, which accounted for half of amino acid composition. This article added further support to the preparation of natural antioxidative peptides from porcine skin collagen.

  7. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  8. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    Science.gov (United States)

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  9. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    Science.gov (United States)

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  10. DESIGN AND SYNTHESIS OF 4-[2’-(5’- NITRO] IMIDAZOLYL BENZOYL (N-METHYL AMINO ACIDS AND PEPTIDES

    Directory of Open Access Journals (Sweden)

    PARAMITA DAS

    2010-06-01

    Full Text Available In the past two decades, a wide variety of bioactive peptides have been discovered. Condensation of heterocyclic moieties viz nicotinic acid, thiazole coumarin, quinolin, furan, imidazole etc. with amino acids and peptides resulted in compounds with potent biological activities. Many of the heterocyclic found to exhibit antifungal, antibacterial, cytotoxic, antineoplastic, insectisidal, antiinflammatory, anthelmintic, tyrosinase inhibitory and melanin production inhibitory activities. Metronidazole, serconidazole, flucanazole are well known marketed drugs. Introduction of D-amino acids and N-methylation of amino acids like tyrosine, valine, alanine etc enhanced antimicrobial activity. Hence an attempt is made towards the synthesis of 5-nitroimidazolyl-benzoic acid derivative of N-methylamino acids and peptide using solution phase technique of peptide synthesis. The method includes the introduction of tert-butyloxy carboxyl group (Boc to amino acids to protect the amino group forming Boc-amino acids .The protection of carboxyl group was done by converting the amino acids into corresponding methyl ester. The protected amino acids were coupled using diisopropylcarbodimide and triethylamine to get protected dipeptides. N-methylation was done by treating with methyl iodide and sodium hydride. The ester group was then removed by lithium hydroxide. The Boc(N-methyldipetide were coupled to amino acids or Boc(Nmethyl dipeptide were coupled to 4-[2-(5-nitroimidazoly]benzoic acids.

  11. Utilization of some non coded amino acids as isosters of peptide building blocks.

    Science.gov (United States)

    Hlaváček, J; Marcová, R; Ježek, R; Slaninová, J

    1996-09-01

    In our study on non coded amino acids and their utilization in peptide chemistry we synthesized methylene-thio (CH2-S) and methyleneoxy (CH2-O) group containing amino acids and pseudodipeptides which could be used as building blocks for the construction of peptide hormone analogues. The (CH2-S) isoster of peptide bond exhibits increased flexibility, lipophility and resistance to proteolytic enzymes. This group exhibits similar properties as the isosteric disulfide bond in the side chain of cystine residue. The (CH2-O) isoster is moreover similar in its geometry to extended conformation of peptide bond. As a consequence, the changed profile of biological activities could be expected for peptide hormone analogues containing such isosteric moiety. The (CH2-S) isosters of the peptide bond were prepared by alkylation of thiolates of 2-mercaptocarboxylic acids, the disulfide bond by alkylation of cysteine or homocysteine. The (CH2-O) isosters were prepared by (AcO)4Rh2 catalyzed addition of carbenes of alkyl diazocarboxylates to N-protected aminoalcohols. Pseudodipeptides H-Leu-ψ(CH2-S)-Gly-NH2 and H-Leu-ψ(CH2-O)-Gly-NH2 were introduced into the C-terminal part of the oxytocin molecule using solution methods of peptide chemistry. Both inserted isosteric bonds were resistant against proteolytic degradation, the first one was found to decrease an enzymic cleavage of the distant Tyr(2)-Ile(3) bond in the corresponding analogue, too. The (CH2-S) isosters of the disulfide bond containing an orthogonal protection of theirα-amino (Fmoc) andα-(OAll, OH) orω-(OBu(+), OH) carboxylic groups were applied in the solid phase synthesis of the aminoterminal 1-deamino-15-pentadecapeptide of endothelin-I which represents a strong vasoactive agent. The solid phase synthesis was carried out by the step-wise protocol on the Rink or Merrifield type resin using orthogonally protected carba cystine building blocks.

  12. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.

  13. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    Science.gov (United States)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  14. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  15. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    Science.gov (United States)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  16. Orientation of the peptide formation of N-phosphoryl amino acids in solution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The peptide formation of N-phosphoryl aminoacids with amino acids proceeds in aqueous solution withoutany coupling reagents. After being separated in sephadex gelcolumn, the phosphoryl dipeptides were analyzed by theelectrospray ionization tandem mass spectrometry (ESIMS/MS). The result demonstrates that phosphoryl dipeptides were detected in all the reaction systems. It is found that theformation of N-phosphoryl dipeptides is oriented: theN-terminal amino acid residues of the N-phosphoryl dipep-tides are from N-phosphoryl amino acids, and the peptideelongation happened at the C-terminal. Only (-dipeptide, no(-dipeptide, is formed in the N-phosphoryl dipeptides,showing that ?-carboxylic group is activated selectively byN-phosphorylation. Theoretical calculation shows that the peptide formation of N-phosphoryl amino acids might hap-pen through a penta-coordinate carboxylic-phosphoric in-termediate in solution. These results might give some clues tothe study on the origin of proteins and protein biosynthesis.

  17. [Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified at the aldehyde group].

    Science.gov (United States)

    Sumbatian, N V; Kuznetsova, I V; Karpenko, V V; Fedorova, N V; Chertkov, V A; Korshunova, G A; Bogdanov, A A

    2010-01-01

    Fourteen new functionally active amino acid and peptide derivatives of the antibiotics tylosin, desmycosin, and 5-O-mycaminosyltylonolide were synthesized in order to study the interaction of the growing polypeptide chain with the ribosomal tunnel. The conjugation of various amino acids and peptides with a macrolide aldehyde group was carried out by two methods: direct reductive amination with the isolation of the intermediate Schiff bases or through binding via oxime using the preliminarily obtained derivatives of 2-aminooxyacetic acid.

  18. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.

    Science.gov (United States)

    Subbalakshmi, Chilukuri; Manorama, Sunkara V; Nagaraj, Ramakrishnan

    2012-05-01

    The morphology of structures formed by the self-assembly of short N-terminal t-butyloxycarbonyl (Boc) and C-terminal methyl ester (OMe) protected and Boc-deprotected hydrophobic peptide esters was investigated. We have observed that Boc-protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc-Ile-Ile-OMe, Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc-Leu-Ile-Ile-OMe and H-Leu-Ile-Ile-OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self-assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well-defined tertiary structures, upon removal of the Boc group, only H-Phe-Phe-Phe-Ile-Ile-OMe had the ability to adopt β-structure. Our results indicate that hydrophobic interaction is a very important determinant for self-assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self-assembly.

  19. Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila

    Directory of Open Access Journals (Sweden)

    Yeh Hsiao-Fong

    2011-06-01

    Full Text Available Abstract Background The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs during external sensory (ES organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. Results From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs. In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(splmβ are target genes of the Notch pathway in DV boundary formation and

  20. A parallel method for enumerating amino acid compositions and masses of all theoretical peptides

    Directory of Open Access Journals (Sweden)

    Nefedov Alexey V

    2011-11-01

    Full Text Available Abstract Background Enumeration of all theoretically possible amino acid compositions is an important problem in several proteomics workflows, including peptide mass fingerprinting, mass defect labeling, mass defect filtering, and de novo peptide sequencing. Because of the high computational complexity of this task, reported methods for peptide enumeration were restricted to cover limited mass ranges (below 2 kDa. In addition, implementation details of these methods as well as their computational performance have not been provided. The increasing availability of parallel (multi-core computers in all fields of research makes the development of parallel methods for peptide enumeration a timely topic. Results We describe a parallel method for enumerating all amino acid compositions up to a given length. We present recursive procedures which are at the core of the method, and show that a single task of enumeration of all peptide compositions can be divided into smaller subtasks that can be executed in parallel. The computational complexity of the subtasks is compared with the computational complexity of the whole task. Pseudocodes of processes (a master and workers that are used to execute the enumerating procedure in parallel are given. We present computational times for our method executed on a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores running Windows HPC Server. Our method has been implemented as a 32- and 64-bit Windows application using Microsoft Visual C++ and the Message Passing Interface. It is available for download at https://ispace.utmb.edu/users/rgsadygo/Proteomics/ParallelMethod. Conclusion We describe implementation of a parallel method for generating mass distributions of all theoretically possible amino acid compositions.

  1. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    Science.gov (United States)

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  2. Tritium labeling of amino acids and peptides with liquid and solid tritium

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins.

  3. Tritium labeling of amino acids and peptides with liquid and solid tritium

    Energy Technology Data Exchange (ETDEWEB)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs.

  4. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    Science.gov (United States)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  5. Room temperature N-arylation of amino acids and peptides using copper(I) and β-diketone.

    Science.gov (United States)

    Sharma, Krishna K; Sharma, Swagat; Kudwal, Anurag; Jain, Rahul

    2015-04-28

    A mild and efficient method for the N-arylation of zwitterionic amino acids, amino acid esters and peptides is described. The procedure provides the first room temperature synthesis of N-arylated amino acids and peptides using CuI as a catalyst, diketone as a ligand, and aryl iodides as coupling partners. The method is equally applicable for using relatively inexpensive aryl bromides as coupling partners at 80 °C. Using this procedure, electronically and sterically diverse aryl halides, containing reactive functional groups were efficiently coupled in good to excellent yields.

  6. Capping β-hairpin with N-terminal d-amino acid stabilizes peptide scaffold.

    Science.gov (United States)

    Makwana, Kamlesh M; Mahalakshmi, Radhakrishnan

    2016-05-01

    Various strategies exist to stabilize de novo designed synthetic peptide β-hairpins or β-sheets structures, especially at the non-hydrogen bonding position. However, strategies to stabilize strand termini, which are affected by fraying, are highly limited. Here, by substituting N-terminal aliphatic amino acid with its mirror image counterpart, we achieve a significant increase in scaffold stabilization, resulting from the formation of a terminal aliphatic-aromatic hydrophobic CH…pi cluster. Our extensive solution NMR studies support the incorporation of an N-terminal d-aliphatic amino acid in the design of short β-hairpins, while successfully retaining the overall structural scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 260-266, 2016.

  7. The Perseus Exobiology Mission on MIR: Behaviour of Amino Acids and Peptides in Earth Orbit

    Science.gov (United States)

    Boillot, F.; Chabin, A.; Buré, C.; Venet, M.; Belsky, A.; Bertrand-Urbaniak, M.; Delmas, A.; Brack, A.; Barbier, B.

    2002-08-01

    Leucine, α-methyl leucine and two peptides were exposed to space conditions on board the MIR station during the Perseus-Exobiology mission. This long duration space mission was aimed at testing the delivery of prebiotic building blocks. During this mission, two amino acids (leucine and α-methyl leucine) and two peptides (leucine-diketopiperazine and trileucine thioethylester) were exposed in Earth orbit for three months. Basalt, clay and meteorite powder were also mixed with the samples in order to simulate the effects of potential meteorite protection. Analysis of the material after the flight did not reveal any racemization or polymerisation but did provide information regarding photochemical pathways for the degradation of leucine and of the tripeptide. Amino acids appeared to be more sensitive to UV radiation than peptides, the cyclic dipeptide being found to be as particularly resistant. Meteorite powder which exhibits the highest absorption in Vacuum UltraViolet (VUV) afforded the best protection to the organic molecules whereas montmorillonite clay, almost transparent in VUV, was the least efficient. By varying the thickness of the meteorite, we found that the threshold for efficient protection against radiation was about 5 μm. The possible exogenous origin of biological building blocks is discussed with respect to the stability to the molecules and the nature of the associated minerals.

  8. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis.

    Science.gov (United States)

    Philip, Anijamol T; Chacko, Shibin; Ramapanicker, Ramesh

    2015-12-01

    Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post-synthesis via amide, ester or triazole linkages. Stable amino acids containing ferrocene as a C-linked side chain are potentially useful building units for the synthesis of ferrocene-containing peptides. We report here an efficient route to synthesize ferrocene-containing amino acids that are stable and can be used in peptide synthesis. Coupling of 2-ferrocenyl-1,3-dithiane and iodides derived from aspartic acid or glutamic acid using n-butyllithium leads to the incorporation of a ferrocenyl unit to the δ-position or ε-position of an α-amino acid. The reduction or hydrolysis of the dithiane group yields an alkyl or an oxo derivative. The usability of the synthesized amino acids is demonstrated by incorporating one of the amino acids in both C-terminus and N-terminus of tripeptides in solution phase.

  9. New method for the synthesis of N-methyl amino acids containing peptides by reductive methylation of amino groups on the solid phase.

    Science.gov (United States)

    Kaljuste, K; Undén, A

    1993-08-01

    Primary amino groups on the model peptide Xaa-Ala-Pro-Lys(ClZ)-Tyr(2BrZ), synthesized on a p-methylbenzhydryl amine resin with conventional Boc/benzyl protective group strategy, were reacted with 4,4'-dimethoxydityl chloride in dichloromethane, resulting in the introduction of the dimethoxydityl group, which is an acid-labile N-alkyl type of protective group. The secondary amino groups thereby formed can be methylated by treating the peptide-resin with formaldehyde and sodium cyanoborohydride in N,N-dimethylformamide. After the removal of the dimethoxydityl group with trifluoroacetic acid, the resulting N-methylated amino acid residues with a free secondary amino groups are accessible for acylation with the next activated Boc amino acid. With this method majority of the 20 common amino acids can be monomethylated directly on the resin and, in most cases, with very low levels of the side reactions. In the cases where the complete methylation is difficult to achieve, the remaining primary amino groups can be selectively acylated in the presence of secondary amino groups with trimethylacetic acid 1-hydroxybenzotriazole ester. The method provides a convenient general route to synthesize N-methylated derivatives of most of the occurring and synthetic amino acids.

  10. A descriptor of amino acids: SVRG and its application to peptide quantitative structure-activity relationship.

    Science.gov (United States)

    Tong, J; Che, T; Li, Y; Wang, P; Xu, X; Chen, Y

    2011-01-01

    In this work, a descriptor, SVRG (principal component scores vector of radial distribution function descriptors and geometrical descriptors), was derived from principal component analysis (PCA) of a matrix of two structural variables of coded amino acids, including radial distribution function index (RDF) and geometrical index. SVRG scales were then applied in three panels of peptide quantitative structure-activity relationships (QSARs) which were modelled by partial least squares regression (PLS). The obtained models with the correlation coefficient (R²(cum)), cross-validation correlation coefficient (Q²(LOO)) were 0.910 and 0.863 for 48 bitter-tasting dipeptides; 0.968 and 0.931 for 21 oxytocin analogues; and 0.992 and 0.954 for 20 thromboplastin inhibitors. Satisfactory results showed that SVRG contained much chemical information relating to bioactivities. The approach may be a useful structural expression methodology for studies on peptide QSAR.

  11. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides.

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Steen, Jennifer A; Zaragoza, Nicolas E; Moonen, Glenn; Moutafis, George; Hodson, Mark P; Power, John; Nielsen, Lars K; Marcellin, Esteban

    2016-10-01

    Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.

  12. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    Energy Technology Data Exchange (ETDEWEB)

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  13. New Descriptors of Amino Acids and Its Applications to Peptide Quantitative Structure-activity Relationship

    Institute of Scientific and Technical Information of China (English)

    SHU Mao; HUO Dan-Qun; MEI Hua; LIANG Gui-Zhao; ZHANG Mei; LI Zhi-Liang

    2008-01-01

    A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physicochemical variables of 20 natural amino acids separately according to different kinds of properties described, namely, hydrophobic, steric, and electronic properties as well as hydrogen bonding contributions. HSEHPCSV scales were then employed to express structures of angiotensin-converting enzyme inhibitors, bitter tasting thresholds and bactericidal 18 peptide, and to construct QSAR models based on partial least square (PLS). The results obtained are as follows: the multiple correlation coefficient (R2cum) of 0.846, 0.917 and 0.993, leave-one-out cross validated Q2cum of 0.835, 0.865 and 0.899, and root-mean-square error for estimated error (RMSEE) of 0.396, 0.187and 0.22, respectively. Satisfactory results showed that, as new amino acid scales, data of HSEHPCSV may be a useful structural expression methodology for the studies on peptide QSAR (quantitative structure-activity relationship) due to many advantages such as plentiful structural information, definite physical and chemical meaning and easy interpretation.

  14. Identification of potent 11mer glucagon-like peptide-1 receptor agonist peptides with novel C-terminal amino acids: Homohomophenylalanine analogs.

    Science.gov (United States)

    Haque, Tasir S; Lee, Ving G; Riexinger, Douglas; Lei, Ming; Malmstrom, Sarah; Xin, Li; Han, Songping; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Ewing, William R; Krupinski, John

    2010-05-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.

  15. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  16. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  17. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  18. Stable right- and left-handed peptide helices containing C(alpha)-tetrasubstituted alpha-amino acids.

    Science.gov (United States)

    Grauer, Andreas A; Cabrele, Chiara; Zabel, Manfred; König, Burkhard

    2009-05-15

    Short peptidomimetics with stable secondary structures in solution are of interest for applications in chemistry, biology, and medicine. One way to rigidify the backbone of a peptide is the use of cyclic C(alpha)-tetrasubstituted alpha-amino acids (TAAs) like compound 14. The structures resulting from the incorporation of this unnatural amino acid into peptides were investigated. In total, 13 different peptides with a length of up to eight residues and alternating sequences of TAA 14 and (S)- or (R)-valine were synthesized. Their structures were characterized by X-ray diffraction analysis and NMR and CD measurements showing that the all-S-backbone-configured peptides 5 and 6 (SS)(2-3) form right-handed 3(10)-helices, while the all-R-configured peptides 11-13 (RR)(2-4) form left-handed 3(10)-helices in the solid state and solution.

  19. Comparison of amino acid v peptide based enteral diets in active Crohn's disease: clinical and nutritional outcome.

    OpenAIRE

    Royall, D; Jeejeebhoy, K. N.; Baker, J. P.; Allard, J P; Habal, F. M.; Cunnane, S. C.; Greenberg, G R

    1994-01-01

    Elemental diets are considered an effective primary treatment for active Crohn's disease. This study examined the hypothesis that improvement occurs because of the presence of amino acids or the low fat content, or both. A randomised, controlled trial was undertaken in 40 patients with active Crohn's disease to evaluate clinical and nutritional outcomes after an amino acid based diet containing 3% fat was given by a feeding tube compared with a peptide based diet containing 33% fat. After thr...

  20. Quantification of glycated N-terminal peptide of hemoglobin using derivatization for multiple functional groups of amino acids followed by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko

    2016-02-01

    A novel method of amino acid analysis using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups) was applied to measure glycated amino acids in order to quantify glycated peptides and evaluate the degree of glycation of peptide. Amino and carboxyl groups of amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids, including glycated amino acids, were improved. These derivatized amino acids could be detected with high sensitivity using LC-MS/MS. In this study, 1-deoxyfructosyl-VHLTPE and VHLTPE, which are N-terminal peptides of the β-chains of hemoglobin, were selected as target compounds. After reducing the peptide sample solution with sodium borohydride, the obtained peptides were hydrolyzed with hydrochloric acid. The released amino acids were then derivatized with 1-bromobutane and analyzed with LC-MS/MS. The derivatized amino acids, including glycated amino acids, could be separated using an octadecyl silylated silica column and good sharp peaks were detected. We show a confirmatory experiment that the proposed method can be applied to evaluate the degree of glycation of peptides, using mixtures of glycated and non-glycated peptide.

  1. Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2009-11-01

    Full Text Available Abstract Background Experts in peptide:MHC binding studies are often able to estimate the impact of a single residue substitution based on a heuristic understanding of amino acid similarity in an experimental context. Our aim is to quantify this measure of similarity to improve peptide:MHC binding prediction methods. This should help compensate for holes and bias in the sequence space coverage of existing peptide binding datasets. Results Here, a novel amino acid similarity matrix (PMBEC is directly derived from the binding affinity data of combinatorial peptide mixtures. Like BLOSUM62, this matrix captures well-known physicochemical properties of amino acid residues. However, PMBEC differs markedly from existing matrices in cases where residue substitution involves a reversal of electrostatic charge. To demonstrate its usefulness, we have developed a new peptide:MHC class I binding prediction method, using the matrix as a Bayesian prior. We show that the new method can compensate for missing information on specific residues in the training data. We also carried out a large-scale benchmark, and its results indicate that prediction performance of the new method is comparable to that of the best neural network based approaches for peptide:MHC class I binding. Conclusion A novel amino acid similarity matrix has been derived for peptide:MHC binding interactions. One prominent feature of the matrix is that it disfavors substitution of residues with opposite charges. Given that the matrix was derived from experimentally determined peptide:MHC binding affinity measurements, this feature is likely shared by all peptide:protein interactions. In addition, we have demonstrated the usefulness of the matrix as a Bayesian prior in an improved scoring-matrix based peptide:MHC class I prediction method. A software implementation of the method is available at: http://www.mhc-pathway.net/smmpmbec.

  2. Detection of DBD-carbamoyl amino acids in amino acid sequence and D/L configuration determination of peptides with fluorogenic Edman reagent 7-[(N,N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate.

    Science.gov (United States)

    Huang, Y; Matsunaga, H; Toriba, A; Santa, T; Fukushima, T; Imai, K

    1999-06-01

    A method for amino acid sequence and D/L configuration identification of peptides by using fluorogenic Edman reagent 7-[(N, N-dimethylamino)sulfonyl]-2,1,3-benzoxadiazol-4-yl isothiocyanate (DBD-NCS) has been developed. This method was based on the Edman degradation principle with some modifications. A peptide or protein was coupled with DBD-NCS under basic conditions and then cyclized/cleaved to produce DBD-thiazolinone (TZ) derivative by BF3, a Lewis acid, which could significantly suppress the amino acid racemization. The liberated DBD-TZ amino acid was hydrolyzed to DBD-thiocarbamoyl (TC) amino acid under a weakly acidic condition and then oxidized by NaNO2/H+ to DBD-carbamoyl (CA) amino acid which was a stable and had a strong fluorescence intensity. The individual DBD-CA amino acids were separated on a reversed-phase high-performance liquid chromatography (RP-HPLC) for amino acid sequencing and their enantiomers were resolved on a chiral stationary-phase HPLC for identifying their D/L configurations. Combination of the two HPLC systems, the amino acid sequence and D/L configuration of peptides could be determined. This method will be useful for searching D-amino-acid-containing peptides in animals.

  3. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  4. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

    Science.gov (United States)

    Atkinson, Darcy J; Naysmith, Briar J; Furkert, Daniel P

    2016-01-01

    Rising resistance to current clinical antibacterial agents is an imminent threat to global public health and highlights the demand for new lead compounds for drug discovery. One such potential lead compound, the peptide antibiotic teixobactin, was recently isolated from an uncultured bacterial source, and demonstrates remarkably high potency against a wide range of resistant pathogens without apparent development of resistance. A rare amino acid residue component of teixobactin, enduracididine, is only known to occur in a small number of natural products that also possess promising antibiotic activity. This review highlights the presence of enduracididine in natural products, its biosynthesis together with a review of analogues of enduracididine. Reported synthetic approaches to the cyclic guanidine structure of enduracididine are discussed, illustrating the challenges encountered to date in the development of efficient synthetic routes to facilitate drug discovery efforts inspired by the discovery of teixobactin. PMID:28144300

  5. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

    Directory of Open Access Journals (Sweden)

    Darcy J. Atkinson

    2016-11-01

    Full Text Available Rising resistance to current clinical antibacterial agents is an imminent threat to global public health and highlights the demand for new lead compounds for drug discovery. One such potential lead compound, the peptide antibiotic teixobactin, was recently isolated from an uncultured bacterial source, and demonstrates remarkably high potency against a wide range of resistant pathogens without apparent development of resistance. A rare amino acid residue component of teixobactin, enduracididine, is only known to occur in a small number of natural products that also possess promising antibiotic activity. This review highlights the presence of enduracididine in natural products, its biosynthesis together with a review of analogues of enduracididine. Reported synthetic approaches to the cyclic guanidine structure of enduracididine are discussed, illustrating the challenges encountered to date in the development of efficient synthetic routes to facilitate drug discovery efforts inspired by the discovery of teixobactin.

  6. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys amino acid mixtures.

  7. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.

    Science.gov (United States)

    Morinaka, Brandon I; Vagstad, Anna L; Helf, Maximilian J; Gugger, Muriel; Kegler, Carsten; Freeman, Michael F; Bode, Helge B; Piel, Jörn

    2014-08-04

    PoyD is a radical S-adenosyl methionine epimerase that introduces multiple D-configured amino acids at alternating positions into the highly complex marine peptides polytheonamide A and B. This novel post-translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse D-amino acid patterns into all-L peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering.

  8. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    Science.gov (United States)

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  9. Influence of amino acid substitutions in the leader peptide on maturation and secretion of mesentericin Y105 by Leuconostoc mesenteroides.

    Science.gov (United States)

    Aucher, Willy; Lacombe, Christian; Héquet, Arnaud; Frère, Jacques; Berjeaud, Jean-Marc

    2005-03-01

    By site-specific mutagenesis, the hydrophobic conserved amino acids and the C-terminal GG doublet of the leader peptide of pre-mesentericin Y105 were demonstrated to be critical for optimal secretion of mesentericin Y105, as well as for the maturation of the pre-bacteriocin by the protease portion of the ABC transporter MesD.

  10. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  11. Prospects of In vivo Incorporation of non-canonical amino acids for the chemical diversification of antimicrobial peptides

    NARCIS (Netherlands)

    Baumann, Tobias; Nickling, Jessica H; Bartholomae, Maike; Buivydas, Andrius; Kuipers, Oscar P; Budisa, Nediljko

    2017-01-01

    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-natu

  12. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products.

  13. Fluorescent amino acid undergoing excited state intramolecular proton transfer for site-specific probing and imaging of peptide interactions.

    Science.gov (United States)

    Sholokh, Marianna; Zamotaiev, Oleksandr M; Das, Ranjan; Postupalenko, Viktoriia Y; Richert, Ludovic; Dujardin, Denis; Zaporozhets, Olga A; Pivovarenko, Vasyl G; Klymchenko, Andrey S; Mély, Yves

    2015-02-12

    Fluorescent amino acids bearing environment-sensitive fluorophores are highly valuable tools for site-selective probing of peptide/ligand interactions. Herein, we synthesized a fluorescent l-amino acid bearing the 4'-methoxy-3-hydroxyflavone fluorophore (M3HFaa) that shows dual emission, as a result of an excited state intramolecular proton transfer (ESIPT). The dual emission of M3HFaa was found to be substantially more sensitive to hydration as compared to previous analogues. By replacing the Ala30 and Trp37 residues of a HIV-1 nucleocapsid peptide, M3HFaa was observed to preserve the peptide structure and functions. Interaction of the labeled peptides with nucleic acids and lipid vesicles produced a strong switch in their dual emission, favoring the emission of the ESIPT product. This switch was associated with the appearance of long-lived fluorescence lifetimes for the ESIPT product, as a consequence of the rigid environment in the complexes that restricted the relative motions of the M3HFaa aromatic moieties. The strongest restriction and thus the longest fluorescence lifetimes were observed at position 37 in complexes with nucleic acids, where the probe likely stacks with the nucleobases. Based on the dependence of the lifetime values on the nature of the ligand and the labeled position, two-photon fluorescence lifetime imaging was used to identify the binding partners of the labeled peptides microinjected into living cells. Thus, M3HFaa appears as a sensitive tool for monitoring site selectively peptide interactions in solution and living cells.

  14. Comparison of the amino acid and peptide composition and postprandial response of beef, hydrolyzed chicken, and whey protein nutritional preparations

    Directory of Open Access Journals (Sweden)

    Christopher J. Detzel

    2016-10-01

    Full Text Available Background: Increasing dietary protein intake synergistically improves the effect of exercise to stimulate muscle protein synthesis. The purpose of this study was to evaluate the plasma amino acid response of two novel protein nutritional preparations, beef protein isolate (BeefISO™ and hydrolyzed chicken protein isolate (MyoCHX™. Methods: The postprandial plasma amino acid response over 3 hours was monitored in young adults (n=6 following consumption of 23 grams of WPC, BeefISO™, or MyoCHX™. Amino acid compositional analysis and molecular weight distributions of each protein were performed by HPLC. Statistical analyses were performed using one-way or two-way ANOVA where appropriate and corrected for multiple comparisons to account for the cross-over design. Results: Compositional evaluations revealed similar levels of essential and branched-chain amino acids for WPC and MyoCHX™. While the results of this study predictably demonstrated plasma amino acids levels increased following consumption of the different proteins, the kinetics of the postprandial response was unique to each protein source. WPC and MyoCHX™ were rapidly absorbed with maximum plasma amino acid concentrations observed at 30 and 15 min, respectively. The slightly faster absorption of MyoCHX™ was associated with the increased peptide content of MyoCHX™ (greater than 76% of protein is <2kDa. BeefISO™ exhibited sustained release characteristics as evidenced by increased post prandial amino acid concentrations after 3 hours. Conclusions: The protein preparations studied each had different amino acid profiles and absorption kinetics. WPC and MyoCHX™ contained a higher essential amino acid content and were rapidly absorbed with plasma amino acid concentrations peaking within 30 minutes following consumption. BeefISO™ contained a higher proportion of conditionally essential amino acids that steadily increased in plasma over 3 hours, indicating a sustained release

  15. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport

    Directory of Open Access Journals (Sweden)

    Jennifer Lee

    2017-03-01

    Conclusions: These findings reveal an important role for GLP-2R signaling in the physiological and pharmacological control of enteral amino acid sensing and assimilation, defining an enteroendocrine cell-enterocyte axis for optimal energy absorption.

  16. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    Science.gov (United States)

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  17. Using scores of amino acid topological descriptors for quantitative sequence-mobility modeling of peptides based on support vector machine

    Institute of Scientific and Technical Information of China (English)

    LIANG Guizhao; YANG Shanbin; ZHOU Yuan; ZHOU Peng; LI Zhiliang

    2006-01-01

    Scores of amino acid topological descriptors (SATD) derived from principle components analysis of a matrix of 1262 structural variables related to 23 amino acids were employed to express the structure of 125 peptides in different length.Quantitative sequence-mobility modelings (QSMMs)were constructed using partial least square (PLS)and support vector machine (SVM), respectively. As new amino acid scales, SATD including plentiful information related to biological activity were easily manipulated. Better results were obtained compared to those obtained with PLS, which indicated that SVM presented robust stability and excellent predictive ability for electrophoretic mobilities. These results show that there is a wide prospect for the applications of SATD and SVM regression in QSMMs.

  18. [A new SVRDF 3D-descriptor of amino acids and its application to peptide quantitative structure activity relationship].

    Science.gov (United States)

    Tong, Jian-Bo; Zhang, Sheng-Wan; Cheng, Su-Li; Li, Gai-Xian

    2007-01-01

    To establish a new amino acid structure descriptor that can be applied to polypeptide quantitative structure activity relationship (QSAR) studies, a new descriptor, SVRDF, was derived from a principal components analysis of a matrix of 150 radial distribution function index of amino acids. The scale was then applied in three panels of peptide QSAR that were molded by partial least squares regression. The obtained models with the correlation coefficients (R2(cum)), cross-validation correlation coefficients (Q2(cum)) were 0.766 and 0.724 for 48 bitter tasting dipeptides; 0.941 and 0.811 for 21 oxytocin analogues; 0.996 and 0.919 for 20 thromboplastin inhibitors. Satisfactory results showed that information related to biological activity can be systemically expressed by SVRDF scales, which may be an useful structural expression methodology for the study of peptides QSAR.

  19. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  20. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth.

    Science.gov (United States)

    Parker, Eric T; Zhou, Manshui; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Bada, Jeffrey L

    2014-07-28

    Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

  1. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  2. Expedient synthesis of triazole-linked glycosyl amino acids and peptides.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Keereweer, A.R.; Quaedflieg, P.J.; Blaauw, R.H.; Delft, F.L. van; Rutjes, F.P.J.T.

    2004-01-01

    [structure: see text] An expedient, high-yielding synthesis of two types of triazole-linked glycopeptides is described. These novel and stable glycopeptide mimics were prepared via Cu(I)-catalyzed [3 + 2] cycloaddition of either azide-functionalized glycosides and acetylenic amino acids or acetyleni

  3. Structural dynamic of a self-assembling peptide d-EAK16 made of only D-amino acids.

    Directory of Open Access Journals (Sweden)

    Zhongli Luo

    Full Text Available We here report systematic study of structural dynamics of a 16-residue self-assembling peptide d-EAK16 made of only D-amino acids. We compare these results with its chiral counterpart L-form, l-EAK16. Circular dichroism was used to follow the structural dynamics under various temperature and pH conditions. At 25 degrees C the d-EAK16 peptide displayed a typical beta-sheet spectrum. Upon increasing the temperature above 70 degrees C, there was a spectrum shift as the 218 nm valley widens toward 210 nm. Above 80 degrees C, the d-EAK16 peptide transformed into a typical alpha-helix CD spectrum without going through a detectable random-coil intermediate. When increasing the temperature from 4 degrees C to 110 degrees C then cooling back from 110 degrees C to 4 degrees C, there was a hysteresis: the secondary structure from beta-sheet to alpha-helix and then from alpha-helix to beta-sheet occurred. d-EAK16 formed an alpha-helical conformation at pH0.76 and pH12 but formed a beta-sheet at neutral pH. The effects of various pH conditions, ionic strength and denaturing agents were also noted. Since D-form peptides are resistant to natural enzyme degradation, such drastic structural changes may be exploited for fabricating molecular sensors to detect minute environmental changes. This provides insight into the behaviors of self-assembling peptides made of D-amino acids and points the way to designing new peptide materials for biomedical engineering and nanobiotechnology.

  4. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  5. Investigation on enantiomeric separations of fluorenylmethoxycarbonyl amino acids and peptides by high-performance liquid chromatography using native cyclodextrins as chiral stationary phases.

    Science.gov (United States)

    Tang, Y; Zukowski, J; Armstrong, D W

    1996-09-06

    A systematic study was carried out to investigate enantiomeric separations of fluorenylmethoxycarbonyl (FMOC) amino acids and their peptides. Twenty amino acids were derivatized by 9-fluorenylmethyl chloroformate (FMOC-Cl) and its analogues, FMOC-glycyl-Cl and FMOC-beta-alanyl-Cl. All derivatives were chromatographed on native beta- and gamma-cyclodextrin columns using acetonitrile as the main mobile phase component. The results indicated that glycyl and beta-alanyl groups between FMOC and amino acid moieties enhanced chiral selectivities of amino acid derivatives. The addition of modifiers, triethylamine, acetic acid and methanol, into the mobile phase caused alterations in retention, enantiorecognition and elution order. The structures of amino acids and the type of chiral stationary phase employed exhibited significant impacts on chiral resolutions. It is also found that the number and position of glycyl moieties affect the retentions and enantioselectivities of FMOC derivatized glycyl containing peptides.

  6. From amino acids to nature-inspired molecular scaffolds: incorporation of medium-sized bridged heterocycles into a peptide backbone.

    Science.gov (United States)

    La-Venia, Agustina; Ventosa-Andrés, Pilar; Hradilová, Ludmila; Krchňák, Viktor

    2014-11-07

    Novel molecular scaffolds comprising two to four bridged and fused heterocycles were synthesized from amino acids using seven-membered endocyclic N-acyliminium ions as key intermediates in acid-mediated tandem reactions with internal nucleophiles. This complexity-generating synthesis proceeds with high efficiency and with full stereocontrol of the newly generated stereogenic center. These results have extended the scope of medium-sized cyclic iminium ion chemistry, making it applicable as a regio- and stereoselective synthetic strategy for the generation of complex polycyclic structures. Furthermore, its compatibility with the traditional Merrifield synthesis of peptides on solid supports allowed the incorporation of the previously unexplored conformationally restricted cyclic systems into peptides without a need to independently synthesize the scaffold.

  7. A novel vector of topological and structural information for amino acids and its QSAR applications for peptides and analogues

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new descriptor, called vector of topological and structural information for coded and noncoded amino acids (VTSA), was derived by principal component analysis (PCA) from a matrix of 66 topological and structural variables of 134 amino acids. The VTSA vector was then applied into two sets of peptide quantitative structure-activity relationships or quantitative sequence-activity modelings (QSARs/ QSAMs). Molded by genetic partial least squares (GPLS), support vector machine (SVM), and immune neural network (INN), good results were obtained. For the datasets of 58 angiotensin converting en-zyme inhibitors (ACEI) and 89 elastase substrate catalyzed kinetics (ESCK) , the R2, cross-validation R2, and root mean square error of estimation (RMSEE) were as follows: ACEI, R2cu≥0.82, Q2cu≥0.77, Ermse≤0.44 (GPLS+SVM); ESCK, R2cu≥0.84, Q2cu≥0.82, Ermse≤0.20 (GPLS+INN), respectively.

  8. Exploring Ramachandran and chi space: conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands.

    Science.gov (United States)

    Cowell, S M; Lee, Y S; Cain, J P; Hruby, V J

    2004-11-01

    Ligand binding and concomitant changes in receptor structure provide the means to target signal transduction pathways. With appropriate refinement of the ligand's interaction with the "receptor," one in theory could produce ligands that have greater therapeutic benefits. This review will discuss how, when these ligands are amino acids and peptides, the introduction of appropriate conformational constraints provides a powerful strategy for improved drug design. This review will discuss how various constraints on amino acids can provide a powerful tool for ligand design, determination of the three dimensional pharmacophore and new insights into receptor systems and information transduction. Through the use of constrained ligands, new information regarding their interaction with their "receptor" systems, and further refinement of the use of constraints, scientists can produce more beneficial drugs for mankind.

  9. Derivatization and fluorescence detection of amino acids and peptides with 9-fluorenylmethyl chloroformate on the surface of a solid adsorbent.

    Science.gov (United States)

    Shangguan, D; Zhao, Y; Han, H; Zhao, R; Liu, G

    2001-05-01

    An approach that exploits the surface of a solid adsorbent is proposed for precolumn FMOC derivatization of amino acids and peptides. Amino acids (Ser, Glu, GABA, Val, Phe, Lys) and two neuropeptides (substance P and Leuenkephalin) were adsorbed on alkaline silica gel cartridges. After drying, they were reacted with 9-fluorenyl-methyl chloroformate (FMOC-Cl) in toluene. After washing off the excess FMOC-Cl with ethyl acetate, the derivatives were eluted with aqueous eluant. The eluates were separated and detected by means of HPLC with fluorescence detection. Compared with the traditional derivatization in the liquid phase, the extent of formation of byproducts of FMOC-Cl with water was greatly decreased, and the excess FMOC-Cl was eliminated completely.

  10. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections.

    Science.gov (United States)

    He, Yongkang; He, Xiaofeng

    2016-09-01

    Antimicrobial peptides (AMPs) have been the focus of intense research towards the finding of a viable alternative to current small-molecule antibiotics, owing to their commonly observed and naturally occurring resistance against pathogens. However, natural peptides have many problems such as low bioavailability and high allergenicity that largely limit the clinical applications of AMPs. In the present study, an integrative protocol that combined chemoinformatics modeling, molecular dynamics simulations, and in vitro susceptibility test was described to design AMPs containing unnatural amino acids (AMP-UAAs). To fulfill this, a large panel of synthetic AMPs with determined activity was collected and used to perform quantitative structure-activity relationship (QSAR) modeling. The obtained QSAR predictors were then employed to direct genetic algorithm (GA)-based optimization of AMP-UAA population, to which a number of commercially available, structurally diverse unnatural amino acids were introduced during the optimization process. Subsequently, several designed AMP-UAAs were confirmed to have high antibacterial potency against two antibiotic-resistant strains, i.e. multidrug-resistant Pseudomonas aeruginosa (MDRPA) and methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) < 10 μg/ml. Structural dynamics characterizations revealed that the most potent AMP-UAA peptide is an amphipathic helix that can spontaneously embed into an artificial lipid bilayer and exhibits a strong destructuring tendency associated with the embedding process. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 746-756, 2016.

  11. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    Science.gov (United States)

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  12. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel.

    Science.gov (United States)

    Shishkina, Anna; Makarov, Gennady; Tereshchenkov, Andrey; Korshunova, Galina; Sumbatyan, Nataliya; Golovin, Andrey; Svetlov, Maxim; Bogdanov, Alexey

    2013-11-20

    During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.

  13. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  14. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  15. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs.

    Science.gov (United States)

    Zhang, Shihai; Qiao, Shiyan; Ren, Man; Zeng, Xiangfang; Ma, Xi; Wu, Zhenlong; Thacker, Philip; Wu, Guoyao

    2013-11-01

    This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na(+)-neutral AA exchanger-2, cationic AA transporter-1, b(0,+) AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.

  16. Novel amino acids indices based on quantum topological molecular similarity and their application to QSAR study of peptides.

    Science.gov (United States)

    Hemmateenejad, Bahram; Yousefinejad, Saeed; Mehdipour, Ahmad Reza

    2011-04-01

    A new source of amino acid (AA) indices based on quantum topological molecular similarity (QTMS) descriptors has been proposed for use in QSAR study of peptides. For each bond of the chemical structure of AA, eight electronic properties were calculated using the approaches of bond critical point and theory of atom in molecule. Thus, for each molecule a data matrix of QTMS descriptors (having information from both topology and electronic features) were calculated. Using four different criterion based on principal component analysis of the QTMS data matrices, four different sets of AA indices were generated. The indices were used as the input variables for QSAR study (employing genetic algorithm-partial least squares) of three peptides' data sets, namely, angiotensin-converting enzyme inhibitors, bactericidal peptides and the peptides binding to the HLA-A*0201 molecule. The obtained models had better prediction ability or a comparable one with respect to the previously reported models. In addition, by using the proposed indices and analysis of the variable important in projection, the active site of the peptides which plays a significant role in the biological activity of interest, was identified.

  17. Synthesis of a chiral amino acid with bicyclo[1.1.1]pentane moiety and its incorporation into linear and cyclic antimicrobial peptides.

    Science.gov (United States)

    Pritz, Stephan; Pätzel, Michael; Szeimies, Günter; Dathe, Margitta; Bienert, Michael

    2007-06-01

    The synthesis of the lipophilic chiral amino acid 1 bearing the bicyclo[1.1.1]pentane moiety is described. Linear and cyclic hexapeptides of the type Arg-Arg-Xaa-Yaa-Arg-Phe containing 1 instead of one or two tryptophan residues are prepared by solid phase peptide synthesis and the antimicrobial and hemolytic activity of the peptides obtained are discussed.

  18. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    Science.gov (United States)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  19. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    Science.gov (United States)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  20. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration.

    Science.gov (United States)

    Karstad, Rasmus; Isaksen, Geir; Wynendaele, Evelien; Guttormsen, Yngve; De Spiegeleer, Bart; Brandsdal, Bjørn-Olav; Svendsen, John Sigurd; Svenson, Johan

    2012-07-26

    This study investigates how the S1 and S3 site of trypsin can be challenged with cationic amino acid analogues to yield active antimicrobial peptides with stability toward tryptic degradation. It is shown that unnatural analogues can be incorporated to generate stable peptides with maintained bioactivity to allow for a potential oral uptake. Selected peptides were studied using isothermal calorimetry and computational methods. Both stable and unstable peptides were found to bind stoichiometrically to trypsin with dissociation constants ranging 2-60 μM, suggesting several different binding modes. The stability of selected peptides was analyzed in whole organ extracts and the incorporation of homoarginine and 2-amino-(3-guanidino)propanoic acid resulted in a 14- and 50-fold increase in duodenal stability. In addition, a 40- and 70-fold increase in stomach stability is also reported. Overall, these results illustrate how the incorporation of cationic side chains can be employed to generate bioactive peptides with significant systemic stability.

  1. Effect of intrachain hydrogen bond on the formation of L amino acids along α helix of peptide

    Institute of Scientific and Technical Information of China (English)

    梅镇岳

    1995-01-01

    The model of right-handed α helix of peptide,in which the intrachain hydrogen bonds be-tween amino acid residues are in the direction of the axis of the helix,is used to compute the energy differ-ences between D-and L-form residues.The dominant intramolecular interactions involved are the Coulombinteraction for the residues with charged and polarized R group and van der Waals interaction for thehydrophobic residues respectively.The results obtained show that the energy states of L-forms are lower thanthose of the corresponding D-forms.Therefore,L-form states are more stable.The racemization of the aminoacid after the residue has been dislocated from the peptide chain is interpreted as the consequence of the pari-ty conservation of the electromagnetic interaction.

  2. Click Chemistry Route to the Synthesis of Unusual Amino Acids, Peptides, Triazole-Fused Heterocycles and Pseudodisaccharides.

    Science.gov (United States)

    Chandrasekaran, Srinivasan; Ramapanicker, Ramesh

    2017-01-01

    Conjugation of different molecular species using copper(I)-catalyzed click reaction between azides and terminal alkynes is among the best available methods to prepare multifunctional compounds. The effectiveness of this method has provided wider acceptance to the concept of click chemistry, which is now widely employed to synthesize densely functionalized organic molecules. This article summarizes the contributions from our group in the development of new methods for the synthesis of functional molecules using copper(I)-catalyzed click reactions. We have developed very efficient methods for the synthesis of peptides and amino acids conjugated with carbohydrates, thymidine and ferrocene. We have also developed an efficient strategy to synthesize triazole-fused heterocycles from primary amines, amino alochols and diols. Finally, an interesting method for the synthesis of pseudodisaccharides linked through triazoles, starting from carbohydrate-derived donor-acceptor cyclopropanes is discussed.

  3. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.

    Science.gov (United States)

    Yamashita, Hiroko; Misawa, Takashi; Oba, Makoto; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2017-03-15

    Cell-penetrating peptides (CPP) have attracted many scientists' attention as intracellular delivery tools due to their high cargo molecule transportation efficiency and low cytotoxicity. Therefore, in many research fields CPP, such as HIV-Tat and oligoarginine (Rn), are used to deliver hydrophilic drugs and biomolecules, including proteins, DNA, and RNA. We designed four types of CPP that contained cationic α,α-disubstituted amino acids (Api(C2Gu) and Api(C4Gu)) as helical promoters; i.e., 1-4 [FAM-β-Ala-(l-Arg-l-Arg-Xaa)3-(Gly)3-NH2 (1: Xaa=Api(C2Gu), 2: Xaa=Api(C4Gu)), 3: FAM-β-Ala-(l-Arg)8-Api(C2Gu)-(Gly)3-NH2, and 4: FAM-β-Ala-(l-Arg)5-Api(C2Gu)-(l-Arg)2-Api(C2Gu)-(Gly)3-NH2], and investigated their preferred secondary structures and cell membrane-penetrating ability. As a result, we found that the permeation efficiency of the CPP was affected by the number of helical promoters in their sequences. Specially, peptide 1, which contained three Api(C2Gu) residues, formed a stable helical structure and passed through the cell membrane more efficiently than the other peptides. Moreover, it was demonstrated that the spatial arrangement of the peptides' side chains also influenced their permeability and the helical stabilization of their main chains.

  4. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  5. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction.

  6. Evaluation of single amino acid chelate derivatives and regioselective radiolabelling of a cyclic peptide for the urokinase plasminogen activator receptor

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrea F.; Lemon, Jennifer A. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Czorny, Shannon K. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Singh, Gurmit [Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Valliant, John F. [Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4M1 (Canada)], E-mail: valliant@mcmaster.ca

    2009-11-15

    Introduction: The aim of this work was to investigate the relative radiolabelling kinetics and affinity of a series of ligands for the [{sup 99m}Tc(CO){sub 3}]{sup +} core, both in the absence and in the presence of competing donors. This information was used to select a suitable ligand for radiolabelling complex peptide-based targeting vectors in high yield under mild conditions. Methods: A series of {alpha}-N-Fmoc-protected lysine derivatives bearing two heterocyclic donor groups at the {epsilon}-amine (, 2-pyridyl; , quinolyl; , 6-methoxy-2-pyridyl; 1d, 2-thiazolyl; 1e, N-methylimidazolyl; , 3-pyridyl) were synthesized and labelled with {sup 99m}Tc. A resin-capture purification strategy for the separation of residual ligand from the radiolabelled product was also developed. The binding affinities of targeted peptides 4, 5a and 5b for uPAR were determined using flow cytometry. Results: Variable temperature radiolabelling reactions using - and [{sup 99m}Tc(CO){sub 3}]{sup +} revealed optimal kinetics and good selectivity for compounds and 1d; in the case of , 1d, and 1e, the labelling can be conducted at ambient temperature. The utility of this class of ligands was further demonstrated by the radiolabelling of a cyclic peptide that is known to target the serine protease receptor uPAR; essentially quantitative incorporation of {sup 99m}Tc occurred exclusively at the SAAC site, despite the presence of a His residue, and without disruption of the disulfide bond. Conclusion: A series of single amino acid chelate (SAAC) ligands have been evaluated for their ability to incorporate {sup 99m}Tc into peptides. The lead agent to emerge from this work is the thiazole SAAC derivative 1d which has demonstrated the ability to regioselectively label the widest range of peptides.

  7. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides

    Science.gov (United States)

    Baumann, Tobias; Nickling, Jessica H.; Bartholomae, Maike; Buivydas, Andrius; Kuipers, Oscar P.; Budisa, Nediljko

    2017-01-01

    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed. PMID:28210246

  8. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    Science.gov (United States)

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  9. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm.

    Science.gov (United States)

    DeRouchey, Jason E; Rau, Donald C

    2011-12-09

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.

  10. A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities

    OpenAIRE

    1995-01-01

    It is generally accepted that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize nine-amino acid peptides in conjunction with HLA class I molecules. We recently reported that dengue virus- specific CD8+ CTLs of two different serotype specificities, which were established by stimulation with dengue virus, recognize a single nine- amino acid peptide of the nonstructural protein NS3 of dengue virus type 4 (D4V) in an HLA-B35-restricted fashion. To further analyze the relationships betw...

  11. Residual dipolar couplings in short peptidic foldamers: combined analyses of backbone and side-chain conformations and evaluation of structure coordinates of rigid unnatural amino acids.

    Science.gov (United States)

    Schmid, Markus B; Fleischmann, Matthias; D'Elia, Valerio; Reiser, Oliver; Gronwald, Wolfram; Gschwind, Ruth M

    2009-02-13

    A flexible tool for rigid systems. Residual dipolar couplings (RDCs) have proven to be valuable NMR structural parameters that provide insights into the backbone conformations of short linear peptidic foldamers, as illustrated here. This study demonstrates that RDCs at natural abundance can provide essential structural information even in the case of short linear peptides with unnatural amino acids. In addition, they allow for the detection of proline side-chain conformations and are used as a quality check for the parameterizations of rigid unnatural amino acids.

  12. Microwave-assisted reaction of peptide formation by amino acid with phosphate: Exploration of the most possible channels for the origin of life

    Institute of Scientific and Technical Information of China (English)

    HU Rong; TIAN Jinping; YIN Yingwu

    2006-01-01

    Microwave-assisted reaction of peptide formation by amino acids with phosphate was studied. The results showed that the products were a mixture of peptides containing dipeptide, octapeptides and cyclic peptides, which could be obtained in a short time. Polyphosphate was also produced synchronously by the intermolecular condensation of phosphate. The polymerization degree reached 99% (pyrophosphate 64%, trimetaphosphate 35%) after 2 h at 200℃ under microwave irradiation. The intermediates of the mixed anhydrides formed by the intermolecular condensation of phosphates and glycin were determined by ESI-MS. Peptides were also produced by the reaction of amino acids with trimetaphosphate in aqueous solution. The conversion degree of valine reached 46.5% even at room temperature. The cyclic process of peptide formation and phosphate polymerization, regeneration and utilization in amino acids-phosphate system under microwave irradiation was detected and proved. Peptides could be continually formed only by inputting energy into this system. The above recycle may be the most possible process for primitive peptide formation in the origin of life.

  13. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis Dark Muscle

    Directory of Open Access Journals (Sweden)

    Chang-Feng Chi

    2015-04-01

    Full Text Available Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%, hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%, and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03% and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively, small molecular sizes (3–6 peptides, low molecular weights (524.78 kDa, and amino acid sequences (antioxidant score 6.11. This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes.

  14. Exploring the activity space of peptides binding to diverse SH3 domains using principal property descriptors derived from amino acid rotamers.

    Science.gov (United States)

    He, Ping; Wu, Wei; Yang, Kang; Jing, Tao; Liao, Ke-Long; Zhang, Wei; Wang, Hai-Dong; Hua, Xing

    2011-01-01

    Although there were intensive works addressed on multivariate extraction of the informative components from numerous physicochemical parameters of amino acids in isolated state, the various conformational behaviors of amino acids in complicated biological context have long been underappreciated in the field of quantitative structure-activity relationship (QSAR). In this work, the amino acid rotamers, which were derived from statistical survey of protein crystal structures, were used to reproduce the conformational variety of amino acid side-chains in real condition. In this procedure, these rotamers were superposed into a nx x ny x nz lattice and an artificial probe was employed to detect four kinds of nonbonding field potentials (i.e., electrostatic, steric, hydrophobic, and hydrogen bonds) at each lattice point using a Gaussian-type potential function; the generated massive data were then subjected to a principal component analysis (PCA) treatment to obtain a set of few, informative amino acid descriptors. We used this set of descriptors, that we named principal property descriptors derived from amino acid rotamers (PDAR), to characterize over 13,000 peptides with known binding affinities to 10 types of SH3 domains. Genetic algorithm/ partial least square regression (GA/PLS) modeling and Monte Carlo cross-validation (MCCV) demonstrated that the correlation between the PDAR descriptors and the binding affinities of peptides are comparable with or even better than previously published models. Furthermore, from the PDAR-based QSAR models we concluded that the core motif of peptides, particularly the electrostatic property, hydrophobicity, and hydrogen bond at residue positions P3, P2, and/or P0, contribute significantly to the hAmph SH3 domain-peptide binding, whereas two ends of the peptides, such as P6, P4, P-4, and P5, only play a secondary role in the binding.

  15. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  16. Effects of Single Amino Acid Substitution on the Biophysical Properties and Biological Activities of an Amphipathic α-Helical Antibacterial Peptide Against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Juanjuan Tan

    2014-07-01

    Full Text Available An antimicrobial peptide, known as V13K, was utilized as the framework to study the effects of charge, hydrophobicity and helicity on the biophysical properties and biological activities of α-helical peptides. Six amino acids (Lys, Glu, Gly, Ser, Ala, and Leu were individually used to substitute the original hydrophobic valine at the selected sixteenth location on the non-polar face of V13K. The results showed that the single amino acid substitutions changed the hydrophobicity of peptide analogs as monitored by RP-HPLC, but did not cause significant changes on peptide secondary structures both in a benign buffer and in a hydrophobic environment. The biological activities of the analogs exhibited a hydrophobicity-dependent behavior. The mechanism of peptide interaction with the outer membrane and cytoplasmic membrane of Gram-negative bacteria was investigated. We demonstrated that this single amino acid substitution method has valuable potential for the rational design of antimicrobial peptides with enhanced activities.

  17. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.

    Science.gov (United States)

    Wei, Fang; Zhang, Dongmao; Halas, Naomi J; Hartgerink, Jeffrey D

    2008-07-31

    Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.

  18. Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids.

    Science.gov (United States)

    Yang, Hong; Fung, Shan-Yu; Xu, Shuyun; Sutherland, Darren P; Kollmann, Tobias R; Liu, Mingyao; Turvey, Stuart E

    2015-07-28

    Manipulation of immune responsiveness using nanodevices provides a potential approach to treat human diseases. Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many of these inflammatory conditions. Here we describe the discovery of a unique class of peptide-gold nanoparticle hybrids that exhibit a broad inhibitory activity on TLR signaling, inhibiting signaling through TLRs 2, 3, 4, and 5. As exemplified using TLR4, the nanoparticles were found to inhibit both arms of TLR4 signaling cascade triggered by the prototypical ligand, lipopolysaccharide (LPS). Through structure-activity relationship studies, we identified the key chemical components of the hybrids that contribute to their immunomodulatory activity. Specifically, the hydrophobicity and aromatic ring structure of the amino acids on the peptides were essential for modulating TLR4 responses. This work enhances our fundamental understanding of the role of nanoparticle surface chemistry in regulating innate immune signaling, and identifies specific nanoparticle hybrids that may represent a unique class of anti-inflammatory therapeutics for human inflammatory diseases.

  19. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  20. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  1. Synthesis of a Hoechst 32258 analogue amino acid building block for direct incorporation of a fluorescent, high-affinity DNA binding motif into peptides

    DEFF Research Database (Denmark)

    Behrens, C; Harrit, N; Nielsen, P E

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  2. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  3. A Study of Bioactivity of Corn Peptides with Low Molecular Weight Ⅱ: Effect on Plasma Free Amino Acid Concentrations in Rats

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHANG Li-qiang; WU Xiao-xia; WANG Na; ZHANG Xue-zhong

    2003-01-01

    The effects of the ingestion of corn peptides with a low molecular weight(LMCP) prepared from zein on some plasma free amino acid concentrations in rats that had taken ethanol were investigated. LMCP(1.0 g/kg body weight) in 15% ethanol(10 mL/kg body weight) was given to Wister rats by intragastrical administration. The amino acid analysis showed that the concentrations of alanine, leucine, and proline in the plasma reached their maximum levels at 30 min for the LMCP-intake group. They are 582.39, 99.60 and 272.51 μg/L, respectively. But in the control group, the plasma free amino acid levels were not changed obviously. Therefore, LMCP could cause an increase in concentration of some free amino acids such as alanine, leucine and proline etc. in plasma of the rats that have taken ethanol.

  4. Peptide coupling between amino acids and the carboxylic acid of a functionalized chlorido-gold(I)-phosphane.

    Science.gov (United States)

    Kriechbaum, Margit; List, Manuela; Himmelsbach, Markus; Redhammer, Günther J; Monkowius, Uwe

    2014-10-06

    We have developed a protocol for the direct coupling between methyl ester protected amino acids and the chlorido-gold(I)-phosphane (p-HOOC(C6H4)PPh2)AuCl. By applying the EDC·HCl/NHS strategy (EDC·HCl = N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide hydrochloride, NHS = N-hydroxysuccinimide), the methyl esters of l-phenylalanine, glycine, l-leucine, l-alanine, and l-methionine are coupled with the carboxylic acid of the gold complex in moderate to good yields (62-88%). All amino acid tagged gold complexes were characterized by (1)H and (13)C NMR spectroscopy and high-resolution mass spectrometry. As corroborated by measurement of the angle of optical rotation, no racemization occurred during the reaction. The molecular structure of the leucine derivative was determined by single-crystal X-ray diffraction. In the course of developing an efficient coupling protocol, the acyl chlorides (p-Cl(O)C(C6H4)PPh2)AuX (X = Cl, Br) were also prepared and characterized.

  5. Triazole-linked glycosyl amino acids and peptides : synthesis, scope and applications

    NARCIS (Netherlands)

    Kuijpers, Brian Hubert Margaretha

    2008-01-01

    Naturally occurring glycosylated peptides play an important role in various biological processes and are therefore interesting lead molecules for the preparation of new therapeutic drugs.Synthesis of these natural glycopeptides is frequently hampered by the sensitivity of the natural glycosidic link

  6. Isolation and amino acid sequence of crustacean hyperglycemic hormone precursor-related peptides.

    Science.gov (United States)

    Tensen, C P; Verhoeven, A H; Gaus, G; Janssen, K P; Keller, R; Van Herp, F

    1991-01-01

    The crustacean hyperglycemic hormone (CHH) is synthesized as part of a larger preprohormone in which the sequence of CHH is N-terminally flanked by a peptide for which the name CPRP (CHH precursor-related peptide) is proposed. Both CHH and CPRP are present in the sinus gland, the neurohemal organ of neurosecretory cells located in the eyestalk of decapod crustaceans. This paper describes the isolation and sequence analysis of CPRPs isolated from sinus glands of the crab Carcinus maenas, the crayfish Orconectes limosus and the lobster Homarus americanus. The published sequence of "peptide H" isolated from the land crab, Cardisoma carnifex, has now been recognized as a CPRP in this species. Sequence comparison reveals a high level of identity for the N-terminal region (residues 1-13) between all four peptides, while identity in the C-terminal domain is high between lobster and crayfish CPRP on the one hand, and between both crab species on the other. Conserved N-terminal residues include a putative monobasic processing site at position 11, which suggests that CPRP may be a biosynthetic intermediate from which a potentially bioactive decapeptide can be derived.

  7. Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomics has emerged as a new discipline in recent years. Mass spectrometry (MS) is the most universal and efficient tool for structure identification of proteins and peptides. However,there is a limitation for the identification of peptides with the same amino acid composition but different se-quences because these peptides have identical mass spectra of molecular ions. This paper presents a high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for the separation of small molecular peptides with the same amino acid composition but dif-ferent sequences. Two tripeptides of Gly-Ser-Phe and Gly-Phe-Ser were used as a model sample. The separation behavior has been investigated and the separation conditions have been optimized. Under the optimum conditions,good repeatability was achieved. The developed method could provide a helpful reference for the separation of other peptides with the same amino acid composition but different sequences in the study of proteomics and peptidomics.

  8. Interaction of some hydrophobic amino acids, peptides, and protein with aqueous 3-chloro-1,2-propanediol and 3-chloro-1-propanol: Biophysical studies

    Energy Technology Data Exchange (ETDEWEB)

    Keswani, Neelam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.i [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-04-15

    Research highlights: Thermodynamic properties of amino acids, peptides and protein determined in solution. The solvents chosen were 3-chloropropan-1-ol and 3-chloropropan-1,2-diol. {yields}The results enabled understanding the interactions quantitatively in these systems affecting the protein stability. Fine details of interactions provided in-depth analysis. - Abstract: The apparent molar volume V{sub 2,{phi},} apparent molar isentropic compressibility K{sub S,2,{phi},} and heat of dilution (q) of aqueous glycine, alanine, {alpha}-amino butyric acid, valine, leucine, diglycine, triglycine, and hen egg white lysozyme have been determined in aqueous solutions of 3-chloropropano-1-ol and 3-chloropropan-1,2-diol solutions at T = 298.15 K. These data have been used to calculate the infinite dilution standard partial molar volume V{sub 2,m}{sup 0}, partial molar isentropic compressibility K{sub S,2,m}{sup 0}, and enthalpy of dilution {Delta}{sub dil}H{sup o} of the amino acids and peptides in aqueous 3-chloropropano-1-ol and 3-chloropropan-1,2-diol, and the standard partial molar quantities of transfer of the amino acids and peptides to the aqueous alcohol and diol solutions. The linear correlation of V{sub 2,m}{sup 0} for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH{sub 3}{sup +},COO{sup -}), CH{sub 2} group and other alkyl chains of the amino acids to the values of V{sub 2,m}{sup 0}. The results on the standard partial molar volumes of transfer, compressibility and enthalpy of dilution from water to aqueous alcohol and diol solutions have been correlated and interpreted in terms of ion-polar, ion-hydrophobic, and hydrophobic-hydrophobic group interactions. The heat of dilution of these amino acids, peptides, and hen egg white lysozyme measured in aqueous solutions of 3-chloropropano-1-ol and 3-chloropropan-1,2-diol by using isothermal titration calorimetry along with the volumetric, compressibility

  9. Single amino acid mutation in alpha-helical peptide affect second harmonic generation hyperpolarizability

    Science.gov (United States)

    Wei, Jing; Wang, Jin-Yun; Zhang, Min-Yi; Chai, Guo-Liang; Lin, Chen-Sheng; Cheng, Wen-Dan

    2013-01-01

    We investigate the effect of side chain on the first-order hyperpolarizability in α-helical polyalanine peptide with the 10th alanine mutation (Acetyl(ala)9X(ala)7NH2). Structures of various substituted peptides are optimized by ONIOM (DFT: AM1) scheme, and then linear and nonlinear optical properties are calculated by SOS//CIS/6-31G∗ method. The polarizability and first-order hyperpolarizability increase obviously only when 'X' represents phenylalanine, tyrosine and tryptophan. We also discuss the origin of nonlinear optical response and determine what caused the increase of first-order hyperpolarizability. Our results strongly suggest that side chains containing benzene, phenol and indole have important contributions to first-order hyperpolarizability.

  10. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Directory of Open Access Journals (Sweden)

    Gülin Güler-Gane

    Full Text Available The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine, and a detrimental effect of others (cysteine, proline, tyrosine and glutamine. When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that

  11. An Orthogonal D2 O-Based Induction System that Provides Insights into d-Amino Acid Pattern Formation by Radical S-Adenosylmethionine Peptide Epimerases.

    Science.gov (United States)

    Morinaka, Brandon I; Verest, Marjan; Freeman, Michael F; Gugger, Muriel; Piel, Jörn

    2017-01-16

    Radical S-adenosyl methionine peptide epimerases (RSPEs) are an enzyme family that accomplishes regiospecific and irreversible introduction of multiple d-configured residues into ribosomally encoded peptides. Collectively, RSPEs can generate diverse epimerization patterns in a wide range of substrates. Previously, the lack of rapid methods to localize epimerized residues has impeded efforts to investigate the function and applicative potential of RSPEs. An efficient mass spectrometry-based assay is introduced that permits characterization of products generated in E. coli. Applying this to a range of non-natural peptide-epimerase combinations, it is shown that the d-amino acid pattern is largely but not exclusively dictated by the core peptide sequence, while the epimerization order is dependent on the enzyme-leader pair. RSPEs were found to be highly promiscuous, which allowed for modular introduction of peptide segments with defined patterns.

  12. Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37.

    Science.gov (United States)

    Mishra, Biswajit; Epand, Raquel F; Epand, Richard M; Wang, Guangshun

    2013-11-14

    Cationic antimicrobial peptides are recognized templates for developing a new generation of antimicrobials to combat superbugs. Human cathelicidin LL-37 is an essential host defense molecule in human innate immunity. Previously, we identified KR-12 as the smallest antibacterial peptide of LL-37. KR-12 has a narrow activity spectrum since it is active against Gram-negative Escherichia coli but not Gram-positive Staphylococcus aureus. The functional roles of the basic amino acids of KR-12, however, have not yet been elucidated. An alanine scan of cationic amino acids of KR-12 provided evidence for their distinct roles in the activities of the peptides. Bacterial killing and membrane permeation experiments indicate that the R23A and K25A mutants, as well as the lysine-to-arginine mutant, were more potent than KR-12. Another three cationic residues (K18, R19, and R29) of KR-12, which are located in the hydrophilic face of the amphiphathic helix, appeared to be more important in clustering anionic lipids or hemolysis than R23 and K25 in the interfacial region. While the loss of interfacial R23 or K25 reduced peptide helicity, underscoring its important role in membrane binding, the overall increase in peptide activity of KR-12 could be ascribed to the increased peptide hydrophobicity that outweighed the role of basic charge in this case. In contrast, the mutations of interfacial R23 or K25 reduced peptide bactericidal activity of GF-17, an overlapping, more hydrophobic and potent peptide also derived from LL-37. Thus, the hydrophobic context of the peptide determines whether an alanine substitution of an interfacial basic residue increases or decreases membrane permeation and peptide activity.

  13. Studies on N-terminal glycation of peptides in hypoallergenic infant formulas: quantification of alpha-N-(2-furoylmethyl) amino acids.

    Science.gov (United States)

    Penndorf, Ilka; Biedermann, Daniela; Maurer, Sarah V; Henle, Thomas

    2007-02-01

    To obtain information about the extent of the early Maillard reaction between the N-termini of peptides and lactose, alpha-N-(2-furoylmethyl) amino acids (FMAAs) were quantified together with epsilon-N-(2-furoylmethyl)lysine (furosine) in acid hydrolyzates of hypoallergenic infant formulas, conventional infant formulas, and human milk samples using RP-HPLC with UV-detection. FMAAs are formed during acid hydrolysis of peptide-bound N-terminal Amadori products (APs), and furosine is formed from the Amadori products of peptide-bound lysine. Unambiguous identification was achieved by means of LC/MS and UV-spectroscopy using independently prepared reference material. The extent of acid-induced conversion of APs to FMAAs was studied by RP-HPLC with chemiluminescent nitrogen detection (CLND). Depending on the corresponding alpha-N-lactulosyl amino acid, between 6.0% and 18.1% of FMAAs were formed during hydrolysis for 23 h at 110 degrees C in 8 N HCl. From epsilon-N-lactulosyllysine, 50% furosine is formed under these conditions. Whereas furosine was detectable in all assayed samples, five different FMAAs, alpha-FM-Lys, alpha-FM-Ala, alpha-FM-Val, alpha-FM-Ile, and alpha-FM-Leu, were exclusively detected in acid hydrolyzates of hypoallergenic infant formulas in amounts ranging from 35 to 396 mumol/100 g protein. Taking the conversion factors into account, modification of N-terminal amino acids in peptides by reducing carbohydrates was between 0.3% and 8.4%. This has to be considered within the discussion concerning the nutritional quality of peptide-containing foods.

  14. Parenteral Nutrition: Amino Acids

    Science.gov (United States)

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  15. Parenteral Nutrition: Amino Acids.

    Science.gov (United States)

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  16. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  17. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  18. Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5.

    Science.gov (United States)

    Nakamura, Yoshihiro; Yukitake, Ko; Nakahara, Hiromichi; Lee, Sooyoung; Shibata, Osamu; Lee, Sannamu

    2014-08-01

    The high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases.

  19. Hydrophobic amino acids in the hinge region of the 5A apolipoprotein mimetic peptide are essential for promoting cholesterol efflux by the ABCA1 transporter.

    Science.gov (United States)

    Sviridov, Denis O; Andrianov, Alexander M; Anishchenko, Ivan V; Stonik, John A; Amar, Marcelo J A; Turner, Scott; Remaley, Alan T

    2013-01-01

    The bihelical apolipoprotein mimetic peptide 5A effluxes cholesterol from cells and reduces inflammation and atherosclerosis in animal models. We investigated how hydrophobic residues in the hinge region between the two helices are important in the structure and function of this peptide. By simulated annealing analysis and molecular dynamics modeling, two hydrophobic amino acids, F-18 and W-21, in the hinge region were predicted to be relatively surface-exposed and to interact with the aqueous solvent. Using a series of 5A peptide analogs in which F-18 or W-21 was changed to either F, W, A, or E, only peptides with hydrophobic amino acids in these two positions were able to readily bind and solubilize phospholipid vesicles. Compared with active peptides containing F or W, peptides containing E in either of these two positions were more than 10-fold less effective in effluxing cholesterol by the ABCA1 transporter. Intravenous injection of 5A in C57BL/6 mice increased plasma-free cholesterol (5A: 89.9 ± 13.6 mg/dl; control: 38.7 ± 4.3 mg/dl (mean ± S.D.); P < 0.05) and triglycerides (5A: 887.0 ± 172.0 mg/dl; control: 108.9 ± 9.9 mg/dl; P < 0.05), whereas the EE peptide containing E in both positions had no effect. Finally, 5A increased cholesterol efflux approximately 2.5-fold in vivo from radiolabeled macrophages, whereas the EE peptide was inactive. These results provide a rationale for future design of therapeutic apolipoprotein mimetic peptides and provide new insights into the interaction of hydrophobic residues on apolipoproteins with phospholipids in the lipid microdomain created by the ABCA1 transporter during the cholesterol efflux process.

  20. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  1. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  2. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydration...... shell which strongly interact with the molecule are treated explicitly while the waters in the bulk are treated by a continuum model. The structures are optimized and the harmonic force elds are calculated. The derivatives needed to simulate the Raman and ROA intensities are calculated from first...... principles. The simulated Raman and ROA spectra have been compared to recently meassured spectra on amino acids and peptides. The simulations and understanding from them are used to interpret the Raman and ROA spectra of proteins. A comparison to vibrational absorption (VA) and vibrational circular dichroism...

  3. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  4. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino-acid peptide derived from alpha-fetoprotein.

    Science.gov (United States)

    MacColl, R; Eisele, L E; Stack, R F; Hauer, C; Vakharia, D D; Benno, A; Kelly, W C; Mizejewski, G J

    2001-10-01

    A 34-amino-acid peptide has been chemically synthesized based on a sequence from human alpha-fetoprotein. The purified peptide is active in anti-growth assays when freshly prepared in pH 7.4 buffer at 0.20 g/l, but this peptide slowly becomes inactive. This functional change is proven by mass spectrometry to be triggered by the formation of an intrapeptide disulfide bond between the two cysteine residues on the peptide. Interpeptide cross-linking does not occur. The active and inactive forms of the peptide have almost identical secondary structures as shown by circular dichroism (CD). Zinc ions bind to the active peptide and completely prevents formation of the inactive form. Cobalt(II) ions also bind to the peptide, and the UV-Vis absorption spectrum of the cobalt-peptide complex shows that: (1) a near-UV sulfur-to-metal-ion charge-transfer band had a molar extinction coefficient consistent with two thiolate bonds to Co(II); (2) the lowest-energy visible d-d transition maximum at 659 nm, also, demonstrated that the two cysteine residues are ligands for the metal ion; (3) the d-d molar extinction coefficient showed that the metal ion-ligand complex was in a distorted tetrahedral symmetry. The peptide has two cysteines, and it is speculated that the other two metal ion ligands might be the two histidines. The Zn(II)- and Co(II)-peptide complexes had similar peptide conformations as indicated by their ultraviolet CD spectra, which differed very slightly from that of the free peptide. Surprisingly, the cobalt ions acted in the reverse of the zinc ions in that, instead of stabilizing anti-growth form of the peptide, they catalyzed its loss. Metal ion control of peptide function is a saliently interesting concept. Calcium ions, in the conditions studied, apparently do not bind to the peptide. Trifluoroethanol and temperature (60 degrees C) affected the secondary structure of the peptide, and the peptide was found capable of assuming various conformations in solution

  5. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan.

    Science.gov (United States)

    Hernández, Belén; Pflüger, Fernando; Adenier, Alain; Kruglik, Sergei G; Ghomi, Mahmoud

    2010-11-25

    Four out of the 20 natural α-amino acids (α-AAs) contain aromatic rings in their side chains. In a recent paper (J. Phys. Chem. B 2010, 114, 9072-9083), we have analyzed the structural and vibrational features of l-histidine, one of the potent elements of this series. Here, we report on the three remaining members of this family, i.e., l-phenylalanine, l-tyrosine, and l-tryptophan. Their solution (H(2)O and D(2)O) Raman scattering and Fourier transform infrared absorption attenuated total reflection (FT-IR ATR) spectra were measured at room temperature from the species corresponding to those existing at physiological conditions. Because of the very low water solubility of tyrosine, special attention was paid to avoid any artifact concerning the report of the vibrational spectra corresponding to nondissolved powder of this AA in aqueous solution. Finally, we could obtain for the first time the Raman and FT-IR spectra of tyrosine at very low concentration (2.3 mM) upon long accumulation time. To clarify this point, those vibrational spectra of tyrosine recorded either in the solid phase or in a heterogeneous state, where dissolved and nondissolved species of this AA coexist in aqueous solution, are also provided as Supporting Information . To carry out a discussion on the general geometrical and vibrational behavior of these AAs, we resorted to quantum mechanical calculations at the DFT/B3LYP/6-31++G* level, allowing (i) determination of potential energy surfaces of these AAs in a continuum solvent as a function of the torsion angles χ(1) and χ(2), defining the conformation of each aromatic side chain around C(α)-C(β) and C(β)-C(γ) bonds, respectively; (ii) analysis of geometrical features of the AAs surrounded by clusters of n explicit (n = 5-7) water molecules interacting with the backbone and aromatic rings; and (iii) assignment of the observed vibrational modes by means of the theoretical data provided by the lowest energy conformers of explicitly

  6. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik;

    2011-01-01

    , and this was parallel by the largest reduction in number of viable bacteria. CONCLUSION: We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...

  7. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions.

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa

    2015-12-01

    Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.

  8. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry (R

  9. Isolation, amino acid sequence and biological activities of novel long-chain polyamine-associated peptide toxins from the sponge Axinyssa aculeata.

    Science.gov (United States)

    Matsunaga, Satoko; Jimbo, Mitsuru; Gill, Martin B; Wyhe, L Leanne Lash-Van; Murata, Michio; Nonomura, Ken'ichi; Swanson, Geoffrey T; Sakai, Ryuichi

    2011-09-19

    A novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from the marine sponge Axinyssa aculeate. ACUs are polypeptides with N-terminal residues that are modified by the addition of long-chain polyamines (LCPA). Aculeines were present in the sponge extract as a complex mixture with differing polyamine chain lengths and peptide structures. ACU-A and B, which were purified in this study, share a common polypeptide chain but differ in their N-terminal residue modifications. The amino acid sequence of the polypeptide portion of ACU-A and B was deduced from 3' and 5' RACE, and supported by Edman degradation and mass spectral analysis of peptide fragments. ACU induced convulsions upon intracerebroventricular (i.c.v.) injection in mice, and disrupted neuronal membrane integrity in electrophysiological assays. ACU also lysed erythrocytes with a potency that differed between animal species. Here we describe the isolation, amino acid sequence, and biological activity of this new group of cytotoxic sponge peptides.

  10. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  11. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  12. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  13. Identification in the human central nervous system, pituitary, and thyroid of a novel calcitonin gene-related peptide, and partial amino acid sequence in the spinal cord.

    Science.gov (United States)

    Petermann, J B; Born, W; Chang, J Y; Fischer, J A

    1987-01-15

    Two human genes encoding precursors for two calcitonin gene-related peptides (CGRP) I (or alpha) and II (or beta) have been identified (Steenbergh, P. H., Höppener, J. W. M., Zandberg, J., Lips, C. J. M., and Jansz, H. S. (1985) FEBS Lett. 183, 403-407). The amino acid sequence of CGRP-I was obtained in medullary thyroid carcinoma extracts (Morris, H. R., Panico, M., Etienne, T., Tippins, J., Girgis, S. I., and MacIntyre, I. (1984) Nature 308, 746-748), but not in normal human tissues. The human CGRP-II peptide remained to be discovered. Here we have determined in the human spinal cord the amino acid composition and the partial amino acid sequence of the DNA-predicted CGRP-I and -II. The data indicate for the first time the existence of a second CGRP different from the known CGRP-I. CGRP-II has been identified in the central nervous system, pituitary, thyroid, and in medullary thyroid carcinoma as a major CGRP form together with CGRP-I.

  14. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists

    Science.gov (United States)

    Te, Jerez A.; Dong, Maoqing; Miller, Laurence J.; Bordner, Andrew J.

    2012-07-01

    Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and

  15. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. Reaction between the Pt(II)-complexes and the amino acids of the β-amyloid peptide

    Science.gov (United States)

    Novato, Willian T. G.; Stroppa, Pedro Henrique F.; Da Silva, Adilson D.; Botezine, Naiara P.; Machado, Flávia C.; Costa, Luiz Antônio S.; Dos Santos, Hélio F.

    2017-01-01

    Reaction between [Pt(ophen)Cl2] and HIS was monitored and the solvolysis (k1) and Cl/HIS ligand exchange (k2) rate constants obtained. The k1 and k2 were (6.2 ± 0.4) × 10-5 s-1 and 52.8 × 10-2 M-1 s-1, respectively. The corresponding calculated values were 47.5 × 10-5 s-1 and 52.2 × 10-2 M-1 s-1, in agreement with the experiment. Calculations were used to establish the reactivity order for a set of amino acids: MET ∼ LYS ∼ HIS(ε) > GLU ∼ ASP >> ASN ∼ GLN. In spite of the similar reactivity among MET, LYS and HIS, the thermodynamics suggests the reactions with LYS and HIS more favorable than with MET. Therefore, N-containing amino acids should be potential targets of Pt(II)-complexes in β-amyloid.

  20. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  1. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  2. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    Science.gov (United States)

    Ginsburg, Isaac; van Heerden, Peter Vernon; Koren, Erez

    2017-01-01

    This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders PMID:28203100

  3. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  4. On the activation of bovine plasma factor XIII. Amino acid sequence of the peptide released by thrombin and the terminal residues of the subunit polypeptides.

    Science.gov (United States)

    Nakamura, S; Iwanaga, S; Suzuki, T

    1975-12-01

    A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII

  5. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  6. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    Science.gov (United States)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2017-01-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  7. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    Science.gov (United States)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2016-11-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  8. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  9. Interaction of actinides with amino acids: from peptides to proteins; Interaction des actinides avec les acides amines: du peptide a la proteine

    Energy Technology Data Exchange (ETDEWEB)

    Jeanson, A

    2008-09-15

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH{sub 2} peptide was studied as a possible chelate of actinides. Polynuclear species with {mu}-oxo or {mu}-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO{sub 2}{sup 2+}. (author)

  10. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Hector, Ronald E; Panavas, Tadas; Sterner, David E; Qureshi, Nasib; Bischoff, Kenneth M; Bang, Sookie S; Mertens, Jeffrey A; Johnson, Eric T; Li, Xin-Liang; Jackson, John S; Caughey, Robert J; Riedmuller, Steven B; Bartolett, Scott; Liu, Siqing; Rich, Joseph O; Farrelly, Philip J; Butt, Tauseef R; Labaer, Joshua; Cotta, Michael A

    2008-09-01

    New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost-effectiveness of the process. Spider venom is one of many potential sources of novel insect-specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin-1 from the wolf spider were produced in high throughput using an automated integrated plasmid-based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin-1 open reading frames (ORF) in a novel small ubiquitin-like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so-called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin alpha-helix to interact with insect cell membranes or to increase its pore-forming ability, leading to cell lysis. The toxin peptides have potential as value-added coproducts to increase the cost-effectiveness of fuel ethanol bioproduction.

  11. OBSERVATIONS ON THE RUMINAL PROTEIN DEGRADATION PRODUCTS AND THE ABSORPTION OF RUMINALLY DERIVED FREE AND PEPTIDE-BOUND AMINO ACIDS VIA OVINE FORESTOMACH EPITHELIA IN VITRO.

    OpenAIRE

    Jayawardena, Vajira Parakrama

    2000-01-01

    Production of ammonia N, a-amino N, and peptide N was investigated following in vitro ruminal incubation of solvent soybean meal (SBM), dehydrated alfalfa, corn gluten feed, fish meal, distillers dried grains with solubles (DDG), cotton seed meal, brewers fried grains, meat and bone meal, blood meal, prolac, and casein (CAS). The influence of milling procedures on the production of ammonia N, a-amino N, and peptide N was also evaluated using different batches of soybean meals and distillers ...

  12. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  13. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    Science.gov (United States)

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described.

  14. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNA(Pro).

    Science.gov (United States)

    Wang, Jinfan; Kwiatkowski, Marek; Pavlov, Michael Y; Ehrenberg, Måns; Forster, Anthony C

    2014-06-20

    Applications of N-methyl amino acids (NMAAs) in drug discovery are limited by their low efficiencies of ribosomal incorporation, and little is known mechanistically about the steps leading to incorporation. Here, we demonstrate that a synthetic tRNA body based on a natural N-alkyl amino acid carrier, tRNA(Pro), increases translation incorporation rates of all three studied NMAAs compared with tRNA(Phe)- and tRNA(Ala)-based bodies. We also investigate the pH dependence of the incorporation rates and find that the rates increase dramatically in the range of pH 7 to 8.5 with the titration of a single proton. Results support a rate-limiting peptidyl transfer step dependent on deprotonation of the N-nucleophile of the NMAA. Competition experiments demonstrate that several futile cycles of delivery and rejection of A-site NMAA-tRNA are required per peptide bond formed and that increasing magnesium ion concentration increases incorporation yield. Data clarify the mechanism of ribosomal NMAA incorporation and provide three generalizable ways to improve incorporation of NMAAs in translation.

  15. Conformational properties of 1,4- and 1,5-substituted 1,2,3-triazole amino acids – building units for peptidic foldamers

    KAUST Repository

    Kann, Nina

    2015-01-01

    © The Royal Society of Chemistry 2015. Peptidic foldamers have recently emerged as a novel class of artificial oligomers with properties and structural diversity similar to that of natural peptides, but possessing additional interesting features granting them great potential for applications in fields from nanotechnology to pharmaceuticals. Among these, foldamers containing 1,4- and 1,5-substitued triazole amino acids are easily prepared via the Cu- and Ru-catalyzed click reactions and may offer increased side chain variation, but their structural capabilities have not yet been widely explored. We here describe a systematic analysis of the conformational space of the two most important basic units, the 1,4-substitued (4Tzl) and the 1,5-substitued (5Tzl) 1,2,3-triazole amino acids, using quantum chemical calculations and NMR spectroscopy. Possible conformations of the two triazoles were scanned and their potential minima were located using several theoretical approaches (B3LYP/6-311++G(2d,2p), ωB97X-D/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and MP2/6-311++G(2d,2p)) in different solvents. BOC-protected versions of 4Tzl and 5Tzl were also prepared via one step transformations and analyzed by 2D NOESY NMR. Theoretical results show 9 conformers for 5Tzl derivatives with relative energies lying close to each other, which may lead to a great structural diversity. NMR analysis also indicates that conformers preferring turn, helix and zig-zag secondary structures may coexist in solution. In contrast, 4Tzl has a much lower number of conformers, only 4, and these lack strong intraresidual interactions. This is again supported by NMR suggesting the presence of both extended and bent conformers. The structural information provided on these building units could be employed in future design of triazole foldamers. This journal is

  16. Noninvasive tagging of proteins with an inorganic chromophore. Selectivity of chloro(terpyridine)platinum(II) toward amino acids, peptides, and cytochromes c

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, H.M. II; Kostic, N.M.

    1988-05-18

    The complex (Pt(trpy)Cl)/sup +/ exhibits unexpected selectivity toward amino acid side chains in cytochromes c from Candida krusei and bakers' yeast. Although kinetic studies with amino acids and peptides as entering ligands prove this complex to be completely selective toward thiol over imidazole, His-33 and His-39 residues (in both proteins) are labeled with greater yields than the Cys-102 residue (in the bakers' yeast protein). The binding sites are determined by peptide mapping and other methods. The Pt(trpy)/sup 2+/ tags are stable, and the protein derivatives are separated by cation-exchange chromatography. The (Pt(trpy)His)/sup 2+/ and (Pt(trpy)Cys)/sup +/ chromophores are easily detected and quantitated owing to their characteristic and strong UV-vis bands. Spectroscopic and electrochemical measurements show that labeling with the new reagent does not alter the structural and redox properties of the cytochromes c. The unexpected outcome of the protein labeling indicates that, contrary to the common assumption, Cys-102 is not exposed at the protein surface. Modification of this residue with various organic reagents and dimerization of the protein must be accompanied by a perturbation of the conformation, which makes Cys-102 accessible to the reagent or to another molecule of the protein. These predictions from the labeling study are confirmed subsequently by the crystallographic study of the iso-1 cytochrome c from bakers' yeast. The inorganic complex (Pt(trpy)Cl)/sup +/ differs from the other reagents for protein modification by its noninvasiveness, a property that may well render it useful as a probe of the protein surface. 59 refs., 2 figs., 4 tabs.

  17. IRMPD spectroscopy reveals a novel rearrangement reaction for modified peptides that involves elimination of the N-terminal amino acid

    NARCIS (Netherlands)

    van Stipdonk, M.J.; Patterson, K.; Gibson, J.K.; Berden, G.; Oomens, J.

    2015-01-01

    In this study, peptides were derivatized by reaction with salicylaldehyde to create N-terminal imines (Schiff bases). Collision-induced dissociation of the imine-modified peptides produces a complete series of b and a ions (which reveal sequence). However, an unusual pathway is also observed, one th

  18. Influence of Amino Acid Substitutions in the Nisin Leader Peptide on Biosynthesis and Secretion of Nisin by Lactococcus lactis

    NARCIS (Netherlands)

    Rollema, Harry S.; Siezen, Roland J.; Beerthuyzen, Marke M.; Kuipers, Oscar P.; Vos, Willem M. de

    1994-01-01

    Structural genes for small lanthionine-containing antimicrobial peptides, known as lantibiotics, encode N-terminal leader sequences which are not present in the mature peptide, but are cleaved off at some stage in the maturation process. Leader sequences of the different lantibiotics share a number

  19. The amino acid sequences of eleven tryptic peptides of papaya mosaic virus protein by electron ionization mass spectrometry.

    Science.gov (United States)

    Parente, A; Short, M N; Self, R; Parsley, K R

    1982-04-01

    Eleven of the fourteen tryptic peptides of papaya mosaic virus protein have been sequenced by electron ionization mass spectrometry using chemical and enzymic hydrolyses and mixture analysis as required. Mid-chain cleavages of N-C bonds produced secondary ion series which allowed up to 16 residues to be sequenced without further hydrolysis. Mixture analysis on hydrolysis products enabled a 24 residue tryptic peptide to be sequenced from the data recorded in a single mass spectrum.

  20. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition.

    Directory of Open Access Journals (Sweden)

    Punitha Velmurugan

    Full Text Available Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD. Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.

  1. Evaluation of T-cell responses to peptides and lipopeptides with MHC class I binding motifs derived from the amino acid sequence of the19-kDa lipoprotein of Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Fonseca, DPAJ; Joosten, D; Snippe, H; Verheul, AFM

    2000-01-01

    Cytotoxic T-lymphocyte (CTL) epitopes on the 19-kDa lipoprotein from Mycobacterium tuberculosis were identified by the use of lipopeptides and their cytokine profile studied. Selection of candidate CTL epitopes was based on synthetic peptides derived from the amino acid sequence of the 19-kDa lipopr

  2. Synthesis of C-linked carbo-β2-amino acids and β2-peptides: design of new motifs for left-handed 12/10- and 10/12-mixed helices.

    Science.gov (United States)

    Sharma, Gangavaram V M; Reddy, Nelli Yella; Ravi, Rapolu; Sreenivas, Bommagani; Sridhar, Gattu; Chatterjee, Deepak; Kunwar, Ajit C; Hofmann, Hans-Jörg

    2012-12-14

    C-linked carbo-β(2)-amino acids (β(2)-Caa), a new class of β-amino acid with a carbohydrate side chain having d-xylo configuration, were prepared from d-glucose. The main idea behind the design of the new β-amino acids was to move the steric strain of the bulky carbohydrate side chain from the Cβ- to the Cα-carbon atom and to explore its influence on the folding propensities in peptides with alternating (R)- and (S)-β(2)-Caas. The tetra- and hexapeptides derived were studied employing NMR (in CDCl(3)), CD, and molecular dynamics simulations. The β(2)-peptides of the present study form left-handed 12/10- and 10/12-mixed helices independent of the order of the alternating chiral amino acids in the sequence and result in a new motif. These results differ from earlier findings on β(3)-peptides of the same design, containing a carbohydrate side chain with d-xylo configuration, which form exclusively right-handed 12/10-mixed helices. Quantum chemical calculations employing ab initio MO theory suggest the side chain chirality as an important factor for the observed definite left- or right-handedness of the helices in the β(2)- and β(3)-peptides.

  3. Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Søgaard, M; Svensson, B

    1994-01-01

    , and analyzed directly by MALDI-MS. Based on the three mass spectrometric peptide maps, an error in the sequence deduced from cDNA, resulting in a mass difference of 28 Da, was located to a sequence stretch of 5 amino acid residues; furthermore, a dihexose substituent was identified on Thr410. Subsequent Edman...

  4. Biosynthesis of natural products containing β-amino acids.

    Science.gov (United States)

    Kudo, Fumitaka; Miyanaga, Akimasa; Eguchi, Tadashi

    2014-08-01

    Covering: up to January, 2014. We focus here on β-amino acids as components of complex natural products because the presence of β-amino acids produces structural diversity in natural products and provides characteristic architectures beyond those of ordinary α-L-amino acids, thus generating significant and unique biological functions in nature. In this review, we first survey the known bioactive β-amino acid-containing natural products including nonribosomal peptides, macrolactam polyketides, and nucleoside-β-amino acid hybrids. Next, the biosynthetic enzymes that form β-amino acids from α-amino acids and the de novo synthesis of β-amino acids are summarized. Then, the mechanisms of β-amino acid incorporation into natural products are reviewed. Because it is anticipated that the rational swapping of the β-amino acid moieties with various side chains and stereochemistries by biosynthetic engineering should lead to the creation of novel architectures and bioactive compounds, the accumulation of knowledge regarding β-amino acid-containing natural product biosynthetic machinery could have a significant impact in this field. In addition, genome mining of characteristic β-amino acid biosynthetic genes and unique β-amino acid incorporation machinery could lead to the discovery of new β-amino acid-containing natural products.

  5. Dual Role of Hydrophobic Racemic Thioesters of α-Amino Acids in the Generation of Isotactic Peptides and Co-peptides in Water; Implications for the Origin of Homochirality

    Science.gov (United States)

    Illos, Roni A.; Clodic, Gilles; Bolbach, Gerard; Weissbuch, Isabelle; Lahav, Meir

    2010-02-01

    Thioesters of α-amino acids are considered as plausible monomers for the generation of the primeval peptides. DL-Leucine-thioethyl esters (LeuSEt), where the L-enantiomer was tagged with deuterium atoms, undergo polycondensation in water or in bicarbonate or imidazole buffer solutions to yield mainly heterochiral (atactic) peptides and diketopiperazine, as analyzed by MALDI-TOF and ESI mass-spectrometry. In variance, when polymerization of DL(d10) -Leu, first activated with N,N'-carbonyldiimidazole, then initiated with ethanethiol or with DL(d3) -LeuSEt yielded a library of peptides up to 30 detectable residues where those of homochiral sequence (isotactic) are the dominant diastereoisomers. At these conditions, racemic β-sheets are formed and operate as stereoselective templates in the process of chain-elongation. Isotopic L: L(d10)-Leu co-peptides were obtained in the polymerization of L(d10)-Leu with L-LeuSEt. By contrast, mixtures of oligo- D-Leu and oligo- L(d10)-Leu were obtained in the polymerization of mixtures of D-LeuSEt with activated L(d10)-Leu. Isotactic co-peptides containing Leu and Val residues were formed in the polymerization of mixtures of activated DL(d8)-Val with DL(d3) -LeuSEt in water, implying that the racemic β-sheets exert regio-enantio-selection but not chemo-selection. A reaction pathway is suggested, where LeuSEt operates both as initiator of the reaction as well as a multimer.

  6. Does L to D-amino acid substitution trigger helix→sheet conformations in collagen like peptides adsorbed to surfaces?

    Science.gov (United States)

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Sankaranarayanan, Kamatchi; Dhathathreyan, Aruna

    2015-12-01

    The present work reports on the structural order, self assembling behaviour and the role in adsorption to hydrophilic or hydrophobic solid surfaces of modified sequence from the triple helical peptide model of the collagenase cleavage site in type I collagen (Uniprot accession number P02452 residues from 935 to 970) using (D)Ala and (D)Ile substitutions as given in the models below: Model-1: GSOGADGPAGAOGTOGPQGIAGQRGVV GLOGQRGER. Model-2: GSOGADGP(D)AGAOGTOGPQGIAGQRGVVGLOGQRGER. Model-3: GSOGADGPAGAOGTOGPQG(D)IAGQRGVVGLOGQRGER. Collagenase is an important enzyme that plays an important role in degrading collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism by which this degradation occurs is not completely understood. Our results show that adsorption of the peptides to the solid surfaces, specifically hydrophobic triggers a helix to beta transition with order increasing in peptide models 2 and 3. This restricts the collagenolytic behaviour of collagenase and may find application in design of peptides and peptidomimetics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins.

  7. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  8. A quantitative structure–activity relationship (QSAR study of peptide drugs based on a new descriptor of amino acids

    Directory of Open Access Journals (Sweden)

    Tong Jian-Bo

    2015-01-01

    Full Text Available Quantitative structure-activity relationships (QSAR approach is used for finding the relationship between molecular structures and the activity of peptide drugs. In this work, stepwise multiple regression, was employed to select optimal subset of descriptors that have significant contribution to the drug activity of 21 oxytocin analogues, 48 bitter tasting threshold, and 58 angiotensin-converting enzyme inhibitors. A new set of descriptor, SVWGM, was used for the prediction of the drug activity of peptide drugs and then were used to build the model by partial least squares method, for it’s estimation stability and generalization ability was strictly analyzed by both internal and external validations, with cross-validation correlation coefficient, correlation coefficient and correlation coefficient of external validation.

  9. A quantitative structure–activity relationship (QSAR) study of peptide drugs based on a new descriptor of amino acids

    OpenAIRE

    Tong Jian-Bo; Chang Jia; Liu Shu-Ling; Bai Min

    2015-01-01

    Quantitative structure-activity relationships (QSAR) approach is used for finding the relationship between molecular structures and the activity of peptide drugs. In this work, stepwise multiple regression, was employed to select optimal subset of descriptors that have significant contribution to the drug activity of 21 oxytocin analogues, 48 bitter tasting threshold, and 58 angiotensin-converting enzyme inhibitors. A new set of descriptor, SVWGM, was used ...

  10. Protein and amino acid nutrition

    Science.gov (United States)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  11. Racemization of Meteoritic Amino Acids

    Science.gov (United States)

    Cohen, Barbara A.; Chyba, Christopher F.

    2000-05-01

    Meteorites may have contributed amino acids to the prebiotic Earth, affecting the global ratio of right-handed to left-handed (D/L) molecules. We calculate D/L ratios for seven biological, α-hydrogen, protein amino acids over a variety of plausible parent body thermal histories, based on meteorite evidence and asteroid modeling. We show that amino acids in meteorites do not necessarily undergo complete racemization by the time they are recovered on Earth. If the mechanism of amino acid formation imposes some enantiomeric preference on the amino acids, a chiral signature can be retained through the entire history of the meteorite. Original enantiomeric excesses in meteorites such as Murchison, which have undergone apparently short and cool alteration scenarios, should have persisted to the present time. Of the seven amino acids for which relevant data are available, we expect glutamic acid, isoleucine, and valine, respectively, to be the most likely to retain an initial enantiomeric excess, and phenylalanine, aspartic acid, and alanine the least. Were the D/L ratio initially identical in each amino acid, final D/L ratios could be used to constrain the initial ratio and the thermal history experienced by the whole suite.

  12. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  13. Vibrational analysis of amino acids and short peptides in aqueous media. V. The effect of the disulfide bridge on the structural features of the peptide hormone somatostatin-14.

    Science.gov (United States)

    Hernández, Belén; Carelli, Claude; Coïc, Yves-Marie; De Coninck, Joël; Ghomi, Mahmoud

    2009-09-24

    To emphasize the role played by the S-S bridge in the structural features of somatostatin-14 (SST-14), newly recorded CD and Raman spectra of this cyclic peptide and its open analogue obtained by Cys-->Ser substitution are presented. CD spectra of both peptides recorded in aqueous solutions in the 100-500 microM concentration range are strikingly similar. They reveal principally that random conformers constitute the major population in both peptides. Consequently, the S-S bridge has no structuring effect at submillimolar concentrations. In methanol, the CD spectrum of somatostatin-14 keeps globally the same spectral shape as that observed in water, whereas its open analogue presents a major population of helical conformers. Raman spectra recorded as a function of peptide concentration (5-20 mM) and also in the presence of 150 mM NaCl provide valuable conformational information. All Raman spectra present a mixture of random and beta-hairpin structures for both cyclic and open peptides. More importantly, the presence or the absence of the disulfide bridge does not seem to influence considerably different populations of secondary structures within this range of concentrations. CD and Raman data obtained in the submillimolar and millimolar ranges of concentrations, respectively, lead us to accept the idea that SST-14 monomers aggregate upon increasing concentration, thus stabilizing beta-hairpin conformations in solution. However, even at high concentrations, random conformers do not disappear. Raman spectra of SST-14 also reveal a concentration effect on the flexibility of the S-S linkage and consequently on that of its cyclic part. In conclusion, although the disulfide linkage does not seem to markedly influence the SST-14 conformational features in aqueous solutions, its presence seems to be necessary to ensure the flexibility of the cyclic part of this peptide and to maintain its closed structure in lower dielectric constant environments.

  14. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs.

    Science.gov (United States)

    Biedermann, Frank; Nau, Werner M

    2014-05-26

    Ternary complexes between the macrocyclic host cucurbit[8]uril, dicationic dyes, and chiral aromatic analytes afford strong induced circular dichroism (ICD) signals in the near-UV and visible regions. This allows for chirality sensing and peptide-sequence recognition in water at low micromolar analyte concentrations. The reversible and noncovalent mode of binding ensures an immediate response to concentration changes, which allows the real-time monitoring of chemical reactions. The introduced supramolecular method is likely to find applications in bioanalytical chemistry, especially enzyme assays, for drug-related analytical applications, and for continuous monitoring of enantioselective reactions, particularly asymmetric catalysis.

  15. Left-handed helical preference in an achiral peptide chain is induced by an L-amino acid in an N-terminal type II β-turn.

    Science.gov (United States)

    De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan

    2013-03-15

    Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.

  16. 1,3-Diamido-calix[4]arene conjugates of amino acids: recognition of -COOH side chain present in amino acids, peptides, and proteins by experimental and computational studies.

    Science.gov (United States)

    Acharya, Amitabha; Ramanujam, Balaji; Chinta, Jugun Prakash; Rao, Chebrolu P

    2011-01-01

    Lower rim 1,3-diamido conjugates of calix[4]arene have been synthesized and characterized, and the structures of some of these have been established by single crystal XRD. The amido-calix conjugates possessing a terminal -COOH moiety have been shown to exhibit recognition toward guest molecules possessing -COOH moiety, viz., Asp, Glu, and reduced and oxidized glutathione (GSH, GSSG), by switch-on fluorescence in aqueous acetonitrile and methanol solutions when compared to the control molecules via forming a 1:1 complex. The complex formed has been shown by mass spectrometry, and the structural features of the complexes were derived on the basis of DFT computations. The association constants observed for the recognition of Asp/Glu by Phe-calix conjugate, viz., 532/676 M(-1), are higher than that reported for the recognition of Val, Leu, Phe, His, and Trp (16-63 M(-1)) by a water-soluble calixarene (Arena, G., et al. Tetrahedron Lett. 1999, 40, 1597). For this recognition, there should be a free -COOH moiety from the guest molecule. AFM, SEM, and DLS data exhibited spherical particles with a hundred-fold reduction in the size of the complexes when compared to the particles of the precursors. These spherical particles have been computationally modeled to possess hexameric species reminiscent of the hexameric micellar structures shown for a Ag(+) complex of a calix[6]arene reported in the literature (Houmadi, S., et al. Langmuir 2007, 23, 4849). Both AFM and TEM studies demonstrated the formation of nanospheres in the case of GSH-capped Ag nanoparticles in interaction with the amido-calix conjugate that possesses terminal -COOH moiety. The AFM studies demonstrated in this paper have been very well applied to albumin proteins to differentiate the aggregational behavior and nanostructural features exhibited by the complexes of proteins from those of the uncomplexed ones. To our knowledge, this is the first report wherein a amido-calix[4]arene conjugate and its amino acid/peptide

  17. Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?

    Science.gov (United States)

    Wang, Meng; Zhou, Peng; Wang, Jiqian; Zhao, Yurong; Ma, Hongchao; Lu, Jian R; Xu, Hai

    2017-03-22

    Peptide and protein fibrils have attracted an enormous amount of interests due to their relevance to many neurodegenerative diseases and their potential applications in nanotechnology. Although twisted fibrils are regarded as the key intermediate structures of thick fibrils or bundles of fibrils, the factors determining their twisting tendency and their handedness development from the molecular to the supramolecular level are still poorly understood. In this study, we have designed three pairs of enantiomeric short amphiphilic peptides: (L)I3(L)K and (D)I3(D)K, (L)I3(D)K and (D)I3(L)K, and (La)I3(L)K and (Da)I3(D)K, and investigated the chirality of their self-assembled nanofibrils through the combined use of atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, scanning electron microscopy (SEM), and molecular dynamic (MD) simulations. The results indicated that the twisted handedness of the supramolecular nanofibrils was dictated by the chirality of the hydrophilic Lys head at the C-terminal, while their characteristic CD signals were determined by the chirality of hydrophobic Ile residues. MD simulations delineated the handedness development from molecular chirality to supramolecular handedness by showing that the β-sheets formed by (L)I3(L)K, (La)I3(L)K, and (D)I3(L)K exhibited a propensity to twist in a left-handed direction, while the ones of (D)I3(D)K, (Da)I3(D)K, and (L)I3(D)K in a right-handed twisting orientation.

  18. Expression of the Gene Encoding the Tetraploid of Carboxyl-terminal Peptide of β-hCG Containing Thirty-seven Amino Acid Residues in E. coli

    Institute of Scientific and Technical Information of China (English)

    王健; 沈卫英; 周清平; 申庆祥

    2000-01-01

    Objective This study was carried out to investigate the possible enhancement of immunogenicity of the carboxyl-terminal peptide of β-hCG which is made up of 37 amino acid residues (109~145) and contains the specific epitope (antigenic determinant) of hCG.Materials & Methods hCGβ-CTP37 tetraploid cDNA was constructed by linking four hCGβ-CTP37 cDNAs together. The product was then subcloned into the E. coli expression vector pQE60 to construct the expression vector pQE60/ (hCGβ-CTP37)4. Recombinant (hCGβ-CTP37 ) 4 was expressed in E. coil-X-blue.Results Western blot analysis showed that the tetraploid of hCGβ-CTP37 had an apparent molecular weight of 20 kD and had relatively stronger anti-hCG antibody-binding activity compared with the diploid from.Conclusion The tetraploid of hCGβ-CTP37 may be a more potent immunogen for raising anti-hCG vaccines for fertility regulation or suppression of tumor.

  19. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  20. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  1. Design, synthesis, and characterization of a 39 amino acid peptide mimic of the main immunogenic region of the Torpedo acetylcholine receptor.

    Science.gov (United States)

    Trinh, Vu B; Foster, Alex J; Fairclough, Robert H

    2014-05-01

    We have designed a 39 amino acid peptide mimic of the conformation-dependent main immunogenic region (MIR) of the Torpedo acetylcholine receptor (TAChR) that joins three discontinuous segments of the Torpedo α-subunit, α(1-12), α(65-79), and α(110 - 115) with two GS linkers: This 39MIR-mimic was expressed in E. coli as a fusion protein with an intein-chitin-binding domain (IChBD) to permit affinity collection on chitin beads. Six MIR-directed monoclonal antibodies (mAbs) bind to this complex and five agonist/antagonist site directed mAbs do not. The complex of MIR-directed mAb-132A with 39MIR has a Kd of (2.11±0.11)×10(-10)M, which is smaller than (7.13±1.20)×10(-10)M for the complex of mAb-132A with α(1-161) and about the same as 3.4×10(-10)M for that of mAb-132A with TAChR. Additionally, the 39MIR-IChBD adsorbs all MIR-directed antibodies (Abs) from an experimental autoimmune myasthenia gravis (EAMG) rat serum. Hence, the 39MIR-mimic has the potential to inactivate or remove pathogenic Torpedo MIR-directed Abs from EAMG sera and to direct a magic bullet to the memory B-cells that produce those pathogenic Abs. The hope is to use this as a guide to produce a mimic of the human MIR on the way to an antigen specific therapeutic agent to treat MG.

  2. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P;

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  3. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    Science.gov (United States)

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region.

  4. Glucagon-like peptide-2 (GLP-2) increases net amino acid utilization by the portal-drained viscera of ruminating calves

    DEFF Research Database (Denmark)

    Taylor-Edwards, C C; Burrin, D G; Kristensen, N B;

    2012-01-01

    , potentially by increased small intestinal epithelial growth and thus energy and amino acid requirements of this tissue. Increased PDV extraction of glutamine and alterations in PDV metabolism of arginine, ornithine and citrulline support the concept that GLP-2 influences intestine-specific amino acid...... periods: baseline (saline infusion), treatment (infusion of bovine serum albumin or 3.76 μg/kg BW per h GLP-2) and recovery (saline infusion). Arterial concentrations and net PDV, hepatic and total splanchnic fluxes of glucose, lactate, glutamate, glutamine, β-hydroxybutyrate and urea-N were measured...

  5. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    Science.gov (United States)

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  6. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  7. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  8. Meteoritic Versus Biotic Amino Acids: An Update on Aib and Iva

    Science.gov (United States)

    Brückner, H.; Degenkolb, T.; Fox, S.

    2016-08-01

    Biotically synthesized Aib and Iva hav been found in >1,350 structurally characterized microbial peptides. However, the structural diversity of the non-proteinogenic amino acids in CM-type meteorites is not displayed in individual fungal peptides.

  9. Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men

    Directory of Open Access Journals (Sweden)

    Natalie D. Luscombe-Marsh

    2016-01-01

    Full Text Available This study determined the effects of increasing loads of intraduodenal (ID dairy protein on plasma amino acid (AA concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1 and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1, 6.3 (P6.3 or 12.5 (P12.5 kJ/min (encompassing the range of nutrient emptying from the stomach, or saline control (C. Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0–60 min of each AA profile was strong for essential AAs (R2 range, 0.61–0.67, but more variable for non-essential (0.02–0.54 and conditional (0.006–0.64 AAs. The AUC0–60 min for each AA was correlated directly with the AUC0–60 min of insulin (R2 range 0.3–0.6, GLP-1 (0.2–0.6 and energy intake (0.09–0.3 (p < 0.05, for all, with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1.

  10. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  11. 游离氨基酸对Аβ多肽异常聚集作用的影响%Effect of Free Amino Acids on the Abnormal Accumulation of Amyloid-β Peptides

    Institute of Scientific and Technical Information of China (English)

    连智慧; 王海燕; 王中奎; 韩大雄

    2012-01-01

    阿尔兹海默氏病的主要病因之一,是病人大脑的海马区和皮质区中Аβ多肽异常聚集形成了老年脑斑.本工作通过质谱方法研究游离氨基酸存在下铜离子和Аβ多肽的相互作用,发现由于其侧链极性和强配位能力,天冬氨酸、谷氨酸、亮氨酸、酪氨酸、苏氨酸和组氨酸6种氨基酸能够在较低浓度下明显抑制铜离子和Аβ多肽的结合,由此推测游离氨基酸可能是一种新的与Аβ多肽异常聚集相关的微环境因素.%A major hallmark of Alzheimer’s disease is the senile plaques in cerebral cortex and hippocampus,mainly composed of the abnormal accumulation of amyloid-β(Aβ) peptides.It was suggested that metal ions(such as copper ions) would be a possible key mediating factor for the formation of amyloid deposits by binding to Aβ peptides and triggering the involved aggregation process.Some previous studies have uncovered that the concentration levels of free amino acids(aa) in the brain of AD patients are different from that of normal controls.So we investigated the interactions between copper ions and Aβ peptides in the presence of free amino acids.The effects of sixteen amino acids on the copper-Aβ complexes were examined by electrospray-ionization mass spectrometry(ESI-MS).Firstly,the mixture solution of Aβ(10-21) peptide(10 μmol/L) and Cu(Gly)2(40 μmol/L) was incubated for 1 h at 37 ℃ in 10 mmol/L ammonium acetate buffer(pH=6.5).Then stock solution of each amino acid was added yielding Aβ/Cu2+/aa mixture solution at the final concentration of 1∶4∶x(x= 0,1,2,3,4,5,10) for 200 μL total volume.After 1 h incubation,the samples were analyzed by ESI-MS.Different effects of these amino acids have been observed by comparing the mass spectrum of Aβ/Cu2+/aa mixture solution with the spectrum of Aβ/Cu2+mixture solution.Because of their side chain polarity and stronger coordination ability

  12. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    Science.gov (United States)

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures.

  13. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    Science.gov (United States)

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides.

  14. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.;

    2010-01-01

    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  15. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  16. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    Science.gov (United States)

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  17. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  18. Organometallic and Bioorganometallic Chemistry – Ferrocene Amino Acids

    Directory of Open Access Journals (Sweden)

    Barišić, L.

    2012-01-01

    Full Text Available This article is the second part of a series dealing with organometallic and bioorganometallic chemistry. In the first part of this series a short review on the history and development of these disciplines was given, emphasizing the importance and scope of bioorganometallic chemistry as a new field dealing with conjugates of organometallics and biomolecules (DNA, PNA, amino acids, peptides.... From the variety of biorganometallics, syntheses and properties of simple conjugates of ferrocene with natural amino acids/peptides were elaborated inter alia. This material is the basis for the second part in which ferrocene amino acids are described. The introduction presents nonproteinogenic alicyclic and aromatic amino acids as the models for the title compounds. Naturally occurring amino acids labelled with ferrocene moiety mostly retain properties of the biomolecules included. Contrary to these ω-ferrocenylamino acids, one could imagine specific amino acids with inserted ferrocene core belonging to either homo- or heterodisubstituted type. The central part of this article is devoted to our investigations of the second type - H2N-(CH2m-Fn-(CH2n-COOH. The general rational procedure for synthesis of these compounds and of their N- and/or C-protected derivatives via the azide intermediates N3-CO-(CH2m- Fn-(CH2n-COOMe has been described. In the solid state derivatives of ferrocene amino acids contain intermolecular hydrogen bonds giving dimeric structures, three-dimensional networks or endless helical chains. The solutions of homologues Ac-NH-(CH2m-Fn-(CH2n-COOMe in nonpolar solvents are dominated by open form conformers. Compounds containing 2–3 ferrocene cores connected by amide, imide and oxalamide spacers were prepared by oligomerization of 1'-aminoferrocene-1-carboxylic acid (Fca or by its condensation with the appropriate reagents. Similar to natural amino acids, ferrocene amino acids are water-soluble substances with high melting points

  19. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.

    Science.gov (United States)

    Owczarek, Alina; Safro, Mark; Wolfson, Alexey D

    2008-01-08

    Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.

  20. Evaluating Anti-SmD1-amino-acid 83-119 Peptide Reactivity in Children with Systemic Lupus Erythematosus and Other Immunological Diseases

    Institute of Scientific and Technical Information of China (English)

    Hai-Ou Yang; Xiao-Qing Zhang; Qi-Hua Fu

    2016-01-01

    Background:SmD1-amino-acid 83-119 peptide (SmD183-119) is the major epitope of Smith (Sm) antigen,which is specific for adult systemic lupus erythematosus (SLE).The anti-SmD183-119 antibody has exhibited higher sensitivity and specificity than anti-Sm antibody in diagnosing adult SLE.However,the utility of anti-SmD183-119 antibodies remains unclear in children with SLE (cSLE).This study aimed to assess the characteristics of anti-SmD 183-119 antibody in the diagnosis of cSLE.Methods:Samples from 242 children with different rheumatological and immunological disorders,including autoimmune diseases (SLE [n =46] and ankylosing spondylitis [AS,n =11]),nonautoimmune diseases (Henoch-Schonlein purpura [HSP,n =60],idiopathic thrombocytopenia purpura [n =27],hematufia [n =59],and arthralgia [n =39]) were collected from Shanghai Children's Medical Center from March 6,2012 to February 27,2014.Seventy age-and sex-matched patients were enrolled in this study as the negative controls.All the patients' sera were analyzed for the anti-SmD 183-119,anti-Sm,anti-U 1-nRNP,anti-double-stranded DNA (dsDNA),anti-nucleosome,anti-SSA/Ro60,anti-SSA/Ro52,anti-SSB,anti-Scl-70,and anti-histone antibodies using the immunoblotting assay.The differences in sensitivity and specificity between anti-SmD183-119 and anti-Sm antibodies were compared by Chi-square test.The correlations between anti-SmD183-119 and other auto-antibodies were analyzed using the Spearman's correlation analysis.A value of P < 0.05 was considered statistically significant.Results:Thirty-six out of 46 patients with cSLE were found to be positive for anti-SmD183-119,while 12 patients from the cSLE cohort were found to be positive for anti-Sm.Compared to cSLE,it has been shown that anti-SmD183-119 was only detected in 27.3% of patients with AS and 16.7% of patients with HSP.In comparison with anti-Sm,it has been demonstrated that anti-SmD 183-119 had a higher sensitivity (78.3% vs.26.1%,x2 =25.1,P < 0.05) and a lower

  1. 615小鼠血红蛋白α链的氨基酸组成 及个别肽段的氨基酸序列%Amino Acid Composition of the α Chain of Hemoglobin and Amino Acid Sequence of it′s Particular Peptide Fragment From 615 Mouse

    Institute of Scientific and Technical Information of China (English)

    武金霞; 张贺迎; 王建平; 吴经才

    2001-01-01

    The α chain of hemoglobin of 615 mouse was isolated and purified on CM-Celullose-23 colomn chromatography. The N-terminal amino acid of the α chain was valine determined with DABITC/PITC method.The amino acid composition was determined and it was different from the parent(C57BL)in literature on the number of leucine residue,histine residue and valine residue.An undissoluble ‘core’ and dissoluble peptides were found when the α chain of 615 mouse was hydrolysised by trypsin and it was found that the eighth amino acid residue from N-terminal of one particular peptide fragment mutated from valine (C57BL) to leucine.%用CM-Cellulose-23柱层析分离纯化了615小鼠珠蛋白α链,测定其N端氨基酸残基为缬氨酸.615小鼠珠蛋白α链含有141个氨基酸残基,其中19个亮氨酸残基,10个组氨酸残基,9个缬氨酸残基,上述氨基酸残基的数目与文献中其亲本C57BL不同.用胰蛋白酶水解615小鼠珠蛋白α链,发现有不溶性的‘核心’和可溶性的酶解片段.其中一个酶解肽段从N端数第8位氨基酸残基发生了突变,由亲本的缬氨酸变为亮氨酸.

  2. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  3. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  6. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  7. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    Science.gov (United States)

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  8. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  9. Induction of DNA damage by oxidised amino acids and proteins

    DEFF Research Database (Denmark)

    Luxford, Catherine; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Exposure of amino acids, peptides and proteins to radicals in the presence of O2 generates hydroperoxides in a dose-dependent manner. These hydroperoxides are stable in the absence of exogenous catalysts (e.g. heat, light, redox-active transition metal ions), but decompose rapidly in the presence...

  10. Microbial production of amino acids in Japan.

    Science.gov (United States)

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  11. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid.

    Science.gov (United States)

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Chufan, Eduardo E; Patel, Bhargav A; Wang, Yi-Jun; Chen, Zhe-Sheng; Ambudkar, Suresh V; Talele, Tanaji T

    2014-05-22

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [(125)I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp.

  12. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    Science.gov (United States)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  13. Conformational properties of oxazoline-amino acids

    Science.gov (United States)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  14. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  15. Quantitative detection of single amino acid polyrnorphisms by targeted proteornics

    Institute of Scientific and Technical Information of China (English)

    Zhi-Duan Su; Jia-Rui Wu; Liang Sun; Dan-Xia Yu; Rong-Xia Li; Huai-Xing Li; Zhi-Jie Yu; Quan-Hu Sheng; Xu Lin; RongZeng

    2011-01-01

    Single-nucleotide polymorphisms (SNPs) are recognized as one kind of major genetic variants in population scale. However, polymorphisms at the proteome level in population scale remain elusive. In the present study, we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms (SAPs) at the proteome level, and developed a pipeline of non-targeted and targeted proteomics to identify and quantify SAP peptides in human plasma. The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring (SRM) approach, and their associations with both obesity and diabetes were further analyzed. This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits. In addition, the SRM approach allows us for the first time to separately measure the absolute concentration of each SAP peptide in the heterozygotes, which also shows different associations with particular traits.%Single-nucleotide polymorphisms (SNPs) are recognized as one kind of major genetic variants in population scale.However,polymorphisms at the proteome level in population scale remain elusive.In the present study,we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms (SAPs) at the proteome level,and developed a pipeline of non-targeted and targeted proteomics to identify and quantify SAP peptides in human plasma.The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring (SRM) approach,and their associations with both obesity and diabetes were further analyzed.This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits.In addition,the SRM approach allows us for the first time to separately measure the absolute

  16. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  17. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  18. Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study.

    Science.gov (United States)

    Hintz, Henrik; Wuttke, Stefan

    2014-10-01

    The suitability of four peptide coupling reagents for postsynthetic modification (PSM) of amino-tagged metal-organic frameworks (MOFs) with carboxylic acids was investigated. Mild reaction conditions at room temperature allow effective covalent attachment of drugs and biomolecules inside the pores of MOFs with moderate chemical stability.

  19. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  20. Sugar amino acids and related molecules: Some recent developments

    Indian Academy of Sciences (India)

    Tushar Kanti Chakraborty; Pothukanuri Srinivasu; Subhasish Tapadar; Bajjuri Krishna Mohan

    2004-06-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create `nature-like’ and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature’s molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solidphase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies.

  1. Peptide nucleic acids and their potential applications in biotechnology

    DEFF Research Database (Denmark)

    Buchardt, O.; Egholm, M.; Berg, R.H.

    1993-01-01

    Peptide nucleic acids (PNAs) are novel DNA mimics in which the sugar-phosphate backbone has been replaced with a backbone based on amino acids1-3. PNAs exhibit sequence-specific binding to DNA and RNA with higher affinities and specificities than unmodified DNA. They,are resistant to nuclease and...

  2. Escherichia coli, an Intestinal Microorganism, as a Biosensor for Quantification of Amino Acid Bioavailability

    Directory of Open Access Journals (Sweden)

    Vesela I. Chalova

    2009-09-01

    Full Text Available In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological L-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.

  3. Effect of domoic acid on brain amino acid levels.

    Science.gov (United States)

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  4. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-β peptide produced in silkworm pupae protects against Alzheimer's disease in mice.

    Directory of Open Access Journals (Sweden)

    Si Li

    Full Text Available A key molecule in the pathogenesis of Alzheimer's disease (AD is a 42-amino acid isoform of the amyloid-β peptide (Aβ42, which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD.

  5. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide.

    Science.gov (United States)

    Paul, Moushumi; Phillips, John G; Renye, John A

    2016-05-01

    An 8-AA (8mer) fragment (PFPEVFGK) of a known antihypertensive peptide derived from bovine αS1-casein (C12 antihypertensive peptide) was synthesized by microwave-assisted solid-phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit angiotensin-converting enzyme (ACE) was assessed and compared with that of the parent 12mer peptide (FFVAPFPEVFGK) to determine the effect of truncating the sequence on overall hypotensive activity. The activity of the truncated 8mer peptide was found to be almost 1.5 times less active than that of the 12mer, with ACE-inhibiting IC50 (half-maximal inhibitory concentration) values of 108 and 69μM, for the 8mer and 12mer, respectively. Although the 8mer peptide is less active than the original 12mer peptide, its overall activity is comparable to activities reported for other small proteins that elicit physiological responses within humans. These results suggest that microbial degradation of the 12mer peptide would not result in a complete loss of antihypertensive activity if used to supplement fermented foods and that the stable 8mer peptide could have potential as a blood pressure-lowering agent for use in functional foods.

  6. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by D-amino acid containing antimicrobial peptides.

    Science.gov (United States)

    Saravanan, Rathi; Bhunia, Anirban; Bhattacharjya, Surajit

    2010-02-01

    Melittin, the major component of the honey bee venom, is a 26-residue hemolytic and membrane active peptide. Structures of melittin determined either in lipid environments by NMR or by use of X-ray demonstrated two helical regions at the N- and C-termini connected by a hinge or a bend at the middle. Here, we show that deletion of the hinge residues along with two C-terminal terminal Gln residues (Q25 and Q26), yielding a peptide analog of 19-residue or Mel-H, did not affect antibacterial activity but resulted in a somewhat reduced hemolytic activity. A diastereomer of Mel-H or Mel-(d)H containing d-amino acids [(d)V5, (d)V8, (d)L11 and (d)K16] showed further reduction in hemolytic activity without lowering antibacterial activity. We have carried out NMR structures, dynamics (H-D exchange and proton relaxation), membrane localization by spin labeled lipids, pulse-field-gradient (PFG) NMR and isothermal titration calorimetry (ITC) in dodecylphosphocholine (DPC) micelles, as a mimic to eukaryotic membrane, to gain insights into cell selectivity of these melittin analogs. PFG-NMR showed Mel-H and Mel-(d)H both were similarly partitioned into DPC micelles. ITC demonstrated that Mel-H and Mel-(d)H interact with DPC with similar affinity. The micelle-bound structure of Mel-H delineated a straight helical conformation, whereas Mel-(d)H showed multiple beta-turns at the N-terminus and a short helix at the C-terminus. The backbone amide-proton exchange with solvent D(2)O demonstrated a large difference in dynamics between Mel-H and Mel-(d)H, whereby almost all backbone protons of Mel-(d)H showed a much faster rate of exchange as compared to Mel-H. Proton T(1) relaxation had suggested a mobile backbone of Mel-(d)H peptide in DPC micelles. Resonance perturbation by paramagnetic lipids indicated that Mel-H inserted deeper into DPC micelles, whereas Mel-(d)H is largely located at the surface of the micelle. Taken together, results presented in this study demonstrated that the

  7. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  8. Complete amino acid sequence of the Aspergillus cytotoxin mitogillin

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Luna, J.L.; Lopez-Otin, C.; Soriano, F.; Mendez, E.

    1985-02-12

    The complete amino acid sequence of the cytotoxin mitogillin has been determined by sequencing the intact chain and peptide fragments produced by cleavage at methionyl, arginyl, lysyl, and tryptophanyl residues and at one aspartic acid-proline bond. The protein consists of 149 amino acid residues with alanine at the NH/sub 2/ terminus and histidine at the COOH terminus. The calculated Mr of the native mitogillin was 16,867. The native molecule presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and another one between cysteine residues at positions 75 and 131. The amino acid sequence of mitogillin shows 86% homology with another cytotoxic protein called alpha-sarcin.

  9. D-Amino Acids in the Nervous and Endocrine Systems

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Kiriyama

    2016-01-01

    Full Text Available Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS, such as Alzheimer’s disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems.

  10. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  11. The amino acid sequence of Escherichia coli cyanase.

    Science.gov (United States)

    Chin, C C; Anderson, P M; Wold, F

    1983-01-10

    The amino acid sequence of the enzyme cyanase (cyanate hydrolase) from Escherichia coli has been determined by automatic Edman degradation of the intact protein and of its component peptides. The primary peptides used in the sequencing were produced by cyanogen bromide cleavage at the methionine residues, yielding 4 peptides plus free homoserine from the NH2-terminal methionine, and by trypsin cleavage at the 7 arginine residues after acetylation of the lysines. Secondary peptides required for overlaps and COOH-terminal sequences were produced by chymotrypsin or clostripain cleavage of some of the larger peptides. The complete sequence of the cyanase subunit consists of 156 amino acid residues (Mr 16,350). Based on the observation that the cysteine-containing peptide is obtained as a disulfide-linked dimer, it is proposed that the covalent structure of cyanase is made up of two subunits linked by a disulfide bond between the single cystine residue in each subunit. The native enzyme (Mr 150,000) then appears to be a complex of four or five such subunit dimers.

  12. Plasma amino acid relationships during parenteral nutrition.

    Science.gov (United States)

    Wells, F E; Smits, B J

    1980-01-01

    The plasma amino acidfs of 17 patients were studied before and during total parenteral nutrition (TPN). The amino acid (AA) pattern changed similarly for all patients. The AA concentration changes relative to preinfusion (PAER) were the most informative index of change. Two groups of AA were defined, the "branched chain" group (five amino acids) and the "hepatic" group (four amino acids) based on the correlation of PAER values. Comparison of PAER values with the ratio of AA intake to requirement indicated that the requirements of the sick patients were more similar to those of children than those of healthy adults.

  13. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  14. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  15. The Apollo Program and Amino Acids

    Science.gov (United States)

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  16. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  17. Synthèse de mono et diphosphines dérivées d'amino acides ou de peptides, appliquées en chimie de coordination et pour le greffage de fullerène C60

    OpenAIRE

    Minois, Pauline,

    2013-01-01

    The synthesis of secondary phosphine borane amino acids or dipeptides and their applications for the preparation of chiral ligands or for the grafting of fullerene, is described. These compounds were synthesized in good yield (up to 98%) without racemization. The principle of the synthesis is based on the alkylation of primary phosphine borane with a γ-iodo amino acid using phase transfer conditions. Tertiary diphosphine amino acids are obtained with 70% yield after a second alkylation. These...

  18. Raman spectra of amino acids and their aqueous solutions

    Science.gov (United States)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  19. Differential distribution of amino acids in plants.

    Science.gov (United States)

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-03-15

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  20. Induction of neonatal lupus in pups of mice immunized with synthetic peptides derived from amino acid sequences of the serotoninergic 5-HT4 receptor.

    Science.gov (United States)

    Eftekhari, P; Roegel, J C; Lezoualc'h, F; Fischmeister, R; Imbs, J L; Hoebeke, J

    2001-02-01

    We have previously suggested that the recognition of a cross-reactive epitope on the 5-HT4 receptor and the 52-kDa SSA/Ro protein by serotonin-antagonizing autoantibodies could explain the electrophysiological symptoms of congenital heart block in neonatal lupus. To confirm this hypothesis, we immunized female mice with four synthetic peptides corresponding to the recognized epitopes. All mice developed anti-peptide antibodies, which cross-reacted with the Ro52 and 5-HT4 receptor peptides and recognized both cognate proteins. Peptide-immune mice were mated. The pups from mice immunized with the Ro52 peptides had no symptoms of neonatal lupus apart from bradycardia. However, pups from mice immunized with the 5-HT4 receptor peptides and bradycardia, atrioventricular block of type I or II, longer QT intervals, skin rashes and neuromotor problems. The 5-HT4 receptor was detectable in the different fetal tissues affected (heart, skin and brain) by immunohistochemistry. Hearts from diseased pups were less developed and showed disorganized myocardial hyperplasia, compared to the normal littermates. These results demonstrate that the serotoninergic 5-HT4 receptor is the antigenic target of physiopathological autoantibodies in neonatal lupus.

  1. Characterization on the Mean Molar Absorptivity of Amino Acids in Microbial Lipopeptides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The molar absorption coefficients of each of 14 kinds of amino acids were determined by the spectrophotometric method, and the mean molar absorption coefficients of 37 different mixtures of each with amino acid composition exactly equivalent to that of the peptide chain of the corresponding lipopeptide were determined based on calculation or experimental. The significance of the results is that the mean molar absorption coefficients strongly demonstrate the regular patterns, though different amino acids bear quite different molar absorption coefficients.

  2. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  3. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  4. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  5. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  6. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  7. Amino Acids in the Martian Meteorite Nakhla

    Science.gov (United States)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  8. Length and amino acid sequence of peptides substituted for the 5-HT3A receptor M3M4 loop may affect channel expression and desensitization.

    Directory of Open Access Journals (Sweden)

    Nicole K McKinnon

    Full Text Available 5-HT3A receptors are pentameric neurotransmitter-gated ion channels in the Cys-loop receptor family. Each subunit contains an extracellular domain, four transmembrane segments (M1, M2, M3, M4 and a 115 residue intracellular loop between M3 and M4. In contrast, the M3M4 loop in prokaryotic homologues is <15 residues. To investigate the limits of M3M4 loop length and composition on channel function we replaced the 5-HT3A M3M4 loop with two to seven alanine residues (5-HT3A-A(n = 2-7. Mutants were expressed in Xenopus laevis oocytes and characterized using two electrode voltage clamp recording. All mutants were functional. The 5-HT EC(50's were at most 5-fold greater than wild-type (WT. The desensitization rate differed significantly among the mutants. Desensitization rates for 5-HT3A-A(2, 5-HT3A-A(4, 5-HT3A-A(6, and 5-HT3A-A(7 were similar to WT. In contrast, 5-HT3A-A(3 and 5-HT3A-A(5 had desensitization rates at least an order of magnitude faster than WT. The one Ala loop construct, 5-HT3A-A(1, entered a non-functional state from which it did not recover after the first 5-HT application. These results suggest that the large M3M4 loop of eukaryotic Cys-loop channels is not required for receptor assembly or function. However, loop length and amino acid composition can effect channel expression and desensitization. We infer that the cytoplasmic ends of the M3 and M4 segments may undergo conformational changes during channel gating and desensitization and/or the loop may influence the position and mobility of these segments as they undergo gating-induced conformational changes. Altering structure or conformational mobility of the cytoplasmic ends of M3 and M4 may be the basis by which phosphorylation or protein binding to the cytoplasmic loop alters channel function.

  9. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  10. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  11. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  12. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  13. Amino acid substitutions in the melanoma antigen recognized by T cell 1 peptide modulate cytokine responses in melanoma-specific T cells

    DEFF Research Database (Denmark)

    Nielsen, M B; Kirkin, A F; Loftus, D

    2000-01-01

    enhances the production of mRNA for interleukin (IL)-5, IL-10, IL-13, IL-15, and interferon-gamma and significantly enhances release of IL-13 and IL-10 from anti-MART-1 cytotoxic T cells. Another heteroclitic peptide, 1L, with an A to L substitution in MART-1(27-35), also enhances the tyrosine...

  14. Amino acids in the Martian meteorite Nakhla.

    Science.gov (United States)

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  15. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Foldamers to nanotubes: influence of amino acid side chains in the hierarchical assembly of α,γ(4)-hybrid peptide helices.

    Science.gov (United States)

    Jadhav, Sandip V; Misra, Rajkumar; Gopi, Hosahudya N

    2014-12-08

    Supramolecular assembly of various artificially folded 12-helical architectures composed of γ(4) -Val, γ(4) -Leu and γ(4) -Phe residues is investigated. In contrast to the 12-helices composed of γ(4) -Val and γ(4) -Leu residues, the helices with γ(4) -Phe residues displayed unique elongated nanotubular architectures. The elongated nanotube assembly was further explored as a template for biomineralization of silver ions to silver nanowires. A comparative study using an analogous α-peptide helix reveals the importance of the spatial arrangement of aromatic side chains along the helical cylinder in a 12-helix. These results suggested that the proteolytically and structurally stable α,γ(4) -hybrid peptide 12-helices may serve as a new generation of potential templates in the design of functional biomaterials.

  17. An astrophysically-relevant mechanism for amino acid enantiomer enrichment

    NARCIS (Netherlands)

    P. Fletcher, S.; B. C. Jagt, R.; Feringa, B.L.

    2007-01-01

    The sublimation of low ee amino acids was examined while exploring simple mechanisms by which high ee amino acids can be generated under conditions that exist in space; significant enantioenrichment of a variety of amino acids by sublimation was achieved.

  18. Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis.

    Science.gov (United States)

    Daep, Carlo Amorin; Novak, Elizabeth A; Lamont, Richard J; Demuth, Donald R

    2010-12-01

    The interaction of the periodontal pathogen, Porphyromonas gingivalis, with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S. gordonii was a potent competitive inhibitor of P. gingivalis adherence to S. gordonii and subsequent biofilm formation. Here we show that despite its inhibitory activity, BAR is rapidly degraded by intact P. gingivalis cells in vitro. However, in the presence of soluble Mfa protein, the P. gingivalis receptor for BAR, the peptide is protected from proteolytic degradation suggesting that the affinity of BAR for Mfa is higher than for P. gingivalis proteases. The rate of BAR degradation was reduced when the P. gingivalis lysine-specific gingipain was inhibited using the specific protease inhibitor, z-FKcK, or when the gene encoding the Lys-gingipain was inactivated. In addition, substituting d-Lys for l-Lys residues in BAR prevented degradation of the peptide when incubated with the Lys-gingipain and increased its specific adherence inhibitory activity in a S. gordonii-P. gingivalis dual species biofilm model. These results suggest that Lys-gingipain accounts in large part for P. gingivalis-mediated degradation of BAR and that more effective peptide inhibitors of P. gingivalis adherence to streptococci can be produced by introducing modifications that limit the susceptibility of BAR to the Lys-gingipain and other P. gingivalis associated proteases.

  19. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    Science.gov (United States)

    Kitadai, Norio

    2016-06-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  20. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  1. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  2. Genetically encoded fluorescent coumarin amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangyun [San Diego, CA; Xie, Jianming [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  3. Evaluation of amino acids as turfgrass nematicides.

    Science.gov (United States)

    Zhang, Yun; Luc, John E; Crow, William T

    2010-12-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.

  4. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  5. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins

    OpenAIRE

    Linares de la Morena, María Lourdes; Agejas Chicharro, Francisco Javier; Alajarín Ferrández, Ramón; Vaquero López, Juan José; Álvarez-Builla Gómez, Julio

    2001-01-01

    The synthesis Of L-2-amino-8-oxodecanoic acid (Aoda) is described. This is a rare amino acid component of apicidins, a family of new cyclic tetrapeptides, inhibitors of histone deacetylase. Aoda was synthesised in seven steps from L-glutamic acid along with some derivatives. Universidad de Alcalá Fundación General de la Universidad de Alcalá FEDER

  6. A general method for site-specific incorporation of unnatural amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Noren, C.J.; Anthony-Cahill, S.J; Griffith, M.C.; Schultz, P.G. (Lawrence Berkeley Lab., CA (USA))

    1989-04-14

    A new method has been developed that makes it possible to site-specifically incorporate unnatural amino acids into proteins. Synthetic amino acids were incorporated into the enzyme {beta}-lactamase by the use of a chemically acylated suppressor transfer RNA that inserted the amino acid in response to a stop codon substituted for the codon encoding residue of interest. Peptide mapping localized the inserted amino acid to a single peptide, and enough enzyme could be generated for purification to homogeneity. The catalytic properties of several mutants at the conserved Phe{sup 66} were characterized. The ability to selectively replace amino acids in a protein with a wide variety of structural and electronic variants should provide a more detailed understanding of protein structure and function. 45 refs., 7 figs., 1 tab.

  7. Mated Drosophila melanogaster females consume more amino acids during the dark phase.

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.

  8. Mated Drosophila melanogaster females consume more amino acids during the dark phase

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073

  9. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  10. A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor.

    Science.gov (United States)

    Shen, Yulong; Tang, Xiao-Feng; Yokoyama, Hideshi; Matsui, Eriko; Matsui, Ikuo

    2004-01-01

    Family D DNA polymerase (PolD) is a new type of DNA polymerase possessing polymerization and 3'-5' exonuclease activities. Here we report the characterization of the nuclease activity of PolD from Pyrococcus horikoshii. By site-directed mutagenesis, we verified that the putative Mre11-like nuclease domain in the small subunit (DP1), predicted according to computer analysis and structure inference reported previously, is the catalytic domain. We show that D363, H365 and H454 are the essential residues, while D407, N453, H500, H563 and H565 are critical residues for the activity. We provide experimental evidence demonstrating that manganese, rather than magnesium, is the preferable metal ion for the nuclease activity of PolD. We also show that DP1 alone is insufficient to perform full catalysis, which additionally requires the formation of the PolD complex and manganese ion. We found that a 21 amino acid, subunit-interacting peptide of the sequence from cysteine cluster II of the large subunit (DP2) stimulates the exonuclease activity of DP1 and the internal deletion mutants of PolD lacking the 21-aa sequence. This indicates that the putative zinc finger motif of the cysteine cluster II is deeply involved in the nucleolytic catalysis.

  11. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  12. Parvalbumins from coelacanth muscle. III. Amino acid sequence of the major component.

    Science.gov (United States)

    Jauregui-Adell, J; Pechere, J F

    1978-09-26

    The primary structure of the major parvalbumin (pI = 4.52) from coelacanth muscle (Latimeria chalumnae) has been determined. Sequence analysis of the tryptic peptides, in some cases obtained with beta-trypsin, accounts for the total amino acid content of the protein. Chymotryptic peptides provide appropriate sequence overlaps, to complete the localization of the tryptic peptides. Examination of the amino acid sequence of this protein shows the typical structure of a beta-parvalbumin. Its position in the dendrogram of related calcium-binding proteins corresponds to that usually accepted for crossopterygians.

  13. Towards a Mathematical Foundation of Immunology and Amino Acid Chains

    CERN Document Server

    Shen, Wen-Jun; Xiao, Quan-Wu; Guo, Xin; Smale, Stephen

    2012-01-01

    We attempt to set a mathematical foundation of immunology and amino acid chains. To measure the similarities of these chains, a kernel on strings is defined using only the sequence of the chains and a good amino acid substitution matrix (e.g. BLOSUM62). The kernel is used in learning machines to predict binding affinities of peptides to human leukocyte antigens DR (HLA-DR) molecules. On both fixed allele (Nielsen and Lund 2009) and pan-allele (Nielsen et.al. 2010) benchmark databases, our algorithm achieves the state-of-the-art performance. The kernel is also used to define a distance on an HLA-DR allele set based on which a clustering analysis precisely recovers the serotype classifications assigned by WHO (Nielsen and Lund 2009, and Marsh et.al. 2010). These results suggest that our kernel relates well the chain structure of both peptides and HLA-DR molecules to their biological functions, and that it offers a simple, powerful and promising methodology to immunology and amino acid chain studies.

  14. iDPF-PseRAAAC: A Web-Server for Identifying the Defensin Peptide Family and Subfamily Using Pseudo Reduced Amino Acid Alphabet Composition.

    Directory of Open Access Journals (Sweden)

    Yongchun Zuo

    Full Text Available Defensins as one of the most abundant classes of antimicrobial peptides are an essential part of the innate immunity that has evolved in most living organisms from lower organisms to humans. To identify specific defensins as interesting antifungal leads, in this study, we constructed a more rigorous benchmark dataset and the iDPF-PseRAAAC server was developed to predict the defensin family and subfamily. Using reduced dipeptide compositions were used, the overall accuracy of proposed method increased to 95.10% for the defensin family, and 98.39% for the vertebrate subfamily, which is higher than the accuracy from other methods. The jackknife test shows that more than 4% improvement was obtained comparing with the previous method. A free online server was further established for the convenience of most experimental scientists at http://wlxy.imu.edu.cn/college/biostation/fuwu/iDPF-PseRAAAC/index.asp. A friendly guide is provided to describe how to use the web server. We anticipate that iDPF-PseRAAAC may become a useful high-throughput tool for both basic research and drug design.

  15. In Vitro Selection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Murakami, Hiroshi

    2016-02-01

    The potential applications of non-proteinogenic amino acids have increased continuously since the introduction of these molecules into a ribosomal translation system. An increasing number of studies concerning topics, such as the addition of an artificial function to a protein, cellular expression of a protein with an artificial residue, and development of an artificial peptide with a novel function, have been done using these molecules. Here, we describe recent studies that elucidate the compatibility of non-proteinogenic amino acids with ribosomal translation. We also describe the development of a simple and high-speed selection method and its potential application for the creation of a novel functional peptide with non-proteinogenic amino acids. As these studies have expanded the diversity of the artificial peptide library and increased the speed of novel functional peptide selection, they will significantly facilitate the development of new molecules, such as pharmaceutical drug candidates and bioassay probes.

  16. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  17. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  18. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  19. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides.

  20. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  1. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  2. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  3. Chiral morphology of calcite through selective binding of amino acids

    Science.gov (United States)

    Orme, Christine

    2002-03-01

    Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals. Peptides and proteins play an important role in achieving this control. Using in situ AFM we find that site-specific binding of amino acid residues to surface steps changes the step-edge free energies, giving rise to direction-specific binding energies unique to individual amino acid enantiomers and leading to chiral modifications that propagate from atomic length scales to macroscopic length scales. Molecular modeling studies support an energetic basis for the differences in binding. Our results emphasize that the mechanism under-lying crystal modification through organic molecules is best understood by considering both stereochemical recognition as well as the effects of binding on the interfacial energies of the growing crystal.

  4. Contact and dipolar contributions to lanthanide-induced NMR shifts of amino acid and peptide models for calcium binding sites in proteins

    Science.gov (United States)

    Shelling, Judith G.; Bjornson, Michele E.; Hodges, Robert S.; Taneja, Ashok K.; Sykes, Brian D.

    1H nuclear magnetic resonance has been employed to study the binding of Nα-acetyl- L-aspartic acid and Nα-acetyl- L-aspartyl- L-glycyl- L-aspartylamide to the series of six lanthanide ions Dy 3+ through Lu 3+. Values for the dissociation constants and the maximum lanthanide-induced shifts were obtained by fitting the titration data for each metal ion to appropriate binding curves. The shifts were separated into contact and dipolar terms without prior knowledge of the symmetry of the complex or the orientation of the principle axis system of the magnetic susceptibility tensor. The results indicate the contact shifts in 1H NMR are not always negligible, and that Yb 3+ appears to be the best calcium analog for structural studies when the contact interaction is significant.

  5. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  6. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    At the Kennedy Centre for Phenylketonuria, Denmark, large neutral amino acids (LNAAs) are being used to treat adult and adolescent patients who are nonadherent to dietary treatment for phenylketonuria (PKU). At the start of treatment, a patient must undergo dietary analysis and regular blood...... sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  7. Microbial degradation of poly(amino acid)s.

    Science.gov (United States)

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  8. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...

  9. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    Science.gov (United States)

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  10. Amino Acid Formation on Interstellar Dust Particles

    Science.gov (United States)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  11. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  12. Dietary Supplements and Sports Performance: Amino Acids

    Directory of Open Access Journals (Sweden)

    Williams Melvin

    2005-12-01

    Full Text Available Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations. The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  13. [Sublicons containing amino acids and nucleotides].

    Science.gov (United States)

    Kaĭmakov, E A

    1979-01-01

    Sublicons have been obtained. Sublicons are threadlike structures appearing during sublimation of frozen solutions of small concentrations, containing racemate mixture of amino acids and nucleotides. It is suggested that close location of chains and their zonal distribution by the section of helix spire forming sublicon wall, should provide the formation of stereohomogenous and complementary successions of biomonomers of different clases.

  14. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  15. 21 CFR 172.320 - Amino acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives §...

  16. X-ray studies of crystalline complexes involving amino acids and peptides. XLIV. Invariant features of supramolecular association and chiral effects in the complexes of arginine and lysine with tartaric acid.

    Science.gov (United States)

    Selvaraj, M; Thamotharan, S; Roy, Siddhartha; Vijayan, M

    2007-06-01

    The tartaric acid complexes with arginine and lysine exhibit two stoichiometries depending upon the ionization state of the anion. The structures reported here are DL-argininium DL-hydrogen tartrate, bis(L-argininium) L-tartrate, bis(DL-lysinium) DL-tartrate monohydrate, L-lysinium D-hydrogen tartrate and L-lysinium L-hydrogen tartrate. During crystallization, L-lysine preferentially interacts with D-tartaric acid to form a complex when DL-tartaric acid is used in the experiment. The anions and the cations aggregate into separate alternating layers in four of the five complexes. In bis(L-argininium) L-tartrate, the amino acid layers are interconnected by individual tartrate ions which do not interact among themselves. The aggregation of argininium ions in the DL- and the L-arginine complexes is remarkably similar, which is in turn similar to those observed in other dicarboxylic acid complexes of arginine. Thus, argininium ions have a tendency to assume similar patterns of aggregation, which are largely unaffected by a change in the chemistry of partner molecules such as the introduction of hydroxyl groups or a change in chirality or stoichiometry. On the contrary, the lysinium ions exhibit fundamentally different aggregation patterns in the DL-DL complexes on the one hand and L-D and L-L complexes on the other. Interestingly, the pattern in the L-D complex is similar to that in the L-L complex. The lysinium ions in the DL-DL complex exhibit an aggregation pattern similar to those observed in the DL-lysine complexes involving other dicarboxylic acids. Thus, the effect of change in the chirality of a subset of the component complexes could be profound or marginal, in an unpredictable manner. The relevant crystal structures appear to indicate that the preference of L-lysine for D-tartaric acid is perhaps caused by chiral discrimination resulting from the amplification of a small energy difference.

  17. Amino acid quality indices of the leaves of Clerodendrum volubile

    Directory of Open Access Journals (Sweden)

    Ochuko Lucky Erukainure

    2016-04-01

    Full Text Available Objective: To evaluate the amino acid profile and quality indices of Clerodendrum volubile (C. volubile leaves. Methods: Dried leaves of C. volubile were blended, defatted and subjected to amino acid analysis using the technicon sequential multi-sample amino acid analyzer. The amino acid quality indices which covers for chemical score, essential amino acid index, nutritional index, true digestibility, protein digestibility corrected amino acid score, and digestible indispensable amino acid score were evaluated using standard formulas. Results: Amino acid analysis revealed glutamic acid to have the highest concentration, with cysteine having the least. Aspartic acid had the highest chemical score, this was followed by glycine, histidine and arginine, respectively. The least scores were observed in serine and methionine. Glutamic acid had the highest value for true digestibility and protein digestibility corrected amino acid score, with the least observed in cysteine. Digestible indispensable amino acid score evaluation showed histidine to have the highest value for infants (birth to 6 months, threonine for children (6 months to 3 years, while isoleucine was observed to have the highest value for older children, adolescents and adults. The essential amino acid index value was less than 4, while nutritional index value was less than 0.5. Conclusions: These results indicated the leaves of C. volubile as a potential source of amino acids in the human diet as portrayed by its amino acids profile and qualities.

  18. Reasons for the occurrence of the twenty coded protein amino acids

    Science.gov (United States)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  19. Microbial Production of Amino Acid-Related Compounds.

    Science.gov (United States)

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  20. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    Science.gov (United States)

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment.

  1. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    Science.gov (United States)

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  2. Recent advances in amino acid production by microbial cells.

    Science.gov (United States)

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  3. Biosynthesis of 'essential' amino acids by scleractinian corals.

    Science.gov (United States)

    Fitzgerald, L M; Szmant, A M

    1997-02-15

    Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa.

  4. Intermolecular Vibrations of Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  5. Direct amino acid analyses of mozzarella cheese.

    Science.gov (United States)

    Hoskins, M N

    1985-12-01

    The amino acid content of mozzarella (low moisture, part skim milk) and asadero cheeses was determined by the column chromatographic method. Data from the direct analyses of the mozzarella cheeses were compared with the calculated amino acid composition reported in tables in Agriculture Handbook No. 8-1. Phenylalanine and tyrosine contents were found to be higher in the direct analyses than in the calculated data in Handbook No. 8-1 (1.390 gm and 1.127 gm for phenylalanine, and 1.493 gm and 1.249 gm for tyrosine per 100 gm edible portion, respectively). That is of particular concern in the dietary management of phenylketonuria, in which accuracy in computing levels of phenylalanine and tyrosine is essential.

  6. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz;

    2015-01-01

    containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller......In the production of marinated herring, nearly one ton of acidic saline marinade is produced per 1.5 tons herring fillet. This spent marinade contains highly valuable compounds such as proteins and amino acids. Membranes are suited to recover these substances. In this work, six membrane stages...... are employed: microfiltration (MF) (0.2 lm), ultrafiltration (UF) (50, 20, 10 and 1 kDa) and nanofiltration (NF). The most promising stages are 50 kDa UF and NF based on SDS–PAGE analyses and total amino acid concentration. The 50 kDa stage produces a protein concentrate (>17 kDa). NF produces a retentate...

  7. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  8. Alimentary proteins, amino acids and cholesterolemia.

    Science.gov (United States)

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  9. A Green Synthesis of Diisopropyl Phosphoryl Amino Acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.

  10. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  11. Synthesis of peptides using tert-butyloxycarbonyl (Boc) as the α-amino protection group

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Armishaw, Christopher J; Strømgaard, Kristian

    2013-01-01

    The use of the tert-butyloxycarbonyl (Boc) as the Nα-amino protecting group in peptide synthesis can be advantageous in several cases, such as synthesis of hydrophobic peptides and peptides containing ester and thioester moieties. The primary challenge of using Boc SPPS is the need for treatment ...

  12. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  13. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  14. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  15. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    NARCIS (Netherlands)

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  16. THE D-AMINO ACID CONTENT OF FOODSTUFFS SUBJECTED TO VARIOUS TECHNOLOGICAL PROCEDURES

    Directory of Open Access Journals (Sweden)

    János Csapó

    2000-06-01

    Full Text Available D-amino acids occurring in dietary proteins originate as a consequence of technological intervention while basic materials are being prepared for consumption. Foodstuffs are the most significant sources of D-amino acids, as in the process of cooking or during the various processing procedures used in the food industry dietary proteins undergo racemisation to a greater or lesser degree. Food stores are now selling increasing quantities of foods (such as breakfast cereals, baked potatoes, liquid and powdered infant foods, meat substitutes and other supplements which in some cases contain substantial quantities of D-amino acids, which in turn possess characteristics harmful with respect to digestion and health. Alkali treatment catalyses the racemisation of optically active amino acids. The degree of racemisation undergone varies from protein to protein, but the relative order of the degree of racemisation of the individual amino acids within proteins shows a high level of similarity. The principal factors influencing racemisation are the pH of the medium, heat treatment, the duration of the application of alkaline treatment and the structure of the respective amino acids. D-amino acids formed in the course of treatment with alkalis or heat give rise to a deterioration in quality and reduce the extent to which food thus treated can be used safely. The presence of D-amino acids in proteins leads to a decrease in digestibility and the availability of the other amino acids. This results in a reduction in the quantities of the L-enantiomers of the essential amino acids, as the peptide bonds cannot split in the normal way. Some D-amino acids can exert an isomer-toxic effect and have the capacity to give rise to changes in the biological effect of lysinoalanine.

  17. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  18. Characterization and Diagnostic Value of Amino Acid Side Chain Neutral Losses Following Electron-Transfer Dissociation

    Science.gov (United States)

    Xia, Qiangwei; Lee, M. Violet; Rose, Christopher M.; Marsh, Alyce J.; Hubler, Shane L.; Wenger, Craig D.; Coon, Joshua J.

    2011-02-01

    Using a large set of high mass accuracy and resolution ETD tandem mass spectra, we characterized ETD-induced neutral losses. From these data we deduced the chemical formula for 20 of these losses. Many of them have been previously observed in electron-capture dissociation (ECD) spectra, such as losses of the side chains of arginine, aspartic acid, glutamic acid, glutamine, asparagine, leucine, histidine, and carbamidomethylated cysteine residues. With this information, we examined the diagnostic value of these amino acid-specific losses. Among 1285 peptide-spectrum matches, 92.5% have agreement between neutral loss-derived peptide amino acid composition and the peptide sequences. Moreover, we show that peptides can be uniquely identified by using only the accurate precursor mass and amino acid composition based on neutral losses; the median number of sequence candidates from an accurate mass query is reduced from 21 to 8 by adding side chain loss information. Besides increasing confidence in peptide identification, our findings suggest the potential use of these diagnostic losses in ETD spectra to improve false discovery rate estimation and to enhance the performance of scoring functions in database search algorithms.

  19. Neighbor preferences of amino acids and context-dependent effects of amino acid substitutions in human, mouse, and dog.

    Science.gov (United States)

    Fu, Mingchuan; Huang, Zhuoran; Mao, Yuanhui; Tao, Shiheng

    2014-09-10

    Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  20. Neighbor Preferences of Amino Acids and Context-Dependent Effects of Amino Acid Substitutions in Human, Mouse, and Dog

    Directory of Open Access Journals (Sweden)

    Mingchuan Fu

    2014-09-01

    Full Text Available Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  1. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P whey ultra filtered fraction (UFTW proteins.

  2. Homochiral preference in peptide synthesis in ribosome: role of amino terminal, peptidyl terminal, and U2620.

    Science.gov (United States)

    Thirumoorthy, Krishnan; Nandi, Nilashis

    2007-08-23

    Experimental studies have shown that peptide synthesis in ribosome exhibits a homochiral preference. We present, for the first time, an analysis of the origin of the phenomenon using hybrid quantum chemical studies based on a model of peptidyl transferase center from the crystal structure of the ribosomal part of Haloarcula marismortui. The study quantitatively shows that the observed homochiral preference is due to the difference in the nonbonded interaction between amino acids at the A- and P-terminals as well as due to the difference in interaction with the U2620 residue. A major part of the discrimination comes from the variation of nonbonded interaction of rotating A-terminal during the approach of the former toward the P-terminal. The difference indicates that, during the rotatory motion between A- and P-terminals for the proximal positioning of the reactant for reaction to occur, the interaction for a L-L pair is far less repulsive compared to the same process for a D-L pair. The activation barriers for L-L and D-L pairs of the neutral state of phenylalanine leading to corresponding dipeptides are also compared. The corresponding difference in rate constants is 40-fold. The study provides an understanding of how preferred addition of L-L pairs of amino acids rather than D-L pairs leads to retention of homochirality in peptides.

  3. 不同氨基酸组成的二肽对羊体外瘤胃发酵特性的影响%Di-Peptids Consisting of Different Amino Acids Affect Rumen Fermentation Characteristics of Goats in Vitro

    Institute of Scientific and Technical Information of China (English)

    殷云浩; 薛白; 阎天海; 王之盛; 宋良荣

    2012-01-01

    本试验旨在探讨饲粮中添加不同氨基酸组成的二肽对羊体外瘤胃发酵特性的影响.以4只装有永久性瘤胃瘘管的健康南江黄羊作为瘤胃液供体,采用单因素试验设计,共5个处理,对照组采用基础培养底物,试验组在基础培养底物中分别添加2%的亮氨酸-色氨酸(LeuTrp)、缬氨酸-蛋氨酸(Val-Met)、酪氨酸-丙氨酸(Tyr-Ala)和苯丙氨酸-缬氨酸(Phe-Val).培养后2、4、8、12、24 h,测定培养液pH、氨态氮(NH3-N)浓度、挥发性脂肪酸(VFA)含量以及微生物蛋白质(MCP)产量.结果表明:各时间点Val-Met组培养液pH低于其他各组,除24 h外其他时间点均差异显著(P<0.05);与对照组相比,试验组总挥发性脂肪酸(TVFA)浓度和MCP产量均显著提高(P<0.05),NH3-N浓度以及乙酸/丙酸均显著降低(P<0.05);Val-Met 组TVFA浓度和MCP产量显著高于其他试验组(P<0.05),NH3-N浓度在一定程度上(P>0.05)或显著(P<0.05)低于其他试验组,另外2、4和12 h时Val-Met组的乙酸/丙酸也显著低于其他试验组(P<0.05).结果提示,饲粮中添加二肽有利于瘤胃微生物的发酵,提高VFA含量和MCP产量,降低NH3-N浓度以及乙酸/丙酸,本试验条件下,以添加2% Val-Met效果最好.%This experiment was conducted to explore the effects of supplementation of di-peptides consisting of different amino acids in diet on in vitro fermentation characteristics of goats. Four healthy Nanjiang brown goats with permanent rumen fistula were selected as donating animals for rumen fluid, and a single-factor design was applied. There were five treatments, the basal culture medium was used in the control group, and the basal culture mediums supplemented with different di-peptides (Leu-Trp, Val-Met, Tyr-Ala and Phe-Val) at 2% were used in experimental groups. After cultured for 2 , 4, 8, 12 and 24 h, rumen fluid pH, ammonia nitrogen (NH3-N) concentration, volatile fatty acids (VFA) contents and microbial protein

  4. Enzymatic Synthesis of Dipeptide Derivatives Containing Noncoded Amino Acids in Organic Solvents

    Institute of Scientific and Technical Information of China (English)

    YANG,Hong(杨洪); ZHOU,Chuang(周闯); TIAN,Gui-Ling(田桂玲); YE,Yun-Hua(叶蕴华)

    2002-01-01

    A series of dipeptide derivatives containing non-coded amino acis, N-Boc-4-X-Phe-Ala-NHNHNHPh (X= Cl, Br, I, NO2),were synthesized by using thermoase in organic solvents. The physical data were consistent with the same samples prepared by 3-( diethoxyphosphoryloxy)-1, 2, 3-benzotriazin-4 (3H)-one (DEPBT). Influence of different substituted groups of the non-coded amino acids and different organic solvents on the enzymatic peptide synthesis was studied.

  5. [Bound amino acids in local strains of Trichomonas vaginalis].

    Science.gov (United States)

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  6. 15种氨基酸随机肽库的小盒式DNA编码文库的构建%Construction of a DNA Library in Small Cassette Encoding Random Peptide Consisting of 15 Amino Acids

    Institute of Scientific and Technical Information of China (English)

    卢明锋; 康寿凯; 张月杰; 张红雨

    2012-01-01

    采用小盒式DNA编码文库的构建策略,选取在进化上可能起源较早的15种氨基酸,按照其简并密码子合成了一个为10个随机氨基酸编码的小盒式DNA模板,经过连续3轮的PCR扩增、酶切及连接的小盒式文库组装过程,成功构建了一个文库容量达1.31×1012/ml,随机编码区长达97个氨基酸的小盒式DNA编码文库.%Using a small cassette DNA encoding library construction strategies, DNA template encoding 10 random amino acids was synthesized according to degenerate codon of a 15 kinds amino acids set. After three consecutive small cassette library assembly process including PCR amplification, digestion and connection, a small cassette DNA encoding library which a random coding region with length up to 97 amino acids was successfully constructed, and library capacity was 1.31×1012 /ml.

  7. An introduction to peptide nucleic acid

    DEFF Research Database (Denmark)

    Nielsen, P E; Egholm, M

    1999-01-01

    Peptide Nucleic Acid (PNA) is a powerful new biomolecular tool with a wide range of important applications. PNA mimics the behaviour of DNA and binds complementary nucleic acid strands. The unique chemical, physical and biological properties of PNA have been exploited to produce powerful...

  8. Characterization of amino acids using Raman spectroscopy

    Science.gov (United States)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  9. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  10. Amino acid sequences of neuropeptides in the sinus gland of the land crab Cardisoma carnifex: a novel neuropeptide proteolysis site.

    Science.gov (United States)

    Newcomb, R W

    1987-08-01

    The sinus gland is a major neurosecretory structure in Crustacea. Five peptides, labeled C, D, E, F, and I, isolated from the sinus gland of the land crab have been hypothesized to arise from the incomplete proteolysis at two internal sites on a single biosynthetic intermediate peptide "H", based on amino acid composition additivities and pulse-chase radiolabeling studies. The presence of only a single major precursor for the sinus gland peptides implies that peptide H may be synthesized on a common precursor with crustacean hyperglycemic hormone forms, "J" and "L," and a peptide, "K," similar to peptides with molt inhibiting activity. Here I report amino acid sequences of these peptides. The amino terminal sequence of the parent peptide, H, (and the homologous fragments) proved refractory to Edman degradation. Data from amino acid analysis and carboxypeptidase digestion of the naturally occurring fragments and of fragments produced by endopeptidase digestion were used together with Edman degradation to obtain the sequences. Amino acid analysis of fragments of the naturally occurring "overlap" peptides (those produced by internal cleavage at one site on H) was used to obtain the sequences across the cleavage sites. The amino acid sequence of the land crab peptide H is Arg-Ser-Ala-Asp-Gly-Phe-Gly-Arg-Met-Glu-Ser-Leu-Leu-Thr-Ser-Leu-Arg-Gly- Ser-Ala-Glu- Ser-Pro-Ala-Ala-Leu-Gly-Glu-Ala-Ser-Ala-Ala-His-Pro-Leu-Glu. In vivo cleavage at one site involves excision of arginine from the sequence Leu-Arg-Gly, whereas cleavage at the other site involves excision of serine from the sequence Glu-Ser-Leu. Proteolysis at the latter sequence has not been previously reported in intact secretory granules. The aspartate at position 4 is possibly covalently modified.

  11. The complete amino acid sequence of the basic nuclear protein of bull spermatozoa

    NARCIS (Netherlands)

    Coelingh, J.P.; Monfoort, Cornelis H.; Rozijn, Thomas H.; Gevers Leuven, Jan A.; Schiphof, R.; Steyn-Parvé, Elizabeth P.; Braunitzer, Gerhard; Schrank, Barbara; Ruhfus, Annette

    1972-01-01

    The complete amino acid sequence of the basic nuclear protein of bull spermatozoa has been established. The sequence was partially deduced by characterization of peptides isolated from thermolysine and chymotryptic digests of the reduced and S-aminoethylated protein. The complete sequence of the fir

  12. The Synthesis of cis- and trans-Fused Bicyclic Sugar Amino Acids

    NARCIS (Netherlands)

    Risseeuw, Martijn D.P.; Grotenbreg, Gijsbert M.; Witte, Martin D.; Tuin, Adriaan W.; Leeuwenburgh, Michiel A.; Marel, Gijsbert A. van der; Overkleeft, Herman S.; Overhand, Mark

    2006-01-01

    Four isomeric bicyclic sugar amino acids (SAAs) were prepared from an α-acetylenic-C-glucoside by employing a Petasis olefination and a ring-closing metathesis (RCM) as key steps. The applicability of the resulting SAAs in solid-phase peptide synthesis was demonstrated by the synthesis of a tetrapep

  13. Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides.

    Science.gov (United States)

    Pícha, Jan; Buděšínský, Miloš; Macháčková, Kateřina; Collinsová, Michaela; Jiráček, Jiří

    2017-03-01

    The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: β-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user-friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3-5, 20, 25, 26, 30 and 43-47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

  14. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  15. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  16. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    OpenAIRE

    Csilla Albert; Gabriella Pohn; Katalin Lóki; Szidónia Salamon; Beáta Albert; P. Sára; Z. Mándoki; Jánosné Csapó; Csapó, J.

    2007-01-01

    Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particula...

  17. Cleaving Double-Stranded DNA with Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1997-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  18. Enantiomer labelling, a method for the quantitative analysis of amino acids.

    Science.gov (United States)

    Frank, H; Nicholson, G J; Bayer, E

    1978-12-21

    Enantiomer labelling a method for the quntitative analysis of optically active natural compounds by gas chromatography, involves the use of the unnatural enantiomer as an internal standard. With Chirasil-Val, a chiral stationary phase that is thermally stable up to up to 240 degrees, the enantiomers of amino acids and a variety of other compounds can be separated and quantitated. Incomplete recovery from the sample, incomplete derivatization, hydrolysis and thermal decomposition of the derivative and shifting response factors can be compensated for by adding the unnatural enantiomer. The accuracy of amino acid analysis by enantiomer labelling is equal or superior to that of hitherto known methods. The procedure affords a complete analysis of peptides with respect to both amino acid composition and the optical purity of each amino acid.

  19. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    Directory of Open Access Journals (Sweden)

    Dwyer Donard S

    2005-08-01

    Full Text Available Abstract Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1 different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2 polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3 inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone.

  20. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing

    Directory of Open Access Journals (Sweden)

    A.E. El Hakim

    2015-12-01

    Full Text Available Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The tryptic peptides of the two isoforms share high sequence homology with other snake venom l-amino acid oxidases. The optimal pH and temperature values of Cc-LAAOI and Cc-LAAOII were 7.8, 50 °C and 7, 60 °C, respectively. The two isoenzymes were thermally stable up to 70 °C. The Km and Vmax values were 0.67 mM, 0.135 μmol/min for LAAOI and 0.82 mM, 0.087 μmol/min for LAAOII. Both isoenzymes displayed high catalytic preference to long-chain, hydrophobic and aromatic amino acids. The Mn2+ ion markedly increased the LAAO activity for both purified isoforms, while Na+, K+, Ca2+, Mg2+ and Ba2+ ions showed a non-significant increase in the enzymatic activity of both isoforms. Furthermore, Zn2+, Ni2+, Co2+, Cu2+ and AL3+ ions markedly inhibited the LAAOI and LAAOII activities. l-Cysteine and reduced glutathione completely inhibited the LAAO activity of both isoenzymes, whereas, β-mercaptoethanol, O-phenanthroline and PMSF completely inhibited the enzymatic activity of LAAOII. Furthermore, iodoacitic acid inhibited the enzymatic activity of LAAOII by 46% and had no effect on the LAAOI activity.

  1. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid.

    Science.gov (United States)

    Hou, Tao; Liu, Weiwei; Shi, Wen; Ma, Zhili; He, Hui

    2017-03-15

    The structure of the desalted duck egg white peptides-calcium chelate was characterized by fluorescence spectroscopy, fourier transform infrared spectroscopy, and dynamic light scattering. Characterization results showed structural folding and aggregation of amino acids or oligopeptides during the chelation process. Desalted duck egg white peptides enhanced the calcium uptake in the presence of oxalate, phosphate and zinc ions in Caco-2 monolayers. Animal model indicated that desalted duck egg white peptides effectively enhanced the mineral absorption and counteracted the deleterious effects of phytic acid. These findings suggested that desalted duck egg white peptides might promote calcium uptake in three pathways: 1) desalted duck egg white peptides bind with calcium to form soluble chelate and avoid precipitate; 2) the chelate is absorbed as small peptides by enterocyte; and 3) desalted duck egg white peptides regulate the proliferation and differentiation of enterocytes through the interaction with transient receptor potential vanilloid 6 calcium channel.

  2. Synthesis, structure, and biological applications of α-fluorinated β-amino acids and derivatives.

    Science.gov (United States)

    March, Taryn L; Johnston, Martin R; Duggan, Peter J; Gardiner, James

    2012-11-01

    This review gives a broad overview of the state of play with respect to the synthesis, conformational properties, and biological activity of α-fluorinated β-amino acids and derivatives. General methods are described for the preparation of monosubstituted α-fluoro-β-amino acids (Scheme 1). Nucleophilic methods for the introduction of fluorine predominantly involve the reaction of DAST with alcohols derived from α-amino acids, whereas electrophilic sources of fluorine such as NFSI have been used in conjunction with Arndt-Eistert homologation, conjugate addition or organocatalyzed Mannich reactions. α,α-Difluoro-β-amino acids have also been prepared using DAST; however, this area of synthesis is largely dominated by the use of difluorinated Reformatsky reagents to introduce the difluoro ester functionality (Scheme 9). α-Fluoro-β-amino acids and derivatives analyzed by X-ray crystal and NMR solution techniques are found to adopt preferred conformations which are thought to result from stereoelectronic effects associated with F located close to amines, amides, and esters (Figs. 2-6). α-Fluoro amide and β-fluoro ethylamide/amine effects can influence the secondary structure of α-fluoro-β-amino acid-containing derivatives including peptides and peptidomimetics (Figs. 7-9). α-Fluoro-β-amino acids are also components of a diverse range of bioactive anticancer (e.g., 5-fluorouracil), antifungal, and antiinsomnia agents as well as protease inhibitors where such fluorinated analogs have shown increased potency and spectrum of activity.

  3. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    Science.gov (United States)

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  4. Screening, identification and significance of the phage-display random 7 amino acid peptide specific to the sera of patients with systemic lupus erythematosus%系统性红斑狼疮患者血清特异性的噬菌体7肽的筛选、鉴定及其意义

    Institute of Scientific and Technical Information of China (English)

    王垚; 钟照华; 张凤民; 苏丽菊; 李辉; 刘彦虹; 翟爱霞; 考文萍; 吴静; 李文辉; 胡云龙

    2010-01-01

    Objective To screen and identify the phage-display random 7 amino acid peptide specific to the systemic lupus erythematosus(SLE) and analyze its practical significance. Methods Using the phage random 7 peptide library screening, the SLE specific phage clones are obtained after binding with the mixture of sera from 30 SLE patients and 30 normal controls as ligand respectively. Then the Dot-ELISA is used to identify the SLE specific phage clones reactive to sera of the SLE patients and normal controls individually. Finally the identified phage-display random 7 amino acid peptides are sequenced and it's homology with the antigenic epitope of human being and other are also analyzed. Results Total 12 of the phage-display random 7 amino acid peptide are obtained by phage peptide library screening and the Dot-ELISA identification. Sequence analysis shows that the identified phage-display random 7 amino acid peptide epitope have homology with E. coli, Salmonella and human immunodeficiency virus, but not with that of human being. Conclusion SLE-specific peptides screened by phage random peptide library maybe used to diagnosis the SLE. Meanwhile, the antibodies in SLE patients which are combined with the Pathogen epitope, suggest that SLE maybe relate to pathogen infection.%目的 筛选和鉴定与系统性红斑狼疮(systemic lupus erythematosus,SLE)患者血清特异性结合的噬菌体7肽,并分析其实际意义.方法 分别选取正常人及SLE患者血清各30例,先后用正常人混合血清及SLE患者混合血清作为筛选配基,对噬菌体随机7肽库进行亲和筛选、扩增,获得SLE血清特异性结合的噬菌体克隆,并用患者混合血清进行Dot-ELISA实验鉴定获得的噬菌体克隆,进而分别用SLE患者及正常人血清各12例进一步鉴定阳性噬菌体的混合克隆,确定阳性噬菌体克隆与个体血清之间的结合情况;并对最终鉴定的噬菌体克隆进行测序与比对分析.结果 筛选到与SLE患者混合

  5. Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids.

    Science.gov (United States)

    Shikata, Nahoko; Maki, Yukihiro; Nakatsui, Masahiko; Mori, Masato; Noguchi, Yasushi; Yoshida, Shintaro; Takahashi, Michio; Kondo, Nobuo; Okamoto, Masahiro

    2010-01-01

    The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.

  6. Prenyl sulfates as alkylating reagents for mercapto amino acids.

    Science.gov (United States)

    Maltsev, Sergey; Sizova, Olga; Utkina, Natalia; Shibaev, Vladimir; Chojnacki, Tadeusz; Jankowski, Wieslaw; Swiezewska, Ewa

    2008-01-01

    A new methodology for prenylation of thiol compounds has been developed. The approach is based on the use of prenyl sulfates as new reagents for S-prenylation of benzenethiol and cysteamine in aqueous systems. The C(10)-prenols geraniol and nerol that differ in the configuration (E or Z, correspondingly) of the alpha-isoprene unit were efficiently O-sulfated in the presence of a pyridine-SO(3') complex. The obtained geranyl and neryl sulfates were tested as alkylating agents. These compounds were chosen to reveal the influence of the alpha-isoprene unit configuration on their alkylation (prenylation) ability. S-Geranyl cysteine was prepared to demonstrate the applicability of this method for prenylation of peptides containing mercapto amino acids.

  7. Preparation and Properties of Vesicles from Condensable Amphiphilic Amino Acids

    Institute of Scientific and Technical Information of China (English)

    熊向源; 何巍; 李子臣; 李福绵

    2001-01-01

    Three double-chain amphiphiles with amino acid groups as hydrphilic moiety were synthesized. These amphiphiles can be easily dispersed in buffer solution to form transparent dispersion. Examination of the dispersion by transmission electron microscopy (TEM) showed the formation of stable vesicular aggregates, which was also confirmed by the ability to encapsulate water-soluble dyes. Since amino acid groups are located on the surface of the vesicles, water-soluble carbodiimide can induce the condensation of these groups to form peptide. The phase transition temperatures of these vesicles were estimated by differential scanning calorimetry (DSC), and a decrease of phase transition temperature was observed after polycondensation due to the disturbance of the ordered arrangement of the hydrophobic chains. The leakage rate of the vesicles before and after condensation was studied by monitoring the increase of fluorescence intensity of water-soluble dye. These vesicles belong to the least permeable ones and the leakage rate can be controlled by varying the degree of condensation or the temperature.

  8. Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: assessing the potential for meteoritic contamination.

    Science.gov (United States)

    Elsila, Jamie E; Callahan, Michael P; Glavin, Daniel P; Dworkin, Jason P; Brückner, Hans

    2011-03-01

    The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.

  9. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  10. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    Science.gov (United States)

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  11. Biochemical Constraints in a Protobiotic Earth Devoid of Basic Amino Acids: The "BAA(-) World"

    Science.gov (United States)

    McDonald, Gene D.; Storrie-Lombardi, Michael C.

    2010-12-01

    It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.

  12. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes.

    Science.gov (United States)

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H

    2007-05-01

    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  13. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  14. Synthesis and conformational analysis of hybrid α/β-dipeptides incorporating S-glycosyl-β(2,2)-amino acids.

    Science.gov (United States)

    García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2015-01-12

    We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit.

  15. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    Science.gov (United States)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  16. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  17. Twenty natural amino acids identification by a photochromic sensor chip.

    Science.gov (United States)

    Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin

    2015-01-20

    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.

  18. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  19. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  20. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  1. Diversity of amino acids in a typical chernozem of Moldova

    Science.gov (United States)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  2. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  3. Preference for and learning of amino acids in larval Drosophila.

    Science.gov (United States)

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  4. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  5. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  6. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  7. SIFT: predicting amino acid changes that affect protein function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2003-01-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in...

  8. A new synthetic protocol for coumarin amino acid

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2013-02-01

    Full Text Available The hydrochloride of the racemic amino acid (2-(7-hydroxycoumarin-4-ylethylglycine, which can serve as a fluorescent probe in proteins, and two halogen derivatives of it, were synthesized by using a new synthetic protocol in five steps. It is less costly and relatively easy to prepare this kind of fluorescent amino acid with the new synthetic method. Furthermore, it can be applied to synthesize other derivatives of the coumarin amino acid with some specific properties.

  9. A Novel Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Hui; LI Shuo; XU Pen-gFei

    2003-01-01

    @@ β-hydroxy-α-amino acids constitute an important class of compounds as naturally occurring amino acids and as components of many complex natural products possessing a wide range of biological activities. [1] As a consequence of the essential role played by these amino acids in the biological systems and their utility as synthetic building blocks, a number of useful strategies have been devised for their preparation. [2

  10. Diauxic growth of Geotrichum candidum and Penicillium camembertii on amino acids and glucose

    Directory of Open Access Journals (Sweden)

    M. Aziza

    2012-06-01

    Full Text Available The purpose of this work was to examine physiological differences between the yeast Geotrichum candidum and the mould Penicillium camembertii, organisms involved in the industrial process of cheese ripening. Three groups of amino acids had previously been characterized, based on their carbon assimilation and dissimilation by the two fungal species. For both of them, a diauxic growth phase had been shown for a group of amino acids, which however had not been examined in light of physiological differences between the two microorganisms. In this work, the higher level of enzymatic activities of P. camembertii if compared to G. candidum was confirmed since a continuous and sequential use of both carbon substrates, glucose and arginine, was recorded during P. camembertii culture; while after glucose depletion, a clear stationary phase was recorded before the assimilation of the considered amino acid as both carbon and nitrogen sources by G. candidum. This behaviour was confirmed for the three amino acids tested, i.e., arginine, proline and glutamic acid. Contrarily, during the two growth phases, on glucose and the test amino acid, respectively, higher growth rates were recorded for G. candidum compared to P. camembertii, showing higher substrate utilisation efficiency by G. candidum. Improving the knowledge regarding the metabolization of amino acids might be helpful in designing strategies aiming at improving processes such as cheese ripening. The work should be followed up by similar works using small peptides.

  11. Amino Acid transport in protoplasts isolated from soybean leaves.

    Science.gov (United States)

    Vernooy, C D; Lin, W

    1986-05-01

    We isolated large quantities of mesophyll protoplasts from source and sink leaves of soybean plants and examined them for amino acid uptake. Accumulation of amino acids in isolated protoplasts was linear for at least 40 minutes. Uptake kinetics revealed the presence of both saturable and linear components. Increasing external pH decreases the uptake. The uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone at 15 micromolar inhibited and fusicoccin at 10 micromolar stimulated amino acid uptake. Our data are consistent with a proton-cotransport mechanism for the uptake of l-glutamine and alpha-amino isobutyric acid into soybean mesophyll cells.

  12. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  13. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  14. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  15. Synthesis of novel fullerene α-amino acid conjugates

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  16. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  17. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  18. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, Katarzyna; Davies, Michael J.

    2017-01-01

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues...... in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine...

  19. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, Robert F [ORNL; Park, Dr Seung Bum [Seoul National University

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  20. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    Science.gov (United States)

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  1. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Csilla Albert

    2007-06-01

    Full Text Available Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particularly significant growth in the microorganism number range from 1.5x106 to 2.9x106. Based on analysis of curds and cheese samples produced using different technologies we have come to the conclusion that for fresh dairy products and for those matured over a short time there was a close relation between total microorganism number and free D-amino acid and free L-amino acid contents. At the same time it was found that the ratio of the enantiomers was not affected by the total microorganism number. For dairy products, however, where amino acid production capability of the microbial cultures considerably exceeds, production of microorganisms originally present in the milk raw material, free amino acid contents of the milk product (both D- and L-enantiomers seem to be independent of the composition of milk raw material.

  2. Vibrational and photoionization spectroscopy of biomolecules: aliphatic amino acid structures.

    Science.gov (United States)

    Hu, Yongjun; Bernstein, Elliot R

    2008-04-28

    The aliphatic amino acids glycine, valine, leucine, and isoleucine are thermally placed into the gas phase and expanded into a vacuum system for access by time of flight mass spectroscopy and infrared (IR) spectroscopy in the energy range of 2500-4000 cm(-1) (CH, NH, OH, and stretching vibrations). The isolated neutral amino acids are ionized by a single photon of 10.5 eV energy (118 nm), which exceeds by less than 2 eV their reported ionization thresholds. As has been reported for many hydrogen bonded acid-base systems (e.g., water, ammonia, alcohol, acid clusters, and acid molecules), the amino acids undergo a structural rearrangement in the ion state (e.g., in simplest form, a proton transfer) that imparts sufficient excess vibrational energy to the ion to completely fragment it. No parent ions are observed. If the neutral ground state amino acids are exposed to IR radiation prior to ionization, an IR spectrum of the individual isomers for each amino acid can be determined by observation of the ion intensity of the different fragment mass channels. Both the IR spectrum and fragmentation patterns for individual isomers can be qualitatively identified and related to a particular isomer in each instance. Thus, each fragment ion detected presents an IR spectrum of its particular parent amino acid isomer. In some instances, the absorption of IR radiation by the neutral amino acid parent isomer increases a particular fragmentation mass channel intensity, while other fragmentation mass channel intensities decrease. This phenomenon can be rationalized by considering that with added energy in the molecule, the fragmentation channel populations can be modulated by the added vibrational energy in the rearranged ions. This observation also suggests that the IR absorption does not induce isomerization in the ground electronic state of these amino acids. These data are consistent with theoretical predictions for isolated amino acid secondary structures and can be related to

  3. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  4. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  5. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    Science.gov (United States)

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  6. Synthesis of gold nanoparticles using various amino acids.

    Science.gov (United States)

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  7. Free amino acids in botanicals and botanical preparations.

    Science.gov (United States)

    Carratù, B; Boniglia, C; Giammarioli, S; Mosca, M; Sanzini, E

    2008-06-01

    Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.

  8. Reducing Renal Uptake of {sup 177}Lu Labeled CCK Derivative using Basic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung; Lim, Jaecheong; Joh, Eunha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Radiolabeled peptides have been designed to target the relative receptors overespressed in tumor cells, such as integrin αvβ3, gastrin-releasing peptide receptor (GRPR), melanocortin-1 receptor (MC1-R), glucagon-like peptide-a receptor (GLP-1R), and cholecystokinin (CCK) receptor. Most of these peptides are eliminated from the body via the kidney and are partly reabsorbed in the proximal tubular cells. However, the high renal uptake of the radiolabeled peptides may lead to renal toxicity. In this study we investigated various amino acid solutions to reduce the renal uptake of {sup 177}Lu-DOTA-CCK derivative. Renal uptake of {sup 177}Lu-DOTA-CCK derivative is effectively reduced by the administration of positively charged amino acids. The administration of 12 mg of L-lysine was as effective in reducing the renal uptake as 6 mg of lysine and 6 mg of arginine combinations. Further studies will be performed to identify the most potent inhibitor of renal reuptake of radiolabeled peptides and minimize the chance of unwanted side effects.

  9. The Path of Carbon in Photosynthesis II. Amino Acids

    Science.gov (United States)

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  10. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89

    OpenAIRE

    Lei Yuwen; Feng-Li Zhang; Qi-Hua Chen; Shuang-Jun Lin; Yi-Lei Zhao; Zhi-Yong Li

    2013-01-01

    For biosynthesis of bacillamide C by Bacillus atrophaeus C89 associated with South China sea sponge Dysidea avara, it is hypothesized that decarboxylation from L-tryptophan to tryptamine could be performed before amidation by the downstream aromatic L-amino acid decarboxylase (AADC) to the non-ribosomal peptide synthetases (NRPS) gene cluster for biosynthesizing bacillamide C. The structural analysis of decarboxylases' known substrates in KEGG database and alignment analysis of amino acid seq...

  11. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  12. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  13. Representation of protein-sequence information by amino acid subalphabets

    DEFF Research Database (Denmark)

    Andersen, C.A.F.; Brunak, Søren

    2004-01-01

    -sequence information, using machine learning strategies, where the primary goal is the discovery of novel powerful representations for use in AI techniques. In the case of proteins and the 20 different amino acids they typically contain, it is also a secondary goal to discover how the current selection of amino acids...

  14. Origin of Homochirality of Amino Acids in the Biosphere

    Directory of Open Access Journals (Sweden)

    Shosuke Kojo

    2010-05-01

    Full Text Available Discussions are made concerning realistic mechanisms for the origin of L-amino acids in the biosphere. As the most plausible mechanism, it is proposed that a mixture of racemic amino acids in the prebiotic sea caused spontaneous and effective optical resolution through self crystallization, even if asymmetric synthesis of a single amino acid has never occurred without the aid of an optically active molecule. This hypothesis is based on recrystallization of a mixture of D,L-amino acids in the presence of excess of D,L-asparagine (Asn. The enantiomeric excess (ee of each amino acid in the resulting crystals indicates that crystallization of co-existing amino acids with the configuration same as that of Asn took place, although it was incidental whether the enrichment occurred in L- or D-amino acids. In addition, the resulting ee was sufficiently high (up to 100% to account for the predominance of L-amino acids on the earth.

  15. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  16. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  17. Amino acid determination in some edible Mexican insects.

    Science.gov (United States)

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  18. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  19. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA)

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  2. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    Science.gov (United States)

    Shao, Qing; Hall, Carol K

    2016-08-09

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  3. Amino acids: metabolism, functions, and nutrition.

    Science.gov (United States)

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  4. Functional amino acids in nutrition and health.

    Science.gov (United States)

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  5. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    Science.gov (United States)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  6. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  7. Adaptive amino acid composition in collagens of parasitic nematodes.

    Science.gov (United States)

    Hughes, Austin L

    2015-04-01

    Amino acid composition was analyzed in the glycine-rich repeat region of 306 collagens belonging to three major families of collagens from both parasitic and free-living nematodes. The collagens of parasitic species showed a tendency toward decreased usage of the hydrophilic residues A, D, and Q and increased usage of the hydrophobic resides I, L, and M; and this trend was seen in parasitic species of both the order Rhabdita and the order Spirurida. The amino acid composition of collagens of parasitic Rhabdita thus tended to resemble those of Spirurida more than that of free-living Rhabdita, suggesting an association between amino acid composition and a parasitic lifestyle. Computer predictions suggested that the more hydrophobic amino acid composition was associated with a reduction of the propensity towards B-cell epitope formation, suggesting that evasion of host immune responses may be a major selective factor responsible for the parasite-specific trend in collagen amino acid composition.

  8. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  9. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  10. Independence divergence-generated binary trees of amino acids.

    Science.gov (United States)

    Tusnády, G E; Tusnády, G; Simon, I

    1995-05-01

    The discovery of the relationship between amino acids is important in terms of the replacement ability, as used in protein engineering homology studies, and gaining a better understanding of the roles which various properties of the residues play in the creation of a unique, stable, 3-D protein structure. Amino acid sequences of proteins edited by evolution are anything but random. The measure of nonrandomness, i.e. the level of editing, can be characterized by an independence divergence value. This parameter is used to generate binary tree relationships between amino acids. The relationships of residues presented in this paper are based on protein building features and not on the physico-chemical characteristics of amino acids. This approach is not biased by the tautology present in all sequence similarity-based relationship studies. The roles which various physico-chemical characteristics play in the determination of the relationships between amino acids are also discussed.

  11. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  12. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  13. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  14. Amino Acid Profile of Some New Vartieties of Oil Seeds

    Directory of Open Access Journals (Sweden)

    Satish Ingale and S.K. Shrivastava

    2011-04-01

    Full Text Available There are large varieties of oil seeds and legumes in India, which are part of traditional food system but whose nutritional and economic values have not been completely determine and are far less exploited for both human and livestock utilization. The objective of this study was to evaluate Sunflower (Helianths annuus LSF-11, Sunflower (Helianths annuus LSF-8, Safflower (Carthamus tinctorius PBNS-12, Safflower (Carthamus tinctorius PBNS-40, and Ground nut (Arachis hypogaea JL-24 seeds with the aim of qualifying and quantifying chemical information that might serve as a guide to exploit its potentials and benefits for human and animal nutrition. The amino acid profile of these oil seed were carried out using standard methods. Amino acid analysis using technical sequential multisampling amino acid analyzer detected all essential and non essential amino acids. The seeds are rich in four amino acids (EAA and NEAA (g/16g N Glutamic acid (5.083, Aspartic acid (3.459, Proline (6.412 and Methionine (3.001%, respectively. The other amino acids compared well with the FAO reference protein, Serine appeared to be the most limiting amino acid percent. Based on results of this study, the lesser known and under-utilized oil seeds, they can be a potential source and energy supplements in livestock feed.

  15. Exporters for Production of Amino Acids and Other Small Molecules.

    Science.gov (United States)

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  16. Elevated amniotic fluid amino acid levels in fetuses with gastroschisis

    Directory of Open Access Journals (Sweden)

    A. Kale

    2006-08-01

    Full Text Available Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological amino acid kit by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer. The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine and non-essential amino acids (alanine, glycine, proline, and tyrosine in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05. A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05. The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.

  17. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  18. Interfering amino terminal peptides and functional implications for heteromeric gap junction formation

    Directory of Open Access Journals (Sweden)

    Richard David Veenstra

    2013-05-01

    Full Text Available Connexin43 (Cx43 is widely expressed in many different tissues of the human body. In cells of some organs, Cx43 is co-expressed with other connexins (Cx, including Cx46 and Cx50 in lens, Cx40 in atrium, Purkinje fibers, and the blood vessel wall, Cx45 in heart, and Cx37 in the ovary. Interactions with the co-expressed connexins may have profound functional implications. The abilities of Cx37, Cx45, Cx46, and Cx50 to function in heteromeric gap junction combinations with Cx43 are well documented. Different studies disagree regarding the ability of Cx43 and Cx40 to produce functional heteromeric gap junctions with each other. We review previous studies regarding the heteromeric interactions of Cx43. The possibility of negative functional interactions between the cytoplasmic pore-forming amino terminal (NT domains of these connexins was assessed using pentameric connexin sequence-specific NT domain (iNT peptides applied to cells expressing homomeric Cx40, Cx37, Cx45, Cx46, and Cx50 gap junctions. A Cx43 iNT peptide corresponding to amino acids 9 to 13 (Ac-KLLDK-NH2 specifically inhibited the electrical coupling of Cx40 gap junctions in a transjunctional (Vj voltage-dependent manner without affecting the function of homologous Cx37, Cx46, Cx50, and Cx45 gap junctions. A Cx40 iNT (Ac-EFLEE-OH peptide counteracted the Vj-dependent block of Cx40 gap junctions, whereas a similarly charged Cx50 iNT (Ac-EEVNE-OH peptide did not, suggesting that these NT domain interactions are not solely based on electrostatics. These data are consistent with functional Cx43 heteromeric gap junction formation with Cx37, Cx45, Cx46, and Cx50 and suggest that Cx40 uniquely experiences functional suppressive interactions with a Cx43 NT domain sequence. These findings present unique functional implications about the heteromeric interactions between Cx43 and Cx40 that may influence cardiac conduction in atrial myocardium and the specialized conduction system.

  19. Equivalent Isopropanol Concentrations of Aromatic Amino Acids Interactions with Lipid Vesicles.

    Science.gov (United States)

    Johnson, Merrell A; Ray, Bruce D; Wassall, Stephen R; Petrache, Horia I

    2015-08-01

    We show that the interaction of aromatic amino acids with lipid bilayers can be characterized by conventional 1D [Formula: see text]H NMR spectroscopy using reference spectra obtained in isopropanol-d8/D[Formula: see text]O solutions. We demonstrate the utility of this method with three different peptides containing tyrosine, tryptophan, or phenylalanine amino acids in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid membranes. In each case, we determine an equivalent isopropanol concentration (EIC) for each hydrogen site of aromatic groups, in essence constructing a map of the chemical environment. These EIC maps provide information on relative affinities of aromatic side chains for either PC or PS bilayers and also inform on amino acid orientation preference when bound to membranes.

  20. Amino acid sequence of anionic peroxidase from the windmill palm tree Trachycarpus fortunei.

    Science.gov (United States)

    Baker, Margaret R; Zhao, Hongwei; Sakharov, Ivan Yu; Li, Qing X

    2014-12-10

    Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications.

  1. Excretion of amino acids by humans during space flight

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (pvaline on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  2. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity.

    Science.gov (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi

    2012-11-01

    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  3. Enantioseparation of Amino Acids by Micelle-Enhanced Ultrafiltration : Experimental and Theoretical Studies of Copper(II) Amino Acid Interactions

    NARCIS (Netherlands)

    Bruin, de T.J.M.

    2000-01-01

    A micelle-enhanced ultrafiltration system, which can potentially be used for large scale separations, has been used to investigate the resolution of amino acid enantiomers. For this purpose amino acid derivatives were synthesized, which in combination with copper(II) ions were used as chiral selecto

  4. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution.

    Science.gov (United States)

    Zeng, Yihang; Cai, Wensheng; Shao, Xueguang

    2015-06-01

    A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion-exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non-negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62-108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.

  5. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  6. Breast milk composition in Ethiopian and Swedish mothers. III. Amino acids and other nitrogenous substances.

    Science.gov (United States)

    Svanberg, U; Gebre-Medhin, M; Ljungqvist, B; Olsson, M

    1977-04-01

    The content of amino acids and other nitrogenous substances was determined in milk samples from Ethiopian and Swedish mothers. The Ethiopian mothers were divided into two groups, one with children having low weight for age and one with children having standard weight for age. All children were in the age range 2 to 5 months, and there were eight in each group. The main findings were as follows: 1) The mean daily milk volumes and total daily nitrogen content in the milk were found to be similar in all three groups. The Swedish group had a significantly lower nitrogen content per milliliter than did the Ethiopian group with low weight for age. 2) The total amino acid composition of the milk was almost identical in the three groups studied except for the tyrosine value, which was significantly lower in the Ethiopian standard group than in the low weight for age group. The composition corresponded well with previous findings. 3) The protein fraction constituted 90 to 92% of the total amino acids, the peptide fraction 4 to 5%, and the free amino acids 5%. 4) The concentrations of free amino acids in milk were lower (2 to 6 times) than in plasma, except for glutamic and aspartic acid. The taurine concentration was much higher in milk than in plasma. Only the urea levels in milk and plasma were significantly correlated. The implications of these findings in child health are discussed.

  7. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.

    Science.gov (United States)

    Carter, Charles W; Wolfenden, Richard

    2016-01-01

    The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology.

  8. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    Science.gov (United States)

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables.

  9. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  10. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    Directory of Open Access Journals (Sweden)

    Akiyoshi Hoshino

    2009-06-01

    Full Text Available Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1 system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source and keto acids (oxylic acid sources. In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin.

  11. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    Science.gov (United States)

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  12. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  13. A one-pot procedure for the preparation of N-9-fluorenylmethyloxycarbonyl-α-amino diazoketones from α-amino acids.

    Science.gov (United States)

    Siciliano, Carlo; De Marco, Rosaria; Guidi, Ludovica Evelin; Spinella, Mariagiovanna; Liguori, Angelo

    2012-12-07

    The study describes a new "one-pot" route to the synthesis of N-9-fluorenylmethyloxycarbonyl (Fmoc) α-amino diazoketones. The procedure was tested on a series of commercially available free or side-chain protected α-amino acids employed as precursors. The conversion into the title compounds was achieved by masking and activating the α-amino acids with a single reagent, namely, 9-fluorenylmethyl chloroformate (Fmoc-Cl). The resulting N-protected mixed anhydrides were reacted with diazomethane to lead to the α-amino diazoketones, which were isolated by flash column chromatography in very good to excellent overall yields. The versatility of the procedure was verified on lipophilic α-amino acids and further demonstrated by the preparation of N-Fmoc-α-amino diazoketones also from α-amino acids containing side-chain masking groups, which are orthogonal to the Fmoc one. The results confirmed that tert-butyloxycarbonyl (Boc), tert-butyl ((t)Bu), and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf), three acid-labile protecting groups mostly adopted in the solution and solid-phase peptide synthesis, are compatible to the adopted reaction conditions. In all cases, the formation of the corresponding C-methyl ester of the starting amino acid was not observed. Moreover, the proposed method respects the chirality of the starting α-amino acids. No racemization occurred when the procedure was applied to the synthesis of the respective N-Fmoc-protected α-amino diazoketones from L-isoleucine and L-threonine and to the preparation of a diastereomeric pair of N-Fmoc-protected dipeptidyl diazoketones.

  14. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  15. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  16. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Science.gov (United States)

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  17. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  18. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  19. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  20. The origin of amino acids in lunar regolith samples

    Science.gov (United States)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  1. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, Philip Douglas [ORNL; Pan, Chongle [ORNL

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  2. A common periodic table of codons and amino acids.

    Science.gov (United States)

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  3. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  4. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  5. SIFT: Predicting amino acid changes that affect protein function.

    Science.gov (United States)

    Ng, Pauline C; Henikoff, Steven

    2003-07-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

  6. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  7. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente;

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  8. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  9. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma.

    Science.gov (United States)

    Havelund, Jesper F; Wojdyla, Katarzyna; Davies, Michael J; Jensen, Ole N; Møller, Ian Max; Rogowska-Wrzesinska, Adelina

    2017-03-06

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da).

  10. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men.

    Science.gov (United States)

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; Sato, Juichi; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10-90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrations of plasma isoleucine, valine and phenylalanine subsequently decreased after ingestion, and those of methionine and tyrosine tended to decrease. The effects of ingested leucine on other plasma amino acids were biphasic, being higher at lower doses (10-20 mg/kg body weight). Isoleucine or valine intake also caused corresponding plasma amino acid concentrations to rapidly elevate, and peaks at 30-40 min after ingestion were much higher than that of plasma leucine after leucine ingestion. However, the increase in plasma isoleucine and valine concentrations essentially did not affect those of other plasma amino acids. The rate of decline among peak plasma BCAA concentrations was the highest for leucine, followed by isoleucine and valine. Oral mixed BCAAs promoted the decline in plasma isoleucine and valine concentrations. These results suggest that plasma leucine is a regulator of the plasma concentrations of BCAAs, methionine and aromatic amino acids.

  11. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  12. Toward amino acid typing for proteins in FFLUX.

    Science.gov (United States)

    Fletcher, Timothy L; Popelier, Paul L A

    2017-03-05

    Continuing the development of the FFLUX, a multipolar polarizable force field driven by machine learning, we present a modern approach to atom-typing and building transferable models for predicting atomic properties in proteins. Amino acid atomic charges in a peptide chain respond to the substitution of a neighboring residue and this response can be categorized in a manner similar to atom-typing. Using a machine learning method called kriging, we are able to build predictive models for an atom that is defined, not only by its local environment, but also by its neighboring residues, for a minimal additional computational cost. We found that prediction errors were up to 11 times lower when using a model specific to the correct group of neighboring residues, with a mean prediction of ∼0.0015 au. This finding suggests that atoms in a force field should be defined by more than just their immediate atomic neighbors. When comparing an atom in a single alanine to an analogous atom in a deca-alanine helix, the mean difference in charge is 0.026 au. Meanwhile, the same difference between a trialanine and a deca-alanine helix is only 0.012 au. When compared to deca-alanine models, the transferable models are up to 20 times faster to train, and require significantly less ab initio calculation, providing a practical route to modeling large biological systems. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  13. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  14. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  15. Covalently functionalized graphene sheets with biocompatible natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-07-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  16. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  17. Synthesis of novel conjugates of a saccharide, amino acids, nucleobase and the evaluation of their cell compatibility

    Directory of Open Access Journals (Sweden)

    Dan Yuan

    2014-10-01

    Full Text Available This article reports the synthesis of a novel type of conjugate of three fundamental biological build blocks (i.e., saccharide, amino acids, and nucleobase and their cell compatibility. The facile synthesis starts with the synthesis of nucleobase and saccharide derivatives, then uses solid-phase peptide synthesis (SPPS to build the peptide segment (Phe-Arg-Gly-Asp or naphthAla-Phe-Arg-Gly-Asp with fully protected groups, and later, an amidation reaction in liquid phase connects these three parts together. The overall yield of these multiple step synthesis is about 34%. Besides exhibiting excellent solubility, these conjugates of saccharide–amino acids–nucleobase (SAN, like the previously reported conjugates of nucleobase–amino acids–saccharide (NAS and nucleobase–saccharide–amino acids (NSA, are mammalian cell compatible.

  18. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat;

    2010-01-01

    BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP...

  19. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  20. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  1. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7...... and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  2. Synthesis and catalytic application of amino acid based dendritic macromolecules

    NARCIS (Netherlands)

    Koten, G. van; Gossage, R.A.; Jastrzebski, J.T.B.H.; Ameijde, J. van; Mulders, S.J.E.; Brouwer, Arwin J.; Liskamp, R.M.J.

    1999-01-01

    The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active organometallic Ni ''pincer'' complexes, via a urea functionality, is described; the dendrimer catalysts have comparable activity to their mononuclear (NCN)NiX analogues.

  3. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  4. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  5. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  6. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  7. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    Science.gov (United States)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  8. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    Science.gov (United States)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  9. AMINO ACID BLOOD POOL OF CHILDREN WITH ALLERGIC DISEASES

    Directory of Open Access Journals (Sweden)

    Shmulich O. V.

    2014-01-01

    Full Text Available The amino acid blood pool of children with atopic dermatitis, bronchial asthma, urticaria, angioedema was investigated. The variability of blood plasma amino acid content (tryptophan, histidine, tyrosine, cysteine, methionine was observed. The changes of histidine and tryptophan levels might be connected with the formation of biogenic amines, such as histamine, serotonine, with take part in the development of allergic reactions and inflammatory processes in organism.

  10. Expression of heteromeric amino acid transporters along the murine intestine.

    Science.gov (United States)

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  11. Co2 chemosorption by functionalized amino acid derivatives

    DEFF Research Database (Denmark)

    2015-01-01

    The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid.......The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid....

  12. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-