WorldWideScience

Sample records for amino acid residues

  1. Engineering Dehydrated Amino Acid Residues in the Antimicrobial Peptide Nisin

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Rollema, Harry S.; Yap, Wyanda M.G.J.; Boot, Hein J.; Siezen, Roland J.; Vos, Willem M. de

    1992-01-01

    The small antimicrobial peptide nisin, produced by Lactococcus lactis, contains the uncommon amino acid residues dehydroalanine and dehydrobutyrine and five thio ether bridges. Since these structures are posttranslationally formed from Ser, Thr, and Cys residues, it is feasible to study their role i

  2. Topological features of proteins from amino acid residue networks

    CERN Document Server

    Alves, N A; Alves, Nelson Augusto; Martinez, Alexandre Souto

    2006-01-01

    Topological properties of native folds are obtained from statistical analysis of 160 low homology proteins covering the four structural classes. This is done analysing one, two and three-vertex joint distribution of quantities related to the corresponding network of amino acid residues. Emphasis on the amino acid residue hydrophobicity leads to the definition of their center of mass as vertices in this contact network model with interactions represented by edges. The network analysis helps us to interpret experimental results such as hydrophobic scales and fraction of buried accessible surface area in terms of the network connectivity. To explore the vertex type dependent correlations, we build a network of hydrophobic and polar vertices. This procedure presents the wiring diagram of the topological structure of globular proteins leading to the following attachment probabilities between hydrophobic-hydrophobic 0.424(5), hydrophobic-polar 0.419(2) and polar-polar 0.157(3) residues.

  3. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation

    Directory of Open Access Journals (Sweden)

    Pedersen Anders G

    2007-10-01

    Full Text Available Abstract Background Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues – coevolution. Our goal is to find these coevolving residues. Results We present six new methods for detecting coevolving residues. Among other things, we suggest measures that are variants of Mutual Information, and measures that use a multidimensional representation of each residue in order to capture the physico-chemical similarities between amino acids. We created a benchmarking system, in silico, able to evaluate these methods through a wide range of realistic conditions. Finally, we use the combination of different methods as a way of improving performance. Conclusion Our best method (Row and Column Weighed Mutual Information has an estimated accuracy increase of 63% over Mutual Information. Furthermore, we show that the combination of different methods is efficient, and that the methods are quite sensitive to the different conditions tested.

  4. Amino acids

    Science.gov (United States)

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  5. The Evolving Profile of the Signature Amino Acid Residues in HIV-1 Subtype C Tat.

    Science.gov (United States)

    Aralaguppe, Shambhu Prasad G; Sharma, Shilpee; Menon, Malini; Prasad, Vinayaka R; Saravanan, Shanmugam; Murugavel, Kailapuri G; Solomon, Suniti; Ranga, Udaykumar

    2016-05-01

    Using several HIV-1 tat exon 1 amino acid sequences available from public databases and additional sequences derived from a southern Indian clinical cohort, we compared the profile of the signature amino acid residues (SAR) between two different time periods, 1986-2004 and 2005-2014. The analysis identified eight positions as signature residues in subtype C Tat and demonstrated a changing pattern at four of these positions between the two periods. At three locations (histidine 29, serine 57, and proline 60), there appears to be a nonuniform negative selection against the SAR. The negative selection appears to be severe, especially against histidine 29 (p < .0001) and moderate against proline 60 (p < .0001). The negative selection against serine 57 is statistically insignificant and appears to have begun recently. At position 63, the frequency of signature residue glutamic acid increased over the past decade, although the difference was not significant. Importantly, at the three locations where the negative selection is in progress, the substitute amino acids are the generic residues present in most of the other HIV-1 subtypes. Our data demonstrate that viral evolution can subject specific amino acid residues to subtle and progressive selection pressures without affecting the prevalence of other amino acid residues. PMID:26678403

  6. On the distribution of amino acid residues in transmembrane alpha-helix bundles.

    OpenAIRE

    Samatey, F A; Xu, C.; Popot, J L

    1995-01-01

    The periodic distribution of residues in the sequence of 469 putative transmembrane alpha-helices from eukaryotic plasma membrane polytopic proteins has been analyzed with correlation matrices. The method does not involve any a priori assumption about the secondary structure of the segments or about the physicochemical properties of individual amino acid residues. Maximal correlation is observed at 3.6 residues per period, characteristic of alpha-helices. A scale extracted from the data descr...

  7. Effect of water and ethanol radicals on the protein part of human hemoglobin. Pt. 2. Damage to amino acid residues

    International Nuclear Information System (INIS)

    This work is devoted to the effect of interactions of water and ethanol radicals with human hemoglobin (Hb) amino acid residues. The OH radicals caused the greatest destruction of human hemoglobin amino acid residues. Among them the most sensitive to irradiation were cysteine tryptophan and histidine residues. (author). 11 refs, 2 tabs

  8. Search for conserved amino acid residues of the [Formula: see text]-crystallin proteins of vertebrates.

    Science.gov (United States)

    Shiliaev, Nikita G; Selivanova, Olga M; Galzitskaya, Oxana V

    2016-04-01

    [Formula: see text]-crystallin is the major eye lens protein and a member of the small heat-shock protein (sHsp) family. [Formula: see text]-crystallins have been shown to support lens clarity by preventing the aggregation of lens proteins. We performed the bioinformatics analysis of [Formula: see text]-crystallin sequences from vertebrates to find conserved amino acid residues as the three-dimensional (3D) structure of [Formula: see text]-crystallin is not identified yet. We are the first who demonstrated that the N-terminal region is conservative along with the central domain for vertebrate organisms. We have found that there is correlation between the conserved and structured regions. Moreover, amyloidogenic regions also correspond to the structured regions. We analyzed the amino acid composition of [Formula: see text]-crystallin A and B chains. Analyzing the occurrence of each individual amino acid residue, we have found that such amino acid residues as leucine, serine, lysine, proline, phenylalanine, histidine, isoleucine, glutamic acid, and valine change their content simultaneously in A and B chains in different classes of vertebrates. Aromatic amino acids occur more often in [Formula: see text]-crystallins from vertebrates than on the average in proteins among 17 animal proteomes. We obtained that the identity between A and B chains in the mammalian group is 0.35, which is lower than the published 0.60. PMID:26972563

  9. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    Science.gov (United States)

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation. PMID:26235877

  10. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.

    Science.gov (United States)

    Shimamura, A; Nakano, Y J; Mukasa, H; Kuramitsu, H K

    1994-01-01

    The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs. PMID:8050997

  11. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  12. Does the autoantibody immunodominant region on thyroid peroxidase include amino acid residues 742-771?

    Science.gov (United States)

    Xiong, Z; Farilla, L; Guo, J; McLachlan, S; Rapoport, B

    2001-03-01

    Identification of the thyroid peroxidase (TPO) amino acid residues that comprise the autoantibody immunodominant region is an important goal that has proven difficult because of the conformational nature of the epitopes involved. Recent data suggest that the immunodominant region has been located. Thus, by autoantibody recognition of tryptic fragments of native TPO, as well as of conformational portions of TPO expressed as cell-free translates, the autoantibody immunodominant region appears to include amino acid residues 742-771, near the C terminus of the ectodomain. To evaluate this deduction, we expressed as cell-free translates the full TPO ectodomain, as well as TPO truncated after residues 741 and 771. The epitopic integrity of these molecules was first confirmed by immunoprecipitation by patient sera containing TPO autoantibodies. However, autoantibody recognition could involve a minority of TPO autoantibodies with the individual sera, not fulfilling the strict criteria for immunodominance. In order to obtain definitive data, we performed immunoprecipitations on these TPO variants with four recombinant human monoclonal autoantibodies that define the immunodominant region. All four monoclonal autoantibodies immunoprecipitated TPO 1-741 to the same extent as they did TPO 1-771 and the full TPO ectodomain, indicating that the immunodominant region comprises (at least in large part) amino acid residues upstream of residue 741. PMID:11327613

  13. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues.

    Science.gov (United States)

    Sjöberg, Béatrice; Foley, Sarah; Staicu, Angela; Pascu, Alexandru; Pascu, Mihail; Enescu, Mironel

    2016-06-01

    The singlet oxygen quenching rate constants were measured for three model proteins, bovine serum albumin, β-lactoglobulin and lysozyme. The results were analyzed by comparing them with the corresponding singlet oxygen quenching rate constants for a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was the oxidizable amino acid, tryptophan, tyrosine, methionine and histidine. It was found that the reaction rate constant in proteins can be satisfactorily modelled by the sum of the individual contributions of the oxidizable AA residues corrected for the solvent accessible surface area (SASA) effects. The best results were obtained when the SASA of the AA residues were determined by averaging over molecular dynamics simulated trajectories of the proteins. The limits of this geometrical correction of the AA residue reactivity are also discussed. PMID:27045278

  14. A method for computing the inter-residue interaction potentials for reduced amino acid alphabet

    Indian Academy of Sciences (India)

    Abhinav Luthra; Anupam Nath Jha; G K Ananthasuresh; Saraswathi Vishveswara

    2007-08-01

    Inter-residue potentials are extensively used in the design and evaluation of protein structures. However, dealing with all (20×20) interactions becomes computationally difficult in extensive investigations. Hence, it is desirable to reduce the alphabet of 20 amino acids to a smaller number. Currently, several methods of reducing the residue types exist; however a critical assessment of these methods is not available. Towards this goal, here we review and evaluate different methods by comparing with the complete (20×20) matrix of Miyazawa-Jernigan potential, including a method of grouping adopted by us, based on multi dimensional scaling (MDS). The second goal of this paper is the computation of inter-residue interaction energies for the reduced amino acid alphabet, which has not been explicitly addressed in the literature until now. By using a least squares technique, we present a systematic method of obtaining the interaction energy values for any type of grouping scheme that reduces the amino acid alphabet. This can be valuable in designing the protein structures.

  15. Amphoteric surfactants containing ?-hydroxy ester group and an amino acid residue

    Directory of Open Access Journals (Sweden)

    Eissa, A. M. F.

    2006-09-01

    Full Text Available A series of amphoteric surfactants containing α-hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid.The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca++ stabilities were determined. Antimicrobial activity and biodegradability were also screened.Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico. Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

  16. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences

    KAUST Repository

    Chen, Peng

    2013-07-23

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.

  17. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.

    Science.gov (United States)

    Lavrukhin, O V; Lloyd, R S

    2000-12-12

    Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates. PMID:11106507

  18. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    Science.gov (United States)

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution. PMID:16033333

  19. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  20. Amino acid residues important for substrate specificity of the amino acid permeases Can I p and Gnp I p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Kielland-Brandt, M.C.

    2001-01-01

    mutations affecting six predicted domains (helices III and X, and loops 1. 2, 6 and 7) of the permeases. Helix III and loop 7 are candidates for domains in direct contact with the transported amino acid. Helix III was affected in both CAN1 (Y173H, Y173D) and GNP1 (W239C) mutants and has previously been...... found to be important for substrate preference in other members of the family. Furthermore, the mutations affecting loop 7 (residue T354, S355, Y356) are close to a glutamate side chain (E367) potentially interacting with the positively charged substrate, a notion supported by conservation of the side......Deletion of the general amino acid permease gene GAP1 abolishes uptake of L-citrulline in Saccharomyces cerevisiae, resulting in the inability to grow on L-citrulline as sole nitrogen source. Selection for suppressor mutants that restored growth on L-citrulline led to isolation of 21 mutations in...

  1. Replacing 32 Proline Residues by a Noncanonical Amino Acid Results in a Highly Active DNA Polymerase

    OpenAIRE

    Holzberger, Bastian; Marx, Andreas

    2010-01-01

    Protein engineering may be achieved by rational design, directed evolution-based methods, or computational protein design. Mostly these methods make recourse to the restricted pool of the 20 natural amino acids. With the ability to introduce different new kinds of functionalities into proteins, the use of noncanonical amino acids became a promising new method in protein engineering. Here, we report on the generation of a multifluorinated DNA polymerase. DNA polymerases are highly dynamic enzy...

  2. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  3. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.

    Science.gov (United States)

    Fokas, Alexander S; Cole, Daniel J; Ahnert, Sebastian E; Chin, Alex W

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  4. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    International Nuclear Information System (INIS)

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356–58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs

  5. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  6. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  7. Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues

    OpenAIRE

    Schwartz, Russell; Istrail, Sorin; King, Jonathan

    2001-01-01

    Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20–22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of cons...

  8. Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras.

    OpenAIRE

    Park, W.; Mosteller, R D; Broek, D.

    1994-01-01

    Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1...

  9. A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Uppu, R.M. (Louisiana State Univ., Baton Rouge (United States))

    1993-02-15

    Lysozyme and 10 other proteins are solubilized in reverse micelles formed by 0.1 M sodium di-2-ethyl-hexylsulfosuccinate and 2.0-2.5 M water (pH 7.4) in isooctane solvent. Exposure of the protein-containing reverse micellar solutions to ozone causes oxidative damage to the proteins, as assessed by the oxidation of tryptophan residues. The oxidation product of the protein-bound tryptophan has a molar absorption coefficient of 3275 +/- 81 M-1 cm-1 (mean +/- S.D., n = 6) at 320 nm. The product is suggested to be a Criegee ozonide or a tautomer of the Criegee ozonide and not N-formylkynurenine. Ozonation of lysozyme in reverse micelles results in the formation of hydrogen peroxide in yields of only approximately 0.07 mol/mol of tryptophan residues oxidized. The recovery of hydrogen peroxide added as an internal standard to the lysozyme-containing reverse micellar solutions ranges from 84 to 88%, whether or not the samples are subjected to ozonation. This suggests that hydrogen peroxide is neither destroyed during the process of ozonation nor consumed by the protein to a significant extent in an adventitious reaction. A kinetic model for the overall reaction of ozone with the proteins is developed, taking into account the concentrations and the reactivities of individual amino acid residues toward ozone. The model predicts the fractional reaction of ozone with tryptophan residues in the proteins, despite differences in amino acid composition, molecular weight, and tertiary structures. The lack of influence of protein structure is confirmed further by the observation that the native lysozyme (with and without external S-carboxymethylcysteine) and S-carboxymethylated lysozyme give identical values of the fractional reaction of ozone with tryptophan residues. The kinetic equations for the competitive reactions of ozone with amino acid residues in proteins, with some minor modification, are applicable to ozonations on complex mixtures of lipids, proteins, and antioxidants.

  10. Plasma amino acids

    Science.gov (United States)

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  11. Amino acid analysis.

    Science.gov (United States)

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  12. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    Science.gov (United States)

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  13. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.

    Science.gov (United States)

    Worst, Emanuel G; Exner, Matthias P; De Simone, Alessandro; Schenkelberger, Marc; Noireaux, Vincent; Budisa, Nediljko; Ott, Albrecht

    2016-01-01

    The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any

  14. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization.

    Science.gov (United States)

    Addamiano, Claudia; Gerland, Béatrice; Payrastre, Corinne; Escudier, Jean-Marc

    2016-01-01

    Construction and physico-chemical behavior of DNA three way junction (3WJ) functionalized by protein-like residues (imidazole, alcohol and carboxylic acid) at unpaired positions at the core is described. One 5'-C(S)-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5'-C(S)-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected. PMID:27563857

  15. Identification of Ourmiavirus 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation.

    Science.gov (United States)

    Margaria, Paolo; Anderson, Charles T; Turina, Massimo; Rosa, Cristina

    2016-09-01

    Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine-scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement-defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild-type MP (GFP:MPwt) mainly co-localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement-defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily. PMID:26637973

  16. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases.

    Science.gov (United States)

    Watanabe, Kenshi; Ohno, Makoto; Taguchi, Masahiro; Kawamoto, Seiji; Ono, Kazuhisa; Aki, Tsunehiro

    2016-01-01

    Membrane-bound desaturases are physiologically and industrially important enzymes that are involved in the production of diverse fatty acids such as polyunsaturated fatty acids and their derivatives. Here, we identified amino acid residues that determine the substrate specificity of rat Δ6 desaturase (D6d) acting on linoleoyl-CoA by comparing its amino acid sequence with that of Δ5 desaturase (D5d), which converts dihomo-γ-linolenoyl-CoA. The N-terminal cytochrome b5-like domain was excluded as a determinant by domain swapping analysis. Substitution of eight amino acid residues (Ser209, Asn211, Arg216, Ser235, Leu236, Trp244, Gln245, and Val344) of D6d with the corresponding residues of D5d by site-directed mutagenesis switched the substrate specificity from linoleoyl-CoA to dihomo-γ-linolenoyl-CoA. In addition, replacement of Leu323 of D6d with Phe323 on the basis of the amino acid sequence of zebra fish Δ5/6 bifunctional desaturase was found to render D6d bifunctional. Homology modeling of D6d using recent crystal structure data of human stearoyl-CoA (Δ9) desaturase revealed that Arg216, Trp244, Gln245, and Leu323 are located near the substrate-binding pocket. To our knowledge, this is the first report on the structural basis of the substrate specificity of a mammalian front-end fatty acid desaturase, which will aid in efficient production of value-added fatty acids. PMID:26590171

  17. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  18. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated

  19. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Directory of Open Access Journals (Sweden)

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  20. D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus.

    Science.gov (United States)

    Torres, Allan M; Menz, Ian; Alewood, Paul F; Bansal, Paramjit; Lahnstein, Jelle; Gallagher, Clifford H; Kuchel, Philip W

    2002-07-31

    The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration. PMID:12135762

  1. Amino acid substitutions of cysteine residues near the amino terminus of Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Science.gov (United States)

    The amino-terminal half of HC-Pro of Wheat streak mosaic virus (WSMV) is required for semi-persistent transmission by the wheat curl mite (Aceria tosichella Keifer). The amino-proximal region of WSMV HC-Pro is cysteine-rich with a zinc finger-like motif. Amino acid substitutions were made in this re...

  2. Identification of essential amino-acid residues in Azotobacter vinelandii isocitrate dehydrogenase by radical anions and H atoms

    International Nuclear Information System (INIS)

    Pure TPN+-specific isocitrate dehydrogenase from Azotobacter vinelandii was irradiated with H atoms generated in a γ-irradiated solution at pH 6.5. A G(-activity) = 0.12 +- 0.01 was found. At the same time no corresponding loss in free sulfhydryls was observed. These results confirmed the essentiality of methionine for the enzymatic activity as known from previous studies. Irradiation with the radical anions, (CNS)2- and Br2- generated in γ-irradiated solutions at pH 6.5, strongly inactivated isocitrate dehydrogenase with yields of G(-activity) of 2.1 and 3.9, respectively. Part of the inactivating effect, however, is due to oxidation of sulfhydryl groups. These results lead to the conclusion that tryptophan is an essential amino-acid residue to isocitrate dehydrogenase from A. vinelandii. The presence of tryptophan in the enzyme was demonstrated by pulse radiolysis

  3. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Dietvorst, J.; Karhumaa, Kaisa; Kielland-Brandt, Morten; Brandt, Anders Bøving

    2010-01-01

    Snf3 is a plasma membrane protein in Saccharomyces cerevisiae cerevisiae able to sense the presence of glucose. Although the Snf3 protein does not transport sugars, it shares sequence similarity with various glucose transporters from other organisms. we investigated the sugar specificity....../preferences of Snf3. The ability of cells to sense sugars in vivo was monitored by following the degradation of the Mth1 protein, :ill earl., event ill the signal pathway. Our study reveals that Snf3. ill addition to glucose. also senses fructose and mannose, as well as the glucose analogues 2-deoxyglucose, 3-O......-methylglucoside and 6-deoxyglucose. The signalling proficiency of a non-phosphorylatable analogue strongly supports the notion that sensing through Snf3 does not require sugar phosphorylation. Sequence comparisons of Snf3 to glucose transporters indicated amino acid residues possibly involved in sensing of sugars...

  4. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-01

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. PMID:24657616

  5. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  6. Purification, cloning, characterization and essential amino acid residues analysis of a new ι-carrageenase from Cellulophaga sp. QY3.

    Directory of Open Access Journals (Sweden)

    Su Ma

    Full Text Available ι-Carrageenases belong to family 82 of glycoside hydrolases that degrade sulfated galactans in the red algae known as ι-carrageenans. The catalytic mechanism and some substrate-binding residues of family GH82 have been studied but the substrate recognition and binding mechanism of this family have not been fully elucidated. We report here the purification, cloning and characterization of a new ι-carrageenase CgiA_Ce from the marine bacterium Cellulophaga sp. QY3. CgiA_Ce was the most thermostable carrageenase described so far. It was most active at 50°C and pH 7.0 and retained more than 70% of the original activity after incubation at 50°C for 1 h at pH 7.0 or at pH 5.0-10.6 for 24 h. CgiA_Ce was an endo-type ι-carrageenase; it cleaved ι-carrageenan yielding neo-ι-carrabiose and neo-ι-carratetraose as the main end products, and neo-ι-carrahexaose was the minimum substrate. Sequence analysis and structure modeling showed that CgiA_Ce is indeed a new member of family GH82. Moreover, sequence analysis of ι-carrageenases revealed that the amino acid residues at subsites -1 and +1 were more conserved than those at other subsites. Site-directed mutagenesis followed by kinetic analysis identified three strictly conserved residues at subsites -1 and +1 of ι-carrageenases, G228, Y229 and R254 in CgiA_Ce, which played important roles for substrate binding. Furthermore, our results suggested that Y229 and R254 in CgiA_Ce interacted specifically with the sulfate groups of the sugar moieties located at subsites -1 and +1, shedding light on the mechanism of ι-carrageenan recognition in the family GH82.

  7. Amino acid residues of heparin cofactor II required for stimulation of thrombin inhibition by sulphated polyanions.

    Science.gov (United States)

    Colwell, N S; Grupe, M J; Tollefsen, D M

    1999-04-12

    A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (acidic domain. PMID:10209287

  8. Functional analysis of three amino acid residues of purR re-pressor, Trp147, Gln-218 and Gln-292 in Salmonella typhi-murium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The amber mutation sites of 6 purR(am) mutants were determined bycloning and DNA sequencing. The results showed that the mutations were distributed at three different sites in PurR coding region, G721(→A), C933(→T) and C1155(→T), which respectively turn Trp-147,Gln-218 and Gln-292 of PurR into TAG terminal codon. To determine the effect of the three amino acid residues on regulatory function of PurR protein 5 different kinds of tRNA suppressor genes, Su3, Su4, Su6, Su7 and Su9 were used for creating the PurR protein variants with single amino acid substitution. The results indicated that Cys, Glu, Gly, His and Arg which substituted Trp-147 respectively all could not recover the regulation function of PurR. It confirmed that Trp-147 is a critical amino acid for the PurR function. Gln-292 substituted respectively by the same amino acids also could not recover the PurR function, demonstrating that Gln-292 is also an important amino acid residue in PurR.

  9. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2.

    Science.gov (United States)

    Dempsey, Daniel R; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J

    2015-11-01

    Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis. PMID:26476413

  10. Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke.

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    Full Text Available Odorant binding proteins (OBPs play a central role in transporting odorant molecules from the sensillum lymph to olfactory receptors to initiate behavioral responses. In this study, the OBP of Macrocentrus cingulum McinOBP1 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR experiments indicate that the McinOBP1 is expressed mainly in adult antennae, with expression levels differing by sex. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN as a fluorescent probe demonstrated that the McinOBP1 can bind green-leaf volatiles, including aldehydes and terpenoids, but also can bind aliphatic alcohols with good affinity, in the order trans-2-nonenal>cis-3-hexen-1-ol>trans-caryophelle, suggesting a role of McinOBP1 in general odorant chemoreception. We chose those three odorants for further homology modeling and ligand docking based on their binding affinity. The Val58, Leu62 and Glu130 are the key amino acids in the binding pockets that bind with these three odorants. The three mutants, Val58, Leu62 and Glu130, where the valine, leucine and glutamic residues were replaced by alanine, proline and alanine, respectively; showed reduced affinity to these odorants. This information suggests, Val58, Leu62 and Glu130 are involved in the binding of these compounds, possibly through the specific recognition of ligands that forms hydrogen bonds with the ligands functional groups.

  11. Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues

    International Nuclear Information System (INIS)

    A novel methodology for stereospecific NMR assignments of methyl (CH3) groups of Val and Leu residues in fractionally 13C-labeled proteins is presented. The approach is based on selective 'unlabeling' of specific amino acids in proteins while fractionally 13C-labeling the rest. A 2D [13C-1H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the 'unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH3 groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP)

  12. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  13. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin.

    Science.gov (United States)

    Yao, Wenwu; Kang, Lin; Gao, Shan; Zhuang, Xiangjin; Zhang, Tao; Yang, Hao; Ji, Bin; Xin, Wenwen; Wang, Jinglin

    2015-06-15

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified. PMID:25912943

  14. Catalytic mechanism of S-type phycobiliprotein lyase: chaperone-like action and functional amino acid residues.

    Science.gov (United States)

    Kupka, Michaela; Zhang, Juan; Fu, Wei-Lei; Tu, Jun-Ming; Böhm, Stephan; Su, Ping; Chen, Yu; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2009-12-25

    The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300-14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-beta84-bound PCB in biliproteins by PEB. PMID:19864423

  15. Amino acid residues Tyr-67, Asn-72, and Asp-73 of the TVB receptor are important for subgroup E avian sarcoma and leukosis virus interaction

    International Nuclear Information System (INIS)

    The chicken TVBS1 protein serves as the cellular receptor for the cytopathic subgroups B and D avian sarcoma and leukosis viruses (ASLVs) as well as for the non-cytopathic subgroup E ASLV. Previous studies had mapped the subgroup B viral interaction determinants to a region that was located between residues 32 and 46 of TVBS1 [J. Virol. 76 (2002) 5404]. To gain a greater insight into ASLV Env-receptor interactions and the possible role of these interactions in viral cytopathic effects, we employed a homolog-scanning mutagenesis approach to identify amino acid residues important for subgroup E viral receptor function by exchanging amino acid residues between TVBS1 and its human homolog, DR5. These studies identified residues Tyr-67, Asn-72, and Asp-73 of TVBS1 as important subgroup E viral interaction determinants. Intriguingly, these three residues are conserved between TVBS1 and DR5, demonstrating that the human protein contains critical subgroup E viral interaction determinants, but in this context, they cannot support viral entry. These data confirm that the molecular determinants of the TVB receptor required for subgroup E viral entry are completely distinct from those used by subgroup B viruses

  16. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Kjeldsen, Frank; Haselmann, Kim F; Sørensen, Esben S; Zubarev, Roman A

    2003-03-15

    In hot electron capture dissociation (HECD), multiply protonated polypeptides fragment upon capturing approximately 11-eV electrons. The excess of energy upon the primary c, z* cleavage induces secondary fragmentation in z* fragments. The resultant w ions allow one to distinguish between the isomeric Ile and Leu residues. The analytical utility of HECD is evaluated using tryptic peptides from the bovine milk protein PP3 containing totally 135 amino acid residues. Using a formal procedure for Ile/Leu (Xle) residue assignment, the identities of 20 out of 25 Xle residues (80%) were determined. The identity of an additional two residues could be correctly guessed from the absence of the alternative w ions, and only two residues, for which neither expected nor alternative w ions were observed, remained unassigned. Reinspection of conventional ECD spectra also revealed the presence of Xle w ions, although at lower abundances, with 44% of all Xle residues distinguished. Using a dispenser cathode as an electron source, identification of four out of five Xle residues in a 2.7-kDa peptide was possible with one acquisition 2 s long, with identification of all five residues by averaging of five such acquisitions. Unlike the case of high-energy collision-induced dissociation, no d ions were observed in the HECD of tryptic peptides. PMID:12659185

  17. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei; Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Okuma, Kosuke; Ono, Akira M.; Terauchi, Tsutomu [Tokyo Metropolitan University, Center for Priority Areas (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2013-09-21

    The {sup 1}H–{sup 13}C HMQC signals of the {sup 13}CH{sub 3} moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ{sub 1}-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically {sup 13}CH{sub 3}-labeled [U–{sup 2}H;{sup 15}N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.

  18. Effect of Amino Acid Residue and Oligosaccharide Chain Chemical Modifications on Spectral and Hemagglutinating Activity of Millettia dielsiana Harms. ex Diels. Lectin

    Institute of Scientific and Technical Information of China (English)

    Shun GAO; Jie AN; Chuan-Fang WU; Ying GU; Fang CHEN; Yuan YU; Qia-Qing WU; Jin-Ku BAO

    2005-01-01

    The effects of modifying the carbohydrate chain and amino acids on the conformation and activity of Millettia dielsiana Harms. ex Diels. lectin (MDL) were studied by hemagglutination, fluorescence and circular dichroism analysis. The modification of tryptophan residues led to a compete loss of hemagglutinating activity; however, the addition of mannose was able to prevent this loss of activity. The results indicate that two tryptophan residues are involved in the carbohydrate-binding site. Modifications of the carboxyl group residues produced an 80% loss of activity, but the presence of mannose protected against the modification. The results suggest that the carboxyl groups of aspartic and glutamic acids are involved in the carbohydrate-binding site of the lectin. However, oxidation of the carbohydrate chain and modification of the histidine and arginine residues did not affect the hemagglutinating activity of MDL. Fluorescence studies of MDL indicate that tryptophan residues are present in a relatively hydrophobic region, and the binding of mannose to MDL could quench tryptophan fluorescence without any change in λmax. The circular dichroism spectrum showed that all of these modifications affected the conformation of the MDL molecule to different extents, except the modification of arginine residues. Fluorescence quenching showed that acrylamide and iodoacetic acids are able to quench 77% and 98% of the fluorescence of tryptophan in MDL, respectively.However, KI produced a barely perceptible effect on the fluorescence of MDL, even when the concentration of I- was 0.15 M. This demonstrates that most of tryptophan residues are located in relatively hydrophobic or negatively charged areas near the surface of the MDL molecule.

  19. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues

    OpenAIRE

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents ...

  20. Amino Acid Sequence Requirements at Residues 69 and 238 for the SME-1 β-Lactamase To Confer Resistance to β-Lactam Antibiotics

    OpenAIRE

    Majiduddin, Fahd K.; Palzkill, Timothy

    2003-01-01

    Carbapenem antibiotics have been used to counteract resistant strains of bacteria harboring β-lactamases and extended-spectrum β-lactamases. Four enzymes from the class A group of β-lactamases, NMC-A, IMI-1, SME-1, and KPC-1, efficiently hydrolyze carbapenem antibiotics. Sequence comparisons and structural information indicate that cysteines at amino acid residues 69 and 238, which are conserved in all four of these enzymes, form a disulfide bond that is unique to these β-lactamases. To test ...

  1. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization †

    Directory of Open Access Journals (Sweden)

    Claudia Addamiano

    2016-08-01

    Full Text Available Construction and physico-chemical behavior of DNA three way junction (3WJ functionalized by protein-like residues (imidazole, alcohol and carboxylic acid at unpaired positions at the core is described. One 5′-C(S-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5′-C(S-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.

  2. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots.

    Science.gov (United States)

    Armendáriz, O; Gil-Monreal, M; Zulet, A; Zabalza, A; Royuela, M

    2016-05-01

    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application. PMID:26560850

  3. An amino acid residue in the second extracellular loop determines the agonist-dependent tolerance property of the human D3 dopamine receptor.

    Science.gov (United States)

    Gil-Mast, Sara; Kortagere, Sandhya; Kota, Kokila; Kuzhikandathil, Eldo V

    2013-06-19

    The D3 dopamine receptor is a therapeutic target for treating various nervous system disorders such as schizophrenia, Parkinson's disease, depression, and addictive behaviors. The crystal structure of the D3 receptor bound to an antagonist was recently described; however, the structural features that contribute to agonist-induced conformational changes and signaling properties are not well understood. We have previously described the conformation-dependent tolerance and slow response termination (SRT) signaling properties of the D3 receptor and identified the C147 residue in the second intracellular loop (IL2) of the D3 receptor as important for the tolerance property. Interestingly, while IL2 and the C147 residue, in particular, were important for dopamine- and quinpirole-induced tolerance, this residue did not affect the severe tolerance induced by the high affinity, D3 receptor-selective agonist, PD128907. Here, we used D2/D3 receptor chimeras and site-specific D3 receptor mutants to identify another residue, D187, in the second extracellular loop (EC2) of the human D3 receptor that mediates the tolerance property induced by PD128907, quinpirole, pramipexole, and dopamine. Molecular dynamics simulations confirmed the distinct conformation adopted by D3 receptor during tolerance and suggested that in the tolerant D3 receptor the D187 residue in EC2 forms a salt bridge with the H354 residue in EC3. Indeed, site-directed mutation of the H354 residue resulted in loss of PD1287907-induced tolerance. The mapping of specific amino acid residues that contribute to agonist-dependent conformation changes and D3 receptor signaling properties refines the agonist-bound D3 receptor pharmacophore model which will help develop novel D3 receptor agonists. PMID:23477444

  4. Amino Acid Residues in the GIY-YIG Endonuclease II of Phage T4 Affecting Sequence Recognition and Binding as Well as Catalysis▿ †

    Science.gov (United States)

    Lagerbäck, Pernilla; Carlson, Karin

    2008-01-01

    Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate. PMID:18539732

  5. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis.

    Science.gov (United States)

    Lagerbäck, Pernilla; Carlson, Karin

    2008-08-01

    Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate. PMID:18539732

  6. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    Science.gov (United States)

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base. PMID:10076069

  7. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery.

    Science.gov (United States)

    Jiang, Qian; Yue, Dong; Nie, Yu; Xu, Xianghui; He, Yiyan; Zhang, Shiyong; Wagner, Ernst; Gu, Zhongwei

    2016-06-01

    Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the in vitro gene transfection up to 190-fold as compared with the golden standard PEI25k and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others in vivo with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections. PMID:27097286

  8. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach

    Directory of Open Access Journals (Sweden)

    Mayer Kimberly M

    2007-01-01

    Full Text Available Abstract Background The large amount of available sequence information for the plant acyl-ACP thioesterases (TEs made it possible to use a bioinformatics-guided approach to identify amino acid residues involved in substrate specificity. The Conserved Property Difference Locator (CPDL program allowed the identification of putative specificity-determining residues that differ between the FatA and FatB TE classes. Six of the FatA residue differences identified by CPDL were incorporated into the FatB-like parent via site-directed mutagenesis and the effect of each on TE activity was determined. Variants were expressed in E. coli strain K27 that allows determination of enzyme activity by GCMS analysis of fatty acids released into the medium. Results Substitutions at four of the positions (74, 86, 141, and 174 changed substrate specificity to varying degrees while changes at the remaining two positions, 110 and 221, essentially inactivated the thioesterase. The effects of substitutions at positions 74, 141, and 174 (3-MUT or 74, 86, 141, 174 (4-MUT were not additive with respect to specificity. Conclusion Four of six putative specificity determining positions in plant TEs, identified with the use of CPDL, were validated experimentally; a novel colorimetric screen that discriminates between active and inactive TEs is also presented.

  9. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Visser, Nico; Rieder, Elizabeth A

    2010-10-01

    Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures. PMID:20637812

  10. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  11. Detecting coevolving amino acid sites using Bayesian mutational mapping

    DEFF Research Database (Denmark)

    Dimmic, Matthew W.; Hubisz, Melissa J.; Bustamente, Carlos D.;

    2005-01-01

    Motivation: The evolution of protein sequences is constrained by complex interactions between amino acid residues. Because harmful substitutions may be compensated for by other substitutions at neighboring sites, residues can coevolve. We describe a Bayesian phylogenetic approach to the detection...

  12. Further evidence for the association of distinct amino acid residues with in vitro and in vivo growth of infectious bursal disease virus.

    Science.gov (United States)

    Noor, M; Mahmud, M S; Ghose, P R; Roy, U; Nooruzzaman, M; Chowdhury, E H; Das, P M; Islam, M R; Müller, H

    2014-04-01

    A cell-culture-adapted reverse genetics strain of very virulent infectious bursal disease virus (IBDV) of chickens, designated as BD-3tcC, having four amino acid substitutions (Gln253His, Asp279Asn, Ala284Thr and Ser330Arg) in the capsid protein VP2 was tested for its genetic stability during serial passage in chickens and chicken embryo fibroblast (CEF) cell culture. Results of in vitro and in vivo experiments demonstrated that all four introduced mutations in BD-3tcC remained stable during serial passage in CEF cell culture, but during passage in chickens, amino acid residues at position 253 and 284 reverted from histidine to glutamine and threonine to alanine, respectively. In a parallel experiment, the same substitutions also occurred in a conventionally attenuated vaccine strain D-78 on serial passage in chickens. However, no reversion or substitution took place at positions 279 and 330 during in vivo passage of the mutant virus BD-3tcC or vaccine virus D-78. The findings provide conclusive evidence that while IBDV requires histidine and threonine at positions 253 and 284 for cell culture adaptation, glutamine and alanine at these positions are selected preferentially during in vivo replication. PMID:24136723

  13. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I.

    Science.gov (United States)

    Monchois, V; Vignon, M; Russell, R R

    1999-11-01

    Related streptococcal and Leuconostoc mesenteroides glucansucrases are enzymes of medical and biotechnological interest. Molecular modelling has suggested that the catalytic domain contains a circularly permuted version of the (beta/alpha)8 barrel structure found in the amylase superfamily, and site-directed mutagenesis has identified critical amino acids in this region. In this study, sequential N-terminal truncations of Streptococcus downei GTF-I showed that key amino acids are also present in the first one-third of the core domain. Mutations were introduced at Trp-344, Glu-349 and His-355, residues that are conserved in all glucansucrases and lie within a region which is a target for inhibitory antibodies. W344L, E349L and H355V substitutions were assayed for their effect on mutan synthesis and also on oligosaccharide synthesis with various acceptors. It appeared that Trp-344 and His-355 are involved in the action mechanism of GTF-I; His-355 may also play a role in a binding subsite necessary for oligosaccharide and glucan elongation. PMID:10570812

  14. D-Amino acid oxidase: new findings.

    Science.gov (United States)

    Pilone, M S

    2000-11-01

    The most recent research on D-amino acid oxidases and D-amino acid metabolism has revealed new, intriguing properties of the flavoenzyme and enlighted novel biotechnological uses of this catalyst. Concerning the in vivo function of the enzyme, new findings on the physiological role of D-amino acid oxidase point to a detoxifying function of the enzyme in metabolizing exogenous D-amino acids in animals. A novel role in modulating the level of D-serine in brain has also been proposed for the enzyme. At the molecular level, site-directed mutagenesis studies on the pig kidney D-amino acid oxidase and, more recently, on the enzyme from the yeast Rhodotorula gracilis indicated that the few conserved residues of the active site do not play a role in acid-base catalysis but rather are involved in substrate interactions. The three-dimensional structure of the enzyme was recently determined from two different sources: at 2.5-3.0 A resolution for DAAO from pig kidney and at 1.2-1.8 A resolution for R. gracilis. The active site can be clearly depicted: the striking absence of essential residues acting in acid-base catalysis and the mode of substrate orientation into the active site, taken together with the results of free-energy correlation studies, clearly support a hydrid transfer type of mechanism in which the orbital steering between the substrate and the isoalloxazine atoms plays a crucial role during catalysis. PMID:11130179

  15. Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization

    International Nuclear Information System (INIS)

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs and Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment

  16. Microfluidics in amino acid analysis.

    Science.gov (United States)

    Pumera, Martin

    2007-07-01

    Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices. PMID:17542043

  17. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocke...

  18. Effect of D-amino acids at Asp23 and Ser26 residues on the conformational preference of Aβ20-29 peptides

    International Nuclear Information System (INIS)

    The effects of D-amino acids at Asp23 and Ser26 residues on the conformational preference of β-amyloid (Aβ) peptide fragment (Aβ20-29) have been studied using different spectroscopic techniques, namely vibrational circular dichroism (VCD), vibrational absorption, and electronic circular dichroism. To study the structure of the Aβ20-29, [D-Asp23]Aβ20-29, and [D-Ser26]Aβ20-29 peptides under different conditions, the spectra were measured in 10 mM acetate buffer (pH 3) and in 2,2,2-trifluoroethanol (TFE). The spectroscopic results indicated that at pH 3, Aβ20-29 peptide takes random coil with β-turn structure, while [D-Ser26]Aβ20-29 peptide adopts significant amount of polyproline II (PPII) type structure along with β-turn contribution and D-Asp-substituted peptide ([D-Asp23]Aβ20-29) adopts predominantly PPII type structure. The increased propensity for PPII conformation upon D-amino acid substitution, in acidic medium, has important biological implications. In TFE, Aβ20-29, [D-Asp23]Aβ20-29, and [D-Ser26]Aβ20-29 peptides adopt 310-helix, α-helix, and random coil with some β-turn structures, respectively. The VCD data obtained for the Aβ peptide films suggested that the secondary structures for the peptide films are not the same as those for corresponding solution and are also different among the Aβ peptides studied here. This observation suggests that dehydration can have a significant influence on the structural preferences of these peptides

  19. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  20. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin.

    Science.gov (United States)

    Lu, Bangmin; Zhang, Bin; Qi, Wei; Zhu, Yanan; Zhao, Yan; Zhou, Nan; Sun, Rong; Bao, Jinku; Wu, Chuanfang

    2014-11-01

    Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding. PMID:25239139

  1. Identification of an amino acid residue required for differential recognition of a viral movement protein by the Tomato mosaic virus resistance gene Tm-2(2).

    Science.gov (United States)

    Kobayashi, Michie; Yamamoto-Katou, Ayako; Katou, Shinpei; Hirai, Katsuyuki; Meshi, Tetsuo; Ohashi, Yuko; Mitsuhara, Ichiro

    2011-07-01

    The Tm-2 gene of tomato and its allelic gene, Tm-2(2), confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-2(2), Tm-2(2) confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-2(2). Although resistance induced by Tm-2 and Tm-2(2) is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-2(2) induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-2(2) but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-2(2) is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-2(2) are involved in HR cell death. PMID:21310506

  2. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca(2+)-regulated photoprotein berovin.

    Science.gov (United States)

    Burakova, Ludmila P; Stepanyuk, Galina A; Eremeeva, Elena V; Vysotski, Eugene S

    2016-05-11

    Bright bioluminescence of ctenophores is caused by Ca(2+)-regulated photoproteins. Although these photoproteins are functionally identical to and share many properties of cnidarian photoproteins, like aequorin and obelin, and retain the same spatial architecture, they are extremely sensitive to light, i.e. lose the ability to bioluminesce on exposure to light over the entire absorption spectrum. In addition, the degree of identity of their amino acid sequences with those of cnidarian photoproteins is only 29.4%. This suggests that the residues involved in bioluminescence of ctenophore and cnidarian photoproteins significantly differ. Here we describe the bioluminescent properties of berovin mutants with substitution of the residues located in the photoprotein internal cavity. Since the spatial structure of berovin bound with a substrate is not determined yet, to identify these residues we have modeled it with an accommodated substrate using the structures of some cnidarian Ca(2+)-regulated photoproteins with bound coelenterazine or coelenteramide as templates in order to obtain an adequate sampling and to take into account all possible conformers and variants for ligand-protein docking. Based on the impact of substitutions on the bioluminescent properties and model structures we speculate that within the internal cavity of ctenophore photoproteins, coelenterazine is bound as a 2-peroxy anion adduct which is stabilized owing to Coulomb interaction with a positively charged guanidinium group of Arg41 paired with Tyr204. In this case, the bioluminescence reaction is triggered by only calcium-induced conformational changes leading to the disturbance of charge-charge interaction. PMID:27117544

  3. Main: Amino acid Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Amino acid Analysis UniProt search ... blastx result Result of blastx search ... against UniProt protein ... database kome_uniprot_search _blastx_result.zip kome_uniprot_search _blastx_resul ...

  4. Main: Amino acid Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Amino acid Analysis SwissProt search ... result Result of blastx search ... against SwissProt protein da ... tabase kome_swissprot_search _result.zip kome_swissprot_search _result ...

  5. Branched-Chain Amino Acids

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav

    Berlin : Springer-Verlag Berlin Heidelberg, 2007, s. 129-162. ISBN 978-3-540-48595-7 Institutional research plan: CEZ:AV0Z50200510 Keywords : amino acids * homologous reactions Subject RIV: EE - Microbiology, Virology

  6. Genetic and functional analyses of the oeX174 DNA binding protein: the effects of substitutions for amino acid residues that spatially organize the two DNA binding domains

    International Nuclear Information System (INIS)

    The oeX174 DNA binding protein contains two DNA binding domains, containing a series of DNA binding basic amino acids, separated by a proline-rich linker region. Within each DNA binding domain, there is a conserved glycine residue. Glycine and proline residues were mutated and the effects on virion structure were examined. Substitutions for glycine residues yield particles with similar properties to previously characterized mutants with substitutions for DNA binding residues. Both sets of mutations share a common extragenic second-site suppressor, suggesting that the defects caused by the mutant proteins are mechanistically similar. Hence, glycine residues may optimize DNA-protein contacts. The defects conferred by substitutions for proline residues appear to be fundamentally different. The properties of the mutant particles along with the atomic structure of the virion suggest that the proline residues may act to guide the packaged DNA to the adjacent fivefold related asymmetric unit, thus preventing a chaotic packaging arrangement

  7. Glutamic Acid at Residue 125 of the prM Helix Domain Interacts with Positively Charged Amino Acids in E Protein Domain II for Japanese Encephalitis Virus-Like-Particle Production

    OpenAIRE

    Peng, Jia-Guan; Wu, Suh-Chin

    2014-01-01

    Interaction between E and prM proteins in flavivirus-infected cells is a major factor for virus-like particle (VLP) production. The prM helical (prM-H) domain is topologically close to and may interact with domain II of the E protein (EDII). In this study, we investigated prM-H domain amino acid residues facing Japanese encephalitis virus EDII using site-directed mutagenesis to determine their roles in prM-E interaction and VLP production. Our results indicate that negatively charged prM-E125...

  8. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  9. Expression of the Gene Encoding the Tetraploid of Carboxyl-terminal Peptide of β-hCG Containing Thirty-seven Amino Acid Residues in E. coli

    Institute of Scientific and Technical Information of China (English)

    王健; 沈卫英; 周清平; 申庆祥

    2000-01-01

    Objective This study was carried out to investigate the possible enhancement of immunogenicity of the carboxyl-terminal peptide of β-hCG which is made up of 37 amino acid residues (109~145) and contains the specific epitope (antigenic determinant) of hCG.Materials & Methods hCGβ-CTP37 tetraploid cDNA was constructed by linking four hCGβ-CTP37 cDNAs together. The product was then subcloned into the E. coli expression vector pQE60 to construct the expression vector pQE60/ (hCGβ-CTP37)4. Recombinant (hCGβ-CTP37 ) 4 was expressed in E. coil-X-blue.Results Western blot analysis showed that the tetraploid of hCGβ-CTP37 had an apparent molecular weight of 20 kD and had relatively stronger anti-hCG antibody-binding activity compared with the diploid from.Conclusion The tetraploid of hCGβ-CTP37 may be a more potent immunogen for raising anti-hCG vaccines for fertility regulation or suppression of tumor.

  10. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2016-09-01

    Protein modifications of meat cooked by typical dry-heat methods (e.g., roasting) are currently not well understood. The present study utilised a shotgun proteomic approach to examine the molecular-level effect of roasting on thin lamb longissimus thoracis et lumborum patties, in terms of changes to both the protein profile and amino acid residue side-chain modifications. Cooking caused aggregation of actin, myosin heavy chains and sarcoplasmic proteins. Longer roasting time resulted in significantly reduced protein extractability as well as protein truncation involving particularly a number of myofibrillar and sarcoplasmic proteins, e.g., 6-phosphofructokinase, beta-enolase, l-lactate dehydrogenase A chain, alpha-actinin-3, actin and possibly myosin heavy chains. Modifications that have potential influence on nutritional properties, including carboxyethyllysine and a potentially glucose-derived N-terminal Amadori compound, were observed in actin and myoglobin after roasting. This study provided new insights into molecular changes resulting from the dry-heat treatment of meat, such as commonly used in food preparation. PMID:27150797

  11. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Directory of Open Access Journals (Sweden)

    Francois F Maree

    Full Text Available Foot-and-mouth disease virus (FMDV initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  12. Identification of amino acid residues of a designed ankyrin repeat protein potentially involved in intermolecular interactions with CD4: analysis by molecular dynamics simulations.

    Science.gov (United States)

    Nimmanpipug, Piyarat; Khampa, Chalermpon; Lee, Vannajan Sanghiran; Nangola, Sawitree; Tayapiwatana, Chatchai

    2011-11-01

    We applied molecular dynamics simulations to investigate the binding properties of a designed ankyrin repeat protein, the DARPin-CD4 complex. DARPin 23.2 has been reported to disturb the human immunodeficiency virus (HIV) viral entry process by Schweizer et al. The protein docking simulation was analysed by comparing the specific ankyrin binder (DARPin 23.2) to an irrelevant control (2JAB) in forming a composite with CD4. To determine the binding free energy of both ankyrins, the MM/PBSA and MM/GBSA protocols were used. The free energy decomposition of both complexes were analysed to explore the role of certain amino acid residues in complex configuration. Interestingly, the molecular docking analysis of DARPin 23.2 revealed a similar CD4 interaction regarding the gp120 theoretical anchoring motif. In contrast, the binding of control ankyrin to CD4 occurred at a different location. This observation suggests that there is an advantage to the molecular modification of DARPin 23.2, an enhanced affinity for CD4. PMID:21962990

  13. Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, H.S.; Chary, K.V.R. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-03-15

    A novel methodology for stereospecific NMR assignments of methyl (CH{sub 3}) groups of Val and Leu residues in fractionally {sup 13}C-labeled proteins is presented. The approach is based on selective 'unlabeling' of specific amino acids in proteins while fractionally {sup 13}C-labeling the rest. A 2D [{sup 13}C-{sup 1}H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the 'unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH{sub 3} groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP)

  14. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients.During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  15. Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels.

    Science.gov (United States)

    Lübkemeier, Indra; Requardt, Robert Pascal; Lin, Xianming; Sasse, Philipp; Andrié, René; Schrickel, Jan Wilko; Chkourko, Halina; Bukauskas, Feliksas F; Kim, Jung-Sun; Frank, Marina; Malan, Daniela; Zhang, Jiong; Wirth, Angela; Dobrowolski, Radoslaw; Mohler, Peter J; Offermanns, Stefan; Fleischmann, Bernd K; Delmar, Mario; Willecke, Klaus

    2013-05-01

    The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function. PMID:23558439

  16. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks. PMID:21120449

  17. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.

    Science.gov (United States)

    Ali, Syed R; Singh, Aditya K; Laezza, Fernanda

    2016-05-20

    The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels. PMID:26994141

  18. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat;

    2010-01-01

    a common buried residue, Phe, from the green fluorescent protein (GFP), while retaining activity. A GFP variant containing 11 Phe residues was used as starting scaffold to generate 10 separate variants in which each Phe was replaced individually (in one construct two adjacent Phe residues were changed......BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...

  19. [Inherited amino acid transport disorders].

    Science.gov (United States)

    Igarashi, Y; Tada, K

    1992-07-01

    Disorders due to inherited amino acids transport defect are reviewed. The disorders were categorized into three types of transport defects, namely, brush-border membrane of epithelial cells of small intestine and kidney tubules (Hartnup disease, blue diaper syndrome, cystinuria, iminoglycinuria and lysine malabsorption syndrome), basolateral membrane (lysinuric protein intolerance) and membrane of intracellular organelles (cystinosis and hyperornitinemia-hyperammonemia-homocitrullinuria syndrome). Pathogenesis, clinical feature, laboratory findings, diagnosis, genetics and treatment of these disorders are described, briefly. There is not much data for the transport systems themselves, so that further investigation in molecular and gene levels for transport systems is necessary to clarify the characteristics of the transport and heterogeneity of phenotypes in inherited amino acids transport disorders. PMID:1404888

  20. Coeliac disease: characterisation of monoclonal antibodies raised against a synthetic peptide corresponding to amino acid residues 206-217 of A-gliadin.

    OpenAIRE

    Ellis, H. J.; Doyle, A. P.; Sturgess, R P; Ciclitira, P J

    1992-01-01

    A dodecapeptide of A-gliadin, which shares amino acid homologies with the E1b protein of adenovirus 12, was used to produce murine monoclonal antibodies. Five monoclonal antibodies were produced and were screened by enzyme linked immunosorbant assay, immunodot assay, and immunoblotting. The antibodies were tested against whole wheat gliadin and its alpha, beta, gamma, and omega subfractions, and the prolamins of rye, barley, oats, maize, millet, rice, and sorghum. Four of the five antibodies ...

  1. Non-protein amino acids in peptide design

    Indian Academy of Sciences (India)

    S Aravinda; N Shamala; Rituparna S Roy; P Balaram

    2003-10-01

    An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the use -aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments and DPro-Xxx segments for nucleating of -hairpin structures. - and -amino acid residues have been used to expand the range of designed polypeptide structures.

  2. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Comparative Amino Acid Sequences of Dengue Viruses

    OpenAIRE

    Haishi, Shozo; TANAKA Mariko; Igarashi, Akira

    1990-01-01

    Amino acid (AA) sequences of 4 serotype of dengue viruses deduced from their nucleotide (nt) sequences of genomic RNA were analyzed for each genome segment and each stretch of 10 AA residues. Precursor of membrane protein (pM), and 4 nonstructural proteins (NS1, NS3, NS4B, NS5) were highly conserved, while another nonstructural protein (NS2A) was least conserved among 5 strains of dengue viruses. When homology was compared among heterotypic viruses, type 1 and type 3 dengue viruses showed clo...

  5. D-amino acid peptide residualizing agents bearing N-hydroxysuccinimido- and maleimido-functional groups and their application for trastuzumab radioiodination

    International Nuclear Information System (INIS)

    Introduction: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent Nϵ-(3-[⁎I]iodobenzoyl)-Lys5-Nα-maleimido-Gly1-D-GEEEK (Mal-D-GEEEK-[⁎I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. Methods: Nα-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. Results: NHS-[131I]IB-D-EEEG was produced in 53.8% ± 13.4% and conjugated to trastuzumab in 39.5% ± 7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[131I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[125I]IB demonstrated similar intracellular trapping for both conjugates at 1 h (131I, 84.4% ± 6.1%; 125I, 88.6% ± 5.2%) through 24 h (131I, 60.7% ± 6.8%; 125I, 64.9% ± 6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[131I]IB-D-EEEG, 29.8% ± 3.6%ID/g; trastuzumab-Mal-D-GEEEK-[125I]IB, 45.3% ± 5.3%ID/g) and was significantly higher for 125I at all time points. In general, normal tissue levels were lower for

  6. Engineering of halophilic enzymes: Two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases

    OpenAIRE

    Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2008-01-01

    Nucleoside diphosphate kinase from Halomonas sp. 593 (HaNDK) exhibits halophilic characteristics. Residues 134 and 135 in the carboxy-terminal region of HaNDK are Glu–Glu, while those of its homologous counterpart of non-halophilic Pseudomonas NDK (PaNDK) are Ala–Ala. The double mutation, E134A-E135A, in HaNDK results in the loss of the halophilic characteristics, and, conversely, the double mutation of A134E-A135E in PaNDK confers halophilic characters to this enzyme, indicating that the cha...

  7. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  8. Three amino acid residues in the envelope of human immunodeficiency virus type 1 CRF07_BC regulate viral neutralization susceptibility to the human monoclonal neutralizing antibody IgG1b12

    Institute of Scientific and Technical Information of China (English)

    Jianhui; Nie; Juan; Zhao; Qingqing; Chen; Weijin; Huang; Youchun; Wang

    2014-01-01

    The CD4 binding site(CD4bs) of envelope glycoprotein(Env) is an important conserved target for anti-human immunodeficiency virus type 1(HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12(b12) could recognize conformational epitopes that overlap the CD4 bs of Env. Different virus strains, even derived from the same individual, showed distinct neutralization susceptibility to b12. We examined the key amino acid residues affecting b12 neutralization susceptibility using single genome amplification and pseudovirus neutralization assay. Eleven amino acid residues were identified that affect the sensitivity of Env to b12. Through site-directed mutagenesis, an amino acid substitution at position 182 in the V2 region of Env was confirmed to play a key role in regulating the b12 neutralization susceptibility. The introduction of V182 L to a resistant strain enhanced its sensitivity to b12 more than twofold. Correspondingly, the introduction of L182 V to a sensitive strain reduced its sensitivity to b12 more than tenfold. Amino acid substitution at positions 267 and 346 could both enhance the sensitivity to b12 more than twofold. However, no additive effect was observed when the three site mutageneses were introduced into the same strain, and the sensitivity was equivalent to the single V182 L mutation. CRF07_BC is a major circulating recombinant form of HIV-1 prevalent in China. Our data may provide important information for understanding the molecular mechanism regulating the neutralization susceptibility of CRF07_BC viruses to b12 and may be helpful for a vaccine design targeting the CD4 bs epitopes.

  9. Pairwise amino acid secondary structural propensities

    Science.gov (United States)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  10. Acquisition of NFKB1-selective DNA binding by substitution of four amino acid residues from NFKB1 into RelA.

    OpenAIRE

    Coleman, T A; Kunsch, C; Maher, M.; Ruben, S. M.; Rosen, C. A.

    1993-01-01

    The subunits of NF-kappa B, NFKB1 (formerly p50) and RelA (formerly p65), belong to a growing family of transcription factors that share extensive similarity to the c-rel proto-oncogene product. The homology extends over a highly conserved stretch of approximately 300 amino acids termed the Rel homology domain (RHD). This region has been shown to be involved in both multimerization (homo- and heterodimerization) and DNA binding. It is now generally accepted that homodimers of either subunit a...

  11. Identification of amino acid residues of the coat protein of Sri Lankan cassava mosaic virus affecting symptom production and viral titer in Nicotiana benthamiana.

    Science.gov (United States)

    Kelkar, Vaishali; Kushawaha, Akhilesh Kumar; Dasgupta, Indranil

    2016-06-01

    Sri Lankan cassava mosaic virus (SLCMV) is bipartite begomovirus infecting cassava in India and Sri Lanka. Interestingly, the DNA-A component of the SLCMV alone is able to infect Nicotiana benthamiana causing symptoms of upward leaf rolling and stunting. One of the differences between monopartite and bipartite begomoviruses is the requirement of Coat Protein (CP) for infectivity; CP being essential for the former, but dispensable in the latter. This investigation was aimed to determine the importance of CP in the infectivity of the bipartite SLCMV, behaving as a monopartite virus in N. benthamiana. We tested CP-null mutants, single amino acid replacement mutants and double, triple and quadruple combinations of the above in SLCMV DNA-A, for infectivity, symptom development and viral DNA accumulation in N. benthamiana. While CP-null mutants were non-infectious, a majority of the single amino acid replacement mutants and their combinations retained infectivity, some with attenuated symptoms and reduced viral titers. Some of the combined mutations restored the attenuated symptoms to wild type levels. Some of the mutations were predicted to cause changes in the secondary structure of the CP, which roughly correlated with the attenuation of symptoms and the reduction in viral titers. PMID:26948262

  12. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  13. Amino acids in the Tagish Lake Meteorite

    Science.gov (United States)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  14. α-Amino Acid-Isosteric α-Amino Tetrazoles.

    Science.gov (United States)

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt; Dömling, Alexander

    2016-02-24

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531

  15. Relationship between amino acid usage and amino acid evolution in primates.

    Science.gov (United States)

    Liu, Haoxuan; Xie, Zhengqing; Tan, Shengjun; Zhang, Xiaohui; Yang, Sihai

    2015-02-25

    Amino acid usage varies from species to species. A previous study has found a universal trend in amino acid gain and loss in many taxa and a one-way model of amino acid evolution in which the number of new amino acids increases as the number of old amino acids decreases was proposed. Later studies showed that this pattern of amino acid gain and loss is likely to be compatible with the neutral theory. The present work aimed to further study this problem by investigating the evolutionary patterns of amino acids in 8 primates (the nucleotide and protein alignments are available online http://gattaca.nju.edu.cn/pub_data.html). First, the number of amino acids gained and lost was calculated and the evolution trend of each amino acid was inferred. These values were found to be closely related to the usage of each amino acid. Then we analyzed the mutational trend of amino acid substitution in human using SNPs, this trend is highly correlated with fixation trend only with greater variance. Finally, the trends in the evolution of 20 amino acids were evaluated in human on different time scales, and the increasing rate of 5 significantly increasing amino acids was found to decrease as a function of time elapsed since divergence, and the dS/dN ratio also found to increase as a function of time elapsed since divergence. These results suggested that the observed amino acid substitution pattern is influenced by mutation and purifying selection. In conclusion, the present study shows that usage of amino acids is an important factor capable of influencing the observed pattern of amino acid evolution, and also presented evidences suggesting that the observed universal trend of amino acid gain and loss is compatible with neutral evolution. PMID:25527119

  16. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    Science.gov (United States)

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  17. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    Science.gov (United States)

    Lomstein, Bente Aa.; Jørgensen, Bo B.; Schubert, Carsten J.; Niggemann, Jutta

    2006-06-01

    increased sediment depth and age (up to 288-year-old) reaching up to 59%. Independent estimates based on D-amino acid concentrations in selected laboratory strains, bacterial counts and the sedimentary concentrations of D-amino acids indicate that a large fraction of the measured D-amino acids (>47 to >97%) originated from cell wall residues rather than from enumerated cells.

  18. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  19. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1.

    Science.gov (United States)

    Wakuta, Shinji; Mineta, Katsuhiko; Amano, Taro; Toyoda, Atsushi; Fujiwara, Toru; Naito, Satoshi; Takano, Junpei

    2015-05-01

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. PMID:25619824

  20. Tuning hydrophobicity of highly cationic tetradecameric Gramicidin S analogues using adamantane amino acids

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    Ring extended Gramicidin S analogues containing adamantane amino acids and six cationic residues were designed and evaluated. Systematic replacement of the hydrophobic residues with adamantane amino acids resulted in a small set of compounds with varying amphipathic character. It was found that the

  1. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  2. Amino acid sequences of proteins from Leptospira serovar pomona

    Directory of Open Access Journals (Sweden)

    Alves Selmo F

    2000-01-01

    Full Text Available This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  3. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; XU ZhiNan; CEN PeiLin

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  4. 6th Amino Acid Assessment Workshop

    Science.gov (United States)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  5. Human Protein and Amino Acid Requirements.

    Science.gov (United States)

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  6. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine amino... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  7. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    Science.gov (United States)

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  8. Cloning of the non-neuronal intermediate filament protein of the gastropod Aplysia californica; identification of an amino acid residue essential for the IFA epitope.

    Science.gov (United States)

    Riemer, D; Dodemont, H; Weber, K

    1991-12-01

    We describe the isolation and characterization of a full-length cDNA corresponding to the larger non-neuronal (nn) intermediate filament (IF) protein of the gastropod Aplysia californica. Comparison of the sequences of the nn-IF proteins from Aplysia californica and Helix aspersa shows a strong evolutionary drift. At a 72% sequence identity level, the IF proteins of Opisthobranchia and Pulmonata show a larger distance than vimentins from Xenopus and mammals. The sequence comparison of the two snail proteins provides an important step in understanding the epitope of the monoclonal antibody IFA mapped by previous studies to the consensus sequence at the carboxy-terminal end of the rod domain of IF proteins. We identify for the first time in a naturally occurring IF protein a single amino acid exchange which leads to the loss of the epitope. The consensus sequence YRKLLEGEE present in IFA-positive proteins such as the Helix IF protein is changed in the IFA-negative Aplysia protein only by the conservative substitution of the arginine (R) by a lysine (K). Thus, the IFA epitope is not a necessity of IF structure, and its presence or absence on different IF proteins reflects only small changes in an otherwise conserved consensus sequence. Consequently, lack of IFA reactivity does not exclude the presence of IF. This result predicts that IF are much more universally expressed in lower eukaryotes than currently expected from immunological results with the monoclonal antibody IFA. PMID:1724961

  9. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  10. Genetics of Amino Acid Taste and Appetite.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  11. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  12. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    Science.gov (United States)

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  13. Amino acid containing glass-ionomer cement for orthopedic applications

    Science.gov (United States)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  14. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens

    Directory of Open Access Journals (Sweden)

    Sakoda Yoshihiro

    2011-02-01

    Full Text Available Abstract Background Outbreaks of avian influenza (AI caused by infection with low pathogenic H9N2 viruses have occurred in poultry, resulting in serious economic losses in Asia and the Middle East. It has been difficult to eradicate the H9N2 virus because of its low pathogenicity, frequently causing in apparent infection. It is important for the control of AI to assess whether the H9N2 virus acquires pathogenicity as H5 and H7 viruses. In the present study, we investigated whether a non-pathogenic H9N2 virus, A/chicken/Yokohama/aq-55/2001 (Y55 (H9N2, acquires pathogenicity in chickens when a pair of di-basic amino acid residues is introduced at the cleavage site of its HA molecule. Results rgY55sub (H9N2, which had four basic amino acid residues at the HA cleavage site, replicated in MDCK cells in the absence of trypsin after six consecutive passages in the air sacs of chicks, and acquired intravenous pathogenicity to chicken after four additional passages. More than 75% of chickens inoculated intravenously with the passaged virus, rgY55sub-P10 (H9N2, died, indicating that it is pathogenic comparable to that of highly pathogenic avian influenza viruses (HPAIVs defined by World Organization for Animal Health (OIE. The chickens inoculated with the virus via the intranasal route, however, survived without showing any clinical signs. On the other hand, an avirulent H5N1 strain, A/duck/Hokkaido/Vac-1/2004 (Vac1 (H5N1, acquired intranasal pathogenicity after a pair of di-basic amino acid residues was introduced into the cleavage site of the HA, followed by two passages by air sac inoculation in chicks. Conclusion The present results demonstrate that an H9N2 virus has the potential to acquire intravenous pathogenicity in chickens although the morbidity via the nasal route of infection is lower than that of H5N1 HPAIV.

  15. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.;

    2010-01-01

    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  16. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  17. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  18. Electronic coupling through natural amino acids

    International Nuclear Information System (INIS)

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design

  19. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  20. Electronic coupling through natural amino acids

    Science.gov (United States)

    Berstis, Laura; Beckham, Gregg T.; Crowley, Michael F.

    2015-12-01

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green's function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  1. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  2. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these...

  3. Amino acid analysis for pharmacopoeial purposes.

    Science.gov (United States)

    Wahl, Oliver; Holzgrabe, Ulrike

    2016-07-01

    The impurity profile of amino acids depends strongly on the production process. Since there are many different production methods (e.g. fermentation, protein hydrolysis or chemical synthesis) universal, state of the art methods are required to determine the impurity profile of amino acids produced by all relevant competitors. At the moment TLC tests provided by the Ph. Eur. are being replaced by a very specific amino acid analysis procedure possibly missing out on currently unknown process related impurities. Production methods and possible impurities as well as separation and detection methods suitable for said impurities are subject to this review. PMID:27154660

  4. In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification.

    Directory of Open Access Journals (Sweden)

    James A J Arpino

    Full Text Available Expanded genetic code approaches are a powerful means to add new and useful chemistry to proteins at defined residues positions. One such use is the introduction of non-biological reactive chemical handles for site-specific biocompatible orthogonal conjugation of proteins. Due to our currently limited information on the impact of non-canonical amino acids (nAAs on the protein structure-function relationship, rational protein engineering is a "hit and miss" approach to selecting suitable sites. Furthermore, dogma suggests surface exposed native residues should be the primary focus for introducing new conjugation chemistry. Here we describe a directed evolution approach to introduce and select for in-frame codon replacement to facilitate engineering proteins with nAAs. To demonstrate the approach, the commonly reprogrammed amber stop codon (TAG was randomly introduced in-frame in two different proteins: the bionanotechnologically important cyt b(562 and therapeutic protein KGF. The target protein is linked at the gene level to sfGFP via a TEV protease site. In absence of a nAA, an in-frame TAG will terminate translation resulting in a non-fluorescent cell phenotype. In the presence of a nAA, TAG will encode for nAA incorporation so instilling a green fluorescence phenotype on E. coli. The presence of endogenously expressed TEV proteases separates in vivo target protein from its fusion to sfGFP if expressed as a soluble fusion product. Using this approach, we incorporated an azide reactive handle and identified residue positions amenable to conjugation with a fluorescence dye via strain-promoted azide-alkyne cycloaddition (SPAAC. Interestingly, best positions for efficient conjugation via SPAAC were residues whose native side chain were buried through analysis of their determined 3D structures and thus may not have been chosen through rational protein engineering. Molecular modeling suggests these buried native residues could become partially

  5. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Haselmann, Kim F; Sørensen, Esben Skipper;

    2003-01-01

    . The identity of an additional two residues could be correctly guessed from the absence of the alternative w ions, and only two residues, for which neither expected nor alternative w ions were observed, remained unassigned. Reinspection of conventional ECD spectra also revealed the presence of Xle w...

  6. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  7. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  8. The crystal structure of a xyloglucan-specific endo-beta-1,4-glucanase from Geotrichum sp. M128 xyloglucanase reveals a key amino acid residue for substrate specificity.

    Science.gov (United States)

    Yaoi, Katsuro; Kondo, Hidemasa; Hiyoshi, Ayako; Noro, Natsuko; Sugimoto, Hiroshi; Tsuda, Sakae; Miyazaki, Kentaro

    2009-09-01

    Geotrichum sp. M128 possesses two xyloglucan-specific glycoside hydrolases belonging to family 74, xyloglucan-specific endo-beta-1,4-glucanase (XEG) and oligoxyloglucan reducing-end-specific cellobiohydrolase (OXG-RCBH). Despite their similar amino acid sequences (48% identity), their modes of action and substrate specificities are distinct. XEG catalyzes the hydrolysis of xyloglucan polysaccharides in endo mode, while OXG-RCBH acts on xyloglucan oligosaccharides at the reducing end in exo mode. Here, we determined the crystal structure of XEG at 2.5 A resolution, and compared it to a previously determined structure of OXG-RCBH. For the most part, the amino acid residues that interact with substrate are conserved between the two enzymes. However, there are notable differences at subsite positions -1 and +2. OXG-RCBH has a loop around the +2 site that blocks one end of the active site cleft, which accounts for its exo mode of action. In contrast, XEG lacks a corresponding loop at this site, thereby allowing binding to the middle of the main chain of the substrate. At the -1 site in OXG-RCBH, Asn488 interacts with the xylose side chain of the substrate, whereas the -1 site is occupied by Tyr457 in XEG. To confirm the contribution of this residue to substrate specificity, Tyr457 was substituted by Gly in XEG. The wild-type XEG cleaved the oligoxyloglucan at a specific site; the Y457G variant cleaved the same substrate, but at various sites. Together, the absence of a loop in the cleft and the presence of bulky Tyr457 determine the substrate specificity of XEG. PMID:19682300

  9. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  10. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    Science.gov (United States)

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  11. Neutron inelastic scattering from amino acids

    International Nuclear Information System (INIS)

    Neutron incoherent inelastic scattering technique is used for studying the extensive hydrogen bonding that connects the molecules together and gives the structure cohesion in three dimension in amino acids. Results on five amino acids namely, α-glycine, DL-alanine, L-valine, L-tyrosine and L-phenyl-alanine having different side groups are reported and compared with those from other methods. The main emphasis is on the torsional motions of NH3+ and CH3 groups. (K.B.)

  12. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  13. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  14. FLU, an amino acid substitution model for influenza proteins

    Directory of Open Access Journals (Sweden)

    Gascuel Olivier

    2010-04-01

    Full Text Available Abstract Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses. Results A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU from ~113, 000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/. Conclusions FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions.

  15. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  16. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets.

    Science.gov (United States)

    Melo, Francisco; Marti-Renom, Marc A

    2006-06-01

    Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs. PMID:16506243

  17. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  18. Synthesis of novel trivalent amino acid glycoconjugates based on the cyclotriveratrylene ('CTV') scaffold.

    Science.gov (United States)

    van Ameijde, Jeroen; Liskamp, Rob M J

    2003-08-01

    The convenient synthesis of novel trivalent amino acid glycoconjugates based on cyclotriveratrylene ('CTV') is described. These constructs consist of the CTV scaffold, three oligoethylene glycol spacers of variable length connected to a glyco amino acid residue which can also be varied. The resulting library of trivalent glycoconjugates can be used for studying multivalent interactions. PMID:12948190

  19. Change in the amino acid composition of calf skin collagen after. gamma. -irradiation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Duzhenkova, N.A.; Savich, A.V. (Institut Biofiziki, Moscow (USSR))

    A study was made of the amino acid composition of calf skin collagen after ..gamma..-irradiation (/sup 60/Co) of 2.5x10/sup -6/ M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared.

  20. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  1. Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    OpenAIRE

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance an...

  2. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  3. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  4. Postprandial fate of amino acids: adaptation to molecular forms

    NARCIS (Netherlands)

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, inco

  5. Identification of conserved amino acid residues of the Salmonella sigmaS chaperone Crl involved in Crl-sigmaS interactions.

    Science.gov (United States)

    Monteil, Véronique; Kolb, Annie; D'Alayer, Jacques; Beguin, Pierre; Norel, Françoise

    2010-02-01

    Proteins that bind sigma factors typically attenuate the function of the sigma factor by restricting its access to the RNA polymerase (RNAP) core enzyme. An exception to this general rule is the Crl protein that binds the stationary-phase sigma factor sigma(S) (RpoS) and enhances its affinity for the RNAP core enzyme, thereby increasing expression of sigma(S)-dependent genes. Analyses of sequenced bacterial genomes revealed that crl is less widespread and less conserved at the sequence level than rpoS. Seventeen residues are conserved in all members of the Crl family. Site-directed mutagenesis of the crl gene from Salmonella enterica serovar Typhimurium and complementation of a Deltacrl mutant of Salmonella indicated that substitution of the conserved residues Y22, F53, W56, and W82 decreased Crl activity. This conclusion was further confirmed by promoter binding and abortive transcription assays. We also used a bacterial two-hybrid system (BACTH) to show that the four substitutions in Crl abolish Crl-sigma(S) interaction and that residues 1 to 71 in sigma(S) are dispensable for Crl binding. In Escherichia coli, it has been reported that Crl also interacts with the ferric uptake regulator Fur and that Fur represses crl transcription. However, the Salmonella Crl and Fur proteins did not interact in the BACTH system. In addition, a fur mutation did not have any significant effect on the expression level of Crl in Salmonella. These results suggest that the relationship between Crl and Fur is different in Salmonella and E. coli. PMID:20008066

  6. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2), on......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  7. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  8. Biosynthesis of the Aromatic Amino Acids.

    Science.gov (United States)

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  9. Mutagenic effect of incorporated tritium amino acids

    International Nuclear Information System (INIS)

    Genetic effect of tritium labelled amino acids was studied. The experiments were carried out on white mongreal rats, genetic effects were evaluated by dominant lethal mutation frequency in male germ cells. It was shown that administration of tritium amino acids results in genetic violations in male germ cells manifested in progeny death. Assessment of integral temporal indices of induced post implantation embryos death showed that 3H-lysine effect exceeds tritium oxide effect by 1.5-2 fold in case of equal absorbed doses. The obtained results are used in alculation of radiation hygienic standards for biogenic tritium compounds. 4 refs.; 1 tab

  10. Postprandial fate of amino acids: adaptation to molecular forms

    OpenAIRE

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, incorporated into body proteins part of these amino acids are oxidized, and can, thus, no longer be utilized to support protein metabolism in the body. The objective of this thesis was to increase the ...

  11. The amino-acid sequence of kangaroo pancreatic ribonuclease.

    Science.gov (United States)

    Gaastra, W; Welling, G W; Beintema, J J

    1978-05-01

    Red kangaroo (Macropus rufus) ribonuclease was isolated from pancreatic tissue by affinity chromatography. The amino acid sequence was determined by automatic sequencing of overlapping large fragments and by analysis of shorter peptides obtained by digestion with a number of proteolytic enzymes. The polypeptide chain consists of 122 amino acid residues. Compared to other ribonucleases, the N-terminal residue and residue 114 are deleted. In other pancreatic ribonucleases position 114 is occupied by a cis proline residue in an external loop at the surface of the molecule. Other remarkable substitutions are the presence of a tyrosine residue at position 123 instead of a serine which forms a hydrogen bond with the pyrimidine ring of a nucleotide substrate, and a number of hydrophobichydrophilic interchanges in the sequence 51-55, which forms part of an alpha-helix in bovine ribonuclease and exhibits few substitutions in the placental mammals. Kangaroo ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64). The enzyme differs at about 35-40% of the positions from all other mammalian pancreatic ribonucleases sequenced to date, which is in agreement with the early divergence between the marsupials and the placental mammals. From fragmentary data a tentative sequence of red-necked wallaby (Macropus rufogriseus) pancreatic ribonuclease has been derived. Eight differences with the kangaroo sequence were found. PMID:658039

  12. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...

  13. Investigation of the neutral loss of a full amino acid mass during collision-induced dissociation of the b(3)+ ion derived from a model peptide containing a 4-aminobutyric acid residue.

    Science.gov (United States)

    Talaty, Erach R; Chueachavalit, Chawalee; Osburn, Sandra; Van Stipdonk, Michael J

    2007-01-01

    In a previous study we found that a dominant fragmentation pathway observed for collision-induced dissociation (CID) of b(3)+ derived from peptides with sequence AXAG, where X is gamma-aminobutyric acid (gammaAbu) or epsilon-aminocaproic acid (Cap), involved the loss of 89 mass units (u). A neutral loss of 89 u corresponded to the free acid mass of an alanine (A) residue. This specific pathway was studied in greater detail here using a series of A(gammaAbu)AG peptides with strategic positioning of (15)N, (13)C and (2)H isotope labels. Based on the extensive labeling, several possible routes to the net elimination of 89 u are proposed. One is based on initial elimination of either aziridinone or imine and CO, followed by opening of an oxazolinone, tautomerization and elimination of H2O. Another involves formation of an aziridinone by cleavage of the N-terminal amide bond, and transfer of O and H atoms to this fragment via an H-bonded ion-molecule complex to complete the loss of 89 u. Both types of pathway include the transfer/migration of H atoms from the alpha-carbon position of gammaAbu or A residues. PMID:17610213

  14. Correlation between fibroin amino acid sequence and physical silk properties.

    Science.gov (United States)

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet. PMID:12816957

  15. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    Science.gov (United States)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  16. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA

    Directory of Open Access Journals (Sweden)

    Zwieb Christian

    2010-11-01

    Full Text Available Abstract Background Human cells depend critically on the signal recognition particle (SRP for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  17. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  18. Amino acid peroxyl radicals. Formation and reaction with ascorbate

    International Nuclear Information System (INIS)

    Complete text of publication follows. Proteins are significant targets for partly reduced oxygen species in vivo. This results in random formation of radicals on the amino acid residues (AA·) of the protein, which in turn, in the presence of oxygen, can yield the corresponding peroxyl radicals (AAOO·). Both radical types can cause further biological damage. We studied the N-acetylamide derivatives of the amino acids glycine, alanine and proline as models of these residues in proteins. We generated the amino acid radicals specifically by reaction with hydroxyl radicals produced in solutions irradiated with 2 MeV electrons in the presence of N2O. In the absence of oxygen the amino acid radicals decayed with rate constants in the narrow range (0.9-1.3) x 109 M-1s-1, while in the presence of oxygen they were converted very rapidly to the corresponding peroxyl radicals with rate constants that vary between 6.3 x 108 and 5.5 x 109 M-1s-1, depending on the amino acid. The corresponding N-acetylated amino acids were also studied and showed similar behaviour but with slightly smaller rate constants. Antioxidants are able to repair tyrosyl and tryptophanyl radicals in various proteins in vitro. For ascorbate, the principal endogenous biological antioxidant, we have measured rate constants in the range 105-108 M-1s-1. The peroxyl radicals of all amino acids studied here were reduced by oxidizing ascorbate to the ascorbyl radical. The reaction was followed at 360 nm, where ascorbyl radical has an absorption coefficient of 3300 M-1cm-1, and the derived rate constants were all close to 107 M-1s-1. However, the spontaneous decay of peroxyl radicals is also fast and competes with the reaction with ascorbate. It is to be stressed that reaction of AAOO· and ascorbate gives rise to hydroperoxides (AAOOH) that are also reactive molecules. Our study suggests that reaction with protein radicals may be responsible for the ascorbate loss reported in organisms exposed to oxidative

  19. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  20. Dietary Supplements and Sports Performance: Amino Acids

    OpenAIRE

    Williams Melvin

    2005-01-01

    Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations). The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  1. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  2. Conformational Interconversions of Amino Acid Derivatives

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Jensen, F.

    2016-01-01

    Roč. 12, č. 2 (2016), s. 694-705. ISSN 1549-9618 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : amino acids * force fields * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.498, year: 2014

  3. Identification of essential amino acids in the Streptococcus mutans glucosyltransferases.

    Science.gov (United States)

    Tsumori, H; Minami, T; Kuramitsu, H K

    1997-01-01

    A comparison of the amino acid sequences of the glucosyltransferases (GTFs) of mutans streptococci with those from the alpha-amylase family of enzymes revealed a number of conserved amino acid positions which have been implicated as essential in catalysis. Utilizing a site-directed mutagenesis approach with the GTF-I enzyme of Streptococcus mutans GS-5, we identified three of these conserved amino acid positions, Asp413, Trp491, and His561, as being important in enzymatic activity. Mutagenesis of Asp413 to Thr resulted in a GTF which expressed only about 12% of the wild-type activity. In contrast, mutagenesis of Asp411 did not inhibit enzyme activity. In addition, the D413T mutant was less stable than was the parental enzyme when expressed in Escherichia coli. Moreover, conversion of Trp491 or His561 to either Gly or Ala resulted in enzymes devoid of GTF activity, indicating the essential nature of these two amino acids for activity. Furthermore, mutagenesis of the four Tyr residues present at positions 169 to 172 which are part of a subdomain with homology to the direct repeating sequences present in the glucan-binding domain of the GTFs had little overall effect on enzymatic activity, although the glucan products appeared to be less adhesive. These results are discussed relative to the mechanisms of catalysis proposed for the GTFs and related enzymes. PMID:9171379

  4. Gastroprotective effect and cytotoxicity of labdeneamides with amino acids.

    Science.gov (United States)

    Schmeda-Hirschmann, Guillermo; Rodríguez, Jaime A; Theoduloz, Cristina; Valderrama, Jaime A

    2011-03-01

    Semisynthetic aromatic amides from ARAUCARIA ARAUCANA diterpene acids have been shown to display a relevant gastroprotective effect with low cytotoxicity. The aim of this work was to assess the gastroprotective effect of amino acid amides from imbricatolic acid and its 8(9)-en isomer in the ethanol/HCl-induced gastric lesions model in mice as well as to determine the cytotoxicity of the obtained compounds on the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma (AGS), and liver hepatocellular carcinoma (Hep G2). The diterpenes 15-acetoxyimbricatolic acid, its 8(9)-en isomer, 15-hydroxyimbricatolic acid, and the 8(9)-en derivative, bearing a COOH function at C-19, were used as starting compounds. New amides with C-protected amino acids were prepared. The study reports the effect of a single oral administration of either compound 50 min before the induction of gastric lesions by ethanol/HCl. Some 20 amino acid monoamides were obtained. Dose-response experiments on the glycyl derivatives showed that at a single oral dose of 100 mg/kg, the compounds presented an effect comparable to the reference drug lansoprazole at 20 mg/kg and at 50 mg/kg reduced gastric lesions by about 50%. All derivatives obtained in amounts > 30 mg were compared at a single oral dose of 50 mg/kg. The best gastroprotective effect was observed for the exomethylene derivatives bearing a valine residue at C-19 either with an acetoxy or free hydroxy group at C-15. The tryptophanyl derivative from the acetate belonging to the 8,9-en series presented selective cytotoxicity against hepatocytes. The glycyl amide of 15-acetoxyimbricatolic acid was the most cytotoxic and less selective compound with IC₅₀ values between 47 and 103 µM for the studied cell lines. This is the first report on the obtention of semisynthetic amino acid amides from labdane diterpenes. PMID:20862639

  5. Amino acid quality indices of the leaves of Clerodendrum volubile

    Directory of Open Access Journals (Sweden)

    Ochuko Lucky Erukainure

    2016-04-01

    Full Text Available Objective: To evaluate the amino acid profile and quality indices of Clerodendrum volubile (C. volubile leaves. Methods: Dried leaves of C. volubile were blended, defatted and subjected to amino acid analysis using the technicon sequential multi-sample amino acid analyzer. The amino acid quality indices which covers for chemical score, essential amino acid index, nutritional index, true digestibility, protein digestibility corrected amino acid score, and digestible indispensable amino acid score were evaluated using standard formulas. Results: Amino acid analysis revealed glutamic acid to have the highest concentration, with cysteine having the least. Aspartic acid had the highest chemical score, this was followed by glycine, histidine and arginine, respectively. The least scores were observed in serine and methionine. Glutamic acid had the highest value for true digestibility and protein digestibility corrected amino acid score, with the least observed in cysteine. Digestible indispensable amino acid score evaluation showed histidine to have the highest value for infants (birth to 6 months, threonine for children (6 months to 3 years, while isoleucine was observed to have the highest value for older children, adolescents and adults. The essential amino acid index value was less than 4, while nutritional index value was less than 0.5. Conclusions: These results indicated the leaves of C. volubile as a potential source of amino acids in the human diet as portrayed by its amino acids profile and qualities.

  6. Roles of phytochemicals in amino acid nutrition.

    Science.gov (United States)

    Kong, Xiangfeng; Wu, Guoyao; Yin, Yinlong

    2011-01-01

    Chinese herbal medicine (CHM) is often used as dietary supplements to maintain good health in animals and humans. Here, we review the current knowledge about effects of CHM (including ultra-fine Chinese herbal powder, Acanthopanax senticosus extracts, Astragalus polysaccharide, and glycyrrhetinic acid) as dietary additives on physiological and biochemical parameters in pigs, chickens and rodents. Additionally, we propose possible mechanisms for the beneficial effects of CHM on the animals. These mechanisms include (a) increased digestion and absorption of dietary amino acids; (b) altered catabolism of amino acids in the small intestine and other tissues; (c) enhanced synthesis of functional amino acids (e.g., arginine, glutamine and proline) and polyamines; and (d) improved metabolic control of nutrient utilization through cell signaling. Notably, some phytochemicals and glucocorticoids share similarities in structure and physiological actions. New research findings provide a scientific and clinical basis for the use of CHM to improve well-being in livestock species and poultry, while enhancing the efficiency of protein accretion. Results obtained from animal studies also have important implications for human nutrition and health. PMID:21196382

  7. Mapping the Hydropathy of Amino Acids Based on Their Local Solvation Structure

    KAUST Repository

    Bonella, S.

    2014-06-19

    In spite of its relevant biological role, no general consensus exists on the quantitative characterization of amino acid\\'s hydropathy. In particular, many hydrophobicity scales exist, often producing quite different rankings for the amino acids. To make progress toward a systematic classification, we analyze amino acids\\' hydropathy based on the orientation of water molecules at a given distance from them as computed from molecular dynamics simulations. In contrast with what is usually done, we argue that assigning a single number is not enough to characterize the properties of an amino acid, in particular when both hydrophobic and hydrophilic regions are present in a residue. Instead we show that appropriately defined conditional probability densities can be used to map the hydrophilic and hydrophobic groups on the amino acids with greater detail than possible with other available methods. Three indicators are then defined based on the features of these probabilities to quantify the specific hydrophobicity and hydrophilicity of each amino acid. The characterization that we propose can be used to understand some of the ambiguities in the ranking of amino acids in the current scales. The quantitative indicators can also be used in combination with standard bioinformatics tools to predict the location of transmembrane regions of proteins. The method is sensitive to the specific environment of the amino acids and can be applied to unnatural and modified amino acids, as well as to other small organic molecules. © 2014 American Chemical Society.

  8. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  9. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  10. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    Energy Technology Data Exchange (ETDEWEB)

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  11. Amino Acid Decarboxylase Activity of Some Lactic Acid Bacteria

    OpenAIRE

    Pelin ERTÜRKMEN; Turhan, İlkay; Öner, Zübeyde

    2015-01-01

    Microorganisms which have decarboxylase activity can form biogenic amine by enzymatic decarboxylation of amino acids in foods. Histamine poisoning results from consumption of foods typically certain types of fish and cheeses that contain unusually high levels of histamine. Therefore, decarboxylase activity is an important problem at the selection of lactic acid bacteria as a starter culture in fermented products. In this study, decarboxylase activities of 161 lactic acid bacteria (LAB) strain...

  12. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L;

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  13. Amino acid protein composition of grain of common wheat mutants

    International Nuclear Information System (INIS)

    The quantitative ratio of some amino acids changes in the grain of soft wheat morphological mutants with a high protein content. The soft wheat mutants developed, valuable for breeding, surpass the initial varieties in total protein content and the content of some amino acids in grain. The relative content of some amino acids in protein varies, and the stable sum of irreplaceable amino acids in it is retained

  14. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...

  15. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  16. Amino acid analysis and group function of camel insulin

    Directory of Open Access Journals (Sweden)

    A. E. A. Baragob,

    2011-02-01

    Full Text Available In the current study, the claimed amino analysis and groups fraction of Sudanese camels’ insulin was obtained by hydrolysis using amino acid analyzer. The result obtained indicated the presence of all amino acids except cystine and tryptophan which were not detected by this method due to destruction during acid hydrolysis.

  17. Amino acid analysis and group function of camel insulin

    OpenAIRE

    A. E. A. Baragob,; O. Y. Mohammed,; A. F. Mustafa,; S. M. E. Khojali; H. A. Samia

    2011-01-01

    In the current study, the claimed amino analysis and groups fraction of Sudanese camels’ insulin was obtained by hydrolysis using amino acid analyzer. The result obtained indicated the presence of all amino acids except cystine and tryptophan which were not detected by this method due to destruction during acid hydrolysis.

  18. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  19. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  20. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  1. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  2. Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF~(K119Q) and hbFGF~(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression sys...

  3. Correlated mutations: a hallmark of phenotypic amino acid substitutions.

    Directory of Open Access Journals (Sweden)

    Andreas Kowarsch

    Full Text Available Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1 correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2 this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3 many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/.

  4. Correlated mutations: a hallmark of phenotypic amino acid substitutions.

    Science.gov (United States)

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/. PMID:20862353

  5. Contribution of Amino Acid Region 659−663 of Factor Va Heavy Chain to the Activity of Factor Xa within Prothrombinase†,‡

    OpenAIRE

    Hirbawi, Jamila; John L. Vaughn; Bukys, Michael A.; Vos, Hans L.; Kalafatis, Michael

    2010-01-01

    Factor Va, the cofactor of prothrombinase, is composed of heavy and light chains associated noncovalently in the presence of divalent metal ions. The COOH-terminal region of the heavy chain contains acidic amino acid clusters that are important for cofactor activity. In this work, we have investigated the role of amino acid region 659−663, which contains five consecutive acidic amino acid residues, by site-directed mutagenesis. We have generated factor V molecules in which all residues were m...

  6. Scale-free behaviour of amino acid pair interactions in folded proteins

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Neves-Petersen, Maria Teresa; Mortensen, Rasmus J.;

    2012-01-01

    The protein structure is a cumulative result of interactions between amino acid residues interacting with each other through space and/or chemical bonds. Despite the large number of high resolution protein structures, the ‘‘protein structure code’’ has not been fully identified. Our manuscript...... presents a novel approach to protein structure analysis in order to identify rules for spatial packing of amino acid pairs in proteins. We have investigated 8706 high resolution non-redundant protein chains and quantified amino acid pair interactions in terms of solvent accessibility, spatial and sequence...... are in buried a-helices or b-strands, in a spatial distance of 3.8–4.3A° and in a sequence distance .4 residues. We speculate that the scale free organization of the amino acid pair interactions in the 8D protein structure combined with the clear dominance of pairs of Ala, Ile, Leu and Val is...

  7. Photo-CIDNP studies of amino acids and proteins

    International Nuclear Information System (INIS)

    The ultimate aim of the research described in this thesis is the development of methods with which ope may study the structure and function of proteins on a molecular level. This is done with the help of a combination of NMR (Nuclear Magnetic Resonance) and flash photolysis, in which light initiated reactions between a chromophore and an amino acid induce abnormal NMR intensities. Chapters 1, 2 and 3: In the first chapter, a brief introduction of CIDNP and its application to proteins is given, followed by a short description of each chapter. The second chapter is an introductory review, covering the basics of the NMR experiment in the first part, and the theory behind the CIDNP phenomenon in the second. Chapter three describes the experimental apparatus and methods. Chapter 4: Photosensitization The light initiated chemical reaction between photosensitizer and amino acid residue is studied in detail for the case of FMN (flavinmononucleotide) and the amino acids tyrosine, tryptophan and histidine. An introduction is given of further sensitizers which have been found to generate CIDNP on amino acids, and which are used in later chapters. Chapter 5: CIDNP of Amino Acids and Proteins The typical CIDNP spectra of the amino acids tyrosine, tryptophan and histidine are introduced and elucidated in the first half of this chapter. Photo-CIDNP on the proteins ribonuclease A and Hen Egg White Lysozyme with the photosensitizers FMN, thionin and eosin Y are described in the second half. Chapter 6: CIDNP in Micellar Solutions The presence of detergent, below and above the critical micelle concentration, is shown to affect CIDNP intensities, due to electrostatic interactions between charged dye and detergent molecules. In the last part of this chapter, photo-CIDNP experiments with the membrane protein gramicidin A, incorporated in detergent and lipid micelles, are described. Chapter 7: CIDNP Study of the Tryptophan Radical CIDNP spectra are characteristic of the transient radical

  8. Photo-CIDNP studies of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.J

    2001-07-01

    The ultimate aim of the research described in this thesis is the development of methods with which ope may study the structure and function of proteins on a molecular level. This is done with the help of a combination of NMR (Nuclear Magnetic Resonance) and flash photolysis, in which light initiated reactions between a chromophore and an amino acid induce abnormal NMR intensities. Chapters 1, 2 and 3: In the first chapter, a brief introduction of CIDNP and its application to proteins is given, followed by a short description of each chapter. The second chapter is an introductory review, covering the basics of the NMR experiment in the first part, and the theory behind the CIDNP phenomenon in the second. Chapter three describes the experimental apparatus and methods. Chapter 4: Photosensitization The light initiated chemical reaction between photosensitizer and amino acid residue is studied in detail for the case of FMN (flavinmononucleotide) and the amino acids tyrosine, tryptophan and histidine. An introduction is given of further sensitizers which have been found to generate CIDNP on amino acids, and which are used in later chapters. Chapter 5: CIDNP of Amino Acids and Proteins The typical CIDNP spectra of the amino acids tyrosine, tryptophan and histidine are introduced and elucidated in the first half of this chapter. Photo-CIDNP on the proteins ribonuclease A and Hen Egg White Lysozyme with the photosensitizers FMN, thionin and eosin Y are described in the second half. Chapter 6: CIDNP in Micellar Solutions The presence of detergent, below and above the critical micelle concentration, is shown to affect CIDNP intensities, due to electrostatic interactions between charged dye and detergent molecules. In the last part of this chapter, photo-CIDNP experiments with the membrane protein gramicidin A, incorporated in detergent and lipid micelles, are described. Chapter 7: CIDNP Study of the Tryptophan Radical CIDNP spectra are characteristic of the transient radical

  9. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.

    Science.gov (United States)

    Hansen, William A; Mills, Jeremy H; Khare, Sagar D

    2016-01-01

    Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions.The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural

  10. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  11. Protein and Amino Acid Requirements during Pregnancy.

    Science.gov (United States)

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  12. Incretin effect after oral amino Acid ingestion in humans

    DEFF Research Database (Denmark)

    Lindgren, Ola; Pacini, Giovanni; Tura, Andrea;

    2015-01-01

    also present after amino acid ingestion is not known. OBJECTIVE: The objective of the study was to explore insulin secretion and incretin hormones after oral and iv amino acid administration at matched total amino acid concentrations in healthy subjects. DESIGN: An amino acid mixture (Vaminolac) was...... administered orally or iv at a rate resulting in matching total amino acid concentrations to 12 male volunteers with age 22.5 ± 1.4 years and a body mass index 22.4 ± 1.4 kg/m(2), who had no history of diabetes. MAIN OUTCOME MEASURES: Main outcome measures were area under the 120-minute curve for insulin, C...... after oral than after iv amino acid challenges (P = .006), whereas there was no significant difference in the glucagon response. Intact and total GIP rose after oral but not after iv amino acid administration, whereas intact and total GLP-1 levels did not change significantly in either test. CONCLUSION...

  13. Determination of true digestible amino acids of feedstuffs utilizing cecectomized roosters

    OpenAIRE

    Eliane Aparecida da Silva; Luiz Fernando Teixeira Albino; Horacio Santiago Rostagno; Rodolfo Alves Vieira; Valdir Ribeiro Junior; Anastácia Maria de Araújo Campos; João Paulo Leles Pereira

    2012-01-01

    The objective of this study was to estimate the true digestibility coefficients of amino acids and digestible amino acid values of some poultry feedstuffs. The feedstuffs were: babassu meal, sunflower meal, corn gluten meal, babassu starchy meal, meat and bone meal, common beans, pearl millet and residues of cookies, pasta and bread. The precise feeding method of Sibbald was used with adult cecectomized Leghorn roosters distributed in a completely randomized design, consisting of ten treatmen...

  14. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  15. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    At the Kennedy Centre for Phenylketonuria, Denmark, large neutral amino acids (LNAAs) are being used to treat adult and adolescent patients who are nonadherent to dietary treatment for phenylketonuria (PKU). At the start of treatment, a patient must undergo dietary analysis and regular blood...... maintaining this level of protein intake). Patients are therefore able to follow a more "normal" diet than those adhering to a PKU diet with AA supplementation (in which only 20% of the daily protein requirement is provided from the diet and 80% from AA supplementation). LNAAs have also been used to treat...

  16. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  17. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  18. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  19. Composição em aminoácidos de silagens químicas, biológicas e enzimáticas preparadas com resíduos de sardinha Determination of amino-acid composition of silages prepared from sardine residues

    Directory of Open Access Journals (Sweden)

    Doris Floridalma MORALES-ULLOA

    1997-12-01

    Full Text Available Determinou-se a composição em aminoácidos de silagens químicas, biológicas e enzimáticas elaboradas com resíduos de sardinha. Entre os aminoácidos essenciais a leucina apresentou valores mais altos para todas as silagens, a saber, em g/100g de proteína, 8,31 (química; 8,33 (protease 1 semana; 8,42 (pepsina, e 8,06 (inóculo L. plantarum + melaço 2 semanas, seguida pela lisina 6,46; 6,50 6,45, e 9,01; a fenilalanina com 5,32; 5,35 e 5,25 e 5,18. Destaque especial para o aumento na concentração de valina no decorrer do processo de ensilagem passando de 4,80 g/100g de proteína na matéria-prima para 7,67 na silagem química (3 semanas; 6,26 na silagem com meio inóculo de L.plantarum + melaço (48 horas; 6,27 na silagem protease (1 semana e 6,02 na silagem pepsina (2 semanas. A maior concentração de aminoácidos encontrados foi para o ácido glutâmico, que apresentou teor inicial de 15,20g/100g de proteína e posteriormente 14,02 na silagem química após 1 semana; 14,89 na silagem enzimática com protease (1 semana e 17,09 na silagem biológica com meio inóculo L.plantarum + melaço após 48 horas.The composition and amino-acid concentration of chemical, biological and enzymatic silages prepared from sardine residues, were determined. The essential amino-acid, leucine showed the highest values in all silages (8.31; 8,33 8.42; and 8.06 g/100g protein, followed by lysine (6.46, 6.50, 6.45 and 9,.01 g/100 protein, for chemical silage, protease silage after one week pepsin silage in the L. plantarum after 2 weeks respectively. Phenylalanine showed a value of 5.32g/100g protein in the chemical silages after one week, 5.35g/100g in the protease silage after one week, 5.25g/100g in the pepsin silage after two weeks and 5.18g/100g in the silage inoculated with L. plantarum plus its medium, also after two weeks. The increase in the valine during the silage processing deserves special mention, increasing from 4.80/100g protein in the raw

  20. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    Science.gov (United States)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  1. Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    OpenAIRE

    Barhoover, Melissa A.; Orban, Tivadar; Bukys, Michael A.; Kalafatis, Michael

    2008-01-01

    The prothrombinase complex catalyzes the activation of prothrombin to α-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant fa...

  2. Protein chemotaxonomy. XIII. Amino acid sequence of ferredoxin from Panax ginseng.

    Science.gov (United States)

    Mino, Yoshiki

    2006-08-01

    The complete amino acid sequence of [2Fe-2S] ferredoxin from Panax ginseng (Araliaceae) has been determined by automated Edman degradation of the entire S-carboxymethylcysteinyl protein and of the peptides obtained by enzymatic digestion. This ferredoxin has a unique amino acid sequence, which includes an insertion of Tyr at the 3rd position from the amino-terminus and a deletion of two amino acid residues at the carboxyl terminus. This ferredoxin had 18 differences in its amino acid sequence compared to that of Petroselinum sativum (Umbelliferae). In contrast, 23-33 differences were observed compared to other dicotyledonous plants. This suggests that Panax ginseng is related taxonomically to umbelliferous plants. PMID:16880642

  3. The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2 is mediated by a stepwise mutation process that affects three amino acid residues

    Directory of Open Access Journals (Sweden)

    Ausió Juan

    2009-02-01

    Full Text Available Abstract Background The histone H2A family encompasses the greatest number of core histone variants of which the replacement variant H2A.Z is currently one of the most heavily studied. No clear mechanism for the functional variability that H2A.Z imparts to chromatin has yet been proposed. While most of the past studies have referred to H2A.Z generically as a single protein, in vertebrates it is a mixture of two protein forms H2A.Z-1 (previously H2A.Z and H2A.Z-2 (previously H2A.F/Z or H2A.V that differ by three amino acids. Results We have performed an extensive study on the long-term evolution of H2A.Z across metazoans with special emphasis on the possible selective mechanisms responsible for the differentiation between H2A.Z-1 and H2A.Z-2. Our results reveal a common origin of both forms early in chordate evolution. The evolutionary process responsible for the differentiation involves refined stepwise mutation change within the codons of the three differential residues. This eventually led to differences in the intensity of the selective constraints acting upon the different H2A.Z forms in vertebrates. Conclusion The results presented in this work definitively reveal that the existence of H2A.Z-1 and H2A.Z-2 is not a whim of random genetic drift. Our analyses demonstrate that H2A.Z-2 is not only subject to a strong purifying selection but it is significantly more evolutionarily constrained than H2A.Z-1. Whether or not the evolutionary drift between H2A.Z-1 and H2A.Z-2 has resulted in a functional diversification of these proteins awaits further research. Nevertheless, the present work suggests that in the process of their differently constrained evolutionary pathways, these two forms may have acquired new or complementary functions.

  4. Conformational properties of oxazoline-amino acids

    Science.gov (United States)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  5. Identification of an Amino Acid Domain Encoded by the Capsid Protein Gene of Porcine Circovirus Type 2 that Modulates Viral Protein Distribution During Replication

    Science.gov (United States)

    Previous work showed that distinct amino acid motifs are encoded by the Rep, Cap and ORF3 genes of two subgroups of porcine circoviruses (PCV), PCV2a and PCV2b. At a specific location of the gene, a certain amino acid residue or sequence is preferred. Specifically, two amino acid domains located in ...

  6. A reexamination of amino acids in lunar soil

    Science.gov (United States)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-03-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  7. Turkey-hen amino acid composition of brain and eyes

    International Nuclear Information System (INIS)

    The amino acids composition of the brain and eyes of the mature Turkey-hen (Meleagris gallopavo L.), were determined on dry weight basis. Total essential amino acids ranged from 35.1-36.0 g/100 g as 49.5-49.8% of the total amino acids. The amino acid score showed that lysine ranged from 0.76-0.91 (on whole hen.s egg comparison), 0.85-1.03 (on provisional essential amino acid scoring pattern), and 0.81-0.98 (on suggested requirement of the essential amino acid of a preschool child). The predicted protein efficiency ratio was 1.94-2.41, whilst essential amino acid index range was 1.06-1.08 and the calculated isoelectric point range was 3.97-4.18. The correlation coefficient (rxy) was positively high and significant at r = 0.01 for the total amino acids, amino acid scores (on the whole hen.s egg comparisons made) and the isoelectric point. On the whole, the eyes were better in 12/18 or 66.7% parameters of the amino acids than the brain of Turkey-Hen. (author)

  8. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.

    Science.gov (United States)

    Shen, Fei; Niu, Xiaoying; Yang, Danting; Ying, Yibin; Li, Bobin; Zhu, Geqing; Wu, Jian

    2010-09-01

    Chinese rice wine is abundant in amino acids. The possibility of quantitative detection of 16 free amino acids (aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, and arginine) in Chinese rice wine by Fourier transform near-infrared (NIR) spectroscopy was investigated for the first time in this study. A total of 98 samples from vintage 2007 rice wines with different aging times were analyzed by NIR spectroscopy in transmission mode. Calibration models were developed using partial least-squares regression (PLSR) with high-performance liquid chromatography (HPLC) by postcolumn derivatization and diode array detection as a reference method. To validate the calibration models, full cross (leave-one-out) validation was employed. The results showed that the calibration statistics were good (rcal>0.94) for all amino acids except proline, histidine, and arginine. The correlation coefficient in cross validation (rcv) was >0.81 for 12 amino acids. The residual predictive deviation (RPD) value obtained was >1.5 in all amino acids except proline and arginine, and it was >2.0 in 6 amino acids. The results obtained in this study indicated that NIR spectroscopy could be used as an easy, rapid, and novel tool to quantitatively predict free amino acids in Chinese rice wine without sophisticated methods. PMID:20707307

  9. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  10. The N-terminal 33 amino acid domain of Siva-1 is sufficient for nuclear localization

    International Nuclear Information System (INIS)

    Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation

  11. The N-terminal 33 amino acid domain of Siva-1 is sufficient for nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Y.; Yang, L.X. [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Huang, Z.F. [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou (China)

    2013-12-02

    Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.

  12. [Changes in the collagen amino acid composition of calf skin after gamma-irradiation in an aqueous solution].

    Science.gov (United States)

    Duzhenkova, N A; Savich, A V

    1983-01-01

    A study was made of the amino acid composition of calf skin collagen after gamma-irradiation (60Co) of 2.5 X 10(-6) M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared. PMID:6657935

  13. New 2-nitroimidazole analogues of amino acids with a free amino function

    International Nuclear Information System (INIS)

    In continuation of an approach to utilize amino acid transport mechanism for preferential uptake of the 2-nitroimidazole derivatives by the solid tumors, the authors now report the synthesis of new amino acid analogues that have a free amino function. The carboxy group of the amino acid is attached through an amide bond to the 2-nitroimidazole moiety. These agents were synthesized by initially reacting a t-butyloxycaronyl amino acid with 2-nitroimidazole-1-ethylamine and then deblocking with trifluoroacetic acid. The newly synthesized amino acid analogues were nontoxic against Chinese hamster (V-79) cells up to a concentration of 5mM when exposed for a 2 hr period. These agents were significantly more active than the 2-nitroimidazole amino acid analogues with a free carboxylic acid function. The phenylalanine analogue was one of the most active sensitizer producing an enhancement ratio (ER) of 2.0 at 0.5 mM. The sensitizing ability increased as a function of concentration achieving an ER of 2.2 at 1.0 mM. These preliminary results suggest that the amino acid analogues with a free amino function, are effective sensitizers and because of their low partition coefficient, may be considered potentially less neurotoxic than misonidazole

  14. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    Science.gov (United States)

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  15. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  16. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  17. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  18. Trophic spectra under the lens of amino acid isotopic analysis

    Science.gov (United States)

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  19. Urinary excretion of amino acids during radiotherapy

    International Nuclear Information System (INIS)

    Course observations have helped to determine whether and in how far plasma and urine levels of amino acids and some other metabolites of the protein metabolism are changed by whole-body and partial irradiation. The author attempts to use combinations of these changes (e.g. increased taurine and decreased hydroxyproline levels), combined with blood plasma measurements, as indicators of radiation exposure. At the present state of the art, with deeper knowledge of the interfering influences of tumours or secondary diseases, local irradiation (radiotherapy) is a suitable test model for elaborating combinations of indicators on the basis of which even accidental radiation exposure can be detected and estimated by simple means as early as 24 to 36 h later. (orig.)

  20. A Novel Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Hui; LI Shuo; XU Pen-gFei

    2003-01-01

    @@ β-hydroxy-α-amino acids constitute an important class of compounds as naturally occurring amino acids and as components of many complex natural products possessing a wide range of biological activities. [1] As a consequence of the essential role played by these amino acids in the biological systems and their utility as synthetic building blocks, a number of useful strategies have been devised for their preparation. [2

  1. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  2. Amino acid analysis in biological fluids by GC-MS

    OpenAIRE

    Kaspar, Hannelore

    2009-01-01

    Amino acids are intermediates in cellular metabolism and their quantitative analysis plays an important role in disease diagnostics. A gas chromatography-mass spectrometry (GC-MS) based method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate could be carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acid...

  3. A new synthetic protocol for coumarin amino acid

    OpenAIRE

    Xinyi Xu; Xiaosong Hu; Jiangyun Wang

    2013-01-01

    The hydrochloride of the racemic amino acid (2-(7-hydroxycoumarin-4-yl)ethyl)glycine, which can serve as a fluorescent probe in proteins, and two halogen derivatives of it, were synthesized by using a new synthetic protocol in five steps. It is less costly and relatively easy to prepare this kind of fluorescent amino acid with the new synthetic method. Furthermore, it can be applied to synthesize other derivatives of the coumarin amino acid with some specific properties.

  4. Reconstructing Amino Acid Interaction Networks by an Ant Colony Approach

    OpenAIRE

    Gaci, Omar; Balev, Stefan

    2009-01-01

    In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. We consider the problem of reconstructing protein's interaction network from its amino acid sequence. We rely on a probability that two amino acids interact as a function of their physico-chemical properties coupled to an ant colony system to solve this problem.

  5. Analysis of amino acids network based on distance matrix

    Science.gov (United States)

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  6. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  7. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure. PMID:26832172

  8. Synthesis of novel fullerene α-amino acid conjugates

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  9. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    Science.gov (United States)

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  10. Hyperdimensional analysis of amino acid pair distributions in proteins.

    Directory of Open Access Journals (Sweden)

    Svend B Henriksen

    Full Text Available Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis.

  11. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Labudde, D.; Leitner, D.; Krueger, M.; Oschkinat, H. [Forschungsinstitut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2003-01-15

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the {alpha}-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely {alpha}-helix, {beta}-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  12. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    International Nuclear Information System (INIS)

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time

  13. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  14. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men

    OpenAIRE

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; SATO, JUICHI; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10–90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrati...

  15. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  16. Labelling of some amino acids with radioiodine

    International Nuclear Information System (INIS)

    Some radioiodine labelled compounds which have application in nuclear medicine have been prepared. Two common techniques were employed. A comparative study on the radioiodination of the amino acids, L - tyrosine, L - a - methyl tyrosine and L-tyrosine methyl ester has been carried out by the electrophilic radioiodination technique. The blood flow reagent, antipyrine, also has been prepared by this technique using chloramine - T, iodogen and H2 O2 as oxidizing agents to generate electrophilic iodine. Radio chromatograms revealed side product impurities at long reaction times and high oxidizing agent concentrations. Comparison between the different oxidizing agents was done. Optimization of the radioiodination conditions, such as Ph of the medium, reaction time, oxidizing agent and substrate concentrations and carrier KI concentration was performed resulting in high radiochemical yields of 97% L - 3 -(131) iodotyrosine, 95% L -3-(131) iodo-a-methyl tyrosine, 88% L-3-(131) iodotyrosine methyl ester and 96% 4-(131) iodoantipyrine within short reaction times at room temperature when chloramine - T was used as oxidizing agent. Purification by high pressure liquid chromatography resulted in high radiochemically pure products suitable for medical application. Radioiodinated 3- iodotyrosine and 4- iodophenyl alanine have been prepared by the isotopic exchange technique using cuprous chloride as catalyst for the exchange reaction. The effect of solvents and the different parameters affecting the labelling yield were investigated to optimize the conditions for labelling of these compounds. Kinetic study indicated a second order reaction with an activation energy of 9.6 and 12.20 Kcal/mole for 3- iodotyrosine and 4-iodophenyl alanine respectively. Reducing agents were added to the Cu CI catalyzed reactions to improve the yield and decrease side products formation. Applying the results obtained to the radioiodination of the phenyl fatty acid 15(p-iodophenyl) pentadecanoic acid

  17. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    Science.gov (United States)

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  18. Polymerization of beta-amino acids in aqueous solution

    Science.gov (United States)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  19. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    .0 mol ⋅ dm−3 could be attributed to the increasing interaction with (DMSO)1(H2O)n clusters. The formation of (DMSO)m(H2O)n cluster via hydrophobic aggregating at higher DMSO concentration led to a decrease in hydrophobic effect of DMSO and its hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids. The structure change of solvent and the interaction between amino acid residues and DMSO was reflected by the solvation of proteins. It was found that dependence of hydrodynamic radius of bovine serum albumin and lysozyme on DMSO concentration was the same and similar to that of static light scattered by the mixed solvent, regardless of the difference in conformational change between the two proteins.

  20. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    OpenAIRE

    Claude Daneault; Saïd Barazzouk

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, th...

  1. Versatile synthesis of amino acid functionalized nucleosides via a domino carboxamidation reaction

    Directory of Open Access Journals (Sweden)

    Vicky Gheerardijn

    2014-11-01

    Full Text Available Functionalized oligonucleotides have recently gained increased attention for incorporation in modified nucleic acid structures both for the design of aptamers with enhanced binding properties as well as the construction of catalytic DNA and RNA. As a shortcut alternative to the incorporation of multiple modified residues, each bearing one extra functional group, we present here a straightforward method for direct linking of functionalized amino acids to the nucleoside base, thus equipping the nucleoside with two extra functionalities at once. As a proof of principle, we have introduced three amino acids with functional groups frequently used as key-intermediates in DNA- and RNAzymes via an efficient and straightforward domino carboxamidation reaction.

  2. Interactive Hangman Teaches Amino Acid Structures and Abbreviations

    Science.gov (United States)

    Pennington, Britney O.; Sears, Duane; Clegg, Dennis O.

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying…

  3. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  4. Ant Colony Approach to Predict Amino Acid Interaction Networks

    OpenAIRE

    Gaci, Omar; Balev, Stefan

    2009-01-01

    In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. We consider the problem of reconstructing protein's interaction network from its amino acid sequence. An ant colony approach is used to solve this problem.

  5. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H. James, II

    2015-03-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or ``chemistry space.'' Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  6. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-08-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized -aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur.

  7. Recommended ingestion of indispensable amino acids to young men . A study using stable isotopes, plasmatic amino acids and nitrogen balance

    International Nuclear Information System (INIS)

    It has been previously stated that the minimum physiological recommendations for the indispensable amino acids in health adults, as proposed by FAO/WHO/UNU in 1985, are far too low, except for the methionine. An amino acid stable isotopic kinetic study was conducted to seek further experimental support to this hypothesis. Twenty healthy young men received an l-amino acid based diet, supplying 140 mg N.kg-1.d-1, patterned on egg protein for 1 week, then for 3 weeks either i) a pattern based on current international recommendations (FAO diet, n=7), ii) a the tentative Laboratory of Human Nutrition of the Massachusetts Institute of Technology, new amino acid recommendation pattern (MIT diet, n=7) or iii) again the egg hen pattern (EGG diet, n=6). All subjects were again studied for one final, consecutive week of the egg diet. At the end of the initial week, at the first and third week with the three experimental diets,and after three days following the return of the egg diet, an 8 h primed continuous intravenous infusion with l-13 C-leucine was conducted (3 h, fast, 5 h fed - while subjects received hourly meals supplying the equivalent of 5/12 total daily intake). Estimation of leucine balance were carried out with measurements plasma free amino acids changes. Daily nitrogen balances were obtained through the study. Interpretation of plasma amino acids profile, and changes of leucine kinetics balances, indicated that the FAO diet was not able to maintain amino acids homeostasis whereas the MIT and the egg diets sustained body amino acids equilibrium with a positive amino acid balance. nitrogen balances tended to be more negative with the FAO diet but failed to show statistically significant differences among the three diets. The finding point out that it would be prudent to use the new, tentative recommended amino acid pattern (MIT diet 0 as the minimum physiological amino acid needs of healthy human adults (author)

  8. Amino Acid Carbamates As Prodrugs Of Resveratrol.

    Science.gov (United States)

    Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-01-01

    Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene), a plant polyphenol, has important drug-like properties, but its pharmacological exploitation in vivo is hindered by its rapid transformation via phase II conjugative metabolism. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, stability and in vivo pharmacokinetic behaviour of prodrugs of resveratrol in which the OH groups are engaged in an N-monosubstituted carbamate ester (-OC(O)NHR) linkage with a natural amino acid (Leu, Ile, Phe, Thr) to prevent conjugation and modulate the physicochemical properties of the molecule. We also report a convenient, high-yield protocol to obtain derivatives of this type. The new carbamate ester derivatives are stable at pH 1, while they undergo slow hydrolysis at physiological pH and hydrolyse with kinetics suitable for use in prodrugs in whole blood. After administration to rats by oral gavage the isoleucine-containing prodrug was significantly absorbed, and was present in the bloodstream as non-metabolized unaltered or partially deprotected species, demonstrating effective shielding from first-pass metabolism. We conclude that prodrugs based on the N-monosubstituted carbamate ester bond have the appropriate stability profile for the systemic delivery of phenolic compounds. PMID:26463125

  9. Homology of amino acid sequences of rat liver cathepsins B and H with that of papain.

    OpenAIRE

    Takio, K; Towatari, T; Katunuma, N.; Teller, D C; Titani, K

    1983-01-01

    The amino acid sequences of rat liver lysosomal thiol endopeptidases, cathepsins B and H, are presented and compared with that of the plant thiol protease papain. The 252-residue sequence of cathepsin B and the 220-residue sequence of cathepsin H were determined largely by automated Edman degradation of their intact polypeptide chains and of the two chains of each enzyme generated by limited proteolysis. Subfragments of the chains were produced by enzymatic digestion and by chemical cleavage ...

  10. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  11. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  12. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  13. Localization and quantification of carbon-centered radicals on any amino acid of a protein

    International Nuclear Information System (INIS)

    A general strategy to localize and quantify carbon-centered radicals within proteins is described. The methodology was first exemplified on amino acids and then on a peptide. This method is applicable to any protein system regardless of size, and the site of hydrogen abstraction by OH radical on all residues within proteins is easily and accurately detected. (authors)

  14. Gramicidin S derivatives containing cis- and trans-morpholine amino acids (MAAS) as turn mimetics

    NARCIS (Netherlands)

    Kapoerchan, V.V.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Otero, J.M. de; Ferraces-Casais, P.; Llamas-Saiz, A.L.; Raaij, M.J. van; Doorn, J. van; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2010-01-01

    The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D-Phe-Pro two-residue turn motifs in the rigid cyclic β-hairp0in structure of GS was replaced with morpholine amino acids (MAA 2-5), differing in stereochemistry and le

  15. Transformation of the dihedral corrective map for D-amino residues using the CHARMM force field

    Science.gov (United States)

    Turpin, Eleanor R.; Hirst, Jonathan D.

    2012-08-01

    Molecular dynamics simulations in explicit solvent were performed on two peptides and two proteins containing D-amino residues, using three implementations of the CHARMM22 all-atom force field: (a) with the standard CMAP corrective term, (b) neglecting the correction entirely and (c) using a transformation of the CMAP grid (φ, ψ) → (-φ, -ψ) for the D-amino residues. The transformed map led to sampling of conformations which are closest to the X-ray crystallographic structures for D-amino residues and the standard CMAP correction destabilises D-amino secondary structure. Thus, the transformation of the CMAP term is needed to simulate proteins and peptides containing D-amino residues correctly.

  16. Role of CCN2 in Amino Acid Metabolism of Chondrocytes.

    Science.gov (United States)

    Murase, Yurika; Hattori, Takako; Aoyama, Eriko; Nishida, Takashi; Maeda-Uematsu, Aya; Kawaki, Harumi; Lyons, Karen M; Sasaki, Akira; Takigawa, Masaharu; Kubota, Satoshi

    2016-04-01

    CCN2/connective tissue growth factor (CTGF) is a multi-functional molecule that promotes harmonized development and regeneration of cartilage through its matricellular interaction with a variety of extracellular biomolecules. Thus, deficiency in CCN2 supply profoundly affects a variety of cellular activities including basic metabolism. A previous study showed that the expression of a number of ribosomal protein genes was markedly enhanced in Ccn2-null chondrocytes. Therefore, in this study, we analyzed the impact of CCN2 on amino acid and protein metabolism in chondrocytes. Comparative metabolome analysis of the amino acids in Ccn2-null and wild-type mouse chondrocytes revealed stable decreases in the cellular levels of all of the essential amino acids. Unexpectedly, uptake of such amino acids was rather enhanced in Ccn2-null chondrocytes, and the addition of exogenous CCN2 to human chondrocytic cells resulted in decreased amino acid uptake. However, as expected, amino acid consumption by protein synthesis was also accelerated in Ccn2-null chondrocytes. Furthermore, we newly found that expression of two genes encoding two glycolytic enzymes, as well as the previously reported Eno1 gene, was repressed in those cells. Considering the impaired glycolysis and retained mitochondrial membrane potential in Ccn2-null chondrocytes, these findings suggest that Ccn2 deficiency induces amino acid shortage in chondrocytes by accelerated amino acid consumption through protein synthesis and acquisition of aerobic energy. Interestingly, CCN2 was found to capture such free amino acids in vitro. Under physiological conditions, CCN2 may be regulating the levels of free amino acids in the extracellular matrix of cartilage. J. Cell. Biochem. 117: 927-937, 2016. © 2015 Wiley Periodicals, Inc. PMID:26364758

  17. Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition

    OpenAIRE

    Georgiou, D. N.; Karakasidis, T.E.; Nieto, J J; Torres, A.

    2009-01-01

    Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition correspondence: Corresponding author. Tel.: +302421074163. (Karakasidis, T.E.) (Karakasidis, T.E.) University of Patras, Department of Mathematics - 265 00 Patras--> - GREECE (Georgiou, D.N.) University of Thessaly, Department of Civil Engineering - 383 34 Volos--> - GREECE (Karakas...

  18. The putative Cationic Amino acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis

    Directory of Open Access Journals (Sweden)

    Huaiyu eYang

    2015-04-01

    Full Text Available Amino acids are major primary metabolites. Their uptake, translocation, compartmentation and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9 was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order to probe whether and how these compartments are involved in amino acid homeostasis, a loss-of-function cat9-1 mutant and ectopic over-expressor plants were isolated. Under restricted nitrogen supply in soil, cat9-1 showed a chlorotic phenotype, which was reversed in the over-expressors. The total soluble amino acid pools were affected in the mutants, but this was only significant under poor nitrogen supply. Upon nitrogen starvation, the major soluble amino acid leaf pools decreased. This decrease was lower in cat9-1 and augmented in the over-expressor. Over-expression generally affected total soluble amino acid concentrations and finally improved the survival upon severe nitrogen starvation. The results potentially identify a novel function of vesicular amino acid transport mediated by CAT9 in the cellular nitrogen-dependent amino acid homeostasis.

  19. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  20. Organometallic and Bioorganometallic Chemistry – Ferrocene Amino Acids

    Directory of Open Access Journals (Sweden)

    Barišić, L.

    2012-01-01

    Full Text Available This article is the second part of a series dealing with organometallic and bioorganometallic chemistry. In the first part of this series a short review on the history and development of these disciplines was given, emphasizing the importance and scope of bioorganometallic chemistry as a new field dealing with conjugates of organometallics and biomolecules (DNA, PNA, amino acids, peptides.... From the variety of biorganometallics, syntheses and properties of simple conjugates of ferrocene with natural amino acids/peptides were elaborated inter alia. This material is the basis for the second part in which ferrocene amino acids are described. The introduction presents nonproteinogenic alicyclic and aromatic amino acids as the models for the title compounds. Naturally occurring amino acids labelled with ferrocene moiety mostly retain properties of the biomolecules included. Contrary to these ω-ferrocenylamino acids, one could imagine specific amino acids with inserted ferrocene core belonging to either homo- or heterodisubstituted type. The central part of this article is devoted to our investigations of the second type - H2N-(CH2m-Fn-(CH2n-COOH. The general rational procedure for synthesis of these compounds and of their N- and/or C-protected derivatives via the azide intermediates N3-CO-(CH2m- Fn-(CH2n-COOMe has been described. In the solid state derivatives of ferrocene amino acids contain intermolecular hydrogen bonds giving dimeric structures, three-dimensional networks or endless helical chains. The solutions of homologues Ac-NH-(CH2m-Fn-(CH2n-COOMe in nonpolar solvents are dominated by open form conformers. Compounds containing 2–3 ferrocene cores connected by amide, imide and oxalamide spacers were prepared by oligomerization of 1'-aminoferrocene-1-carboxylic acid (Fca or by its condensation with the appropriate reagents. Similar to natural amino acids, ferrocene amino acids are water-soluble substances with high melting points

  1. Amino acid sequence of the beta subunit of bovine lung casein kinase II.

    OpenAIRE

    Takio, K.; Kuenzel, E A; Walsh, K. A.; Krebs, E G

    1987-01-01

    The amino acid sequence of the 209-residue beta subunit of bovine lung casein kinase II has been determined. Excluding the amino-terminal blocking group, which was not identified, the molecular weight of the polypeptide chain is 24,239. A marked polarity of the beta subunit is indicated by clusters of negative charges in the amino-terminal region and of positive charges in the carboxyl-terminal region. Whereas the beta subunit shows no homology with any known protein, a segment of the sequenc...

  2. Graphdiyne as a promising material for detecting amino acids

    Science.gov (United States)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  3. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    Science.gov (United States)

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables. PMID:27451158

  4. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  5. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    Directory of Open Access Journals (Sweden)

    Akiyoshi Hoshino

    2009-06-01

    Full Text Available Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1 system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source and keto acids (oxylic acid sources. In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin.

  6. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  7. Deuterium Fractionation during Amino Acid Formation by Photolysis of Interstellar Ice Analogs Containing Deuterated Methanol

    Science.gov (United States)

    Oba, Yasuhiro; Takano, Yoshinori; Watanabe, Naoki; Kouchi, Akira

    2016-08-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH2DOH at 10 K. Five amino acids (glycine, α-alanine, β-alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α-alanine and β-alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  8. Conformational Interconversions of Amino Acid Derivatives.

    Science.gov (United States)

    Kaminský, Jakub; Jensen, Frank

    2016-02-01

    Exhaustive conformational interconversions including transition structure analyses of N-acetyl-l-glycine-N-methylamide as well as its alanine, serine, and cysteine analogues have been investigated at the MP2/6-31G** level, yielding a total of 142 transition states. Improved estimates of relative energies were obtained by separately extrapolating the Hartree-Fock and MP2 energies to the basis set limit and adding the difference between CCSD(T) and MP2 results with the cc-pVDZ basis set to the extrapolated MP2 results. The performance of eight empirical force fields (AMBER94, AMBER14SB, MM2, MM3, MMFFs, CHARMM22_CMAP, OPLS_2005, and AMOEBAPRO13) in reproducing ab initio energies of transition states was tested. Our results indicate that commonly used class I force fields employing a fixed partial charge model for the electrostatic interaction provide mean errors in the ∼10 kJ/mol range for energies of conformational transition states for amino acid conformers. Modern reparametrized versions, such as CHARMM22_CMAP, and polarizable force fields, such as AMOEBAPRO13, have slightly lower mean errors, but maximal errors are still in the 35 kJ/mol range. There are differences between the force fields in their ability for reproducing conformational transitions classified according to backbone/side-chain or regions in the Ramachandran angles, but the data set is likely too small to draw any general conclusions. Errors in conformational interconversion barriers by ∼10 kJ/mol suggest that the commonly used force field may bias certain types of transitions by several orders of magnitude in rate and thus lead to incorrect dynamics in simulations. It is therefore suggested that information for conformational transition states should be included in parametrizations of new force fields. PMID:26691979

  9. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  10. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    Science.gov (United States)

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  11. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  12. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    Science.gov (United States)

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  13. Amino acid selective unlabeling for sequence specific resonance assignments in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krishnarjuna, B.; Jaipuria, Garima; Thakur, Anushikha [Indian Institute of Science, NMR Research Centre (India); D' Silva, Patrick, E-mail: patrick@biochem.iisc.ernet.in [Indian Institute of Science, Department of Biochemistry (India); Atreya, Hanudatta S., E-mail: hsatreya@sif.iisc.ernet.in [Indian Institute of Science, NMR Research Centre (India)

    2011-01-15

    Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective 'unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly {sup 13}C/{sup 15}N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {l_brace}{sup 12}CO{sub i}-{sup 15}N{sub i+1}{r_brace}-filtered HSQC, which aids in linking the {sup 1}H{sup N}/{sup 15}N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to {sup 2}H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of {sup 14}N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.

  14. Formation mechanism of coamorphous drug−amino acid mixtures

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Larsen, Flemming Hofmann; Cornett, Claus;

    2015-01-01

    Two coamorphous drug−amino acid systems, indomethacin−tryptophan (Ind−Trp) and furosemide−tryptophan Fur−Trp), were analyzed toward their ease of amorphization and mechanism of coamorphization during ball milling. The two mixtures were compared to the corresponding amorphization of the pure drug...... without amino acid. Powder blends at a 1:1 molar ratio were milled for varying times, and their physicochemical properties were investigated using XRPD, 13C solid state NMR (ssNMR), and DSC. Comilling the drug with the amino acid reduced the milling time required to obtain an amorphous powder from more...... acid being dissolved in the amorphous drug, whereas coamorphous Fur−Trp was formed by the drug being dissolved in the amorphous amino acid....

  15. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    Science.gov (United States)

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed. PMID:14051820

  16. The origin of amino acids in lunar regolith samples

    Science.gov (United States)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  17. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  18. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    International Nuclear Information System (INIS)

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements

  19. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  20. Uptake of Branched-Chain Amino Acids by Streptococcus thermophilus

    OpenAIRE

    Akpemado, K. M.; Bracquart, P. A.

    1983-01-01

    The transport of branched-chain amino acids in Streptococcus thermophilus was energy dependent. The metabolic inhibitors of glycolysis and ATPase enzymes were active, but the proton-conducting uncouplers were not. Transport was optimal at temperatures of between 30 and 45°C and at pH 7.0 for the three amino acids leucine, valine, and isoleucine; a second peak existed at pH 5.0 with valine and isoleucine. By competition and kinetics studies, the branched-chain amino acids were found to share a...

  1. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  2. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  3. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  4. Ring-extended gramicidin S analogs Containing cis δ-sugar amino acid turn mimetics with varying ring size

    NARCIS (Netherlands)

    Knijnenburg, A.D.; Spalburg, E.; Neeling, A.J. de; Mars-Groenendijk, R.H.; Noort, D.; Grotenbreg, G.M.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2012-01-01

    This article presents a series of ring-extended gramicidin S derivatives, 9-14, that have four ornithine residues as polar protonated side chains and one modified turn region containing a mono-functionalized cis-δ-oxetane, δ-furanoid, or δ-pyranoid sugar amino acid residue. Of the GS analogs evaluat

  5. Determination of true digestible amino acids of feedstuffs utilizing cecectomized roosters

    Directory of Open Access Journals (Sweden)

    Eliane Aparecida da Silva

    2012-09-01

    Full Text Available The objective of this study was to estimate the true digestibility coefficients of amino acids and digestible amino acid values of some poultry feedstuffs. The feedstuffs were: babassu meal, sunflower meal, corn gluten meal, babassu starchy meal, meat and bone meal, common beans, pearl millet and residues of cookies, pasta and bread. The precise feeding method of Sibbald was used with adult cecectomized Leghorn roosters distributed in a completely randomized design, consisting of ten treatments and six replications with a rooster in each. The treatments were represented by the feedstuffs evaluated. The roosters were kept in a period of fasting for 36 hours and then fed 30 grams of feed. Samples were collected during 56 hours. Simultaneously, six roosters were kept fasting to make corrections to the metabolic and endogenous losses of amino acids. At the end of collections, the excreta obtained were weighed, freeze-dried and subsequently processed, so laboratory analyses were carried out and the coefficients of true digestibility of amino acids were determined. The mean values of the coefficients of true digestibility of essential and non-essential amino acids in percentage were respectively: 0.702 and 0.652 for the babassu meal; 0.852 and 0.786 for the sunflower meal; 0.928 and 0.887 for the corn gluten meal; 0.797 and 0.720 for the meat and bone meal; 0.364 and 0.339 for ground raw beans; 0.924 and 0.837 for ground pearl millet; 0.839 and 0.810 for cookie residue; 0.929 and 0.914 for pasta residue; and 0.904 and 0.899 for bread residue.

  6. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  7. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  8. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  9. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  10. Covalently functionalized graphene sheets with biocompatible natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-07-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  11. Sugar amino acids and related molecules: Some recent developments

    Indian Academy of Sciences (India)

    Tushar Kanti Chakraborty; Pothukanuri Srinivasu; Subhasish Tapadar; Bajjuri Krishna Mohan

    2004-06-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create `nature-like’ and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature’s molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solidphase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies.

  12. Interconversions of amino acids in maturing wheat grains

    International Nuclear Information System (INIS)

    All the protein amino acids (U-14C labelled) were supplied directly to the developing spikes of spring wheat, mainly through a split stem. At maturity the proteins were fractionated into two or four Osborne fractions and the total activity was measured. The activity recovered in proteins varied from a few per cent to more than 75%. The highest recovery was found when 14C was supplied in histidine, valine, phenylalanine, leucine or tryptophan. When sugars were supplied only 3-5% of their activity was recovered in proteins, while aspartic acid, alanine, glutamic acid, proline and cysteine gave 10-20% recovery in proteins, and great respiratory losses must have occurred. The label could be transferred to every protein amino acid. Groups of amino acids showed a very similar distribution of the recovered 14C. The activity from glutamic acid, glutamine, alanine, aspartic acid and proline was mainly recovered in glutamic acid, proline and arginine, with a similar distribution for 14C transferred from lysine, isoleucine, arginine, threonine, asparagine and cysteine; however, 40-70% was recovered in the label source. Histidine, phenylalanine, leucine, tyrosine and tryptophan showed very little conversion. Activity from sugars was more spread than for amino acids. Unlabelled arginine or ornithine inhibited the conversion of glutamic acid to arginine, while lysine inhibited the conversion of aspartic acid to lysine. The results clearly indicate metabolic sites in the grain where the received amino acids are converted to amino acids that fit in with the genetic codes for specific protein synthesis. Different conversion patterns seemed to be linked to different fractions, indicating different metabolic activity in different parts of the grain and probably also in different parts of the cells in the starchy endosperm

  13. Displacement of carbon-14 labelled amino acids from leaves

    International Nuclear Information System (INIS)

    The displacement of amino acids from nature leaves was investigated. The amino acids (Ala, Asn, Asp, Glu, Gln, Val, Leu, Lys, Ser, Pro) were applied on the leaves in L-form, uniformly labelled with 14C, and the type and direction of displacement have been observed. Most of the studies have been carried out on bush beans aged 3 to 4 weeks. The experiments were carried out in climatic chambers; in one case, barley plants just reaching maturity were used. In order to find out whether the applied amino acids were also displaced in their original form, freeze-dried plants were extracted and the 14C activity of the various fraction was determined. The radioactivity of some free amino acids was determined after two-dimensional separation by thin film chromatography. (orig./HK)

  14. Azide- and alkyne-derivatised α-amino acids

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Pedersen, D.S.

    2012-01-01

    With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way for their...... synthesis. In this review we have compiled available methods for synthesising optically active azide- and alkyne-derivatised α-amino acids that can be prepared from readily available α-amino acids. We highlight a number of commonly overlooked problems associated with existing methods and direct attention to...... unexplored possibilities. Azide- and alkyne-derivatised α-amino acids are finding widespread use within most chemistry disciplines. However, it is far from clear what the best way for the synthesis of these useful building blocks is. Herein we show the available methods for synthesis of optically active...

  15. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7 and...... 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  16. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  17. Reconstructing a Flavodoxin Oxidoreductase with Early Amino Acids

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2013-06-01

    Full Text Available Primitive proteins are proposed to have utilized organic cofactors more frequently than transition metals in redox reactions. Thus, an experimental validation on whether a protein constituted solely by early amino acids and an organic cofactor can perform electron transfer activity is an urgent challenge. In this paper, by substituting “late amino acids (C, F, M, T, W, and Y” with “early amino acids (A, L, and V” in a flavodoxin, we constructed a flavodoxin mutant and evaluated its characteristic properties. The major results showed that: (1 The flavodoxin mutant has structural characteristics similar to wild-type protein; (2 Although the semiquinone and hydroquinone flavodoxin mutants possess lower stability than the corresponding form of wild-type flavodoxin, the redox potential of double electron reduction Em,7 (fld reached −360 mV, indicating that the flavodoxin mutant constituted solely by early amino acids can exert effective electron transfer activity.

  18. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila

    Directory of Open Access Journals (Sweden)

    Ryuichi Yamada

    2015-02-01

    Full Text Available Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

  19. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    Science.gov (United States)

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  20. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    Science.gov (United States)

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  1. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order to...... undergo initial diazotization and successive hydroxylation, since neither β-amino acids nor acid derivatives such as esters and amides undergo hydroxylations. The method is successfully applied for the synthesis of 18 proteinogenic amino acids. © 2014 Elsevier Ltd. All rights reserved....

  2. Representation of protein-sequence information by amino acid subalphabets

    DEFF Research Database (Denmark)

    Andersen, C.A.F.; Brunak, Søren

    2004-01-01

    -sequence information, using machine learning strategies, where the primary goal is the discovery of novel powerful representations for use in AI techniques. In the case of proteins and the 20 different amino acids they typically contain, it is also a secondary goal to discover how the current selection of amino acids......-which now are common in proteins-might have emerged from simpler selections, or alphabets, in use earlier during the evolution of living organisms....

  3. Co2 chemosorption by functionalized amino acid derivatives

    DEFF Research Database (Denmark)

    2015-01-01

    The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid.......The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid....

  4. Review: Taurine: A “very essential” amino acid

    OpenAIRE

    Ripps, Harris; Shen, Wen

    2012-01-01

    Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts. It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cyto...

  5. FLU, an amino acid substitution model for influenza proteins

    OpenAIRE

    Gascuel Olivier; Le Quang; Dang Cuong; Le Vinh

    2010-01-01

    Abstract Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We p...

  6. Importance of amino acids on vasopressin-stimulated water flow.

    OpenAIRE

    Carvounis, C P; Carvounis, G; Wilk, B J

    1985-01-01

    The presence of several naturally occurring amino acids in the serosal bath of toad urinary bladder significantly alters the hydrosmotic response of this tissue to vasopressin. We found that histidine, glutamate, and lysine increase vasopressin-stimulated water flow by 75%, 60%, and 43%, respectively. In contrast, alanine did not alter vasopressin-stimulated water flow, whereas glutamine decreased it by 25%. The effect of each amino acid represents intracellular events because their effects o...

  7. Amino Acid Interaction Network Prediction Using Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    Md. Shiplu Hawlader

    2014-01-01

    Full Text Available Protein can be represented by amino acid interaction network. This network is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. This interaction network is the first step of proteins three-dimensional structure prediction. In this paper we present a multi-objective evolutionary algorithm for interaction prediction and ant colony probabilistic optimization algorithm is used to confirm the interaction.

  8. Pharmacological screening of glycine amino acid prodrug of acetaminophen

    OpenAIRE

    Arun Parashar

    2015-01-01

    Objective: To develop an amino acid prodrug of acetaminophen with comparable therapeutic profile and less hepatotoxicity than acetaminophen. Materials and Methods: Acetaminophen prodrug was synthesized by esterification between the carboxyl group of amino acid glycine and hydroxyl group of acetaminophen. Analgesic, antipyretic, ulcer healing, and hepatotoxic activities were performed on Wistar rats in this study. Results: Prodrug showed a 44% inhibition in writhings as compared to 53....

  9. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  10. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    Science.gov (United States)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  11. The preferences of orientations between the Pairs of amino acids

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Wang Jun; Wang Wei

    2007-01-01

    In this work,we make an investigation on the preferences of orientations between amino acids using the orientation defined based on the local geometry of the amino acids concerned.It is found that there are common preferences of orientations (70°,30°,140°) and (110°,340°,100°) for various pairs of amino acids.Different side chains may strengthen or weaken the common preferences,which is related to the effect of packing.Some amino acids having specific local flexibility may possess some preferences of orientations besides the common ones,such as (10°,280°,210°) .Another analysis on the pairs of the amino acids with different secondary-structure preferences shows that the directional interaction may affect the distribution of orientation more effectively than the packing or local flexibility.All these results provide us some insight of the organization of amino acids in protein,and their relation with some related interactions.

  12. Alterations in Plasma Amino Acid Levels in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Banavara Narasimhamurthy Girish

    2011-01-01

    Full Text Available Context Dietary proteins and amino acids can modulate pancreatic function. Objective Our aim was to estimate the levels of plasma amino acids in chronic pancreatitis patients and study their relationship with disease characteristics as well as exocrine and endocrine insufficiency. Patients One hundred and seventy-five consecutive adult patients with chronic pancreatitis: 84 patients with alcoholic chronic pancreatitis and 91 patients with tropical chronic pancreatitis. One hundred and thirteen healthy controls were also studied. Design Prospective study. Main outcome measures Disease characteristics and imaging features were recorded. Plasma-free amino acid levels were estimated using reverse-phase high-performance liquid chromatography. Polyclonal antibody ELISA was used to assess pancreatic fecal elastase-1. Results The majority of the plasma free amino acid levels decreased in chronic pancreatitis patients whereas glutamate, glycine, proline and lysine were elevated as compared to the controls. Multivariate logistic regression analysis revealed that the decrease in branched chain amino acid concentration was significantly associated with the presence of diabetes and low fecal elastase-1. In addition, a significant positive correlation was observed between branched chain amino acids and pancreatic elastase-1 (rs=0.724, P

  13. Child Stunting is Associated with Low Circulating Essential Amino Acids

    Science.gov (United States)

    Semba, Richard D.; Shardell, Michelle; Sakr Ashour, Fayrouz A.; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M.; Ordiz, M. Isabel; Kraemer, Klaus; Khadeer, Mohammed A.; Ferrucci, Luigi; Manary, Mark J.

    2016-01-01

    Background Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. Methods We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59 months, from rural Malawi. Children underwent anthropometry. Findings Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Interpretation Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids.

  14. Release of selected amino acids from zinc carriers.

    Science.gov (United States)

    Dyja, Renata; Dolińska, Barbara; Ryszka, Florian

    2016-06-01

    The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine) from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II)/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2) of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose) is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan) that provides release of similar amounts of amino acid (4.1-4.6 μmol of histidine or 8.7-9.9 μmol of tryptophan) after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9-11.2 μmol) is limited by the tyrosine low solubility in water. PMID:27279069

  15. Did Evolution Select a Nonrandom "Alphabet" of Amino Acids?

    Science.gov (United States)

    Philip, Gayle K.; Freeland, Stephen J.

    2011-04-01

    The last universal common ancestor of contemporary biology (LUCA) used a precise set of 20 amino acids as a standard alphabet with which to build genetically encoded protein polymers. Considerable evidence indicates that some of these amino acids were present through nonbiological syntheses prior to the origin of life, while the rest evolved as inventions of early metabolism. However, the same evidence indicates that many alternatives were also available, which highlights the question: what factors led biological evolution on our planet to define its standard alphabet? One possibility is that natural selection favored a set of amino acids that exhibits clear, nonrandom properties - a set of especially useful building blocks. However, previous analysis that tested whether the standard alphabet comprises amino acids with unusually high variance in size, charge, and hydrophobicity (properties that govern what protein structures and functions can be constructed) failed to clearly distinguish evolution's choice from a sample of randomly chosen alternatives. Here, we demonstrate unambiguous support for a refined hypothesis: that an optimal set of amino acids would spread evenly across a broad range of values for each fundamental property. Specifically, we show that the standard set of 20 amino acids represents the possible spectra of size, charge, and hydrophobicity more broadly and more evenly than can be explained by chance alone.

  16. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  17. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis).

    Science.gov (United States)

    Srihongthong, Saowaluck; Pakdeesuwan, Anawat; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-08-01

    Hemoglobin, α-chain, β-chain and fragmented hemoglobin of Crocodylus siamensis demonstrated both antibacterial and antioxidant activities. Antibacterial and antioxidant properties of the hemoglobin did not depend on the heme structure but could result from the compositions of amino acid residues and structures present in their primary structure. Furthermore, thirteen purified active peptides were obtained by RP-HPLC analyses, corresponding to fragments in the α-globin chain and the β-globin chain which are mostly located at the N-terminal and C-terminal parts. These active peptides operate on the bacterial cell membrane. The globin chains of Crocodylus siamensis showed similar amino acids to the sequences of Crocodylus niloticus. The novel amino acid substitutions of α-chain and β-chain are not associated with the heme binding site or the bicarbonate ion binding site, but could be important through their interactions with membranes of bacteria. PMID:22648692

  18. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Science.gov (United States)

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid...

  19. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)

    International Nuclear Information System (INIS)

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers

  20. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Ho; Wang, Vivian S.; Radoicic, Jasmina; Angelis, Anna A. De; Berkamp, Sabrina; Opella, Stanley J., E-mail: sopella@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry (United States)

    2015-04-15

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.

  1. 21 CFR 172.320 - Amino acids.

    Science.gov (United States)

    2010-04-01

    ...-Cysteine L-Cystine L-Glutamic acid L-Glutamine Aminoacetic acid (glycine) L-Histidine L-Isoleucine L... following: L-Asparagine L-Aspartic acid L-Glutamine L-Histidine (c) The additive(s) is used or intended for....4 Aminoacetic acid (glycine) 3.5 L-Histidine 2.4 L-Isoleucine 6.6 L-Leucine 8.8 L-Lysine 6.4 L-...

  2. Contribution of Amino Acid Region 334−335 from Factor Va Heavy Chain to the Catalytic Efficiency of Prothrombinase†

    OpenAIRE

    Barhoover, Melissa A.; Orban, Tivadar; Beck, Daniel O.; Bukys, Michael A.; Kalafatis, Michael

    2008-01-01

    We have demonstrated that amino acids E323, Y324, E330, and V331 from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332−336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D334 and Y335 as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D334 → K and ...

  3. Amino acid profile during exercise and training in Standardbreds.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Wijnberg, I D; de Sain-van der Velden, M G M; van Breda, E; Barneveld, A; de Graaf-Roelfsema, E; Keizer, H A; van der Kolk, J H

    2011-08-01

    The objective of this study is to assess the influence of acute exercise, training and intensified training on the plasma amino acid profile. In a 32-week longitudinal study using 10 Standardbred horses, training was divided into four phases, including a phase of intensified training for five horses. At the end of each phase, a standardized exercise test, SET, was performed. Plasma amino acid concentrations before and after each SET were measured. Training significantly reduced mean plasma aspartic acid concentration, whereas exercise significantly increased the plasma concentrations of alanine, taurine, methionine, leucine, tyrosine and phenylalanine and reduced the plasma concentrations of glycine, ornithine, glutamine, citrulline and serine. Normally and intensified trained horses differed not significantly. It is concluded that amino acids should not be regarded as limiting training performance in Standardbreds except for aspartic acid which is the most likely candidate for supplementation. PMID:20863542

  4. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    OpenAIRE

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Peter J Oefner

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatog...

  5. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N2O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N2O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  7. Recognizing protein–protein interfaces with empirical potentials and reduced amino acid alphabets

    Directory of Open Access Journals (Sweden)

    Wodak Shoshana

    2007-07-01

    Full Text Available Abstract Background In structural genomics, an important goal is the detection and classification of protein–protein interactions, given the structures of the interacting partners. We have developed empirical energy functions to identify native structures of protein–protein complexes among sets of decoy structures. To understand the role of amino acid diversity, we parameterized a series of functions, using a hierarchy of amino acid alphabets of increasing complexity, with 2, 3, 4, 6, and 20 amino acid groups. Compared to previous work, we used the simplest possible functional form, with residue–residue interactions and a stepwise distance-dependence. We used increased computational ressources, however, constructing 290,000 decoys for 219 protein–protein complexes, with a realistic docking protocol where the protein partners are flexible and interact through a molecular mechanics energy function. The energy parameters were optimized to correctly assign as many native complexes as possible. To resolve the multiple minimum problem in parameter space, over 64000 starting parameter guesses were tried for each energy function. The optimized functions were tested by cross validation on subsets of our native and decoy structures, by blind tests on series of native and decoy structures available on the Web, and on models for 13 complexes submitted to the CAPRI structure prediction experiment. Results Performance is similar to several other statistical potentials of the same complexity. For example, the CAPRI target structure is correctly ranked ahead of 90% of its decoys in 6 cases out of 13. The hierarchy of amino acid alphabets leads to a coherent hierarchy of energy functions, with qualitatively similar parameters for similar amino acid types at all levels. Most remarkably, the performance with six amino acid classes is equivalent to that of the most detailed, 20-class energy function. Conclusion This suggests that six carefully chosen amino

  8. Complete amino acid sequence of branched-chain amino acid aminotransferase (transaminase B) of Salmonella typhimurium, identification of the coenzyme-binding site and sequence comparison analysis

    International Nuclear Information System (INIS)

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase of Salmonella typhimurium was determined by automated Edman degradation of peptide fragments generated by chemical and enzymatic digestion of S-carboxymethylated and S-pyridylethylated transaminase B. Peptide fragments of transaminase B were generated by treatment of the enzyme with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. Protocols were developed for separation of the peptide fragments by reverse-phase high performance liquid chromatography (HPLC), ion-exchange HPLC, and SDS-urea gel electrophoresis. The enzyme subunit contains 308 amino acid residues and has a molecular weight of 33,920 daltons. The coenzyme-binding site was determined by treatment of the enzyme, containing bound pyridoxal 5-phosphate, with tritiated sodium borohydride prior to trypsin digestion. Monitoring radioactivity incorporation and peptide map comparisons with an apoenzyme tryptic digest, allowed identification of the pyridoxylated-peptide which was isolated by reverse-phase HPLC and sequenced. The coenzyme-binding site is a lysyl residue at position 159. Some peptides were further characterized by fast atom bombardment mass spectrometry

  9. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  10. cDNA-derived amino acid sequences of myoglobins from nine species of whales and dolphins.

    Science.gov (United States)

    Iwanami, Kentaro; Mita, Hajime; Yamamoto, Yasuhiko; Fujise, Yoshihiro; Yamada, Tadasu; Suzuki, Tomohiko

    2006-10-01

    We determined the myoglobin (Mb) cDNA sequences of nine cetaceans, of which six are the first reports of Mb sequences: sei whale (Balaenoptera borealis), Bryde's whale (Balaenoptera edeni), pygmy sperm whale (Kogia breviceps), Stejneger's beaked whale (Mesoplodon stejnegeri), Longman's beaked whale (Indopacetus pacificus), and melon-headed whale (Peponocephala electra), and three confirm the previously determined chemical amino acid sequences: sperm whale (Physeter macrocephalus), common minke whale (Balaenoptera acutorostrata) and pantropical spotted dolphin (Stenella attenuata). We found two types of Mb in the skeletal muscle of pantropical spotted dolphin: Mb I with the same amino acid sequence as that deposited in the protein database, and Mb II, which differs at two amino acid residues compared with Mb I. Using an alignment of the amino acid or cDNA sequences of cetacean Mb, we constructed a phylogenetic tree by the NJ method. Clustering of cetacean Mb amino acid and cDNA sequences essentially follows the classical taxonomy of cetaceans, suggesting that Mb sequence data is valid for classification of cetaceans at least to the family level. PMID:16962803

  11. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    Science.gov (United States)

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold. PMID:17565494

  12. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone.

    Science.gov (United States)

    Frei, Christopher S; Wang, Zhiqing; Qian, Shuai; Deutsch, Samuel; Sutter, Markus; Cirino, Patrick C

    2016-04-01

    The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l-arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named "AraC-TAL1") was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand-binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence-activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL-responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X-ray diffraction was used to solve the crystal structure of the apo AraC-TAL1 ligand-binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild-type AraC ligand-binding domain (root-mean-square deviation 0.93 Å), suggesting that AraC-TAL1 behaves similar to wild-type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence-function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC. PMID:26749125

  13. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants

    Science.gov (United States)

    Hassett, Christopher; Aicher, Lauri; Sidhu, Jaspreet S.

    2016-01-01

    Human microsomal epoxide hydrolase (mEH) is a biotransformation enzyme that metabolizes reactive epoxide intermediates to more water-soluble trans-dihydrodiol derivatives. We compared protein-coding sequences from six full-length human mEH DNA clones and assessed potential amino acid variation at seven positions. The prevalence of these variants was assessed in at least 37 unrelated individuals using polymerase chain reaction experiments. Only Tyr/His 113 (exon 3) and His/Arg 139 (exon 4) variants were observed. The genotype frequencies determined for residue 113 alleles indicate that this locus may not be in Hardy – Weinberg equilibrium, whereas frequencies observed for residue 139 alleles were similar to expected values. Nucleotide sequences coding for the variant amino acids were constructed in an mEH cDNA using site-directed mutagenesis, and each was expressed in vitro by transient transfection of COS-1 cells. Epoxide hydrolase mRNA level, catalytic activity, and immunoreactive protein were evaluated for each construct. The results of these analyses demonstrated relatively uniform levels of mEH RNA expression between the constructs. mEH enzymatic activity and immunoreactive protein were strongly correlated, indicating that mEH specific activity was similar for each variant. However, marked differences were noted in the relative amounts of immunoreactive protein and enzymatic activity resulting from the amino acid substitutions. These data suggest that common human mEH amino acid polymorphisms may alter enzymatic function, possibly by modifying protein stability. PMID:7516776

  14. Silicone hydrogels grafted with natural amino acids for ophthalmological application.

    Science.gov (United States)

    Xu, Chen; He, Ruiyu; Xie, Binbin; Ismail, Muhammad; Yao, Chen; Luan, Jie; Li, Xinsong

    2016-09-01

    In this report, protein repelling silicone hydrogels with improved hydrophilicity were prepared by photo-polymerization of silicone-containing monomer and glycidyl methacrylate followed by grafting zwitterionic amino acids. The grafted silicone hydrogels possessed excellent hydrophilic surfaces due to the enrichment of amino acids, which was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle, and equilibrium water content measurements. Remarkable resistance to bovine serum albumin and lysozyme fouling was observed for the silicone hydrogels immobilized with neutrally charged amino acids because of the formation of zwitterionic surfaces with pairs of protonated secondary ammonium cations and deprotonated carboxyl anions. Meanwhile, the silicone hydrogels grafted with positively or negatively charged amino acids were able to repulse same charged protein with reduced deposition and attract oppositely charged protein with increased adsorption. Preliminary cytotoxicity test indicated that the zwitterionic silicone hydrogels were non-cytotoxic. Similarly, three types of natural amino acids, including serine, aspartic acid and histidine, modified silicone hydrogel contact lenses exhibited excellent hydrophilicity and non-damage to the rabbit's eyes, but only serine modified zwitterionic contact lens showed superior protein fouling resistance compared with the current commercial hydrogel contact lens, which may have great potential application in ophthalmology. PMID:27297564

  15. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  16. Plasma amino acid and serum unesterified fatty acid deficits and the effect of nutritional support in chemotherapy treatment.

    Science.gov (United States)

    Ching, N; Grossi, C; Jham, G; Angers, J; Zurawinsky, H; Ching, C Y; Nealon, T F

    1984-06-01

    The deficits in plasma amino acids and serum unesterified fatty acids of cancer patients undergoing chemotherapy and/or radiation therapy were studied to delineate the special requirements of the patients and efficacy of our nutritional therapy. Seven general surgery patients and 13 patients treated by the Head-Neck Service had baseline levels measured as part of their nutritional evaluation prior to surgical treatment of their cancers. Fifteen chemotherapy outpatients maintained on their regular diets had fasting levels analyzed. Twenty-six patients who were admitted for their therapy had their intake of the regular hospital diet supplemented with a low-residue enteral diet formula (Vivonex High Nitrogen Diet); parenteral nutrition was used only if their oral intake was totally inadequate. Baseline and sequential measurements were made of plasma amino acid and serum unesterified fatty acid levels by gas liquid chromatographic techniques. Before operation the patients had normal levels of amino acids except for a significant deficiency of threonine and glycine observed in patients with head-neck tumors. Outpatients with and without hepatic metastases had significantly depressed levels of the essential amino acids valine, leucine, threonine, and methionine and the nonessential amino acids serine, glycine, and proline. The baseline levels of the patients admitted for treatment had similar deficiencies except for more evidence of lysine deficiency. Patients supported with total parenteral nutrition had rapid elevation of the amino acid levels. The patients whose intake was supplemented with the oral diets had improvement in their amino acid levels, but the deficiency in the leucine and threonine fractions persisted up to 4 weeks of therapy. Although the lysine levels were normal when first analyzed, significant differences developed in the patients without hepatic metastases after the start of chemotherapy with return to normal only after chemotherapy was discontinued

  17. Sterically allowed configuration space for amino acid dipeptides

    Science.gov (United States)

    Caballero, Diego; Maatta, Jukka; Sammalkorpi, Maria; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic propensities for amino acids to be in particular backbone or side-chain conformations. This question has remained unsettled for years because of the discrepancies between different experimental approaches. To address it, I performed all-atom hard-sphere simulations of hydrophobic residues with stereo-chemical constraints and non-attractive steric interactions between non-bonded atoms for ALA, ILE, LEU and VAL dipeptide mimetics. For these hard-sphere MD simulations, I show that transitions between α-helix and β-sheet structures only occur when the bond angle τ(N -Cα - C) >110° , and the probability distribution of bond angles for structures in the `bridge' region of ϕ- ψ space is shifted to larger angles compared to that in other regions. In contrast, the relevant bond-angle distributions obtained from most molecular dynamics packages are broader and shifter to larger values. I encounter similar correlations between bond angles and side-chain dihedral angles. The success of these studies is an argument for re-incorporating local stereochemical constraints into computational protein design methodology.

  18. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight. T...

  19. Boron-containing amino carboxylic acid compounds and uses thereof

    International Nuclear Information System (INIS)

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed

  20. Amino acid salt solutions for carbon dioxide capture

    OpenAIRE

    Majchrowicz, Magdalena Elzbieta

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas streams. Initially, a group of promising amino acid salts (taurine, sarcosine, L-proline, -alanine, 6-aminohexanoic acid and DL-methionine) was screened for their CO2 absorption kinetics, pKa value...

  1. COPASAAR – A database for proteomic analysis of single amino acid repeats

    Directory of Open Access Journals (Sweden)

    Dalby Andrew R

    2005-08-01

    Full Text Available Abstract Background Single amino acid repeats make up a significant proportion in all of the proteomes that have currently been determined. They have been shown to be functionally and medically significant, and are associated with cancers and neuro-degenerative diseases such as Huntington's Chorea, where a poly-glutamine repeat is responsible for causing the disease. The COPASAAR database is a new tool to facilitate the rapid analysis of single amino acid repeats at a proteome level. The database aims to simplify the comparison of repeat distributions between proteomes in order to provide a better understanding of their function and evolution. Results A comparative analysis of all proteomes in the database (currently 244 shows that single amino acid repeats account for about 12–14% of the proteome of any given species. They are more common in eukaryotes (14% than in either archaea or bacteria (both 13%. Individual analyses of proteomes show that long single amino acid repeats (6+ residues are much more common in the Eukaryotes and that longer repeats are usually made up of hydrophilic amino acids such as glutamine, glutamic acid, asparagine, aspartic acid and serine. Conclusion COPASAAR is a useful tool for comparative proteomics that provides rapid access to amino acid repeat data that can be readily data-mined. The COPASAAR database can be queried at the kingdom, proteome or individual protein level. As the amount of available proteome data increases this will be increasingly important in order to automate proteome comparison. The insights gained from these studies will give a better insight into the evolution of protein sequence and function.

  2. Amino acids as corrosion inhibitors for copper in acidic medium: Experimental and theoretical study

    OpenAIRE

    Milošev Ingrid; Pavlinac Jasminka; Hodošček Milan; Lesar Antonija

    2013-01-01

    Experimental electrochemical methods combined with quantum chemical calculations and molecular dynamics simulations were used to investigate the possibility of use various amino acids as “green” corrosion inhibitors for copper in 0.5 M HCl solution. Among eleven amino acids studied, cysteine achieved the highest inhibitor effectiveness reaching 52% at 10 mM concentration. Other amino acids reached achieved effectiveness less than 25%, some of them even acte...

  3. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  4. RESEARCH ON THE POLYCONDENSATION KINETICS OF ω-AMINO-ACIDS

    Institute of Scientific and Technical Information of China (English)

    WANG Baoren; SHI Manli; QIAN Chunqing

    1983-01-01

    In our previous report, it was discovered that the polycondensation of 9-amino-nonanoic acid follows second order from the beginning up to the extent of reaction, p, around 99%, and after which the reaction changes rapidly to third order. In this paper, we wish to report that this change of the reaction order from second to third occurred also in the polycondensation of 6aminocaproic acid and 11-amino-undecanoic acid. The transition region lay again at p around 99%.It may be concluded that this is a general rule in the polycondensation of the ω-amino-acids (monomers of the A-B type), and the controversial results that appeared in the literature may be cleared up by our experiments.

  5. Self-Sequencing of Amino Acids and Origins of Polyfunctional Protocells

    Science.gov (United States)

    Fox, Sidney W.

    1984-12-01

    The primal role of the origins of proteins in molecular evolution is discussed. On the basis of this premise, the significance of the experimentally established self-sequencing of amino acids under simulated geological conditions is explained as due to the fact that the products are highly nonrandom and accordingly contain many kinds of information. When such thermal proteins are aggregated into laboratory protocells, an action that occurs readily, the resultant protocells also contain many kinds of information. Residue-by-residue order, enzymic activities, and lipid quality accordingly occur within each preparation of proteinoid (thermal protein). In this paper are reviewed briefly the phenomenon of self-sequencing of amino acids, its relationship to evolutionary processes, other significance of such self-ordering, and the experimental evidence for original polyfunctional protocells.

  6. Postnatal changes of plasma amino acids in suckling pigs.

    Science.gov (United States)

    Flynn, N E; Knabe, D A; Mallick, B K; Wu, G

    2000-09-01

    Amino acids, ammonia, urea, orotate, and nitrate plus nitrite (stable oxidation products of nitric oxide) were determined in plasma of 1- to 21-d-old suckling pigs. Jugular venous blood samples were obtained from pigs at 1, 3, 7, 14, and 21 d of age for analysis of plasma amino acids and metabolites by HPLC and enzymatic methods. Plasma concentrations of arginine and its immediate precursors (citrulline and ornithine) decreased (P Plasma concentrations of glutamine declined (P Plasma concentrations of branched-chain amino acids, threonine, and alanine decreased (P changes (P > 0.05) in plasma concentrations of other amino acids. Plasma concentrations of ammonia increased (P nitric oxide synthesis, our results of the decreased plasma concentrations of arginine and nitrate plus nitrite, as well as the increased plasma ammonia concentration, indicate a hitherto unrecognized deficiency of arginine in 7- to 21-d-old suckling pigs. Arginine is an essential amino acid for piglets and has a great potential to enhance neonatal growth; therefore, further studies are necessary to elucidate the mechanism responsible for arginine deficiency in sow-reared piglets and to identify hormonal and metabolic means for improving neonatal arginine nutrition and growth. PMID:10985412

  7. Chiral analysis of amino acids using electrochemical composite bienzyme biosensors.

    Science.gov (United States)

    Domínguez, R; Serra, B; Reviejo, A J; Pingarrón, J M

    2001-11-15

    The construction and performance of bienzyme amperometric composite biosensors for the selective determination of l- or d-amino acids is reported. D- or L-Amino acid oxidase, horseradish peroxidase, and the mediator ferrocene were coimmobilized by simple physical inclusion into the bulk of a graphite-70% Teflon electrode matrix. Working conditions including amino acid oxidase loading and pH were optimized. Studies on the repeatability of the amperometric response obtained at +0.00 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different biosensors illustrate the robustness of the bioelectrodes design. Calibration plots by both amperometry in stirred solutions and flow injection with amperometric detection were obtained for L-arginine, L-phenylalanine, L-leucine, L-methionine, L-tryptophan, D-leucine, D-methionine, D-serine, and D-valine. Differences in sensitivity were discussed in terms of the hydrophobicity of the substrate and of the electrode surface. The bienzyme composite electrode was applied to the determination of L- and D-amino acids in racemic samples, as well as to the estimation of the L-amino acids content in muscatel grapes. PMID:11700983

  8. Tethered Aminohydroxylation: Synthesis of the β-Amino Acid of Microsclerodermins A and B

    OpenAIRE

    Pullin, Robert D. C.; Rathi, Akshat H.; Melikhova, Ekaterina Y.; Winter, Christian; Thompson, Amber L.; Donohoe, Timothy J.

    2013-01-01

    The utility of the tethered aminohydroxylation (TA) has been demonstrated by synthesis of the complex β-amino acid residue of microsclerodermins A and B. The TA provided a regio- and stereoselective functionalization of a complex homoallylic alcohol. The route includes late-stage introduction of the aliphatic side chain via a cuprate addition and cross metathesis, a tactic designed to render the synthesis applicable to other microsclerodermins.

  9. Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides

    OpenAIRE

    Jo, Suk Jo; Rizzi, Simone C.; Ehrbar, Martin; Weber, Franz E.; Hubbell, Jeffrey A.; Lutolf, Matthias P.

    2010-01-01

    Semi-synthetic, proteolytically degradable polymer hydrogels have proven effective as scaffolds to augment bone and skin regeneration in animals. However, high costs due to expensive peptide building blocks pose a significant hurdle towards broad clinical usage of these materials. Here we demonstrate that tri-amino acid peptides bearing lysine (or arginine), flanked by two cysteine residues for crosslinking, are adequate as minimal plasmin-sensitive peptides in poly(ethylene glycol)-based hyd...

  10. “Fuzzy oil drop” model applied to individual small proteins built of 70 amino acids

    OpenAIRE

    Prymula, Katarzyna; Sałapa, Kinga; Roterman, Irena

    2010-01-01

    Abstract The proteins composed of short polypeptides (about 70 amino acid residues) representing the following functional groups (according to PDB notation): growth hormones, serine protease inhibitors, antifreeze proteins, chaperones and proteins of unknown function, were selected for structural and functional analysis. Classification based on the distribution of hydrophobicity in terms of deficiency/excess as the measure of structural and functional specificity is presented. The ...

  11. Four Distances between Pairs of Amino Acids Provide a Precise Description of their Interaction

    OpenAIRE

    Cohen, Mati; Potapov, Vladimir; Schreiber, Gideon

    2009-01-01

    The three-dimensional structures of proteins are stabilized by the interactions between amino acid residues. Here we report a method where four distances are calculated between any two side chains to provide an exact spatial definition of their bonds. The data were binned into a four-dimensional grid and compared to a random model, from which the preference for specific four-distances was calculated. A clear relation between the quality of the experimental data and the tightness of the distan...

  12. Recoded organisms engineered to depend on synthetic amino acids.

    Science.gov (United States)

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  13. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence

    Directory of Open Access Journals (Sweden)

    Yuan Zheng

    2005-10-01

    Full Text Available Abstract Background Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of Cβ atoms in other residues within a sphere around the Cβ atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles, we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either "contacted" or "non-contacted", the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary protein sequence and higher order consecutive protein structural and functional properties.

  14. Murine protein H is comprised of 20 repeating units, 61 amino acids in length

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Tack, B F

    1986-01-01

    with this cDNA probe. Ten positives were colony-purified, and the largest plasmid cDNA insert, MH8 (4.4 kb), was sequenced by the dideoxy chain termination method. MH8 contained the complete coding sequence for the precursor of murine complement protein factor H (3702 bp), 100 bp of 5'-untranslated sequence......A cDNA library constructed from size-selected (greater than 28 S) poly(A)+ RNA isolated from the livers of C57B10. WR mice was screened by using a 249-base-pair (bp) cDNA fragment encoding 83 amino acid residues of human protein H as a probe. Of 120,000 transformants screened, 30 hybridized......, 448 bp of 3'-untranslated sequence, and a polyadenylylated tail of undetermined length. Murine pre-protein H was deduced to consist of an 18-amino acid signal peptide and 1216 residues of H-protein sequence. Murine H was composed of 20 repetitive units, each about 61 amino acid residues in length...

  15. The Studies of the Reactions of 2, 4, 6-Triphenylpyrylium Tetrafluoroborate with Amino Acids

    Institute of Scientific and Technical Information of China (English)

    Shrong Shi LIN; Xian Jing KONG; Jing Yuan LIU; Cheng Yong LI

    2003-01-01

    The reactions of triphenylpyrylium salt 1 with various amino acids were explored andcompared. The reactions with most α-amino acids yielded decarboxylation products 2 viadecarboxylation. The reactions with glutamic acid, lysine and ACC (1-aminocyclopropyl-carboxylic acid) gave triphenylpyridine 8, dimer 9 and acid 5a-acc, respectively. The reactionswith β and γ-amino acids yielded triphenylpyridine by intramolecular elimination.

  16. THz time-domain spectroscopy of amino acids

    Institute of Scientific and Technical Information of China (English)

    WANG Weining; YUE Weiwei; YAN Haitao; ZHANG Cunlin; ZHAO Guozhong

    2005-01-01

    The optical characteristics of four kinds of amino acids (tyrosine, arginine, histidine and glutamine) filled with nitrogen at room temperature were studied by THz time-domain spectroscopy (THz-TDS). Well-resolved absorption and refractive spectrums between 0.1 and 2.8 THz were obtained based on the physical model for extracting the optical parameters of materials in THz range. The results not only fill up the spectra gap of amino acids in far-infrared range, supply data for amino acid molecular identification and conformation analysis, but also demonstrate significantly potential to promote the research and application of biological materials in bio-chemical and medical fields by THz-TDS.

  17. tRNAs: cellular barcodes for amino acids

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Chen, Shawn; Dare, Kiley;

    2010-01-01

    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has...... also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond...... translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis....

  18. Polymerization on the rocks: negatively-charged alpha-amino acids

    Science.gov (United States)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  19. Solid state radiolysis of amino acids in an astrochemical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Istituto Nazionale di Astrofisica-Osservatorio Astrofisica di Catania, Via S. Sofia 78, 95123 Catania (Italy); Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Angelini, Giancarlo [Istituto di Metodologie Chimiche, CNR, Via Salaria Km 29300, 00016 Monterotondo Stazione, Rome (Italy); Iglesias-Groth, Susana [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain) and CSIC (Spain)

    2011-01-15

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T{sub 1/2} for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6x10{sup 9} years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6x10{sup 9} years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant k{sub rac}.

  20. Preparation of 4-amino-2,4-dioxobutanoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Martinez, Rodolfo A.; Glass, David R.

    2016-03-22

    A process for synthesizing 4-amino-2,4-dioxobutanoic acid involves reacting diethyl oxalate with an alkoxide in ethanol to form a reaction mixture, and afterward adding ethyl cyanoacetate to the reaction mixture and allowing a reaction to proceed under conditions suitable to form a first reaction product of the formula diethyl 2-cyano-3-hydroxy-butenedioate, and then isolating the diethyl 2-cyano-3-hydroxy-butenedioate, and afterward reacting the diethyl-2-cyano-3-hydroxy-butenedioate with an aqueous hydroxide under conditions suitable to form 4-amino-2,4-dioxobutanoic acid.

  1. Transport of aromatic amino acids by Brevibacterium linens.

    OpenAIRE

    Boyaval, P; Moreira, E; Desmazeaud, M. J.

    1983-01-01

    Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L for...

  2. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  3. Genetic analysis of amino acid content in wheat grain

    Indian Academy of Sciences (India)

    Xiaoling Jiang; Peng Wu; Jichun Tian

    2014-08-01

    Complete diallel crosses with five parents of common wheat (Triticum aestivum L.) were conducted to analyse inheritance of 17 amino acid contents by using the genetic model including seed, cytoplasmic, maternal and environment interaction effects on quantitative traits of seeds in cereal crops. The results showed that inheritance of 17 amino acid contents, except tyrosine, was controlled by several genetic systems including seed, cytoplasmic, and maternal effects, and by significant gene × environment interaction effects. Seed-direct additive and maternal effects constituted a major part of genetic effects for lysine, tyrosine, arginine, methionine, and glutamic acid content. Seed-direct additive effect formed main part in inheritance of isoleucine and serine contents. Threonine content was mainly governed by maternal additive effect. The other nine amino acid contents were almost entirely controlled by dominance effects. High general heritability of tyrosine (36.3%), arginine (45.8%), lysine (24.7%) and threonine (21.4%) contents, revealed that it could be effective to improve them by direct selection in progenies from appropriate crosses. Interaction heritability for phenylalanine, proline, and histidine content, which was 36.1%, 39.5% and 25.7%, respectively, was higher than for the other amino acids.

  4. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    Science.gov (United States)

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  5. Preparation of 4-amino-2,4-dioxobutanoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Martinez, Rodolfo A.; Glass, David R.

    2016-03-22

    A process for synthesizing 4-amino-2,4-dioxobutanoate involves reacting a dialkyl oxalate with an alkoxide in ethanol to form a reaction mixture, and afterward adding an alkyl cyano acetate to the reaction mixture and allowing a reaction to proceed under conditions suitable to form a first reaction product of the formula diethyl 2-cyano-3-hydroxy-butenedioate, and then isolating the diethyl 2-cyano-3-hydroxy-butenedioate, and afterward reacting the diethyl-2-cyano-3-hydroxy-butenedioate with an aqueous hydroxide under conditions suitable to form 4-amino-2,4-dioxobutanoate. The 4-amino-2,4-dioxobutanoate may be acidified into 4-amino-2,4-dioxobutanoic acid.

  6. Antioxidant effects of sulfur-containing amino acids.

    Science.gov (United States)

    Atmaca, Gulizar

    2004-10-31

    Sulfur is an essential element for the entire biological kingdom because of its incorporation into amino acids, proteins and other biomolecules. Sulfur atoms are also important in the iron-containing flavoenzymes. Unlike humans, plants can use inorganic sulfur to synthesize sulfur-containing amino acids. Therefore, plants are an important source of sulfur for humans. Sulfur-containing compounds are found in all body cells and are indispensable for life. Some of sulfur-containing antioxidant compounds are, cysteine, methionine, taurine, glutathione, lipoic acid, mercaptopropionylglycine, N-acetylcysteine, and the three major organosulfur compounds of garlic oil, diallylsulfide, diallyldisulfide and diallyltrisulfide. In a comparison of the structure-function relationship among these sulfur-containing antioxidant compounds, dihydrolipoic acid (the reduced form of LA) is the most effective antioxidant. Dihydrolipoic acid contains two sulfhydryl groups and can undergo further oxidation reaction to form lipoic acid. The antioxidative activities of sulfur-containing compounds follow a general trend, the more highly reduced forms are stronger antioxidants and the number of sulfur atoms determine, at least in part, their modulatory activites on the glutathione related antioxidant enzymes. In this article, the antioxidant effects and the antioxidative activities, of sulfur-containing amino acids, are reviewed. In addition, the general antioxidant effects and the structure-function relationship of some sulfur-containing compounds are also reviewed. PMID:15515186

  7. A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection.

    Directory of Open Access Journals (Sweden)

    Andrew R Dalby

    Full Text Available BACKGROUND: Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. RESULTS: The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A-T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. CONCLUSIONS: The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A-T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.

  8. Anion-π interactions in complexes of proteins and halogen-containing amino acids.

    Science.gov (United States)

    Borozan, Sunčica Z; Zlatović, Mario V; Stojanović, Srđan Đ

    2016-06-01

    We analyzed the potential influence of anion-π interactions on the stability of complexes of proteins and halogen-containing non-natural amino acids. Anion-π interactions are distance and orientation dependent and our ab initio calculations showed that their energy can be lower than -8 kcal mol(-1), while most of their interaction energies lie in the range from -1 to -4 kcal mol(-1). About 20 % of these interactions were found to be repulsive. We have observed that Tyr has the highest occurrence among the aromatic residues involved in anion-π interactions, while His made the least contribution. Furthermore, our study showed that 67 % of total interactions in the dataset are multiple anion-π interactions. Most of the amino acid residues involved in anion-π interactions tend to be buried in the solvent-excluded environment. The majority of the anion-π interacting residues are located in regions with helical secondary structure. Analysis of stabilization centers for these complexes showed that all of the six residues capable of anion-π interactions are important in locating one or more of such centers. We found that anion-π interacting residues are sometimes involved in simultaneous interactions with halogens as well. With all that in mind, we can conclude that the anion-π interactions can show significant influence on molecular organization and on the structural stability of the complexes of proteins and halogen-containing non-natural amino acids. Their influence should not be neglected in supramolecular chemistry and crystal engineering fields as well. PMID:26910415

  9. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated to...... glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  10. Polymerization on the rocks: beta-amino acids and arginine

    Science.gov (United States)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.

  11. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Science.gov (United States)

    Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

  12. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  13. Yeast colony development and ammonia signalling: Role of amino acids

    Czech Academy of Sciences Publication Activity Database

    Begany, Markéta; Váchová, Libuše; Palková, Z.

    Vienna : Springer, 2006, A109-A109. [International Symposium on Microbial Ecology – ISME-11 /11./. Vienna (AT), 20.08.2006-25.08.2006] R&D Projects: GA ČR GA204/05/0294; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast colony * amino acid Subject RIV: EE - Microbiology, Virology

  14. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo;

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...

  15. Analysis of Saccharides by the Addition of Amino Acids

    Science.gov (United States)

    Ozdemir, Abdil; Lin, Jung-Lee; Gillig, Kent J.; Gulfen, Mustafa; Chen, Chung-Hsuan

    2016-06-01

    In this work, we present the detection sensitivity improvement of electrospray ionization (ESI) mass spectrometry of neutral saccharides in a positive ion mode by the addition of various amino acids. Saccharides of a broad molecular weight range were chosen as the model compounds in the present study. Saccharides provide strong noncovalent interactions with amino acids, and the complex formation enhances the signal intensity and simplifies the mass spectra of saccharides. Polysaccharides provide a polymer-like ESI spectrum with a basic subunit difference between multiply charged chains. The protonated spectra of saccharides are not well identified because of different charge state distributions produced by the same molecules. Depending on the solvent used and other ions or molecules present in the solution, noncovalent interactions with saccharides may occur. These interactions are affected by the addition of amino acids. Amino acids with polar side groups show a strong tendency to interact with saccharides. In particular, serine shows a high tendency to interact with saccharides and significantly improves the detection sensitivity of saccharide compounds.

  16. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO2 with ubiquitous amino acids present in natural waters.

  17. Gas-Phase IR Spectroscopy of Deprotonated Amino Acids

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.; Redlich, B.

    2009-01-01

    Gas-phase infrared multiple photon dissociation (IRMPD) spectra have been recorded for the conjugate bases of a series of amino acids (Asp, Cys, Glu, Phe, Set, Trp, Tyr). The spectra are dominated by strong symmetric and antisymmetric carboxylate stretching modes around 1300 and 1600 cm(-1), respect

  18. Force field modeling of amino acid conformational energies

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Jensen, F.

    2007-01-01

    Roč. 3, č. 5 (2007), s. 1774-1788. ISSN 1549-9618 R&D Projects: GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : amino acids * modeling * MP2 * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.308, year: 2007

  19. Association Analysis of the Amino Acid Contents in Rice

    Institute of Scientific and Technical Information of China (English)

    Weiguo Zhao; Eun-Jin Park; Jong-Wook Chung; Yong-Jin Park; III-Min Chung; Joung-Kuk Ahn; Gwang-Ho Kim

    2009-01-01

    The main objective of the present study was to identify simple sequence repeat (SSR) markers associated with the amino acid content of rice (Oryza sativa L.). SSR markers were selected by prescreening for the relationship to amino acid content. Eighty-four rice landrace accessions from Korea were evaluated for 16 kinds of amino acids in brown rice and genotyped with 25 SSR markers. Analysis of population structure revealed four subgroups in the population. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide mapping associations. The mean r2 value for all intrachromosomal loci pairs was 0.033. LD between linked markers decreased with distance. Marker-trait associations were investigated using the unified mixed-model approach, considering both population structure (Q) and kinship (K). A total of 42 marker-trait associations with amino acids (P < 0.05) were identified using 15 different SSR markers covering three chromosomes and explaining more than 40% of the total variation. These results suggest that association analysis In rice is a viable alternative to quantitative trait loci mapping and should help rice breeders develop strategies for improving rice quality.

  20. Amino acids in root exudates of Ambrosia artemisiifolia

    Czech Academy of Sciences Publication Activity Database

    Hohnová, Barbora; Moravcová, Dana; Figala, J.; Lvončík, S.; Lojková, Lea; Formánek, P.

    2015-01-01

    Roč. 47, - (2015), s. 1691-1691. ISSN 0939-4451. [International Congress on Amino Acids, Peptides and Proteins /14./. 03.08.2015-07.08.2015, Vienna] Institutional support: RVO:68081715 Keywords : PHWE * GC-MS * SDS-PAGE Subject RIV: CB - Analytical Chemistry, Separation

  1. On the evolution of the standard amino-acid alphabet

    OpenAIRE

    Lu, Yi; Freeland, Stephen

    2006-01-01

    Although one standard amino-acid 'alphabet' is used by most organisms on Earth, the evolutionary cause(s) and significance of this alphabet remain elusive. Fresh insights into the origin of the alphabet are now emerging from disciplines as diverse as astrobiology, biochemical engineering and bioinformatics.

  2. One-Pot Synthesis of N-Phosphoryl Amino Acids

    Institute of Scientific and Technical Information of China (English)

    GUO Xin; FU Hua; LIN Chang-Xue; ZHAO Yu-Fen

    2003-01-01

    @@ Phosphoramidates have been considered as an important class of rationally designed therapeutics especially asoligonucleotide analogs employed as antisene and antigene agents. [1] N-Phosphoryl amino acids are of biological andpharmaceutical interest, [2] and can be used as the building blocks in synthesis of polypeptides. [3

  3. CSF Amino Acids, Pterins and Mechanism of the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic.

  4. Single amino acid supplementation in aminoacidopathies : a systematic review

    NARCIS (Netherlands)

    van Vliet, Danique; Derks, Terry G. J.; van Rijn, Margreet; de Groot, Martijn J.; MacDonald, Anita; Heiner-Fokkema, M. Rebecca; van Spronsen, Francjan J.

    2014-01-01

    Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with

  5. Polarized Raman spectra and intensities of aliphatic amino acids

    Science.gov (United States)

    Himmler, Hans J.; Eysel, Hans H.

    1989-01-01

    Raman spectra of aliphatic α- L-amino acids, glycine, alanine, and valine were re-investigated both in aqueous solution and deuterium oxide solution. The spectra were taken of the zwitterionic and of the completely deprotonated form of the amino acids. Spectra of leucine and isoleucine were studied in water at the isoelectric point. Spectra were recorded both with parallel and perpendicular polarization and the isotropic and anisotropic scattering components were isolated. The integrated intensities of CH stretch, CC stretch and carboxylate bend vibrations are discussed. Linear relations between the number of CC and CH bonds and the total scattered intensity in the appropriate spectral regions are observed. The sum over the carboxylate modes shows characteristic intensities for the first three members of the aliphatic amino acids. An increase of isotropic scattering of ϱ co 2 near 510 cm -1 with increasing chain length of the amino acid (or with increasing concentration) is interpreted as the result of micelle formation.

  6. Amino acid salt solutions for carbon dioxide capture

    NARCIS (Netherlands)

    Majchrowicz, Magdalena Elzbieta

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas s

  7. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    Science.gov (United States)

    ... features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010 Jul 6;75(1):64-71. doi: ... WNL.0b013e3181e620ae. Epub 2010 May 26. Erratum in: Neurology. 2010 Aug 10;75(6):576. Dosage error ...

  8. Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues) – precursors for dyes and drugs

    OpenAIRE

    Malik, Enas M; Younis Baqi; Müller, Christa E.

    2015-01-01

    Anthraquinone (AQ) derivatives play a prominent role in medicine and also in textile industry. Bromaminic acid (1-amino-4-bromoanthraquinone-2-sulfonic acid) is an important precursor for obtaining dyes as well as biologically active compounds through the replacement of the C4-bromo substituent with different (ar)alkylamino residues. Here we report methods for the synthesis of bromaminic acid analogues bearing different substituents at the 2-position of the anthraquinone core. 1-Aminoanthraqu...

  9. Orientation of the peptide formation of N-phosphoryl amino acids in solution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The peptide formation of N-phosphoryl aminoacids with amino acids proceeds in aqueous solution withoutany coupling reagents. After being separated in sephadex gelcolumn, the phosphoryl dipeptides were analyzed by theelectrospray ionization tandem mass spectrometry (ESIMS/MS). The result demonstrates that phosphoryl dipeptides were detected in all the reaction systems. It is found that theformation of N-phosphoryl dipeptides is oriented: theN-terminal amino acid residues of the N-phosphoryl dipep-tides are from N-phosphoryl amino acids, and the peptideelongation happened at the C-terminal. Only (-dipeptide, no(-dipeptide, is formed in the N-phosphoryl dipeptides,showing that ?-carboxylic group is activated selectively byN-phosphorylation. Theoretical calculation shows that the peptide formation of N-phosphoryl amino acids might hap-pen through a penta-coordinate carboxylic-phosphoric in-termediate in solution. These results might give some clues tothe study on the origin of proteins and protein biosynthesis.

  10. Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids.

    Science.gov (United States)

    Silva, Branca M; Andrade, Paula B; Ferreres, Federico; Seabra, Rosa M; Oliveira, M Beatriz P P; Ferreira, Margarida A

    2005-04-01

    Phenolic compounds, organic acids and free amino acids of quince seeds were determined by HPLC/DAD, HPLC/UV and GC/FID, respectively. Quince seeds presented a phenolic profile composed of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and 3,5-dicaffeoylquinic acids, lucenin-2, vicenin-2, stellarin-2, isoschaftoside, schaftoside, 6-C-pentosyl-8-C-glucosyl chrysoeriol and 6-C-glucosyl-8-C-pentosyl chrysoeriol. Six identified organic acids constituted the organic acid profile of quince seeds: citric, ascorbic, malic, quinic, shikimic and fumaric acids. The free amino acid profile was composed of 21 identified free amino acids and the three most abundant were glutamic and aspartic acids and asparagine. PMID:15702641

  11. Evaluation on the Apparent Metabolic Energy and Apparent Heal Amino Acid Digestibility of Broccoli LPC and Broccoli Residues for Broilers%西兰花叶蛋白和茎叶粉对肉仔鸡代谢能和回肠氨基酸表观消化率的影响

    Institute of Scientific and Technical Information of China (English)

    杨桂芹; 梁丽萍; 李建涛; 刘国华; 张姝; 郑爱娟

    2011-01-01

    通过2个试验测定了西兰花叶蛋白和茎叶粉在肉仔鸡中的氮校正表观代谢能和回肠氨基酸的表观消化率,为合理利用西兰花资源提供科学依据和数据参考.试验1选用体重相近的22日龄健康肉仔鸡144只,随机分成3个组,每组8个重复,公母各50%.其中1组饲喂基础日粮,另2组分别饲喂试验日粮(西兰花叶蛋白30%替代基础日粮,西兰花茎叶粉35%替代基础日粮).选用TiO2为外源指示剂进行代谢试验;试验2选用体重相近的26日龄健康肉仔鸡96只,随机分为2组,每组8个重复,公母各50%.选用TiO2为外源指示剂,采用回肠末端法进行代谢试验.结果表明:西兰花叶蛋白和茎叶粉在肉仔鸡中的表观代谢能分别为8.86MJ·kg-1和2.48 MJ·kg-1,氮校正表观代谢能分别为8.14 MJ·kg-1和1.86 MJ·kg-1;西兰花叶蛋白和茎叶粉在肉仔鸡中4种限制性氨基酸的回肠末端表观消化率分别为赖氨酸(48.11±4.28)%和(73.00±6.64)%,蛋氨酸(39.51±4.60)%和(79.18±3.91)%,苏氨酸(33.11±4.66)%和(59.38±6.25)%,胱氨酸(33.47±2.94)%和(65.82±4.46)%;存肉仔鸡中17种氨基酸的回肠末端表观消化率的平均值为(39.57±4.45)%和(71.75±4.85)%.可见,西兰花茎叶粉在肉仔鸡中的表观代谢能较低,西兰花叶蛋白在肉仔鸡中回肠末端氨基酸的消化率较低.%To assess the apparent metabolic energy and apparent ileal amino acid digestibility of broccoli leaf protein concentrate (LPC) and broccoli residues for broilers, two experiments were carried out. In experiment one,one hundred and forty-four 22-day-old broilers were allocated randomly into three treatments,each of them contained eight repetitions, male and female half and haft. Titanium dioxide was used as the exogenous indicator to carry out the metabolic test, One group was fed basic diet, other two groups were fed test diets in which the basic diet was replaced by 30% broccoli LPC and 35% broccoli residues respectively. In

  12. Separation and identification of amino acids from lignite humic acids by thin layer chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Damian, L.; Marutoiu, C.; Niac, G.

    1985-07-01

    Thin layer chromatography with and without temperature gradient was used to identify ten amino acids in the humic acid hydrolysate of Rovinari lignite, using cellulose and volcanic tuff as stationary phases. The acids found were L-leucine, isoleucine, phenylalanine, L-valine, tyrosine, proline, L-alanine, glutamic acid, threonine and L-lysine. 8 references.

  13. Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function%用定点诱变技术鉴定蛇毒解联蛋白RGD侧翼氨基酸残基的结构和功能

    Institute of Scientific and Technical Information of China (English)

    徐存拴; RAHMAN Salman

    2001-01-01

    In order to demonstrate that the amino acid residues flanking the RGD sequence were important for inhibiting the ADP-induced platelet aggregation, we analyzed the role of the amino acid residues in the domain preceding the RGD loop on the activity of disintegrins. Our approach was to develop hybrids between the disintegrins kistrin and elegantin targeting residues in this domain and within the RGD loop. The basic sequence within elegantin KKKR44T45I46/A50RGDN54P55 was changed by mutagensis to KAG44T45I46/P50 RGDM54P55 and to SKAG44I46/P50RGDM54P55, thereby resembling the corresponding S39 RAGT43/P50 RGDM52 P53 sequence in kistrin. This changed KKKR44 T45 I46/A50RGDN54P55→SKAG44T45 I46/P50RGDM54 P55 dramatically reduced the activity of elegantin as an inhibitor of platelet aggregation. In contrast, deletion of T45 (KKKR44T45 I46/A50RGDN54P55→SKAG44 T45 I46/P50RGDM54P55) increased activity of elegantin as an inhibitor platelet aggregation. It was further shown that their electrophoresis properties were very different. These data highlight thc importance of the domain encompassing residues 39--45 and the amimo acid residues flanking the RGD sequence on disintegrin structure-function.%为了证实蛇毒蛋白RGD侧翼氨基酸残基对ADP诱导的血小板凝聚抑制作用的重要性,分析了RGD环上游氨基酸残基对解联蛋白活性的影响。将位于两种解联蛋白蝮蛇毒素(kistrin)和华丽蛇毒素(elegantin)之间的氨基酸残基和RGD环内的氨基酸残基进行杂交。用定点诱变技术将elegantin一级结构内的KKKR44T45I46/A50RGDN54P55分别突变为SKAG44T45I46/P50RGDM54P55和SKAG44I46/P50RGDM54P55,这些序列和kistrin中相应的序列S39RAGT43/P50RGDM52P53有相似之处,序列由KKKR44T45I46/A50RGDN54P55突变为SKAG44T45I46/P50RGDM54P55,显著地降低了elegantin对血小板凝聚的抑制因子的活性,而T45的缺失(KKKR44T45I46/A50RGDN54P55突变为SKAG44I46/P50RGDM54P55)却增强了elegantin对血小板

  14. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  15. Tuning hardness in calcite by incorporation of amino acids

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  16. Amino-containing magnetic nanoemulsions: elaboration and nucleic acid extraction

    International Nuclear Information System (INIS)

    Amino-containing magnetic colloids were prepared from highly magnetic oil-in-water (O/W) emulsions. The functionalization was performed by controlling the adsorption of polyethyleneimine onto negatively charged magnetic emulsions. The cationic magnetic nanodroplets were characterized in terms of chemical composition, particle size, size distribution, zeta potential and colloidal stability as a function of storage time. These amino-containing magnetic emulsions were assessed as a new tool for nucleic acid extraction and amplification. The adsorption of nucleic acids was mostly controlled by attractive electrostatic interactions. The adsorption efficiency of a model RNA was found to be encouraging and the captured nucleic acid molecules were directly enzymatically amplified in the presence of the magnetic particles without any elution step

  17. Amino acid composition and thermal stability of protein structures: the free energy geography of the Protein Data Bank

    OpenAIRE

    Deiana, Antonio; Shimizu, Kana; Giansanti, Andrea

    2010-01-01

    We study the combined influence of amino acid composition and chain length on the thermal stability of protein structures. A new parameterization of the internal free energy is considered, as the sum of hydrophobic effect, hydrogen-bond and de-hydration energy terms. We divided a non-redundant selection of protein structures from the Protein Data Bank into three groups: i) rich in order-promoting residues (OPR proteins); ii) rich in disorder-promoting residues (DPR proteins); iii) belonging t...

  18. Oxidized Amino Acid Residues in the Vicinity of QA and PheoD1 of the Photosystem II Reaction Center: Putative Generation Sites of Reducing-Side Reactive Oxygen Species

    OpenAIRE

    Frankel, Laurie K.; Sallans, Larry; Limbach, Patrick A.; Terry M Bricker

    2013-01-01

    Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are...

  19. Reactions of Hot Tritiúm Atoms with Amino Acids

    International Nuclear Information System (INIS)

    In the existing literature there is a lack of systematic data on the interaction of tritium recoil atoms with amino acids, yet such data, in conjunction with results already obtained for organic acids and amines, could help in determining the mechanism of hot reactions in relation to the structure of compounds (chain length, functional substitutes). A study was made of the yields from the reaction of hot tritium atoms: (1) with amino acids having lengthened chains, and (2) with amino acids having a carbon chain of constant length, but with various functional substitutes. For this purpose mixtures of lithium carbonate and the acids under study were irradiated for 15 min with a slow neutron flux of 0.87 x 1013 cm2/s. Analysis was carried out on a gas chromatography unit with interchangeable columns (molecular sieves, and liquid petrolatum on kieselguhr) and with paper chromatography. Although the data obtained for the radiation survival capacity of amino acids as a function of carbon chain length were at variance with a basic tenet of radiation chemistry according to which the conservation of molecules increases in proportion to the length of their chains, the data can be explained in terms of an intramolecular transfer of energy along the carbon chain from the collision site of the hot atom to the hydroxyl group, and subsequent ''de-excitation''; on the other hand, although the energy, of tritium recoil atoms is greater than that of the chemical bond, the latter nevertheless exerts an influence on the radiation conservation of molecules with a carbon chain of constant length but with various substitutes. (author)

  20. Studies of 3-amino-4-hydroxyl benzoic acid phosphate

    International Nuclear Information System (INIS)

    3-amino-4-hydroxyl benzoic acid phosphate was synthesized from 4-chloro benzoic acid through three steps, the whole process was cost-effective in which the materials in each step were reused. More importantly, phosphoric acid medium did no harm to Pd-C catalyst in the hydrogenation and the Pd-C catalyst could be recycled for ten times at least without decrease in catalytic activity. In addition, product could meet the requirement of polymerization reaction of producing poly(2,5-benzoxazole) without dehydrochlorogenation. In this process, good conversion, high overall yield (79.28%) and high purity (99.30% by HPLC) were achieved. (author)

  1. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  2. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.

    Science.gov (United States)

    Kabaha, Khaled; Taralp, Alpay; Cakmak, Ismail; Ozturk, Levent

    2011-04-13

    The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops. PMID:21375298

  3. Predicting DNA-binding sites of proteins from amino acid sequence

    Directory of Open Access Journals (Sweden)

    Wu Feihong

    2006-05-01

    Full Text Available Abstract Background Understanding the molecular details of protein-DNA interactions is critical for deciphering the mechanisms of gene regulation. We present a machine learning approach for the identification of amino acid residues involved in protein-DNA interactions. Results We start with a Naïve Bayes classifier trained to predict whether a given amino acid residue is a DNA-binding residue based on its identity and the identities of its sequence neighbors. The input to the classifier consists of the identities of the target residue and 4 sequence neighbors on each side of the target residue. The classifier is trained and evaluated (using leave-one-out cross-validation on a non-redundant set of 171 proteins. Our results indicate the feasibility of identifying interface residues based on local sequence information. The classifier achieves 71% overall accuracy with a correlation coefficient of 0.24, 35% specificity and 53% sensitivity in identifying interface residues as evaluated by leave-one-out cross-validation. We show that the performance of the classifier is improved by using sequence entropy of the target residue (the entropy of the corresponding column in multiple alignment obtained by aligning the target sequence with its sequence homologs as additional input. The classifier achieves 78% overall accuracy with a correlation coefficient of 0.28, 44% specificity and 41% sensitivity in identifying interface residues. Examination of the predictions in the context of 3-dimensional structures of proteins demonstrates the effectiveness of this method in identifying DNA-binding sites from sequence information. In 33% (56 out of 171 of the proteins, the classifier identifies the interaction sites by correctly recognizing at least half of the interface residues. In 87% (149 out of 171 of the proteins, the classifier correctly identifies at least 20% of the interface residues. This suggests the possibility of using such classifiers to identify

  4. Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type

    Science.gov (United States)

    Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V.

    2005-12-01

    Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. Type O individuals have α-fucose(1→2)galactose disaccharides [O(H) structures] on their cell surfaces while in type A or B individuals, the O antigen is capped by the addition of an α- N -acetylgalactosamine or α-galactose residue, respectively. The addition of these monosaccharides is catalyzed by glycosyltransferase A (GTA) or glycosyltransferase B (GTB). These are homologous enzymes differing by only 4 amino acids out of 354 that change the specificity from GTA to GTB. In this review the chemistry of the blood group ABO system and the role of GTA, GTB, and the four critical amino acids in determining blood group status are discussed. See JCE Featured Molecules .

  5. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager; Harris, Pernille

    2008-01-01

    neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 Å resolution crystal structure of the catalytic domain (Δ1−100/Δ415−445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between the...... iron and the tryptophan Cζ3 atom that is hydroxylated. The binding of tryptophan and maybe the imidazole has caused the structural changes in the catalytic domain compared to the structure of the human TPH1 without tryptophan. The structure of chicken TPH1 is more compact, and the loops of residues Leu...

  6. The cysteine, total sulfur amino acid, tyrosine, phenylalanine + tyrosine, and non-essential amino acid maintenance requirements of broiler breeders.

    Science.gov (United States)

    Ekmay, R D; Mei, S J; Sakomura, N K; Coon, C N

    2016-06-01

    Two hundred and fifty Cobb-Vantress broiler breeders were used to determine the maintenance requirement and efficiency of utilization of dietary Cys, Tyr, and non-essential amino acids (AA) in a 21-day experiment. The breeders were fed crystalline amino acid diets containing graded levels of Cys or Tyr representing 0, 10, 20, 30, and 40% of their suggested requirement level with all other amino acids maintained at 40% of their suggested requirement level. To determine the non-essential AA maintenance requirement, graded levels of non-essential AA were provided by glutamic acid to represent 12, 19, 26, 33, and 40% of the ideal level of glutamic acid with all other amino acids maintained at their maintenance requirement level. The total sulfur amino acid (TSAA) and Phe + Tyr requirements were calculated by combining Cys and Tyr results, respectively, with previously determined Met and Phe, respectively. The slope of Cys, Tyr, and non-essential AA accretion regression line indicated that 29% Cys, 24% TSAA, 21% Tyr, 20% Phe + Tyr, and 9% non-essential AA of crystalline amino acids were retained. The Cys requirement for zero protein accretion was calculated to be 30.48 mg/d or 17.006 mg/ kgBW(0.75)/d or 75.426 mg/kgCP/d. The TSAA requirement for zero accretion was calculated to be 132.25 mg/b/d, 71.48 mg/kgBW(0.75)/d, and 307.55 mg/kgCP/d. The Tyr requirement for zero protein accretion was calculated to be 65.907 mg/d or 37.233 mg/ kgBW(0.75)/d or 175.566 mg/kgCP/d. The Phe + Tyr requirement for zero protein accretion was calculated to be 352.18 mg/b/d, 190.37 mg/kgBW(0.75)/d, and 749.33 mg/kgCP/d. The non-essential AA requirement for zero protein accretion was calculated to be 3715.194 mg/d or 2003.155 mg/kgBW(0.75)/d or 9452.954 mg/kgCP/d. PMID:26994191

  7. LC/ESI-MS analysis of underivatized amino acids and mass spectrum

    CERN Document Server

    Takano, Yoshinori; Ohkouchi, Naohiko

    2016-01-01

    We report the method of LC/ESI-MS analysis of underivatized amino acids with corresponding mass spectrum and fragmentation patterns. Diagnostic product ions determined by mass spectrometry can support the qualitative identification and quantitative estimation of individual amino acids. Therefore, the optimization of chromatographic separation using the ion-pairing reagent (i.e., Nonafluoropentanoic acid, NFPA) is useful for the evaluation of target amino acid and for further compound-specific nitrogen isotope studies of amino acids.

  8. Prediction of protein motions from amino acid sequence and its application to protein-protein interaction

    Directory of Open Access Journals (Sweden)

    Wako Hiroshi

    2010-07-01

    Full Text Available Abstract Background Structural flexibility is an important characteristic of proteins because it is often associated with their function. The movement of a polypeptide segment in a protein can be broken down into two types of motions: internal and external ones. The former is deformation of the segment itself, but the latter involves only rotational and translational motions as a rigid body. Normal Model Analysis (NMA can derive these two motions, but its application remains limited because it necessitates the gathering of complete structural information. Results In this work, we present a novel method for predicting two kinds of protein motions in ordered structures. The prediction uses only information from the amino acid sequence. We prepared a dataset of the internal and external motions of segments in many proteins by application of NMA. Subsequently, we analyzed the relation between thermal motion assessed from X-ray crystallographic B-factor and internal/external motions calculated by NMA. Results show that attributes of amino acids related to the internal motion have different features from those related to the B-factors, although those related to the external motion are correlated strongly with the B-factors. Next, we developed a method to predict internal and external motions from amino acid sequences based on the Random Forest algorithm. The proposed method uses information associated with adjacent amino acid residues and secondary structures predicted from the amino acid sequence. The proposed method exhibited moderate correlation between predicted internal and external motions with those calculated by NMA. It has the highest prediction accuracy compared to a naïve model and three published predictors. Conclusions Finally, we applied the proposed method predicting the internal motion to a set of 20 proteins that undergo large conformational change upon protein-protein interaction. Results show significant overlaps between the

  9. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting of...

  10. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    OpenAIRE

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general knowledge in the area of amino acid metabolism. The three well-known lactic acid bacteria that were used in these studies...

  11. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells

    International Nuclear Information System (INIS)

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VIIa, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VIIa molecule, namely, 10 γ-carboxylated, N-terminally located glutamic acid residues, 1 β-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VIIa as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VIIa. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VIIa was found to be identical with human factor VIIa. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VIIa. In the recombinant factor VIIa, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VIIa and human plasma factor VIIa. These results show that factor VIIa as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VIIa and that this cell line thus might represent an alternative source for human factor VIIa

  12. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    International Nuclear Information System (INIS)

    Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of

  13. INTERACTION OF AMINO ACID WITH ION EXCHANGE RESIN Ⅲ.FURTHER INVESTIGA TION OF SUPEREQUIVALENT ADSORPTION MECHANISM OF AMINO ACID ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; SHAOTong; 等

    1994-01-01

    The adsorption isotherms of glycine,alanine and oxidized glutathion on strong acid cation and strong base anion exchange resins from aqueous solutions were measured and the superequivalent adsorptions of glycine and alanine observed.The infrared spectra of glycine adsorbed on the cation and the anion exchange resins,001×7 and 201×7,were measured.From these results,it is concluded that the amino acid adsorption on the ion exchange resin proceeds not only through ion exchange and proton transfer mechanisms,but also through aminecarboxylate interaction between the adsorbed amino acid molecules,and the formation of second layer of amino acid molecules is the mechanism of superequivalent adsorption of amino acid,the carboxylate or amine groups of the first layer of amino acid molecules on the ion exchange resin act as the exchange sites for the second layer of amino acid molecules.

  14. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts.

    Science.gov (United States)

    Hamase, Kenji; Konno, Ryuichi; Morikawa, Akiko; Zaitsu, Kiyoshi

    2005-09-01

    The determination of small amounts of D-amino acids in mammalian tissues is still a challenging theme in the separation sciences. In this review, various gas-chromatographic and high-performance liquid chromatographic methods are discussed including highly selective and sensitive column-switching procedures. Based on these methods, the distributions of D-aspartic acid, D-serine, D-alanine, D-leucine and D-proline have been clarified in the mouse brain. As the regulation mechanisms of D-amino acid amounts in mammals, we focused on the D-amino-acid oxidase, which catalyzes the degradation of D-amino acids. Using the mutant mouse strain lacking D-amino-acid oxidase activity, the effects of the enzymatic activity on the amounts and distributions of various D-amino acids have been investigated. PMID:16141519

  15. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    International Nuclear Information System (INIS)

    The beneficial engineered single-amino-acid deletion variants EGFPD190Δ and EGFPA227Δ have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFPD190Δ containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFPA227Δ revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function

  16. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  17. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  18. Modulating the electronic structure of amino acids: interaction of model lewis acids with anthranilic acid

    OpenAIRE

    Tareq Irshaidat

    2014-01-01

    On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation ana...

  19. Informational Way to Protein Alphabet: Entropic Classification of Amino Acids

    CERN Document Server

    Gorban, A N; Popova, T

    2007-01-01

    What are proteins made from, as the working parts of the living cells protein machines? To answer this question, we need a technology to disassemble proteins onto elementary func-tional details and to prepare lumped description of such details. This lumped description might have a multiple material realization (in amino acids). Our hypothesis is that informational approach to this problem is possible. We propose a way of hierarchical classification that makes the primary structure of protein maximally non-random. The first steps of the suggested research program are realized: the method and the analysis of optimal informational protein binary alphabet. The general method is used to answer several specific questions, for example: (i) Is there a syntactic difference between Globular and Membrane proteins? (ii) Are proteins random sequences of amino acids (a long discussion)? For these questions, the answers are as follows: (i) There exists significant syntactic difference between Globular and Membrane proteins,...

  20. Amino Acids Catalyzed Direct Aldol Reactions in Aqueous Micelles

    Institute of Scientific and Technical Information of China (English)

    PENG Yi-Yuan; WANG Qi; DING Qiu-Ping; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ Since the discovery of its roles as a good small-organic-molecule catalyst in intramolecular aldol reactions, pro line has drawn considerable attention in synthetic chemistry due to its similarity to the type-Ⅰ aldolases. Recently,List and others have reported some new direct asymmetric intermolecular reactions catalyzed by proline, including aldol, Mannich, Michael, and other analogous reactions. Except for two recent examples, [1,2] proline catalyzed aldol reactions in aqueous micelles have not been reported, nor have other amino acids as organocatalysts in directly catalyzing aldol reaction been reported. Herein we wish to present our recent results regarding environmentally be nign direct aldol reactions catalyzed by amino acids including proline, histidine and arginine in aqueous media.

  1. Direct amidation of amino acid derivatives catalyzed by arylboronic acids : applications in dipeptide synthesis.

    OpenAIRE

    Liu, S.; Yang, Y.; Liu, X.; Ferdousi, F. K.; Batsanov, A.S.; Whiting, A

    2013-01-01

    The direct amidation of amino acid derivatives catalyzed by arylboronic acids has been examined. The reaction was generally slow relative to simple amine-carboxylic acid combinations though proceeded at 65–68 °C generally avoiding racemization. 3,4,5-Trifluorophenylboronic and o-nitrophenylboronic acids were found to be the best catalysts, though for slower dipeptide formations, high catalyst loadings were required and an interesting synergistic catalytic effect between two arylboronic acids ...

  2. The D-amino acid transport by the invertebrate SLC6 transporters KAAT1 and CAATCH1 from Manduca sexta.

    Science.gov (United States)

    Vollero, Alessandra; Imperiali, Francesca G; Cinquetti, Raffaella; Margheritis, Eleonora; Peres, Antonio; Bossi, Elena

    2016-02-01

    The ability of the SLC6 family members, the insect neutral amino acid cotransporter KAAT1(K(+)-coupled amino acid transporter 1) and its homologous CAATCH1(cation anion activated amino acid transporter/channel), to transport D-amino acids has been investigated through heterologous expression in Xenopus laevis oocytes and electrophysiological techniques. In the presence of D-isomers of leucine, serine, and proline, the msKAAT1 generates inward, transport-associated, currents with variable relative potencies, depending on the driving ion Na(+) or K(+). Higher concentrations of D-leucine (≥1 mmol/L) give rise to an anomalous response that suggests the existence of a second binding site with inhibitory action on the transport process. msCAATCH1 is also able to transport the D-amino acids tested, including D-leucine, whereas L-leucine acts as a blocker. A similar behavior is exhibited by the KAAT1 mutant S308T, confirming the relevance of the residue in this position in L-leucine binding and the different interaction of D-leucine with residues involved in transport mechanism. D-leucine and D-serine on various vertebrate orthologs B(0)AT1 (SLC6A19) elicited only a very small current and singular behavior was not observed, indicating that it is specific of the insect neutral amino acid transporters. These findings highlight the relevance of D-amino acid absorption in the insect nutrition and metabolism and may provide new evidences in the molecular transport mechanism of SLC6 family. PMID:26884475

  3. Addicting diverse bacteria to a noncanonical amino acid.

    Science.gov (United States)

    Tack, Drew S; Ellefson, Jared W; Thyer, Ross; Wang, Bo; Gollihar, Jimmy; Forster, Matthew T; Ellington, Andrew D

    2016-03-01

    Engineered orthogonal translation systems have greatly enabled the expansion of the genetic code using noncanonical amino acids (NCAAs). However, the impact of NCAAs on organismal evolution remains unclear, in part because it is difficult to force the adoption of new genetic codes in organisms. By reengineering TEM-1 β-lactamase to be dependent on a NCAA, we maintained bacterial NCAA dependence for hundreds of generations without escape. PMID:26780407

  4. Quantitative detection of single amino acid polyrnorphisms by targeted proteornics

    Institute of Scientific and Technical Information of China (English)

    Zhi-Duan Su; Jia-Rui Wu; Liang Sun; Dan-Xia Yu; Rong-Xia Li; Huai-Xing Li; Zhi-Jie Yu; Quan-Hu Sheng; Xu Lin; RongZeng

    2011-01-01

    Single-nucleotide polymorphisms (SNPs) are recognized as one kind of major genetic variants in population scale. However, polymorphisms at the proteome level in population scale remain elusive. In the present study, we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms (SAPs) at the proteome level, and developed a pipeline of non-targeted and targeted proteomics to identify and quantify SAP peptides in human plasma. The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring (SRM) approach, and their associations with both obesity and diabetes were further analyzed. This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits. In addition, the SRM approach allows us for the first time to separately measure the absolute concentration of each SAP peptide in the heterozygotes, which also shows different associations with particular traits.%Single-nucleotide polymorphisms (SNPs) are recognized as one kind of major genetic variants in population scale.However,polymorphisms at the proteome level in population scale remain elusive.In the present study,we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms (SAPs) at the proteome level,and developed a pipeline of non-targeted and targeted proteomics to identify and quantify SAP peptides in human plasma.The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring (SRM) approach,and their associations with both obesity and diabetes were further analyzed.This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits.In addition,the SRM approach allows us for the first time to separately measure the absolute

  5. Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency

    OpenAIRE

    Zhu, Xinxia; Krasnow, Stephanie M.; Roth-Carter, Quinn R.; Levasseur, Peter R.; Braun, Theodore P.; Grossberg, Aaron J.; Marks, Daniel L.

    2012-01-01

    Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central m...

  6. Chiroptical Properties of Amino Acids: A Density Functional Theory Study

    OpenAIRE

    Martine Adrian-Scotto; Serge Antonczak; Jan Hendrik Bredehöft; Hoffmann, Søren V.; Meierhenrich, Uwe J.

    2010-01-01

    Amino acids are involved in many scientific theories elucidating possible origins of life on Earth. One of the challenges when discussing the evolutionary origin of biopolymers such as proteins and oligonucleotides in living organisms is the phenomenon that these polymers implement monomers of exclusively one handedness, a feature called biomolecular homochirality. Many attempts have been made to understand this process of racemic symmetry breaking. Assuming an extraterrestrial origin of the ...

  7. Evaluation of Physiological Amino Acids Profiling by Tandem Mass Spectrometry

    OpenAIRE

    Filee, Romain; Schoos, Roland; Boemer, François

    2013-01-01

    Background: Nowadays, the most conventional method to quantify physiological amino acids consists in ion exchange chromatography (IEC) followed by post-column ninhydrin derivatization and UV detection at two wavelengths. Unfortunately, the technique presents some drawbacks such as long run time, large sample volume, and specific costs associated to the maintenance of a dedicated instrument. Therefore, we aimed to switch towards a mass spectrometry approach.

  8. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [13] - leucine and α- [15N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  9. SSE: a nucleotide and amino acid sequence analysis platform

    OpenAIRE

    Simmonds Peter

    2012-01-01

    Abstract Background There is an increasing need to develop bioinformatic tools to organise and analyse the rapidly growing amount of nucleotide and amino acid sequence data in organisms ranging from viruses to eukaryotes. Finding A simple sequence editor (SSE) was developed to create an integrated environment where sequences can be aligned, annotated, classified and directly analysed by a number of built-in bioinformatic programs. SSE incorporates a sequence editor for the creation of sequenc...

  10. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  11. Fluoroalkyl chloroformates in treating amino acids for gas chromatographic analysis

    Czech Academy of Sciences Publication Activity Database

    Hušek, Petr; Šimek, Petr; Hartvich, Petr; Zahradníčková, Helena

    2008-01-01

    Roč. 1186, 1/2 (2008), s. 391-400. ISSN 0021-9673 R&D Projects: GA ČR GA203/04/0192; GA ČR GA303/06/1674 Institutional research plan: CEZ:AV0Z50070508 Keywords : amino acids * derivatization * pentafluoropropyl- and heptafluorobutyl chloroformates Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.756, year: 2008

  12. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual ...... and detailed understanding of EAATs be obtained. Thus we encourage collaboration between organic chemists and molecular pharmacologists, who, together, may pave the way for new EAAT ligands of importance....

  13. The Synthesis of Some Novel N-[a-(Isoflavone-7-O-)Acetyl ] Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of novel N-[(α)-(isoflavone-7-O-)acetyl] amino acid methyl esters were prepared from the efficient and regioselective alkylation of isoflavones with chloroacetyl amino acid derivatives under mild condition.

  14. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    Science.gov (United States)

    Young, Travis [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  15. Amino acid distance matrices and classifications for different protein secondary structure

    CERN Document Server

    Zhang, L; Guan, S; Zheng, W M; Zhang, Li-mei; Liu, Xin; Guan, Shan; Zheng, Wei-Mou

    2003-01-01

    The property of an amino acid is different according to the variation of protein secondary structure. Each central amino acid corresponds to a position specific amino acid distribution around it. Based on the probability distribution for the central amino acid, we get amino acid distance matrices and classifications for helix, sheet, coil and turn. It is observed that evident discrepancy exists in amino acid distance for different protein secondary structure. Some obvious difference between the distance matrices and blocks substitution matrix(BLOSUM) is found which can tell the difference of amino acid property between in certain protein secondary structure and the whole protein database. The classification of amino acid alphabets for specific protein secondary structure provide a clue for observing these difference.

  16. Effect of gamma irradiation on the amino acid contents of seafood cooking drips

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Yeon Joo; Choi, Jong Il; Kim, Yun Joo; Kim, Jae Hun; Kim, Jin Kyu; Byun, Myung Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kwon, Joong Ho [Dept. of Food Science and Technology, Kyungpook National University, Daegu (Korea, Republic of); Ahn, Dong Hyun; Chun, Byung Soo [Faculty of Food Science and Biotechnology, Pukyung Nationol University, Busan (Korea, Republic of)

    2008-11-15

    In this study, the effects of gamma irradiation on the change of structural and free amino acids contents of cooking drips from Hizikia fusiformis (HF) and Enteroctopus dofleini (ED) were investigated. The main structural amino acids were glutamic acid in HF cooking drip, and glutamic acid, glycine, arginine and aspartic acid in ED cooking drip, respectively. The concentrations of structural amino acids in both cooking drip extracts were decreased by the gamma irradiation at the dose of 10 kGy. Especially, the sulfur-containing amino acids were severely degraded by the irradiation. In free amino acid, ED cooking drip extract was contained the larger amount of free amino acid than that of HF cooking drip affecting its rich flavor. The free amino acid concentrations of cooking drips extracts from HF and ED were both increased by irradiation, and it explained the higher protein content by the irradiation.

  17. Synthesis of alkynes and alkynyl iodides bearing a protected amino alcohol moiety as functionalized amino acids precursors

    Institute of Scientific and Technical Information of China (English)

    AYED; Charfedinne; PICARD; Julien; LUBIN-GERMAIN; Nadège; UZIEL; Jacques; AUGE; Jacques

    2010-01-01

    Amino acid precursors in protected amino alcohol form are important synthons that can be used as building-blocks for the hemisynthesis of non-natural amino acids.Serine can be used as a common starting material for the synthesis of such compounds differently protected.Particularly,protected amino alcohols bearing an ethynyl and/or an iodoethynyl group can be used in cross-couplings,in 1,3-dipolar cycloadditions and/or in Nozaki-Hiyama-Kishi type reactions.We thus demonstrated that the efficiently protected amino alcohols derived from serine can be coupled to a sugar derivative by an indium mediated alkynylation reaction.The conditions of this coupling are compatible with such functionalized derivatives and allow envisaging an access to C-glycosylated amino acids.

  18. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    Science.gov (United States)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  19. Phase Chemistry of the Complexes of RE Amino Acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-three phase diagrams of ternary system concerning rare earth salts, α-amino acids and water, which were constructed by phase equilibrium methods, were expounded. The influences of the factors such as cations, anions, the structure of amino acids, temperature on the phase diagrams were discussed. Under the guidance of phase equilibrium results, over 150 new solid complexes were prepared. IR, reflecting, UV, FS, and Raman spectra for these complexes were investigated and the regularity of “tripartite effect”, “tetrad effect”, “Nephelanxetic effect”, “Oddo-Harkins” was observed. Thermal decomposition processes of the complexes were confirmed. Based on the comparison with the known crystal structures of rare earth-amino acid-complexes, an estimation method for predicting the crystal structure data of series complexes was founded. The constant volume combustion energies of the complexes were determined by RBC-1 type rotating bomb calorimeter. The standard enthalpies of combustion and standard enthalpies of formation were calculated for these complexes.

  20. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  1. Metabolic regulation of amino acid uptake in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  2. On the Maillard reaction of meteoritic amino acids

    Science.gov (United States)

    Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.

    2006-08-01

    We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.

  3. Intravenous amino acids in third trimester isolated oligohydramnios

    International Nuclear Information System (INIS)

    To determine the efficacy of maternal administration of intravenous amino acid solution in improving amniotic fluid volume in cases of isolated oligohydramnios and to observe its impact on mode of delivery and neonatal outcome. Study Design: A prospective case series. Methodology: Forty two women with singleton pregnancy, well established gestational age and clinically and sonographically proven isolated oligohydramnios in the third trimester before 36 weeks were administered amino acid solution intravenously after excluding cases of premature rupture of membranes, congenital anomaly of fetus, maternal pulmonary, cardiovascular and hypertensive disorders, and severe placental insufficiency (raised S/D ratio). Pre-infusion and postinfusion Amniotic fluid Index (AFI) was measured and repeated weekly. Women were followed till delivery. Results: According to repeated measurement analysis of variance, mean pre-infusion AFI was 4.7 cm, mean one week postinfusion AFI was 5.8 cm, mean two week post-infusion AFI was 6.2 cm and mean three week AFI was 6.3 cm (p-value 0.029, significant). Cesarean section became a predominant mode of delivery in this group without a firm evidence of associated fetal compromise. Conclusion: Amino acid infusion is an effective therapy for raising AFI in isolated oligohydramnios in this case series. Liberal use of cesarean section in this selected group should be carefully re-evaluated. (author)

  4. Towards a Mathematical Foundation of Immunology and Amino Acid Chains

    CERN Document Server

    Shen, Wen-Jun; Xiao, Quan-Wu; Guo, Xin; Smale, Stephen

    2012-01-01

    We attempt to set a mathematical foundation of immunology and amino acid chains. To measure the similarities of these chains, a kernel on strings is defined using only the sequence of the chains and a good amino acid substitution matrix (e.g. BLOSUM62). The kernel is used in learning machines to predict binding affinities of peptides to human leukocyte antigens DR (HLA-DR) molecules. On both fixed allele (Nielsen and Lund 2009) and pan-allele (Nielsen et.al. 2010) benchmark databases, our algorithm achieves the state-of-the-art performance. The kernel is also used to define a distance on an HLA-DR allele set based on which a clustering analysis precisely recovers the serotype classifications assigned by WHO (Nielsen and Lund 2009, and Marsh et.al. 2010). These results suggest that our kernel relates well the chain structure of both peptides and HLA-DR molecules to their biological functions, and that it offers a simple, powerful and promising methodology to immunology and amino acid chain studies.

  5. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    Science.gov (United States)

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  6. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    Science.gov (United States)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  7. A single amino acid gates the KcsA channel

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Minako, E-mail: hirano37@gpi.ac.jp [Bio Photonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu Nishi-ku Hamamatsu, Shizuoka 431-1202 (Japan); Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Okuno, Daichi, E-mail: dokuno@riken.jp [Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Onishi, Yukiko, E-mail: yonishi@riken.jp [Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Ide, Toru, E-mail: ide@okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku Okayama-shi, Okayama 700-8530 (Japan)

    2014-08-08

    Highlights: • pH-dependent gating of the KcsA channel is regulated by the CPD. • E146 is the most essential amino acid for pH sensing by the KcsA. • The protonated-mimicking mutant, E146Q, is constitutively open independent of pH. • Minimal rearrangement of the CPD is sufficient for opening of the KcsA. - Abstract: The KcsA channel is a proton-activated potassium channel. We have previously shown that the cytoplasmic domain (CPD) acts as a pH-sensor, and the charged states of certain negatively charged amino acids in the CPD play an important role in regulating the pH-dependent gating. Here, we demonstrate the KcsA channel is constitutively open independent of pH upon mutating E146 to a neutrally charged amino acid. In addition, we found that rearrangement of the CPD following this mutation was not large. Our results indicate that minimal rearrangement of the CPD, particularly around E146, is sufficient for opening of the KcsA channel.

  8. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.; Peters, M.; Lottspeich, F.; Schaefer, W.; Baumeister, W.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%) of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.

  9. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    International Nuclear Information System (INIS)

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate [HPI])-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%) of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids

  10. A Facile Method for Asymmetric Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    LI,Shuo; LI,Lei; ZHANG,Zhi-Hui; XU,Peng-Fei

    2004-01-01

    @@ β-Hydroxy-a-amino acids are an important class of amino acids due to their inherent biological investigations[1] and as structural components of more complex biomolecules.[2] β-Hydroxy-a-amino acids have been used as intermediates in the asymmetric synthesis of other compounds.[3] An efficient and convenient concise method for the preparation of optically pure enantiomers of β-hydroxy-α-amino acids would be of general interest.

  11. Content of amino acids and minerals in selected sorts of legumes

    OpenAIRE

    Stanislav Kráčmar; Pavel Švec; Petra Vojtíšková

    2013-01-01

    The aim of this study was to determine amino acid composition and mineral content in selected legume samples. All analyses were carried out at the laboratory temperature of 21±2 °C in triplicate. Amino acid composition was determined using the automatic amino acid analyzer AAA 400 with post-column derivatization. To assess the nutritional value of protein, index of essential amino acids (EAAI) was calculated. Minerals were determined using the atomic absorption spectrometer AA 30. All resu...

  12. Influence of irradiation on protein and amino acids in laboratory rodent diet

    International Nuclear Information System (INIS)

    The effect of irradiation treatment on the protein quality and constituent amino acids of laboratory rodent diets is reviewed and compared with other methods of sterilization - autoclaving and ethylene oxide fumigation. Gamma irradiation has been shown to have minimal influence on total protein, protein quality and total and available amino acid levels. Autoclaving reduces amino acid availability and consequently protein quality. Limited evidence shows reduction of certain available amino acids following ethylene oxide fumigation. (author)

  13. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  14. Uptake of 3-[125I]iodo-α-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    International Nuclear Information System (INIS)

    Introduction: We examined 3-[123I]iodo-α-methyl-L-tyrosine ([123I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [125I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [125I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B0AT was not detected. [125I]IMT uptake in DLD-1 cells involved Na+-independent system L primarily and Na+-dependent system(s). Uptake of [125I]IMT in Na+-free buffer followed Michaelis-Menten kinetics, with a Km of 78 μM and Vmax of 333 pmol/106 cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [125I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-β-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [125I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [125I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [125I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid residue. Beta-hydroxylation may

  15. Uptake of 3-[{sup 125}I]iodo-{alpha}-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    Energy Technology Data Exchange (ETDEWEB)

    Shikano, Naoto [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan)], E-mail: sikano@ipu.ac.jp; Ogura, Masato [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Okudaira, Hiroyuki [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakajima, Syuichi; Kotani, Takashi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kobayashi, Masato [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan); Nakazawa, Shinya [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Baba, Takeshi; Yamaguchi, Naoto [Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kubota, Nobuo [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Iwamura, Yukio [Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394 (Japan); Kawai, Keiichi [School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942 (Japan)

    2010-02-15

    involved in LAT1 depends on the structure of the group corresponding to the amino acid residue. Beta-hydroxylation may confer reduction of transport affinity of tyrosine analogues via LAT1.

  16. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite

    Science.gov (United States)

    Epstein, S.; Krishnamurthy, R. V.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1987-01-01

    The isotopic composition of hydrogen, nitrogen, and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite has been determined. The unusually high D/H and N-15/N-14 ratios in the amino acid fraction are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound and provide the first evidence suggesting a direct relationship between the massive organosynthesis occurring in interstellar clouds and the presence of prebiotic compounds in primitive planetary bodies.

  17. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.

    Directory of Open Access Journals (Sweden)

    Laura Bianchi

    Full Text Available BACKGROUND: Sodium-glucose cotransporter proteins (SGLT belong to the SLC5A family, characterized by the cotransport of Na(+ with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT proteins was to transport sugar with Na(+. However, human SGLT3 (hSGLT3 does not transport sugar but causes depolarization of the plasma membrane when expressed in Xenopus oocytes. For this reason SGLT3 was suggested to be a sugar sensor rather than a transporter. Despite 70% amino acid identity between hSGLT3 and hSGLT1, their sugar transport, apparent sugar affinities, and sugar specificity differ greatly. Residue 457 is important for the function of SGLT1 and mutation at this position in hSGLT1 causes glucose-galactose malabsorption. Moreover, the crystal structure of vibrio SGLT reveals that the residue corresponding to 457 interacts directly with the sugar molecule. We thus wondered if this residue could account for some of the functional differences between SGLT1 and SGLT3. METHODOLOGY/PRINCIPAL FINDINGS: We mutated the glutamate at position 457 in hSGLT3 to glutamine, the amino acid present in all SGLT1 proteins, and characterized the mutant. Surprisingly, we found that E457Q-hSGLT3 transported sugar, had the same stoichiometry as SGLT1, and that the sugar specificity and apparent affinities for most sugars were similar to hSGLT1. We also show that SGLT3 functions as a sugar sensor in a living organism. We expressed hSGLT3 and E457Q-hSGLT3 in C. elegans sensory neurons and found that animals sensed glucose in an hSGLT3-dependent manner. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrate that hSGLT3 functions as a sugar sensor in vivo and that mutating a single amino acid converts this sugar sensor into a sugar transporter similar to SGLT1.

  18. Aromatic Amino Acid Mutagenesis at the Substrate Binding Pocket of Yarrowia lipolytica Lipase Lip2 Affects Its Activity and Thermostability

    OpenAIRE

    Guilong Wang; Zimin Liu; Li Xu; Yunjun Yan

    2014-01-01

    The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F...

  19. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  20. N-terminal amino acids of bovine alpha interferons are relevant for the neutralization of their antiviral activity

    Directory of Open Access Journals (Sweden)

    Barreto Filho J.B.

    2001-01-01

    Full Text Available The structure-function relationship of interferons (IFNs has been studied by epitope mapping. Epitopes of bovine IFNs, however, are practically unknown, despite their importance in virus infections and in the maternal recognition of pregnancy. It has been shown that recombinant bovine (rBoIFN-alphaC and rBoIFN-alpha1 differ only in 12 amino acids and that the F12 monoclonal antibody (mAb binds to a linear sequence of residues 10 to 34. We show here that the antiviral activities of these two IFNs were neutralized by the F12 mAb to different extents using two tests. In residual activity tests the antiviral activity dropped by more than 99% with rBoIFN-alphaC and by 84% with rBoIFN-alpha1. In checkerboard antibody titrations, the F12 mAb titer was 12,000 with rBoIFN-alphaC and only 600 with rBoIFN-alpha1. Since these IFNs differ in their amino acid sequence at positions 11, 16 and 19 of the amino terminus, only these amino acids could account for the different neutralization titers, and they should participate in antibody binding. According to the three-dimensional structure described for human and murine IFNs, these amino acids are located in the alpha helix A; amino acids 16 and 19 of the bovine IFNs would be expected to be exposed and could bind to the antibody directly. The amino acid at position 11 forms a hydrogen bond in human IFNs-alpha and it is possible that, in bovine IFNs-alpha, the F12 mAb, binding near position 11, would disturb this hydrogen bond, resulting in the difference in the extent of neutralization observed.

  1. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Alyssa K.; Pudritz, Ralph E., E-mail: cobbak@mcmaster.ca, E-mail: pudritz@physics.mcmaster.ca [Origins Institute, McMaster University, ABB 241, 1280 Main Street, Hamilton, ON L8S 4M1 (Canada)

    2014-03-10

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  2. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  3. Transition Metal–α-Amino Acid Complexes with Antibiotic Activity against Mycobacterium spp.

    OpenAIRE

    Karpin, George W.; Merola, Joseph S.; Joseph O. Falkinham

    2013-01-01

    Synthetic iridium-, rhodium-, and ruthenium-amino acid complexes with hydrophobic l-amino acids have antibiotic activity against Mycobacterium spp., including Mycobacterium bovis BCG and the rapidly growing species Mycobacterium abscessus and Mycobacterium chelonae. Concentrations of transition metal-amino acid complexes demonstrating hemolysis or cytotoxicity were 10- to 25-fold higher than were the MICs.

  4. Correlating Mineralogy and Amino Acid Contents of Milligram-Scale Murchison Carbonaceous Chondrite Samples

    Science.gov (United States)

    Burton, Aaron, S.; Berger, Eve L.; Locke, Darren R.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2015-01-01

    Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here.

  5. Identification of amino acids in Securigera securidaca, a popular medicinal herb in Iranian folk medicine

    Directory of Open Access Journals (Sweden)

    S.E. Sadat-Ebrahimi

    2014-01-01

    Full Text Available Securigera securidaca (L. Degen & Dorfl grows in different parts of Iran. The seeds of the species are used in Iranian folk medicine as an anti-diabetic agent. Many studies have established hypoglycemic effects of amino acids and in the present investigation, amino acids of Securigera securidaca seeds have been evaluated. The ground seeds were extracted using petroleum ether, hot ethanol and ethanol 50%, respectively. ethanol 50% extract was chromatographed over cation exchanging resin and the resulting amino acid fraction was subjected to HPLC after OPA derivatization and the amino acids were identified by comparing to standards. The results evidenced the presence of 19 amino acids in the plant extract including alanine, arginine, asparagine, aspartic acid, citrulline, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tyrosine and valine. Considering the role of some amino acids in diabetes the above amino acids could be noted as hypoglycemic agents of the plant seeds but further studies are necessary.

  6. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    Science.gov (United States)

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids. PMID:27033536

  7. Complete amino acid sequence of the myoglobin from the Pacific spotted dolphin, Stenella attenuata graffmani.

    Science.gov (United States)

    Jones, B N; Wang, C C; Dwulet, F E; Lehman, L D; Meuth, J L; Bogardt, R A; Gurd, F R

    1979-04-25

    The complete amino acid sequence of the major component myoglobin from the Pacific spotted dolphin, Stenella attenuata graffmani, was determined by the automated Edman degradation of several large peptides obtained by specific cleavage of the protein. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. By subjecting four of these peptides and the apomyoglobin to automated Edman degradation, over 80% of the primary structure of the protein was obtained. The remainder of the covalent structure was determined by the sequence analysis of peptides that resulted from further digestion of the central cyanogen bromide fragment. This fragment was cleaved at its glutamyl residues with staphylococcal protease and its lysyl residues with trypsin. The action of trypsin was restricted to the lysyl residues by chemical modification of the single arginyl residue of the fragment with 1,2-cyclohexanedione. The primary structure of this myoglobin proved to be identical with that from the Atlantic bottlenosed dolphin and Pacific common dolphin but differs from the myoglobins of the killer whale and pilot whale at two positions. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea. PMID:454657

  8. Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles.

    Science.gov (United States)

    You, Chang-Cheng; Agasti, Sarit S; Rotello, Vincent M

    2008-01-01

    Amino acid and dipeptide-functionalized gold nanoparticles (NPs) possessing L/D-leucine and/or L/D-phenylalanine residues have been constructed in order to target the surfaces of alpha-chymotrypsin (ChT) and cytochrome c (CytC). Isothermal titration calorimetry (ITC) was conducted to evaluate the binding thermodynamics and selectivity of these NP-protein interactions. The chirality of the NP end-groups substantially affects the resultant complex stability, with up to 20-fold differences seen between particles of identical hydrophobicity, demonstrating that structural information from the ligands can be used to control protein recognition. PMID:17972262

  9. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Asgeirsson, Bjarni; Nielsen, Berit Noesgaard; Højrup, Peter

    2003-01-01

    Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid...... sequencing by Edman degradation. The primary structure exhibits greatest similarity to human tissue non-specific AP (80%), and approximately 30% similarity to AP from Escherichia coli. The key residues required for catalysis are conserved in the cod AP, except for the third metal binding site, where cod AP...

  10. Amino acid sequences used for clusterintg (Multi FASTA format) - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Gclust Server Amino acid sequences used for clusterintg (Multi FASTA format) Data detail Data name Amino acid sequences use... Site Policy | Contact Us Amino acid sequences used for clusterintg (Multi FASTA format) - Gclust Server | LSDB Archive ...

  11. Uric Acid Inhibits Placental System A Amino Acid Uptake☆

    OpenAIRE

    Bainbridge, S.A.; von Versen-Höynck, F.; Roberts, J M

    2008-01-01

    Hyperuricemia, a common clinical characteristic of preeclamptic pregnancies, has historically been considered a marker of reduced renal function in preeclamptic women. More recently it has been suggested that uric acid may directly contribute to pathological cell signaling events involved in disease progression as well as maternal and fetal pregnancy outcomes including fetal growth restriction. We hypothesize that the increased frequency of restricted fetal growth seen in relation to increasi...

  12. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  13. ANTIOXIDANT CAPACITY AND AMINO ACID PROFILES OF EGG TOFU

    Directory of Open Access Journals (Sweden)

    Maizura Murad

    2013-01-01

    Full Text Available Tofu contains high quality protein source and antioxidant which could reduce risk of cancer. This research aims to determine the effect of soymilk and egg ratios on the antioxidant capacity, daidzein and genistein content and amino acid profiles of egg tofu. Egg tofu was prepared using soymilk and fresh egg in ratios of 1:1, 2:1, 3:1 and 4:1. Glucono-Delta-Lactone (GDL was added in the egg tofu to act as a coagulating agent. Increased of soymilk at all ratios had significantly (p<0.05 increased in Ferric-Reducing Antioxidant Power (FRAP, daidzein and genistein content of egg tofu. Conversely, decreased in soymilk ratio had significantly (p<0.05 increased the radical scavenging activities of the 2,2-Azino-Bis 3-ethylbenzothiazoline-6-Sulfonic acid (ABTS and 2,2-Diphenyl-2-Picrylhydrazyl (DPPH in egg tofu. Increased of soymilk ratio up to 3:1 caused decreased in amino acid methionine (met and cystein (cys significantly (p<0.05. A significant (p<0.01 and a positive correlation was observed between Total Phenolic Content (TPC and FRAP (r = 0.93. However, there was a negative (p<0.01 correlation between TPC and DPPH (r = -0.83. The antioxidant capacity of egg tofu in DPPH assay showed a positive and significant (p<0.01 correlation with cysteine, methionine and tryptophan with r value of 0.92, 0.93 and 0.96 respectively. Higher content of egg in egg tofu had contributed to the increased of antioxidant capacity as indicated in DPPH assay and ABTS assay as well as amino acid methionine and cysteine.

  14. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg[2+] or NO3[−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li+, Na+, K+, NH4+, Cl−, Br−, I−, NO3−, and SO42− at salt molalities of 0.5, 1.0, and 3.0 mol · kg−1, respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  15. [Effect of proteolysis inhibitors on the incorporation of labelled amino acids into proteins].

    Science.gov (United States)

    Konikova, A S; Korotkina, R N

    1975-01-01

    Role of peptide bond breaks in the incorporation of amino acids into proteins in a "protein--amino acid" system is investigated. For this purpose the incorporation of labelled amino acids into trypsin under the inhibition of its autolysis by a specific inhibitor from soybean and epsilon-amino-caproic acid is studied. The trypsin inhibitor from soybean is found to suppress considerably the incorporation of 14C-glycine, 14C-lysine and 14C-methionine into crystal trypsin and not to affect the incorporation of labelled amino acids into chomotrypsin, papain and carboxypeptidase. Epsilon-Aminocaproic acid inhibited 14C-glycine incorporation into crystal trypsin by 40% and did not change its incorporation level into serum albumin. The dependency of amino acid incorporation level into trypsin on the activity of autolysis in the "protein--amino acid" system is demonstrated. PMID:1212456

  16. Analysis of free amino acids in green coffee beans. II. Changes of the amino acid content in arabica coffees in connection with post-harvest model treatment.

    Science.gov (United States)

    Arnold, U; Ludwig, E

    1996-10-01

    To investigate amino acid changes in green coffee beans in the post-harvest period, amino acid concentrations were determined in green beans and after modelled drying, fermentation and storage. After the drying at alternating temperatures up to maximally 40 degrees C, considerable changes in the concentrations of individual amino acids were identified. At the beginning of the storage period, significant changes in concentration were found to a minor extent. Under the condition of drying, it was mainly the concentration of glutamic acid that changed considerably. There was an increase in all the samples by 500 mg/kg dry matter on average, which corresponds to an increase of about 50% of the original value. In contrast, the concentration of aspartic acid in most of the samples decreased clearly due to drying. For the predominant part of the coffee samples, there was a significant increase in the hydrophobic amino acids Val, Phe, Ile and Leu. Changes of the quantities of other amino acids were non-uniform and only insignificant. Constant drying at 80 degrees C for most of the amino acids brought about only minor concentration changes compared to those values obtained at 40 degrees C. Modelled fermentation had no significant effect on the concentrations of the individual amino acids. After a 4-week storage of dried beans, amino acid concentrations did not change further. It is very possible that different post-harvest treatment parameters may influence the amount of aroma precursor compounds in the coffee beans. PMID:9123976

  17. Primordial Synthesis of Amines and Amino Acids in a 1958 Miller H2S-Rich Spark Discharge Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordia! environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

  18. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    Science.gov (United States)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  19. Nitrosative stress causes amino acid auxotrophy in hmp mutant Salmonella Typhimurium.

    Science.gov (United States)

    Park, Yoon Mee; Park, Hee Jeong; Joung, Young Hee; Bang, Iel Soo

    2011-10-01

    Cytotoxic nitic oxide (NO) damages various bacterial macromolecules, resulting in abnormal metabolism by mechanisms largely unknown. We show that NO can cause amino acid auxotrophy in Salmonella Typhimurium lacking major NO-metabolizing enzyme, flavohemoglobin Hmp. In NO-producing cultures, supplementation with amino acid pool restores growth of Hmp-deficient Salmonella to normal growth phases, whereas excluding Cys or BCAA Leu, Ile, or Val from amino acid pool reduces growth recovery. Data suggest that, without detoxification, NO might inactivate key enzymes in the biosynthesis pathway of amino acids essential for Salmonella replication in amino acid-limiting host environments. PMID:21752086

  20. Boronic, diboronic, and α-amino-boronic acids derived from 1-ethynyl-3, 4-dimethoxybenzene

    International Nuclear Information System (INIS)

    This work was undertaken with the intention of synthesizing (α-amino-β-(3, 4-dihydroxyphenyl) ethylboronic acid. Unfortunately, the goal could not be attained since the isolation of the target compound could not be achieved though some information suggested its existence in the final product. The methods of synthesis used in the second half of the attempted preparation are described here (compounds in the first half have been published elsewhere). In this procedure, (β-(3, 4-dimethoxyphenyl)) ethenylboronic acid is esterified and azeotropic distillation is conducted to provide diethyl (β-(3, 4-dimethoxyphenyl)) ethenylboronate. This compound is dissolved in diglyme and diborane gas is introduced. The hydroboration product is then subjected to amination with hydroxylamine-0-sulfonic acid. (β-(3, 4-dimethoxyphenyl)) ethyl-α, α-diboronic acid is obtained from the residue of acetone extraction. The acetone extract is concentrated to a solid caramel, from which (α-borono-β-(3, 4-dimethoxyphenyl)) ethylammonium tetraphenylborate is formed. Conversion from the tetraphenylborate salt to (α-amino-β-(3, 4-dimethoxyphenyl)) ethylboronic acid hydrochloride is attempted by the double decomposition RH BPh4 + CsCl -- RH Cl + CsBPh4. The product is subjected to demethylation and treated with sodium tetraphenylborate to precipitate (α-borono-β-(3, 4-dihydroxyphenyl)) ethylammonium tetraphenylborate. Conversion of this to the target compound is tried by double decomposition. (Nogami, K.)