WorldWideScience

Sample records for amino acid metabolism

  1. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  2. Disorders of Amino Acid Metabolism

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  3. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  4. Amino acids: metabolism, functions, and nutrition.

    Science.gov (United States)

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  5. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  6. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    NARCIS (Netherlands)

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  7. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  8. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Science.gov (United States)

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  9. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  10. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  11. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  12. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  13. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  14. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  15. EFFECTS OF HYDRAZINES ON THE METABOLISM OF CERTAIN AMINES AND AMINO ACIDS.

    Science.gov (United States)

    AMINES, * AMINO ACIDS , *DIAMINE OXIDASE, TOXICITY, METABOLISM, METABOLISM, DIMETHYLHYDRAZINES, GLUTAMIC ACID, ENZYMES, PHARMACOLOGY, TRACER STUDIES, LABELED SUBSTANCES, RESPIRATION, GASTROINTESTINAL SYSTEM, RATS.

  16. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  17. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  18. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Science.gov (United States)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  19. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  20. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    Science.gov (United States)

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.

  1. AMINO ACID METABOLISM IN COWS DURING THE TRANSITION PERIOD IN BALANCING DIET ON THE EXCHANGE PROTEIN AND DIGESTIBLE AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Ryadchikov V. G.

    2014-02-01

    Full Text Available Application of a factorial method for determining the needs in metabolic protein and essential amino acids, helps to deepen knowledge on physiology of protein and amino acid supply and allow to improve the standards for dairy cows during the transition period; in insufficient of metabolic protein and essential amino acids increased coefficients of their transformation into net protein and absorptive amino acids as a result of mobilization of body of cows; with an optimal protein nutrition their transformation in net milk protein, lysine and methionine accordingly amounted to 0.67, 0,83 and 0,82. The most significant changes in the concentration of methionine, proline, glutamate, glutamine, glycine were observed in cows before calving and immediately after birth, stabilization of their level starts with a 24 lactation day, that is connected with the peculiarities of the feeding behavior of the cows and the gradual intensification of the processes of metabolism and milk production. To control the status of protein metabolism we have offered benchmarks compositions of free amino acids in cows’ blood plasma phases: 21-0 days before calving, 0-21 and 22-120 days after calving

  2. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    Science.gov (United States)

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  3. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  4. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  5. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  6. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  7. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.

    Science.gov (United States)

    Bongaerts, J; Krämer, M; Müller, U; Raeven, L; Wubbolts, M

    2001-10-01

    Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.

  8. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  9. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  10. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  11. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Bonarius, H.P.J.; Tramper, J.; Bol, J.

    1998-01-01

    Metabolic flows, especially those of amino acids, were determined and analyzed at different stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense. The method is mainly based on mass balances and measurements of amino acids and other metabolites. T

  12. Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein.

    Science.gov (United States)

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Martín, Héctor García; Gin, Jennifer; Benke, Peter I; Keasling, Jay D

    2010-01-01

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully (13)C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  13. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  14. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  15. Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii.

    Science.gov (United States)

    Schunder, Eva; Gillmaier, Nadine; Kutzner, Erika; Eisenreich, Wolfgang; Herrmann, Vroni; Lautner, Monika; Heuner, Klaus

    2014-07-25

    Legionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions. For this purpose, A. castellanii was 13C-labeled by incubation in buffer containing [U-(13)C(6)]glucose. Subsequently, these 13C-prelabeled amoebae were infected with L. pneumophila wild type or some mutants defective in putative key enzymes or regulators of carbon metabolism. 13C-Isotopologue compositions of amino acids from bacterial and amoebal proteins were then determined by mass spectrometry. In a comparative approach, the profiles documented the efficient uptake of Acanthamoeba amino acids into the LCV and further into L. pneumophila where they served as precursors for bacterial protein biosynthesis. More specifically, A. castellanii synthesized from exogenous [U-13C6]glucose unique isotopologue mixtures of several amino acids including Phe and Tyr, which were also observed in the same amino acids from LCV-grown L. pneumophila. Minor but significant differences were only detected in the isotopologue profiles of Ala, Asp, and Glu from the amoebal or bacterial protein fractions, respectively, indicating partial de novo synthesis of these amino acids by L. pneumophila. The similar isotopologue patterns in amino acids from L. pneumophila wild type and the mutants under study reflected the robustness of amino acid usage in the LCV of A. castellannii.

  16. Metabolic Effects of Dietary Proteins, Amino Acids and The Other Amine Consisting Compounds on Cardiovascular System.

    Directory of Open Access Journals (Sweden)

    Elif Uğur

    2017-02-01

    Full Text Available During the prevention and treatment of cardiovascular diseases, first cause of deaths in the world, diet has a vital role. While nutrition programs for the cardiovascular health generally focus on lipids and carbohydrates, effects of proteins are not well concerned. Thus this review is written in order to examine effect of proteins, amino acids, and the other amine consisting compounds on cardiovascular system. Because of that animal or plant derived proteins have different protein composition in different foods such as dairy products, egg, meat, chicken, fish, pulse and grains, their effects on blood pressure and regulation of lipid profile are unlike. In parallel amino acids made up proteins have different effect on cardiovascular system. From this point, sulfur containing amino acids, branched chain amino acids, aromatic amino acids, arginine, ornithine, citrulline, glycine, and glutamine may affect cardiovascular system in different metabolic pathways. In this context, one carbon metabolism, synthesis of hormone, stimulation of signaling pathways and effects of intermediate and final products that formed as a result of amino acids metabolism is determined. Despite the protein and amino acids, some other amine consisting compounds in diet include trimethylamine N-oxide, heterocyclic aromatic amines, polycyclic aromatic hydrocarbons and products of Maillard reaction. These amine consisting compounds generally increase the risk for cardiovascular diseases by stimulating oxidative stress, inflammation, and formation of atherosclerotic plaque.

  17. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    according to the ideal protein profile that is compatible with the animal AA demand for normal body function. During the past decades, it has been tried to understand and characterize branched chain amino acids (BCAA) requirements, biological importance, and mode of actions. This is interesting for two...... reasons: first, BCAA share the same enzymes in their catabolic pathways, and there is an interaction among them in a way that excess Leu for example increases the catabolism of them all and changes the requirements. Second, BCAA are not only building blocks of protein biosynthesis, but are also involved...... in important regulatory mechanisms and biological functions, e.g. muscle protein synthesis, chronic diseases, neurotransmitter biosynthesis, and so on. Identifying biomarkers of the BCAA status may help to understand their biological effects. The objectives of the current study were first to estimate Ile, Val...

  18. Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions.

    Science.gov (United States)

    Dunn, Michael Frederick

    2015-01-01

    Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.

  19. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  20. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  1. Gluconeogenesis and amino acids metabolism in ovarian clear cell carcinoma

    OpenAIRE

    2013-01-01

    Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2013 Tumor cells may exhibit different metabolic profiles compared to normal tissues from which they are derived. Those observations gave rise to the new concept that tumorigenesis requires metabolic alterations to sustain cell proliferation. Several studies reveal that increased cell proliferation is accompanied by increased glucose consumption. In OCCC, a typical morphol...

  2. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Institute of Scientific and Technical Information of China (English)

    Purnima Guda; Chittibabu Guda; Shankar Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  3. Change of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Hua-Ling Ruan; Li Zhao; Kun-Quan Guo; Kun Yang; Lin-Xiu Ye; Xue Sun

    2016-01-01

    Objective:To study the change situation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism.Methods:Eighty-one patients with hyperthyroidism who were treated in our hospital from May 2013 to October 2014 were selected as the observation group, while 81 healthy persons with health examination at the same period were the control group. Then, the serum oxygen free radical indexes and free amino acids of the two groups were respectively detected and compared, and the detection results of patients in the observation group with different etiologic types and basal metabolic rate were also compared. Results:The serum oxygen free radical related indexes of the observation group were all higher than those of the control group; the serum antioxidant related indexes were all lower than those of the control group; and the serum free amino acids levels were all obviously lower than those of the control group. Besides, the detection results of patients with severe hyperthyroidism in the observation group were worse than those of patients with mild and moderate disease, while the detection results of the observation group with different types of hyperthyroidism had no significant differences.Conclusions:The fluctuation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism are obvious, and the detection results of patients with different basal metabolic rates are also quite obvious.

  4. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen

    2015-01-01

    The use of aquafeeds formulated with plant protein sources supplemented with crystalline amino acids (CAAs) is believed to influence amino acid (AA) uptake patterns and AA metabolic fate. Oxygen consumption and ammonia excretion rates were measured in rainbow trout (468.5 +/- A 86.5 g) force fed 0...... to be caused by an unbalanced dietary AA profile and CAA supplementation, rather than inclusion of plant protein concentrate....

  5. Dietary protein, physiological condition and metabolic amino acid utilisation.

    NARCIS (Netherlands)

    Weijs, P.J.M.

    1993-01-01

    This thesis describes the investigated effects of the level of dietary protein intake and the physiological condition of the animal on the percental oxidation of leucine. This measure reflects which part of the free leucine pool was used for protein and energy metabolism. The employed technique cons

  6. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  7. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias

    2015-01-01

    conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon......, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism......The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from...

  8. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  9. Serum neutral amino acid concentrations in cirrhotic patients with impaired carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-08-01

    Full Text Available Serum neutral amino acid levels in cirrhotic patients with abnormal oral glucose tolerance test patterns were not different from those of subjects without impaired carbohydrate metabolism. However, the characteristic features of serum aminograms in the patients, that is, increased levels of tyrosine, decreased levels of valine and leucine and the diminished ratio of branched chain amino acids to phenylalanine and tyrosine levels, were less pronounced in those treated with insulin. This finding is clinically important for evaluating the serum aminogram of cirrhotic patients under insulin therapy.

  10. Metabolic pathways and fermentative production of L-aspartate family amino acids.

    Science.gov (United States)

    Park, Jin Hwan; Lee, Sang Yup

    2010-06-01

    The L-aspartate family amino acids (AFAAs), L-threonine, L-lysine, L-methionine and L-isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L-threonine, L-lysine and L-methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.

  11. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon and nitrogen limited chemostat...... cultures. We first reconstructed a genome-scale metabolic model and used this for integrative analysis of multilevel omics data. Metabolite profiling and lipidomics was used to quantify the cellular physiology, while regulatory changes were measured using RNAseq. Analysis of the data showed that lipid...... accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  12. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar

    Science.gov (United States)

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-01-01

    The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic varieties. However, the molecular mechanisms behind the increased levels of free amino acids in this mutant are mostly unknown, as are the possible effects of this mutation on the overall metabolome and biosynthetic pathways in tea leaves. To gain further insight into the effects of chlorosis on the global metabolome and biosynthetic pathways in this mutant, Huangjinya plants were grown under normal and reduced sunlight, resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed using transcriptomics as well as targeted and untargeted metabolomics. Approximately 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total detected) were significantly differentially regulated, thus indicating the occurrence of marked effects of light on the biosynthetic pathways in this mutant plant. Considering primary metabolism, including that of sugars, amino acids, and organic acids, significant changes were observed in the expression of genes involved in both nitrogen (N) and carbon metabolism. The suite of changes not only generated an increase in amino acids, including glutamic acid, glutamine, and theanine, but it also elevated the levels of free ammonium, citrate, and α-ketoglutarate, and lowered the levels of mono- and di-saccharides and of caffeine as compared with the non-chlorotic leaves. Taken together, our results suggest that the increased levels of amino acids in the chlorotic vs. non-chlorotic leaves are likely due to increased protein catabolism and/or decreased glycolysis and diminished biosynthesis of nitrogen-containing compounds other than amino acids, including chlorophyll, purines, nucleotides, and alkaloids.

  13. Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions

    Directory of Open Access Journals (Sweden)

    Carnicer Marc

    2012-06-01

    Full Text Available Abstract Background Environmental and intrinsic stress factors can result in the global alteration of yeast physiology, as evidenced by several transcriptional studies. Hypoxia has been shown to have a beneficial effect on the expression of recombinant proteins in Pichia pastoris growing on glucose. Furthermore, transcriptional profiling analyses revealed that oxygen availability was strongly affecting ergosterol biosynthesis, central carbon metabolism and stress responses, in particular the unfolded protein response. To contribute to the better understanding of the effect and interplay of oxygen availability and foreign protein secretion on central metabolism, a first quantitative metabolomic analysis of free amino acids pools in a recombinant P. pastoris strain growing under different oxygen availability conditions has been performed. Results The values obtained indicate significant variations in the intracellular amino acid pools due to different oxygen availability conditions, showing an overall increase of their size under oxygen limitation. Notably, even while foreign protein productivities were relatively low (about 40–80 μg Fab/gDCW·h, recombinant protein production was found to have a limited but significant impact on the intracellular amino acid pools, which were generally decreased in the producing strain compared with the reference strain. However, observed changes in individual amino acids pools were not correlated with their corresponding relative abundance in the recombinant protein sequence, but to the overall cell protein amino acid compositional variations. Conclusions Overall, the results obtained, combined with previous transcriptomic and proteomic analyses provide a systematic metabolic fingerprint of the oxygen availability impact on recombinant protein production in P. pastoris.

  14. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  15. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate.

    Science.gov (United States)

    Karlsson, Magnus; Jensen, Pernille R; in 't Zandt, René; Gisselsson, Anna; Hansson, Georg; Duus, Jens Ø; Meier, Sebastian; Lerche, Mathilde H

    2010-08-01

    Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized (13)C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that alpha-ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto-oncogene c-myc. Very different fluxes through the BCAT-catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7-fold higher hyperpolarized (13)C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.

  16. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Knudsen, Karen Birgitte Moos; Kondrup, Jens;

    2001-01-01

    BACKGROUND & AIMS: High circulating levels of ammonia have been suggested to be involved in the development of cerebral edema and herniation in fulminant hepatic failure (FHF). The aim of this study was to measure cerebral metabolism of ammonia and amino acids, with special emphasis on glutamine...... metabolism. METHODS: The study consisted of patients with FHF (n = 16) or cirrhosis (n = 5), and healthy subjects (n = 8). Cerebral blood flow was measured by the 133Xe washout technique. Blood samples for determination of ammonia and amino acids were drawn simultaneously from the radial artery...... and the internal jugular bulb. RESULTS: A net cerebral ammonia uptake was only found in patients with FHF (1.62 +/- 0.79 micromol x 100 g(-1) x min(-1)). The cerebral glutamine efflux was higher in patients with FHF than in the healthy subjects and cirrhotics, -6.11 +/- 5.19 vs. -1.93 +/- 1.17 and -1.50 +/- 0...

  17. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  18. Novel metabolic and physiological functions of branched chain amino acids: a review

    OpenAIRE

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining ...

  19. Sulfur amino acid metabolism limits the growth of children living in environments of poor sanitation.

    Science.gov (United States)

    Bickler, Stephen W; Ring, Jason; De Maio, Antonio

    2011-09-01

    Environmental enteropathy has been identified as a cause of poor growth in children living in low-income countries, but a mechanism has not been well defined. We suggest changes in sulfur amino acid metabolism can in part explain the poor growth and possibly the histological changes in the small bowel, which is the hallmark of environmental enteropathy. In environments of poor sanitation, where infection is common, we propose increased oxidative stress drives methionine metabolism toward cystathionine synthesis. This "cystathionine siphon" limits sulfur amino acids from participating in critical protein synthesis pathways. Increased expression of cystathionine β-synthase (CBS) could be one mechanism, as lipopolysaccharide and TNFα increase activity of this enzyme in vivo. CBS catalyzes the first of two steps in the transsulfuration pathway that converts homocysteine to cysteine. As enterocytes are one of the most rapidly proliferating cells in the body, we suggest diminished translation might also be important in the barrier failure observed in environmental enteropathy. Identifying sulfur amino acid metabolism as a mechanism leading to poor growth provides a new testable hypothesis for the undernutrition observed in children living in settings of poor sanitation.

  20. Amino acid metabolism during total parenteral nutrition in healthy volunteers: evaluation of a new amino acid solution.

    Science.gov (United States)

    Berard, M P; Hankard, R; Cynober, L

    2001-10-01

    The aim of this study was to determine the metabolism and the tolerance of a new amino acid (AA) solution administered under conditions mimicking cyclical parenteral nutrition (PN) in humans. Eight healthy volunteers received peripheral PN for 10 h providing 10.5 mg N x kg(-1) x h(-1) and 2.0 kcal x kg(-1) x h(-1) (glucose-to-lipids ratio: 70/30%). For adaptation, a non-protein energy intake was increased progressively for 90 min; thereafter, AA infusion was started and maintained at a constant rate for 10 h. Plasma and urine concentrations of all the AAs were measured before, during and after the PN. For each given AA, the relation between plasma variations at the steady-state and infusion rate, plasma clearance (Cl), renal clearance (Clr), re-absorption rate (Reab) and, retention rate (Reten) were determined. The nitrogen balance (DeltaN) was calculated during the PN period. The results are presented as means+/-sem. All plasma AA concentrations decreased during the starting period of non-protein energy intake. The plasma AA concentrations reached a steady-state within 3 h upon AA infusion, except for glycine and lysine (6 h). At the steady state, the plasma concentrations of the infused AAs were closely correlated to their infusion rate (y= -18.3+1.5x, r(2)=0.92). The plasma glutamine concentration was maintained during the PN, which indicates that the solution might stimulate the de novo synthesis of this AA. When the PN was stopped, plasma levels of the AAs decreased, most of them returning to their basal levels, or significantly below for lysine (Por= 99%, Reten >or=99% and for non-essential AAs: Cl or= 98% except glycine (95+/-1), aspartate (94+/-2) and histidine (94+/-1), Reten >or=97% except histidine (94+/-1), glycine (95+/-3). These results indicate that in healthy subjects, the amounts of AAs provided by the new solution were well balanced for an intravenous administration, and so were well utilized without excessive urinary excretion. The present study

  1. Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop

    Science.gov (United States)

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luís H.; Umburanas, Renan C.; Reichardt, Klaus; Neto, Durval D.

    2017-01-01

    In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity

  2. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  3. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  4. Fermentative production of branched chain amino acids: a focus on metabolic engineering.

    Science.gov (United States)

    Park, Jin Hwan; Lee, Sang Yup

    2010-01-01

    The branched chain amino acids (BCAAs), L-valine, L-leucine, and L-isoleucine, have recently been attracting much attention as their potential to be applied in various fields, including animal feed additive, cosmetics, and pharmaceuticals, increased. Strategies for developing microbial strains efficiently producing BCAAs are now in transition toward systems metabolic engineering from random mutagenesis. The metabolism and regulatory circuits of BCAA biosynthesis need to be thoroughly understood for designing system-wide metabolic engineering strategies. Here we review the current knowledge on BCAAs including their biosynthetic pathways, regulations, and export and transport systems. Recent advances in the development of BCAA production strains are also reviewed with a particular focus on L-valine production strain. At the end, the general strategies for developing BCAA overproducers by systems metabolic engineering are suggested.

  5. Defining meal requirements for protein to optimize metabolic roles of amino acids.

    Science.gov (United States)

    Layman, Donald K; Anthony, Tracy G; Rasmussen, Blake B; Adams, Sean H; Lynch, Christopher J; Brinkworth, Grant D; Davis, Teresa A

    2015-04-29

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.

  6. Amino acid metabolism in the kidneys of genetic and nutritionally obese rats.

    Science.gov (United States)

    Herrero, M C; Remesar, X; Bladé, C; Arola, L

    1997-06-01

    The ability of the kidney to take up and/or release amino acids has been determined in two models of obesity in Zucker rats, one genetic and the other nutritional (diet-obese). There was a noticeable increase in gluconeogenic amino acids in the arterial blood of diet-obese animals whereas the genetically obese rats showed small variations in the levels of these amino acids. There were significant decreases in renal Gly and Ser, only in the genetically obese rats. Genetically obese animals showed an increase in Glutamine synthetase activity. The uptake and/or release of amino acids showed important variations between the groups. The diet-obese group exhibited greater variation, since this group took up Glu, Ala, Gy, Phe and Citrulline and released Gln, Ser, Arg and Tyr. Genetically obese rats took up Gln, His and Taurine and released Ser. These different patterns may be related to variations in the whole body metabolic rate, since the diet-obese group was more active than the genetically obese group.

  7. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  8. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  9. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Directory of Open Access Journals (Sweden)

    Jacqueline Gürke

    Full Text Available During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2, branched chain ketoacid dehydrogenase (Bckdha and dehydrolipoyl dehydrogenase (Dld, were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  10. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  11. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  12. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  13. Metabolism of tryptophan, methionine and arginine in Diplodus sargus larvae fed rotifers: effect of amino acid supplementation.

    Science.gov (United States)

    Saavedra, M; Conceição, L E C; Pousão-Ferreira, P; Dinis, M T

    2008-06-01

    Dietary amino acids imbalances have been described when fish larvae are fed rotifers, what may lead to a reduction in growth rate. The tube-feeding technique can be used to assess the effect of free amino acid short term supplementation. In this study supplementation of tryptophan, methionine and arginine were tested in Diplodus sargus. Single crystalline (14)C amino acids as well as a mix of (14)C amino acids were used as tracers to compare results of individual amino acids metabolism with the average of all amino acids. The results show low absorption efficiencies for tryptophan (70%) and arginine (80%) and similar absorption for methionine (90%) when compared with the average of all amino acids. Supplementation of these amino acids seems to be viable but it did not result in higher retention compared to the amino acid mix. This means that tryptophan, methionine and arginine are probably not the limiting amino acid when Diplodus sargus larvae are fed rotifers. However, supplementation in these IAA may be required for their roles as precursors of important molecules other than proteins, in order to improve larval quality and/or performance.

  14. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  15. Novel metabolic and physiological functions of branched chain amino acids: a review.

    Science.gov (United States)

    Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan

    2017-01-01

    It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.

  16. Amino acids and mTOR mediate distinct metabolic checkpoints in mammalian G1 cell cycle.

    Directory of Open Access Journals (Sweden)

    Mahesh Saqcena

    Full Text Available OBJECTIVE: In multicellular organisms, cell division is regulated by growth factors (GFs. In the absence of GFs, cells exit the cell cycle at a site in G1 referred to as the restriction point (R and enter a state of quiescence known as G0. Additionally, nutrient availability impacts on G1 cell cycle progression. While there is a vast literature on G1 cell cycle progression, confusion remains - especially with regard to the temporal location of R relative to nutrient-mediated checkpoints. In this report, we have investigated the relationship between R and a series of metabolic cell cycle checkpoints that regulate passage into S-phase. METHODS: We used double-block experiments to order G1 checkpoints that monitor the presence of GFs, essential amino acids (EEAs, the conditionally essential amino acid glutamine, and inhibition of mTOR. Cell cycle progression was monitored by uptake of [(3H]-thymidine and flow cytometry, and analysis of cell cycle regulatory proteins was by Western-blot. RESULTS: We report here that the GF-mediated R can be temporally distinguished from a series of late G1 metabolic checkpoints mediated by EAAs, glutamine, and mTOR - the mammalian/mechanistic target of rapamycin. R is clearly upstream from an EAA checkpoint, which is upstream from a glutamine checkpoint. mTOR is downstream from both the amino acid checkpoints, close to S-phase. Significantly, in addition to GF autonomy, we find human cancer cells also have dysregulated metabolic checkpoints. CONCLUSION: The data provided here are consistent with a GF-dependent mid-G1 R where cells determine whether it is appropriate to divide, followed by a series of late-G1 metabolic checkpoints mediated by amino acids and mTOR where cells determine whether they have sufficient nutrients to accomplish the task. Since mTOR inhibition arrests cells the latest in G1, it is likely the final arbiter for nutrient sufficiency prior to committing to replicating the genome.

  17. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics.

    Science.gov (United States)

    van den Akker, Chris H P; Schierbeek, Henk; Minderman, Gardi; Vermes, Andras; Schoonderwaldt, Ernst M; Duvekot, Johannes J; Steegers, Eric A P; van Goudoever, Johannes B

    2011-12-01

    Human fetal metabolism is largely unexplored. Understanding how a healthy fetus achieves its fast growth rates could eventually play a pivotal role in improving future nutritional strategies for premature infants. To quantify specific fetal amino acid kinetics, eight healthy pregnant women received before elective cesarean section at term, continuous stable isotope infusions of the essential amino acids [1-13C,15N]leucine, [U-13C5]valine, and [1-13C]methionine. Umbilical blood was collected after birth and analyzed for enrichments and concentrations using mass spectrometry techniques. Fetuses showed considerable leucine, valine, and methionine uptake and high turnover rates. α-Ketoisocaproate, but not α-ketoisovalerate (the leucine and valine ketoacids, respectively), was transported at net rate from the fetus to the placenta. Especially, leucine and valine data suggested high oxidation rates, up to half of net uptake. This was supported by relatively low α-ketoisocaproate reamination rates to leucine. Our data suggest high protein breakdown and synthesis rates, comparable with, or even slightly higher than in premature infants. The relatively large uptakes of total leucine and valine carbon also suggest high fetal oxidation rates of these essential branched chain amino acids.

  18. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  19. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    Directory of Open Access Journals (Sweden)

    Sofía Arriarán

    2015-11-01

    Full Text Available Background and Objectives. White adipose tissue (WAT shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism.Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities.Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT.Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.

  20. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44 ± 1% peak oxygen consumption (mean ± SE) until exhaustion (exhaustion...... peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced ( 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P

  1. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  2. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Science.gov (United States)

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  3. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    Science.gov (United States)

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  4. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  5. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork.

    Science.gov (United States)

    Samman, Samir; Crossett, Ben; Somers, Miles; Bell, Kirstine J; Lai, Nicole T; Sullivan, David R; Petocz, Peter

    2014-01-01

    Amino acid (AA) status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM) or chicken (CM), and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014), with consistently higher changes observed after 60 minutes (P<0.001). Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the postprandial state. The sustained increase in histidine following the consumption of a PM is consistent with the reported effects of lean pork on cardiometabolic risk factors.

  6. Evidence of metabolic transformations of amino acids into higher alcohols through (13)C NMR studies of wine alcoholic fermentation.

    Science.gov (United States)

    López-Rituerto, Eva; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2010-04-28

    Because the metabolite transformations in wine fermentation processes play a crucial role in the organoleptic and hygienic quality of wines, the nuclear magnetic resonance (NMR) technique is presented as a significant tool to follow metabolic pathways. In this paper, we investigated the transformation of several amino acids into their corresponding higher alcohols during the alcoholic fermentation, showing that the amino acids are totally consumed in the first stages of the process.

  7. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism.

    Directory of Open Access Journals (Sweden)

    Gareth D Westrop

    Full Text Available Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.

  8. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  9. Tracers to investigate protein and amino acid metabolism in human subjects.

    Science.gov (United States)

    Wagenmakers, A J

    1999-11-01

    Three tracer methods have been used to measure protein synthesis, protein breakdown and protein oxidation at whole-body level. The method using L-[1-(13)C]leucine is considered the method of reference. These methods have contributed greatly to the existing knowledge on whole-body protein turnover and its regulation by feeding, fasting, hormones and disease. How exercise and ingestion of mixed protein-containing meals affect whole-body protein metabolism is still open to debate, as there are discrepancies in results obtained with different tracers. The contribution of whole-body methods to the future gain of knowledge is expected to be limited due to the fact that most physiological disturbances have been investigated extensively, and due to the lack of information on the relative contribution of various tissues and proteins to whole-body changes. Tracer amino acid-incorporation methods are most suited to investigate these latter aspects of protein metabolism. These methods have shown that some tissues (liver and gut) have much higher turnover rates and deposit much more protein than others (muscle). Massive differences also exist between the fractional synthesis rates of individual proteins. The incorporation methods have been properly validated, although minor disagreements remain on the identity of the true precursor pool (the enrichment of which should be used in the calculations). Arterio-venous organ balance studies have shown that little protein is deposited in skeletal muscle following a protein-containing meal, while much more protein is deposited in liver and gut. The amount deposited in the feeding period in each of these tissues is released again during overnight fasting. The addition of tracers to organ balance studies allows the simultaneous estimation of protein synthesis and protein breakdown, and provides information on whether changes in net protein balance are caused primarily by a change in protein synthesis or in protein breakdown. In the case

  10. Effects of Rumen-Protected Methionine on Dairy Performance and Amino Acid Metabolism in Lactating Cows

    Directory of Open Access Journals (Sweden)

    W. R. Yang

    2010-01-01

    Full Text Available Problem statement: Free Met as one of the most limiting AA in dairy cows would be mostly degraded in the rumen. This study was to determine the effect of different levels of Rumen-Protected Met (RPMet on dairy performance and serum amino acid metabolism. Approach: Thirty-six Holstein cows in similar condition were randomly assigned to six experimental treatments with six replicates each. Levels of RPMet in six treatments were 0(control, 14, 28, 42, 56 and 70 g day-1 per cow, respectively. Results: Treatment had no effect on percentage of milk protein, lactose and SNF. However, milk yield of cows fed 42 g day-1 RPMet was significantly higher than that of the control group and milk fat percentage was significantly increased with 56 g day-1 RPMet supplementation. There was the trend to decrease the concentration of serum amino acids except Met and Arg with the supplementation of RPMet. Serum EAA contents of the group supplementation of 42 g day-1 RPMet were lowest although there were no significant differences among all treatments. Serum BCAA concentrations of cows fed 28 g RPMet were significantly lower than that of the control group. Supplementation of 42 g RPMet could significantly decrease the concentration of NEAA and TAA compared to the control group. Conclusion/Recommendations: Supplementation of rumen-protected methionine improved dairy performance and promoted amino acid utilization in lactating cows in the present experiment. The optimal level of RPMet in the diet was 42 g per cow day-1.

  11. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected].

    Directory of Open Access Journals (Sweden)

    Francois-Pierre J Martin

    Full Text Available Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2 under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.

  12. Protein and amino acid nutrition

    Science.gov (United States)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  13. Studies on Models,Patterns and Require-ments of Digestible Amino Acids for Layers by Nitrogen Metabolism

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The nitrogen (N) metabolic experiments were made to estimate separately amino acid requirements of 43~48 weeks old layers for maintenance, for protein accretion to estabolish models to estimate digestible amino acid requirements. The regression relationship of nitrogen retention vs amino acid intake was estimated for each amino acid by giving, at rate of N intake of 0.91, 0.52, 0.15 and 0.007g.kg-1 body-weight (W0.75) per d, the semi-synthetic diets was made specially deficient in one amino acid. From the regression coefficients, it was calculated that, for the accretion of 1 g protein, the dietary digestible amino acid requirements were (mg) Thr 63.1, Val 100.4, Met 39.9, Ile 88.6, Leu 114.3, Phe 63.2, Lys 87.0, His 20.5, Arg 87.9, Trp 21.4, Met+Cys 77.6, and Phe+Tyr 114.3. Daily amino acid requirements for N equilibrium were estimated to be (mg.kg-1W0.75 per day) Thr 50.6, Val 74.7, Met 30.3, ILe 66.7 Leu 81.4, Phe 44.8, Lys 60.5 His 14.7, Arg 73.9 ,Trp 17.3, Met+Cys 58.6, and Phe+Tyr 83.9 The dietary degestible amino acid patterns for protein accretion and N equilibrium were also proposed. The models of estimating digestible amino acid requirements for the different productions were developed.

  14. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    Science.gov (United States)

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  15. EFFECTS OF CORDYCEPS SINENSIS PREPARATION ON BODY PROTEIN AND AMINO ACID METABOLISM IN PATIENTS AND RATS WITH CHRONIC RENAL FAILURE

    Institute of Scientific and Technical Information of China (English)

    朱淳; 刘强; 左静南; 朱汉威; 马济民

    2002-01-01

    Objective To study the effects of Cordyceps sinensis (CS) on the metabolism of body protein and intra-extracellular amino acids in patients with chronic renal failure( CRF) , and on the rates of protein synthesis in rats with CRF. Methods In patients with CRF, free amino acid concentrations in plasma and skeletal muscle before and after CS treatment were measured by the LKB-4400 amino acid automatic analytical instrument and the changes of body protein metabolism were observed by the method of 15 N-labeled glycine.Meanwhile, the rates of protein synthesis in liver ( SL % /d ) and muscle (SM%/d) of rats with CRF were determinedd by 3f-phenylalanine radioactive tracer. Results After patients with CRF were treated by CS, the Leu, lie, Thr , Lys, Cys, Tyr concentrations in plasma approached the normal levels. In one sample of skeletal muscle the Thr and Lys concentrations approached the normal, whereas both the intracellular and extracellular Val concentrations were still remarkably decreased as compared with the normal controls. Moreover, the nitrogen flow rate (Q) , rates of protein synthesis (S) and catabolism ( C) , and amino nitrogen utilization ratio (S/Q) in patients with CRF and the SL % /d and SM%/d in rats with CRF were significantly increased as compared with those before CS treatment. Conclusion CS can notably improve the amino acid metabolism, promote the body protein synthesis in patients with CRF , and increase the rates of SL % /d and SM%/d in rats with CRF.

  16. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS.

    Science.gov (United States)

    Olde Damink, Steven W M; Jalan, Rajiv; Redhead, Doris N; Hayes, Peter C; Deutz, Nicolaas E P; Soeters, Peter B

    2002-11-01

    Ammonia is central to the pathogenesis of hepatic encephalopathy. This study was designed to determine the quantitative dynamics of ammonia metabolism in patients with cirrhosis and previous treatment with a transjugular intrahepatic portosystemic stent shunt (TIPSS). We studied 24 patients with cirrhosis who underwent TIPSS portography. Blood was sampled and blood flows were measured across portal drained viscera, leg, kidney, and liver, and arteriovenous differences across the spleen and the inferior and superior mesenteric veins. The highest amount of ammonia was produced by the portal drained viscera. The kidneys also produced ammonia in amounts that equaled total hepatosplanchnic area production. Skeletal muscle removed more ammonia than the cirrhotic liver. The amount of nitrogen that was taken up by muscle in the form of ammonia was less than the glutamine that was released. The portal drained viscera consumed glutamine and produced ammonia, alanine, and citrulline. Urea was released in the splenic and superior mesenteric vein, contributing to whole-body ureagenesis in these cirrhotic patients. In conclusion, hyperammonemia in metabolically stable, overnight-fasted patients with cirrhosis of the liver and a TIPSS results from portosystemic shunting and renal ammonia production. Skeletal muscle removes more ammonia from the circulation than the cirrhotic liver. Muscle releases excessive amounts of the nontoxic nitrogen carrier glutamine, which can lead to ammonia production in the portal drained viscera (PDV) and kidneys. Urinary ammonia excretion and urea synthesis appear to be the only way to remove ammonia from the body.

  17. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    Science.gov (United States)

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.

  18. Amino acid metabolism of Astacus leptodactylus (Esch.)—II. Biosynthesis of the non-essential amino acids

    NARCIS (Netherlands)

    Marrewijk, Willibrordus J.A.; Zandee, Daniel I.

    1975-01-01

    1. 1. Incubation of Astacus leptodactylus with U-14C-glucose or 1-14C-acetate induced labelling of α- and β-alanine, aspartic and glutamic acids, glutamine, glycine, proline and serine. No radioactivity was incorporated into arginine, asparagine, histidine, isoleucine, leucine, lysine, ornithine, ph

  19. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism.

    Science.gov (United States)

    Larsen, M; Galindo, C; Ouellet, D R; Maxin, G; Kristensen, N B; Lapierre, H

    2015-11-01

    Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were blocked according to parity (second and third or greater) and allocated to 2 treatments: abomasal infusion of water (CTRL; n=4) or free AA with casein profile (AA-CN; n=5) in addition to a basal diet. The AA-CN infusion started with half of the maximal dose at the calving day (1 d in milk; DIM) and then steadily decreased from 791 to 226 g/d until 29 DIM. On 5, 15, and 29 DIM, 6 sample sets of arterial, portal, hepatic, and mammary blood were taken at 45-min intervals. Over the whole period, increasing AA supply increased milk (+7.8 ± 1.3 kg/d) and milk protein yields (+220 ± 65 g/d) substantially. The increased milk yield was not supported by greater dry matter intake (DMI) as, overall, DMI decreased with AA-CN (-1.6 ± 0.6 kg/d). Arterial concentrations of essential AA were greater for AA-CN compared with CTRL. The net portal-drained viscera (PDV) release of His, Met, and Phe was greater for AA-CN compared with CTRL, and the net PDV recovery of these infused AA ranged from 72 to 102% once changes in DMI were accounted for. The hepatic removal of these AA was increased equivalently to the increased net PDV release, resulting in an unaltered net splanchnic release. The net PDV release of Ile, Leu, Val, and Lys tended to be greater for AA-CN, and the net PDV recovery of these infused AA ranged from 69 to 73%, indicating increased PDV metabolism with AA-CN. The fractional hepatic removal of these AA did not differ from zero and was unaffected by the increased supply. Consequently, the splanchnic release of these AA was approximately equivalent to their net PDV release for both CTRL and AA-CN. Overall, greater early postpartum AA supply increased milk and milk protein

  20. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism

    DEFF Research Database (Denmark)

    Larsen, Mogens; Galindo, C; Ouellet, D R

    2015-01-01

    . The increased milk yield was not supported by greater dry matter intake (DMI) as, overall, DMI decreased with AA-CN (-1.6 ± 0.6 kg/d). Arterial concentrations of essential AA were greater for AA-CN compared with CTRL. The net portal-drained viscera (PDV) release of His, Met, and Phe was greater for AA......Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were...... consumption of AA; hence, the protein deficiency persisted....

  1. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Dalbach, Kristine Foged; Larsen, Mogens; Raun, Birgitte Marie Løvendahl;

    2011-01-01

    The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated by differ......The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated...

  2. Chronic imipramine treatment differentially alters the brain and plasma amino acid metabolism in Wistar and Wistar Kyoto rats.

    Science.gov (United States)

    Nagasawa, Mao; Otsuka, Tsuyoshi; Yasuo, Shinobu; Furuse, Mitsuhiro

    2015-09-05

    In the present study, the amino acids which have the possibility for the therapeutic efficacy of imipramine were explored and compared between Wistar Kyoto rats, an animal model of depression, and Wistar rats as a normal model. The antidepressant-like effect caused by chronic imipramine treatment was confirmed by decreased immobility in the forced swimming test. Chronic imipramine administration altered the amino acid dynamics in the brain. In the striatum, the concentrations of asparagine, glutamine and methionine were significantly increased by chronic imipramine administration. In the thalamus and hypothalamus, chronic imipramine administration significantly decreased the valine concentration. On the other hand, no amino acid was altered by chronic imipramine administration in the hippocampus, brain stem and cerebellum. In addition, lower concentration of asparagine in the prefrontal cortex of WKY rats was improved by chronic imipramine administration. This amelioration only in WKY rats may be a specific effect of chronic imipramine administration under the depressive state. In conclusion, chronic imipramine administration altered the several amino acid dynamics in the brain. Modification of the amino acid metabolism in the brain may provide a new strategy in the development of therapeutic treatment of major depression.

  3. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  4. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise

    DEFF Research Database (Denmark)

    Graham, T E; Turcotte, L P; Kiens, Bente

    1995-01-01

    We studied the responses of NH3 and amino acids (AA) to prolonged exercise (3 h) in trained (Tr; n = 6) and untrained (Utr; n = 6) men. Each subject exercised the knee extensor muscles of one leg at 60% of maximum capacity. Thigh blood flow and femoral arteriovenous differences (0, 30, 60, 120, 1...

  5. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate...

  6. Branched-chain amino acids in metabolic signaling and insulin resistance

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  7. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism.

    Science.gov (United States)

    Gurley, Jami M; Ilkayeva, Olga; Jackson, Robert M; Griesel, Beth A; White, Phillip; Matsuzaki, Satochi; Qaisar, Rizwan; Van Remmen, Holly; Humphries, Kenneth M; Newgard, Christopher B; Olson, Ann Louise

    2016-12-01

    Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.

  8. Intrauterine growth restriction leads to changes in sulfur amino acid metabolism, but not global DNA methylation, in Yucatan miniature piglets.

    Science.gov (United States)

    MacKay, Dylan S; Brophy, Julie D; McBreairty, Laura E; McGowan, Ross A; Bertolo, Robert F

    2012-09-01

    Intrauterine growth restriction (IUGR), in both animals and humans, has been linked to metabolic syndrome later in life. There has been recent evidence that perturbations in sulfur amino acid metabolism may be involved in this early programming phenomenon. Methionine is the precursor for cellular methylation reactions and for the synthesis of cysteine. It has been suggested that the mechanism behind the "fetal origins" of adult diseases may be epigenetic, involving DNA methylation. Because we have recently demonstrated the fetal origins phenomenon in Yucatan miniature swine, we hypothesized that sulfur amino acid metabolism is altered in IUGR piglets. In this study, metabolites and the activities of sulfur amino acid cycle enzymes were analyzed in liver samples of 3- to 5-day-old runt (IUGR: 0.85±0.13 kg) and large (1.36±0.21 kg) Yucatan miniature pig littermates (n=6 pairs). The IUGR piglets had significantly lower specific and total activities of betaine-homocysteine methyltransferase (BHMT) and cystathionine γ-lyase (CGL) than larger littermates (PYucatan miniature piglets impairs their remethylation capacity as well as their ability to remove cystathionine and synthesize cysteine and taurine, which could have important implications on long-term health outcomes of IUGR neonates.

  9. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    Science.gov (United States)

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (pmodel used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function.

  10. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    Science.gov (United States)

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  11. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  12. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  13. Highly viscous guar gum shifts dietary amino acids from metabolic use to fermentation substrate in domestic cats.

    Science.gov (United States)

    Rochus, Kristel; Janssens, Geert P J; Van de Velde, Hannelore; Verbrugghe, Adronie; Wuyts, Birgitte; Vanhaecke, Lynn; Hesta, Myriam

    2013-03-28

    The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0.07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0.05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0.02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.

  14. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    Science.gov (United States)

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth.

  15. Effect of Lead on Microorganisms with Respect to Antibiogram, Glucose and Amino Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Aishwarya Pradeep Rao

    2014-07-01

    Full Text Available Background: Lead poisoning is a prevalent health hazard in today's world of industrialization and is gaining the concern of medical professionals globally. The first organisms in the biosphere to be affected by this are the microorganisms. Many studies have established that metal tolerance is accompanied by antibiotic resistance as both the genes are present on plasmids. Aims and Objectives: The study was conducted to identify the concentrations of lead at which the microbial growth and antibiotic sensitivity was affected and also to identify whether any of the key metabolic activities were influenced. Microorganisms like Escherichia coli, Staphylococcus aureus and Candida albicans. Pseudomonas aeruginosa were chosen due to their increasing importance as a potent hospital acquired pathogen. Material and Methods: American Type Culture Collection (ATCC strains were chosen and exposed to varying concentrations of lead acetate ranging from 1 to 1000 ppm. The growth was quantitatively analyzed spectrophotometrically at 600 nm. The antibiogram was done using disk diffusion method. The sugar fermenting property and the amino acid utilization was studied as they are the basic requirements for growth of any microorganism. Results: On exposure to lead, a decrease in the growth was seen with the three organisms but the growth pattern was different with Pseudomonas as it showed a sudden increase at 100 ppm accompanied by the production of H S at certain concentrations. The 2 antibiotic sensitivity tests which were carried out after exposure to lead, showed a resistance pattern to the β lactam group of antibiotics, hence implying that tolerance to the heavy metal affected the sensitivity of these organisms to the antibiotics. The biochemical tests showed no change in the presence of lead. Lead may exist in the soil in various concentrations but may exert a selective pressure only at certain concentrations. It has been established that a pattern exists

  16. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2005-10-01

    Full Text Available Abstract Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns

  17. Parenteral Nutrition: Amino Acids

    Science.gov (United States)

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  18. Parenteral Nutrition: Amino Acids.

    Science.gov (United States)

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  19. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD

    Science.gov (United States)

    S. Sonnet, Davis; N. O’Leary, Monique; A. Gutierrez, Mark; M. Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P. Mitchell, Kylie; J. Lopez, Antonio; Vockley, Jerry; K. Kennedy, Brian; Ramanathan, Arvind

    2016-01-01

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production. PMID:27373929

  20. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  1. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Sulin Cheng

    Full Text Available Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49 and women (n = 52 with and without NAFLD.Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS. Serum samples were analyzed using a nuclear magnetic resonance (NMR metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.Increased branched-chain amino acid (BCAA, aromatic amino acid (AAA and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all. Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all, whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all.Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.

  2. [Effect of reduced oxygen concentrations and hydrogen sulfide on the amino acid metabolism and mesenchymal cells proliferation].

    Science.gov (United States)

    Plotnikova, L N; Berezovskii, V A; Veselskii, S P

    2015-01-01

    We investigated the effect of hydrogen sulfide donor (10(-12) mol/l NaHS--I group) alone and together with the reduced oxygen concentrations (5% O2--II group, 3% O2--III group, 24 h) on the biological processes of human stem cells culture. It was shown that the cells proliferation by the third day of cultivation in I, II and III group decreased 1,7; 2,8 and 4,2 times. On the 4th day of culture proliferation inhibited in I, II and III group by 29; 33 and 54% compared to the control. Thus, adverse effects NaHS enhanced by reducing the oxygen concentration. It was established that in all experimental versions rapidly absorbed from the culture medium amino acids: cysteine and cystine, serine and aspartic acid, valine and tryptophan, proline and hydroxyproline, which are involved in the synthesis of proteins, in particular collagen. In the culture medium increased the concentration of free amino acids of the three factions: arginine, histidine and taurine; glycine and methionine; alanine and glutamine. We believe that in the applied concentration of hydrogen sulfide donor in conditions of low oxygen in a gaseous medium incubation inhibits the proliferation and alters the amino acid metabolism of human cells line 4BL.

  3. The cerebral metabolism of amino acids and related metabolites as studied by {sup 13}C and {sup 14}C labelling

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, B.

    1995-11-01

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by {sup 13}C-and {sup 14}C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [{sup 13}C]acetate, it was shown that glial cells export {approx}60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [{sup 13}C]glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of {sup 13}CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs.

  4. Branched-chain amino acids and ammonia metabolism in liver disease: therapeutic implications.

    Science.gov (United States)

    Holecek, Milan

    2013-10-01

    The rationale for recommendation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in treatment of liver failure is based on their unique pharmacologic properties, stimulatory effect on ammonia detoxification to glutamine (GLN), and decreased concentrations in liver cirrhosis. Multiple lines of evidence have shown that the main cause of the BCAA deficiency in liver cirrhosis is their consumption in skeletal muscle for synthesis of glutamate, which acts as a substrate for ammonia detoxification to GLN and that the BCAA administration to patients with liver failure may exert a number of positive effects that may be more pronounced in patients with marked depression of BCAA levels. On the other hand, due to the stimulatory effect of BCAA on GLN synthesis, BCAA supplementation may lead to enhanced ammonia production from GLN breakdown in the intestine and the kidneys and thus exert harmful effects on the development of hepatic encephalopathy. Therefore, to enhance therapeutic effectiveness of the BCAA in patients with liver injury, their detrimental effect on ammonia production, which is negligible in healthy people and/or patients with other disorders, should be avoided. In treatment of hepatic encephalopathy, simultaneous administration of the BCAA (to correct amino acid imbalance and promote ammonia detoxification to GLN) with α-ketoglutarate (to inhibit GLN breakdown to ammonia in enterocytes) and/or phenylbutyrate (to enhance GLN excretion by the kidneys) is suggested. Attention should be given to the type of liver injury, gastrointestinal bleeding, signs of inflammation, and the dose of BCAA.

  5. Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine.

    Science.gov (United States)

    Ahmad, Saheem; Khan, Hamda; Shahab, Uzma; Rehman, Shahnawaz; Rafi, Zeeshan; Khan, Mohd Yasir; Ansari, Ahsanullah; Siddiqui, Zeba; Ashraf, Jalaluddin Mohammad; Abdullah, Saleh M S; Habib, Safia; Uddin, Moin

    2017-01-01

    The available data suggest that among cellular constituents, proteins are the major target for oxidation primarily because of their quantity and high rate of interactions with ROS. Proteins are susceptible to ROS modifications of amino acid side chains which alter protein structure. Among the amino acids, Cysteine (Cys) is more prone to oxidation by ROS because of its high nucleophilic property. The reactivity of Cys with ROS is due to the presence of thiol group. In the oxidised form, Cys forms disulfide bond, which are primary covalent cross-link found in proteins, and which stabilize the native conformation of a protein. Indirect evidence suggests that thiol modifications by ROS may be involved in neurodegenerative disorders, but the significance and precise extent of the contributions are poorly understood. Here, we review the role of oxidized Cys in different pathological consequences and its biochemistry may increase the research in the discovery of new therapies. The purpose of this review is to re-examine the role and biochemistry of oxidised Cys residues.

  6. 2-Methoxyestradiol Impacts on Amino Acids-mediated Metabolic Reprogramming in Osteosarcoma Cells by Interaction with NMDA Receptor.

    Science.gov (United States)

    Gorska-Ponikowska, Magdalena; Perricone, Ugo; Kuban-Jankowska, Alicja; Lo Bosco, Giosue; Barone, Giampaolo

    2017-03-06

    Deregulation of serine and glycine metabolism, have been identified to function as metabolic regulators in supporting tumor cell growth. The role of serine and glycine in regulation of cancer cell proliferation is complicated, dependent on concentrations of amino acids and tissue-specific. D-serine and glycine are coagonists of N-methyl-D-aspartate receptor subunit GRIN1. Importantly, NMDA receptors are widely expressed in cancer cells and play an important role in regulation of cell death, proliferation and metabolism of numerous malignancies. The aim of the present work was to associate the metabolism of glycine and D-serine with the anticancer activity of 2-methoxyestradiol. 2-methoxyestradiol is a potent anticancer agent but also a physiological 17β- estradiol metabolite. In the study we have chosen two malignant cell lines expressing functional GRIN1 receptors, i.e. osteosarcoma 143B and breast cancer MCF7. We used MTS assay, migration assay, flow cytometric analyses, western blotting and immunoprecipitation techniques as well as molecular modeling studies. We have demonstrated the extensive crosstalk between the deregulated metabolic network and cancer cell signaling. Herein, we observed an anticancer effect of high concentrations of glycine and D-serine in osteosarcoma cells. In contrast, the amino acids when used at low, physiological concentrations induced the proliferation and migration of osteosarcoma and breast cancer cells. Importantly, the pro-cancergogenic effects of both glycine and D-serine where abrogated by the usage of 2-methoxyestradiol at both physiological and pharmacological relevant concentrations. The obtained data confirmed that 2-methoxyestradiol may be a physiological anticancer molecule. This article is protected by copyright. All rights reserved.

  7. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    Science.gov (United States)

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.

  8. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    Science.gov (United States)

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  9. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism.

    Science.gov (United States)

    Jung, Young Suk; Kim, Sun Ju; Kwon, Do Young; Ahn, Chul Won; Kim, Young Soon; Choi, Dal Woong; Kim, Young Chul

    2013-12-01

    Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.

  10. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  11. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  12. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  13. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    Directory of Open Access Journals (Sweden)

    Urho M Kujala

    2016-11-01

    Full Text Available Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed whether data from aged Finnish men are in line with our mechanistic hypothesis linking BCAA catabolism and metabolic disturbances. Methods Older Finnish men enriched with individuals having been athletes in young adulthood (n=593; mean age 72.6 ± 5.9 years responded to questionnaires, participated in a clinical examination including assessment of body composition with bioimpedance and gave fasting blood samples for various analytes as well as participated in a 2 hour 75 g oral glucose tolerance test. Metabolomics measurements from serum included BCAAs (isoleucine, leucine and valine.Results Out of the 593 participants 59 had previously known type 2 diabetes, further 67 had screen-detected type 2 diabetes, 127 IGT and 125 IFG while 214 had normal glucose regulation. There were group differences in all of the BCAA concentrations (p≤0.005 for all BCAAs, such that those with normal glucose tolerance had the lowest and those with diabetes mellitus had the highest BCAA concentrations. All BCAA levels correlated positively with body fat percentage (r=.29 - .34, p<.0001 for all. Expected associations with high BCAA concentrations and unfavorable metabolic profile indicators from metabolomics analysis were found. Except for glucose concentrations, the associations were stronger with isoleucine and leucine than with valine. Conclusions/interpretation The findings provided further support for our hypothesis by strengthening the idea that the efficiency of BCAA catabolism

  14. Second-tier test for quantification of underivatized amino acids in dry blood spot for metabolic diseases in newborn screening.

    Science.gov (United States)

    Wang, Chunyan; Zhu, Hongbin; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-01

    The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC-MS/MS method in 17-19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC-MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol.

  15. Branched-chain amino acid ratios in low-protein diets regulate the free amino acid profile and the expression of hepatic fatty acid metabolism-related genes in growing pigs.

    Science.gov (United States)

    Duan, Y H; Li, F N; Wen, C Y; Wang, W L; Guo, Q P; Li, Y H; Yin, Y L

    2017-03-06

    Liver metabolism is affected by nutrients. The aim of this study was to explore the effects of low-protein diets (17% crude protein, CP) supplemented with branched-chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile) and valine (Val), on hepatic amino acid profile and lipid metabolism in growing pigs. The ratio of Leu : Ile : Val in all groups was 1 : 0.51 : 0.63 (20% crude protein, CP), 1 : 1 : 1 (17% CP), 1 : 0.75 : 0.75 (17% CP), 1 : 0.51 : 0.63 (17% CP) and 1 : 0.25 : 0.25 (17% CP) respectively. Results revealed that compared to the positive control group (1 : 0.51 : 0.63, 20% CP), the low-protein diets significantly augmented the concentrations of most essential amino acids and non-essential amino acids (p < .05), with the greatest values observed in the 1 : 0.25 : 0.25 group. Moreover, relative to the control, the low-protein diets with the Leu : Ile : Val ratio ranging from 1 : 0.75 : 0.75 to 1 : 0.25 : 0.25 markedly downregulated the mRNA abundance of acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP-4) (p < .05), and upregulated the mRNA expression of hormone-sensitive lipase (HSL), peroxisome proliferator-activated receptor-g coactivator-1α (PGC-1α), uncoupling protein 3 (UCP3) and liver carnitine palmitoyltransferase 1 (L-CPT-1) (p < .05). Therefore, our data suggest that protein-restricted diets supplemented with optimal BCAA ratio, that is, 1 : 0.75 : 0.75-1 : 0.25 : 0.25, induce a shift from fatty acid synthesis to fatty acid oxidation in the liver of growing pigs. These effects may be associated with increased mitochondrial biogenesis.

  16. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.;

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  17. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

    Science.gov (United States)

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel

    2010-09-01

    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia.

  18. Metabolic changes in deafferented central neurons of an insect, Acheta domesticus. I. Effects upon amino acid uptake and incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.R.; Edwards, J.S.

    1982-11-01

    Chronic cercal deafferentation of the terminal ganglion in developing crickets (Acheta domesticus), which is known to suppress normal development of giant interneuron dendritic arborizations is shown here to reduce (/sup 3/H)leucine uptake and incorporation into ganglion proteins. Short term deafferentation of adult crickets, in contrast, does not depress amino acid uptake and incorporation significantly. Following unilateral long term deafferentation of the terminal ganglion, a comparison was made of the (/sup 3/H)leucine incorporation into primary dendritic processes and somata of deafferented and normally innervated medial giant interneurons (MGIs) within the same ganglion by means of quantitative autoradiography. Grain densities within dendrites of deafferented MGIs were significantly lower than in paired control MGIs' grain densities within somata of deafferented MGIs also were reduced, although the effects of deafferentation were less pronounced in somata than in target dendrites. These results imply a specific influence of afferent innervation on protein metabolism during growth and development of target postsynaptic elements.

  19. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    Science.gov (United States)

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  20. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids

    Science.gov (United States)

    Barreto-Curiel, Fernando; Focken, Ulfert; D’Abramo, Louis R.

    2017-01-01

    Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS) and of amino acids (compound specific isotope analysis, CSIA). There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N) and per amino acid (δ13C and δ15N), in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized. PMID:28095488

  1. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  2. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    Science.gov (United States)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  3. TyrR, the regulator of aromatic amino acid metabolism, is required for mice infection of Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Zhongliang eDeng

    2015-02-01

    Full Text Available Yersinia pestis, the causative agent of plague, poses a serious health threat to rodents and human beings. TyrR is a transcriptional regulator that controls the metabolism of aromatic amino acids in Escherichia coli. In this paper, TyrR played an important role in Y. pestis virulence. Inactivation of tyrR did not seem to affect the in vitro growth of this organism, but resulted in at least 10,000-fold attenuation compared with the wild-type (WT strain upon subcutaneous infection to mice. In addition, loads of tyrR mutant within mice livers and spleens significantly decreased compared with the WT strain. Transcriptome analysis revealed that TyrR, directly or indirectly, regulated 29 genes encoded on Y. pestis chromosome or plasmids under in vitro growth condition. Similar to the regulatory function of this protein in E. coli, five aromatic-pathway genes (aroF-tyrA, aroP, aroL, and tyrP were significantly reduced upon deletion of the tyrR gene. Two genes (glnL and glnG that encode sensory histidine kinase and regulator in a two-component regulatory system involved in nitrogen assimilation were downregulated in the tyrR mutant. Several genes encoding type III secretion proteins were transcribed by 2.0- to 4.2-fold in a tyrR mutant relative to the WT strain. Interestingly, the acid-stressed genes, hdeB and hdeD, were downregulated, and such downregulation partly accounted for the decrease in tolerance of the tyrR mutant under acidic conditions. In conclusion, regulation of TyrR in Y. pestis is similar to, but distinct from, that in E. coli. TyrR is a metabolic virulence determinant in Y. pestis that is important for extracellular survival and/or proliferation.

  4. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    Full Text Available BACKGROUND: Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. METHODOLOGY/PRINCIPAL FINDINGS: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  5. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    Science.gov (United States)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  6. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    Science.gov (United States)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogeneis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. PMID:26529668

  7. Fluorine-Tagged 5-Hydroxytryptophan to Investigate Amino Acid Metabolism In Vivo

    OpenAIRE

    Gagnon, Zofia E.; Sherry Dingman; Thomas, Rhys N.

    2010-01-01

    Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta) were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP) being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay f...

  8. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  9. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism.

    Science.gov (United States)

    Kallscheuer, Nicolai; Vogt, Michael; Marienhagen, Jan

    2016-12-14

    Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.

  10. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  11. Amino Acid Metabolism of Thermoanaerobacter Strain AK90: The Role of Electron-Scavenging Systems in End Product Formation

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2015-01-01

    Full Text Available The catabolism of the 20 amino acids by Thermoanaerobacter strain AK90 (KR007667 was investigated under three different conditions: as single amino acids without an electron-scavenging system, in the presence of thiosulfate, and in coculture with a hydrogenotrophic methanogen. The strain degraded only serine without an alternative electron acceptor but degraded 11 amino acids (alanine, cysteine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tyrosine, and valine under both of the electron-scavenging systems investigated. Acetate was the dominant end product from alanine, cysteine, lysine, serine, and threonine under electron-scavenging conditions. The branched-chain amino acids, isoleucine, leucine, and valine, were degraded to their corresponding fatty acids under methanogenic conditions and to a mixture of their corresponding fatty acids and alcohols in the presence of thiosulfate. The partial pressure of hydrogen seems to be of importance for the branched-chain alcohol formation. This was suggested by low but detectable hydrogen concentrations at the end of cultivation on the branched-chain amino acid in the presence of thiosulfate but not when cocultured with the methanogen. A more detailed examination of the role of thiosulfate as an electron acceptor was performed with Thermoanaerobacter ethanolicus (DSM 2246 and Thermoanaerobacter brockii (DSM 1457.

  12. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...... plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the day of calving to 29 DIM....

  13. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.

    Science.gov (United States)

    Zignego, Donald L; Hilmer, Jonathan K; June, Ronald K

    2015-12-16

    Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.

  14. Impacts of acute imipramine treatment on plasma and brain amino acid metabolism in mice given graded levels of dietary chicken protein.

    Science.gov (United States)

    Nagasawa, Mao; Murakami, Tatsuro; Tomonaga, Shozo; Sato, Mikako; Takahata, Yoshihisa; Morimatsu, Fumiki; Furuse, Mitsuhiro

    2012-12-01

    Several studies have shown a relationship between depression and animal protein intake. To evaluate whether the difference of dietary chicken protein levels induces an antidepressant-like effect and potentiates acute antidepressant effects, three levels of dietary chicken protein were used as the representative animal protein with imipramine used as the antidepressant. In addition, the effects of dietary chicken protein on brain metabolism were evaluated. Open field test (OFT) and forced swimming test (FST) were conducted on the 27th and 28th days, respectively. OFT and FST were not influenced by both imipramine and dietary protein levels. However, characteristic effects of imipramine treatment on brain monoamine metabolism were observed in the cerebral cortex and hypothalamus. In addition, dietary protein significantly increased taurine and L-ornithine levels even though these amino acids were not contained in the diets. In conclusion, the metabolism of several amino acids in the plasma and brain were altered by dietary chicken protein.

  15. Fluorine-Tagged 5-Hydroxytryptophan to Investigate Amino Acid Metabolism In Vivo

    Directory of Open Access Journals (Sweden)

    Zofia E. Gagnon

    2010-01-01

    Full Text Available Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay for the tag. Serotonin (5-HT levels were measured with spectrofluorometry and thin-layer chromatography. Plants in treatment conditions had serotonin levels five to six times higher than controls. PF-5-HTP served as a precursor for serotonin in a biosynthetic pathway in this plant model, providing evidence for the bioavailability of the novel molecule. The increase in serotonin in plants grown in media culture supplemented with 5-HTP or PF-5-HTP might have useful applications in pharmacology.

  16. Recent advances in amino acid production by microbial cells.

    Science.gov (United States)

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  17. Nontargeted LC–MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; Hedemann, Mette Skou; Poulsen, Hanne Damgaard

    2016-01-01

    The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked...... to the animal growth performance. Three dose–response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC–MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth...... metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA....

  18. THE DISTURBANCE OF METABOLISM OF THE AMINO ACIDS AS A CAUSATIVE FOR THE MENTAL RETARDATION-PHENYLKETONURIA

    Directory of Open Access Journals (Sweden)

    Jasmina IVANOVSKA

    2000-06-01

    Full Text Available PKU is the rare single-gene disease belonging to disturbance of metabolism of the amino acids, which in its own basics halved the mutated gene, whose leaning at the 12-chromosome charge for the synthesis of phenylalanine hydroxylase, turning on phenylalanine into tyrosine. Enzyme block usually leads to the accumulation of a toxic substrate and/or the deficient synthesis of a product needed for normal body function. In PKU there is a toxic accumulation of phenylalanine behind the deficient enzyme, phenylalanine hydrоxylase. The symptoms are: lighten hare, blue eyes, lithe pigmented skin, convulsion, mental retardation, low level of adrenalin caused for the lack of tyrosine, the urine have a specific smell of rats or gab.Inheritance of disease become in autosomal recessive way which always become possibility to stay hidden in the family and to inherit from knee to knee without manifestation of its own phenotype.The only therapy that successfully avoids the causes of this disease is phenylalanine-restricted diet. Today we have some affords for improvement of gene therapy, which can help us for determination to these disease. The success of the therapy depends from timing of the right detection also diagnostics all trough equivalent therapy which can successfully interrupt the new forms of mental retardation and other symptoms.

  19. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    Directory of Open Access Journals (Sweden)

    Hiroko eIijima

    2015-04-01

    Full Text Available Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria.

  20. Effects of simultaneous dietary fish oil ingestion and sulfur amino acid supplementation on the lipid metabolism in hepatoma-bearing rats with hyperlipidemia.

    Science.gov (United States)

    Kawasaki, Masashi; Miura, Yutaka; Funabiki, Ryuhei; Yagasaki, Kazumi

    2010-01-01

    The effects of simultaneous dietary fish oil ingestion and sulfur amino acid (L-methionine and L-cystine) supplementation on serum lipid concentrations and various parameters related to the lipid metabolism were studied in Donryu rats subcutaneously implanted with an ascites hepatoma cell line, AH109A. A diet containing 10% fish oil was found to reduce serum triglyceride, total cholesterol, (very-low-density lipoprotein plus low-density lipoprotein)-cholesterol, phospholipid and nonesterified fatty acid (NEFA) concentrations in these animals, and dietary supplementation of 1.2% L-methionine and L-cystine also suppressed these serum lipid concentrations. Hepatic fatty acid synthesis and the availability of serum NEFA were decreased, and epididymal adipose tissue lipoprotein lipase (LPL) activity was elevated by dietary fish oil, while LPL activity in various tissues and hepatic fatty acid oxidation were increased by dietary sulfur amino acids, resulting in a reduction in the serum triglyceride concentration by dietary fish oil and sulfur amino acids, respectively. Dietary fish oil suppressed the hepatoma-induced increase in cholesterogenesis in the host liver, and dietary methionine and cystine enhanced bile acid excretion into feces, which were the causes of the hypocholesterolemic effect. In these serum lipid concentrations, there were significant effects of fish oil ingestion and sulfur amino acid supplementation, but no significant interaction between these two factors was seen. These results indicate that dietary fish oil and sulfur amino acid, L-methionine and L-cystine, have hypolipidemic effects in cancer-related hyperlipidemia, and that the effects of these two factors on the decrease in these serum lipid concentrations are additive; these two factors may affect the lipid metabolism via different pathways and mechanisms.

  1. Effect of Carbon and Nitrogen Availability on Metabolism of Amino Acids in Germinating Spores of Arbuscular Mycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-Ru; JIANG Dong-Hua; ZHANG Ping-Hua

    2011-01-01

    The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.

  2. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS.

    Science.gov (United States)

    Yudkoff, Marc

    2017-01-01

    Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.

  3. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Ashraf El-Kereamy

    Full Text Available Temperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming. Here, we show that OsMYB55 is induced by high temperature and overexpression of OsMYB55 resulted in improved plant growth under high temperature and decreased the negative effect of high temperature on grain yield. Transcriptome analysis revealed an increase in expression of several genes involved in amino acids metabolism. We demonstrate that OsMYB55 binds to the promoter regions of target genes and directly activates expression of some of those genes including glutamine synthetase (OsGS1;2 glutamine amidotransferase (GAT1 and glutamate decarboxylase 3 (GAD3. OsMYB55 overexpression resulted in an increase in total amino acid content and of the individual amino acids produced by the activation of the above mentioned genes and known for their roles in stress tolerance, namely L-glutamic acid, GABA and arginine especially under high temperature condition. In conclusion, overexpression of OsMYB55 improves rice plant tolerance to high temperature, and this high tolerance is associated with enhanced amino acid metabolism through transcription activation.

  4. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  5. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards...... optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media...

  6. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery

    DEFF Research Database (Denmark)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin

    2015-01-01

    AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite...... changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. METHODS: We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise...... and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS: Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13...

  7. Metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates

    Science.gov (United States)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Melnick, G.; Dempsey, D. T.

    1991-01-01

    Eight N-15-labeled nonessential amino acids plus (N-15)H4Cl were administered over a 10-h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted.

  8. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers : Findings from a prospective cohort study

    NARCIS (Netherlands)

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H. B.; Peeters, Petra H.; Weiderpass, Elisabete; Quirós, J. Ramón; Agudo, Antonio; Sánchez, María José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay Tee; Travis, Ruth C.; Schmidt, Julie A.; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-01

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), a

  9. Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia.

    Science.gov (United States)

    Houin, Satya S; Rozance, Paul J; Brown, Laura D; Hay, William W; Wilkening, Randall B; Thorn, Stephanie R

    2015-02-15

    Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 (P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-¹³C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 (P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia (P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.

  10. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  11. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Subrat K. Bhanja

    2015-04-01

    Full Text Available Due to their physicochemical and biological properties, silver nanoparticles (NanoAg have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α and interleukin-6 (IL-6 did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10 expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2 expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4 expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken.

  12. Effect of betaine supplementation on changes in hepatic metabolism of sulfur-containing amino acids and experimental cholestasis induced by alpha-naphthylisothiocyanate.

    Science.gov (United States)

    Kim, Young C; Jung, Young S; Kim, Sang K

    2005-05-01

    Alterations in the hepatic metabolism of sulfur amino acids in experimental cholestasis induced by alpha-naphthylisothiocyanate (ANIT) (100 mg/kg, po) were monitored in male mice for 1 week. We also examined the effects of betaine supplementation (1% in drinking water) for 2 weeks on the hepatotoxicity and changes in the sulfur amino acid metabolism induced by ANIT treatment. Acute ANIT challenge elevated the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and total bilirubin contents from 5 h after the treatment, reaching a peak at t = 48-72 h. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were decreased significantly in a manner almost inversely proportional to the changes in serum parameters measured to determine the ANIT-induced toxicity. Hepatic glutathione and cysteine levels were elevated at t = 120 h after the treatment. Betaine supplementation blocked or significantly attenuated induction of the hepatotoxicity by ANIT. The decrease in SAM and SAH levels was also inhibited by betaine intake. The results indicate that betaine supplementation may antagonize the induction of experimental cholestasis and changes in the metabolism of sulfur amino acids associated with ANIT treatment. The underlying mechanism and pharmacological significance of its action are discussed.

  13. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    Science.gov (United States)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  14. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2011-01-01

    Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle...... the metabolism of blood-supplied ammonia and the A-V measurements were used to measure the total ammonia metabolism across the thigh muscle. After intake of BCAA, blood ammonia increased more than 30% in both groups of subjects (both P ....05). BCAA intake led to a massive glutamine release from the muscle (cirrhotic patients, P BCAA enhanced the intrinsic muscle metabolism of ammonia but not the metabolism of blood-supplied ammonia in both the patients with cirrhosis and in the healthy...

  15. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  16. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  17. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    Science.gov (United States)

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  18. GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-derivatized amino acids and its application to (13)C-metabolic flux analysis of Escherichia coli central metabolism.

    Science.gov (United States)

    Okahashi, Nobuyuki; Kawana, Shuichi; Iida, Junko; Shimizu, Hiroshi; Matsuda, Fumio

    2016-09-01

    Stable isotope labeling experiments using mass spectrometry have been employed to investigate carbon flow levels (metabolic flux) in mammalian, plant, and microbial cells. To achieve a more precise (13)C-metabolic flux analysis ((13)C-MFA), novel fragmentations of tert-butyldimethylsilyl (TBDMS)-amino acids were investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS). The product ion scan analyses of 15 TBDMS-amino acids revealed 24 novel fragment ions. The amino acid-derived carbons included in the five fragment ions were identified by the analyses of (13)C-labeled authentic standards. The identification of the fragment ion at m/z 170 indicated that the isotopic abundance of S-methyl carbon in methionine could be determined from the cleavage of C5 in the precursor of [M-159](+) (m/z 218). It was also confirmed that the precision of (13)C-MFA in Escherichia coli central carbon metabolism could be improved by introducing (13)C-labeling data derived from novel fragmentations. Graphical Abstract Novel collision-induced dissociation fragmentations of tert-butyldimethylsilyl amino acids were investigated and identified by GC-MS/MS.

  19. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    Science.gov (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants.

  20. Effect of Zishenjianpihuayu prescription combined with retinal photocoagulation therapy on visual field defect, amino acid metabolism and serum cytokines in patient with NPDR

    Institute of Scientific and Technical Information of China (English)

    Qiu-Hong Liu; Yang-Gui Yu; Jing Guan; Ming-Wei Liu; Wei-Kun Chen

    2016-01-01

    Objective:To analyze the effect of Zishenjianpihuayu prescription combined with retinal photocoagulation therapy on visual field defect, amino acid metabolism and serum cytokines in patient with NPDR.Methods: A total of 80 cases of NPDR patients treated in our hospital from August 2012 to August 2015 were included in the study and divided into observation group and control group (n=40) according to the random number table. Control group received retinal photocoagulation treatment alone, observation group received Zishenjianpihuayu prescription combined with retinal photocoagulation treatment, and then the differences in visual field defect, amino acid metabolism and serum levels of cytokines were compared between two groups.Results: MD and CPSD values of observation group after treatment were lower than those of control group, and MS value was higher than that of control group; serum glutamic acid, arginine, tyrosine, valine, isoleucine and leucine values of observation group after treatment were lower than those of control group; serum sVCAM-1, sICAM-1, VEGF, Ang-2 and SDF-1 values of observation group after treatment were lower than those of control group, and APN value was higher than that of control group.Conclusion:Zishenjianpihuayu prescription combined with retinal photocoagulation therapy can reduce the visual field defect in patients with NPDR, and plays a positive role in optimizing the disease and balancing the body metabolism.

  1. Racemization of Meteoritic Amino Acids

    Science.gov (United States)

    Cohen, Barbara A.; Chyba, Christopher F.

    2000-05-01

    Meteorites may have contributed amino acids to the prebiotic Earth, affecting the global ratio of right-handed to left-handed (D/L) molecules. We calculate D/L ratios for seven biological, α-hydrogen, protein amino acids over a variety of plausible parent body thermal histories, based on meteorite evidence and asteroid modeling. We show that amino acids in meteorites do not necessarily undergo complete racemization by the time they are recovered on Earth. If the mechanism of amino acid formation imposes some enantiomeric preference on the amino acids, a chiral signature can be retained through the entire history of the meteorite. Original enantiomeric excesses in meteorites such as Murchison, which have undergone apparently short and cool alteration scenarios, should have persisted to the present time. Of the seven amino acids for which relevant data are available, we expect glutamic acid, isoleucine, and valine, respectively, to be the most likely to retain an initial enantiomeric excess, and phenylalanine, aspartic acid, and alanine the least. Were the D/L ratio initially identical in each amino acid, final D/L ratios could be used to constrain the initial ratio and the thermal history experienced by the whole suite.

  2. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Li, Yuefei; Tong, Bin; Harris, Marvin; Zhu-Salzman, Keyan; Ge, Feng

    2013-10-01

    Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).

  3. Microbial Production of Amino Acid-Related Compounds.

    Science.gov (United States)

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  4. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  5. Structure of LP2179, the first representative of Pfam family PF08866, suggests a new fold with a role in amino-acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Bakolitsa, Constantina; Kumar, Abhinav; Carlton, Dennis; Miller, Mitchell D.; Krishna, S.Sri; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (Burnham)

    2011-08-17

    The structure of LP2179, a member of the PF08866 (DUF1831) family, suggests a novel {alpha} + {beta} fold comprising two {beta}-sheets packed against a single helix. A remote structural similarity to two other uncharacterized protein families specific to the Bacillus genus (PF08868 and PF08968), as well as to prokaryotic S-adenosylmethionine decarboxylases, is consistent with a role in amino-acid metabolism. Genomic neighborhood analysis of LP2179 supports this functional assignment, which might also then be extended to PF08868 and PF08968.

  6. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.; An, Jie; Bain, James R.; Muehlbauer, Michael J.; Robert D. Stevens; Lien, Lillian F.; Haqq, Andrea M.; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A.; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Brett R. Wenner; Yancy, William E

    2009-01-01

    Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feed...

  7. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes

    Science.gov (United States)

    Naranjo-Ortíz, Miguel A.; Brock, Matthias; Brunke, Sascha; Hube, Bernhard; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role. PMID:28066338

  8. [Protein and energy value of spiruline blue algae supplemented by amino acids: digestive and metabolic utilization by the growing rat].

    Science.gov (United States)

    Vermorel, M; Toullec, G; Dumond, D; Pion, R

    1975-01-01

    Protein and energy value of 6 samples of "Spirulina" was studied on growing rats in 1972 and 1973. Sample RL 1(Spirulina platensis, originating from Tchad) was grown in artifical conditions in a laboratory. Others samples (Spirulina maxima) were grown in the solar evaporator near Mexico, washed and dried either on heated rollers (MR8, MR13) or by spraying (MA 7, MA10). Sample MA10 D corresponds to sample MA10, bleached by ethanol plus acetone (Baron, 1975). Each Spirulina sample was the only protein source of balanced, starch diets. The diets were supplemented in essential amino acids (E.A.A.) according to the requirements of growing rats (table 1). The ratios [(digestible nitrogen/metabolisable energy (EM] of the Spirulina diets were similar to that of the control diets containing herring meal. The diets were fed to groups of 15 to 17 growing rats. Energy and nitrogen balances were established by the comparative slaughter technique. Blood and muscle samples were taken at slaughter for the determination of free amino acids levels.

  9. Biosynthesis of 'essential' amino acids by scleractinian corals.

    Science.gov (United States)

    Fitzgerald, L M; Szmant, A M

    1997-02-15

    Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa.

  10. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist.

    Directory of Open Access Journals (Sweden)

    James Mu

    Full Text Available Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.

  11. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

    Science.gov (United States)

    Orešič, Matej; Simell, Satu; Sysi-Aho, Marko; Näntö-Salonen, Kirsti; Seppänen-Laakso, Tuulikki; Parikka, Vilhelmiina; Katajamaa, Mikko; Hekkala, Anne; Mattila, Ismo; Keskinen, Päivi; Yetukuri, Laxman; Reinikainen, Arja; Lähde, Jyrki; Suortti, Tapani; Hakalax, Jari; Simell, Tuula; Hyöty, Heikki; Veijola, Riitta; Ilonen, Jorma; Lahesmaa, Riitta; Knip, Mikael; Simell, Olli

    2008-01-01

    The risk determinants of type 1 diabetes, initiators of autoimmune response, mechanisms regulating progress toward β cell failure, and factors determining time of presentation of clinical diabetes are poorly understood. We investigated changes in the serum metabolome prospectively in children who later progressed to type 1 diabetes. Serum metabolite profiles were compared between sample series drawn from 56 children who progressed to type 1 diabetes and 73 controls who remained nondiabetic and permanently autoantibody negative. Individuals who developed diabetes had reduced serum levels of succinic acid and phosphatidylcholine (PC) at birth, reduced levels of triglycerides and antioxidant ether phospholipids throughout the follow up, and increased levels of proinflammatory lysoPCs several months before seroconversion to autoantibody positivity. The lipid changes were not attributable to HLA-associated genetic risk. The appearance of insulin and glutamic acid decarboxylase autoantibodies was preceded by diminished ketoleucine and elevated glutamic acid. The metabolic profile was partially normalized after the seroconversion. Autoimmunity may thus be a relatively late response to the early metabolic disturbances. Recognition of these preautoimmune alterations may aid in studies of disease pathogenesis and may open a time window for novel type 1 diabetes prevention strategies. PMID:19075291

  12. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    Science.gov (United States)

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  13. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.

    Science.gov (United States)

    Shingaki-Wells, Rachel N; Huang, Shaobai; Taylor, Nicolas L; Carroll, Adam J; Zhou, Wenxu; Millar, A Harvey

    2011-08-01

    Rice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and wheat coleoptiles. Rice coleoptiles responded to anoxia dramatically, not only at the level of protein synthesis but also at the level of altered metabolite pools, while the wheat response to anoxia was slight in comparison. We found significant increases in the abundance of proteins in rice coleoptiles related to protein translation and antioxidant defense and an accumulation of a set of enzymes involved in serine, glycine, and alanine biosynthesis from glyceraldehyde-3-phosphate or pyruvate, which correlates with an observed accumulation of these amino acids in anoxic rice. We show a positive effect on wheat root anoxia tolerance by exogenous addition of these amino acids, indicating that their synthesis could be linked to rice anoxia tolerance. The potential role of amino acid biosynthesis contributing to anoxia tolerance in cells is discussed.

  14. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji;

    2015-01-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds...... with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid...... was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4K229L, chorismate mutase ARO7G141S and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced...

  15. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids.

    Science.gov (United States)

    Geda, Fikremariam; Declercq, Annelies M; Remø, Sofie C; Waagbø, Rune; Lourenço, Marta; Janssens, Geert P J

    2017-04-01

    Fish species show distinct differences in their muscular concentrations of imidazoles and free amino acids (FAA). This study was conducted to investigate whether metabolic response to mildly elevated water temperature (MEWT) relates to species-dependent muscular concentrations of imidazoles and FAA. Thirteen carp and 17 Nile tilapia, housed one per aquarium, were randomly assigned to either acclimation (25°C) or MEWT (30°C) for 14 days. Main muscular concentrations were histidine (HIS; P0.05), (NAH+HIS)/TAU ratio was markedly higher in carp versus tilapia, and decreased with MEWT only in carp (P<0.05). Many of the muscular FAA concentrations were higher in carp than in tilapia (P<0.05). Plasma acylcarnitine profile suggested a higher use of AA and fatty acids in carp metabolism (P<0.05). On the contrary, the concentration of 3-hydroxyisovalerylcarnitine, a sink of leucine catabolism, (P=0.009) pointed to avoidance of leucine use in tilapia metabolism. Despite a further increase of plasma longer-chain acylcarnitines in tilapia at MEWT (P=0.009), their corresponding beta-oxidation products (3-hydroxy-longer-chain acylcarnitines) remained constant. Together with higher plasma non-esterified fatty acids (NEFA) in carp (P=0.001), the latter shows that carp, being a fatter fish, more readily mobilises fat than tilapia at MEWT, which coincides with more intensive muscular mobilization of imidazoles. This study demonstrates that fish species differ in their metabolic response to MEWT, which is associated with species-dependent changes in muscle imidazole to taurine ratio.

  16. [The effects of biotin on the metabolism of ammonia and amino acids in urease-induced hyperammonemic rats].

    Science.gov (United States)

    Nagamine, T; Saito, S; Yamada, S; Sekiguchi, T; Kobayashi, S; Nakano, M

    1989-07-01

    The effects of oral and intraperitoneal administration of biotin in urease-induced hyperammonemic rats, as well as the influence of biotin deficiency, have been studied. Biotin deficiency was produced by feeding standard diet MF (Oriental Yeast Co.) supplemented with dry egg-white (egg-white group). Egg-white + biotin group had free access to 0.0014% of biotin solution at all time. Following an intraperitoneal injection of urease, 25 U/kg (B.W.), plasma ammonia levels in egg-white + biotin group were lower than in egg-white group, especially there was significance (p less than 0.05) at 8 hours after the urease injection. Similarly, plasma ammonia levels in biotin-injected rats, in which 1 mg of biotin had been injected intraperitoneally prior to the experiment, were significantly low compared with saline-injected controls at 4 and 6 hours after urease administration. Results of plasma amino acid analysis, 9 hours after the urease injection indicated that Fischer's molar ratio (Leu + Ileu + Val/Tyr + Phe) was significantly higher in the biotin-injected rats than the saline-injected control. It suggests that biotin might decrease blood ammonia by facilitating the detoxification mechanism as follow: L-glutamate + NH3----L-glutamine.

  17. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study.

    Science.gov (United States)

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H B As; Peeters, Petra H; Weiderpass, Elisabete; Quirós, J Ramón; Agudo, Antonio; Sánchez, María-José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay-Tee; Travis, Ruth C; Schmidt, Julie A; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-15

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), and gallbladder and extrahepatic biliary tract (GBTC). Circulating standard AA, biogenic amines and hexoses were measured (Biocrates AbsoluteIDQ-p180Kit) in a case-control study nested within a large prospective cohort (147 HCC, 43 IHBC and 134 GBTC cases). Liver function and hepatitis status biomarkers were determined separately. Multivariable conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI) for log-transformed standardised (mean = 0, SD = 1) serum metabolite levels and relevant ratios in relation to HCC, IHBC or GBTC risk. Fourteen metabolites were significantly associated with HCC risk, of which seven metabolites and four ratios were the strongest predictors in continuous models. Leucine, lysine, glutamine and the ratio of branched chain to aromatic AA (Fischer's ratio) were inversely, while phenylalanine, tyrosine and their ratio, glutamate, glutamate/glutamine ratio, kynurenine and its ratio to tryptophan were positively associated with HCC risk. Confounding by hepatitis status and liver enzyme levels was observed. For the other cancers no significant associations were observed. In conclusion, imbalances of specific AA and biogenic amines may be involved in HCC development.

  18. CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.

    Science.gov (United States)

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-03-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.

  19. Metabolism profiling of amino-noscapine.

    Science.gov (United States)

    Qu, Hua-Jun; Qian, Yang

    2016-04-01

    Amino-noscapine is a promising noscapine derivative undergoing R&D as an efficient anti-tumor drug. In vitro phase I metabolism incubation system was employed. In vitro samples were analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro recombinant CYP isoforms screening was used to identify the drug-metabolizing enzymes involved in the metabolism of amino-noscapine. Multiple metabolics were formed, including the formation of metabolite undergoing cleavage of methylenedioxy group, hydroxylated metabolites, demethylated metabolites, and metabolites undergoing C-C cleavage. Nearly, all the CYP isoforms were involved in the metabolism of metabolites II, III, VII, IX, and X. CYP1A1 was demonstrated to be the major CYP isoform for the formation of metabolites IV and V. CYP1A1 and CYP3A4 mainly catalyzed the formation of metabolite VI. The metabolic formation of VIII was mainly catalyzed by CYP2C19 and CYP3A4. CYP3A4 was the main enzyme for the formation of XI. CYP2C9 mainly catalyzed the generation of metabolite XII. In conclusion, the metabolic pathway of amino-noscapine was elucidated in the present study using in vitro phase I incubation experiment, including the structural elucidation of metabolites and involved phase I drug-metabolizing enzymes. This information was helpful for the R&D of amino-noscapine.

  20. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  1. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  2. Dietary back-calculation using stable isotopes: can activities of enzymes involved in amino acid metabolism be used to improve estimates of trophic shifts in fish?

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    2007-06-01

    The aim of this study was (1) to assess the effects of dietary protein content and feeding level on trophic shifts of C and N isotopes (Delta delta(13)C(tissue-diet) and Delta delta(15)N(tissue-diet)) and (2) to test whether the measurement of the activities of two enzymes involved in the metabolism of amino acids could improve the accuracy of estimation of the trophic shifts of C and N isotopes. For this, 36 Nile tilapia (Oreochromis niloticus) were kept under controlled conditions for 8 weeks and fed at three different levels (2, 4 and 8 g kg(-0.8) d(-1)) with three diets differing in their protein content only (20, 29 and 39 %). For each fish, food to fish body trophic shifts of C and N isotopes were measured as well as the hepatic activities of aspartate aminotransferase (ASAT) and glutamate dehydrogenase (GDH). The feeding level affected the activities of ASAT and GDH as well as the trophic shifts of C and N isotopes significantly but the dietary protein content had no significant effect except on the specific activity of ASAT. Fish fed at the lowest level had significantly higher trophic shifts of C and N isotopes than fish fed at higher levels. The trophic shifts were significantly lower in fish with a high protein utilisation. Values of the 'goodness-of-fit' for linear regressions between enzyme activities and trophic shifts were low. Thus, activities of ASAT and GDH are not suitable for predicting estimates of trophic shifts in situations where the amount of food consumed or the dietary protein content is not known. In further studies, activities of enzymes involved in the metabolism of amino acids combined with measurements of the activities of other enzymes should be used to try and improve the accuracy of estimates of trophic shifts.

  3. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  4. Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes.

    Science.gov (United States)

    Estrada-Alcalde, Isabela; Tenorio-Guzman, Miriam R; Tovar, Armando R; Salinas-Rubio, Daniela; Torre-Villalvazo, Ivan; Torres, Nimbe; Noriega, Lilia G

    2017-04-01

    Branched-chain amino acid (BCAA) catabolism is regulated by the branched-chain aminotransferase (BCAT2) and the branched-chain α-keto acid dehydrogenase complex (BCKDH). BCAT2 and BCKDH expression and activity are modified during adipogenesis and altered in adipose tissues of mice with genetic or diet-induced obesity. However, little is known about how these modifications and alterations affect the intracellular metabolic fate of BCAAs during adipogenesis, in adipocytes from mice fed a control or high-fat diet or in C2C12 myotubes. Here, we demonstrate that BCAAs are mainly incorporated into proteins during the early stages of adipocyte differentiation. However, they are oxidized and incorporated into lipids during the late days of differentiation. Conversely, 92% and 97% of BCAA were oxidized, 1.6% and 6% were used for protein synthesis and 1.2% and 1.5% were incorporated into lipids in adipocytes from epididymal and subcutaneous adipose tissue, respectively. All three pathways were decreased in adipocytes from mice fed a high-fat diet. In C2C12 myotubes, leucine is mainly used for protein synthesis and palmitate is incorporated into lipids. Interestingly, leucine decreased both palmitate oxidation and its incorporation to lipids and proteins; and palmitate increased leucine oxidation and decreased its incorporation to lipids and proteins in a dose-dependent manner. These results demonstrate that BCAA metabolic fate differs between the early and late stages of adipocyte differentiation and in adipocytes from mice fed a control or high-fat diet; and that leucine affects the metabolic fate of palmitate and vice versa in C2C12 myotubes. J. Cell. Biochem. 118: 808-818, 2017. © 2016 Wiley Periodicals, Inc.

  5. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  6. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity

    Science.gov (United States)

    Central carbon metabolism (CCM) is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species and thus have not been obvious targets as candidates for crop improvement. We test this functional conservatio...

  7. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism

    DEFF Research Database (Denmark)

    Galindo, C; Larsen, Mogens; Ouellet, D R

    2015-01-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate...

  8. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  11. Mathematical model of metabolism and electrophysiology of amino acid and glucose stimulated insulin secretion: in vitro validation using a β-cell line.

    Directory of Open Access Journals (Sweden)

    Manuela Salvucci

    Full Text Available We integrated biological experimental data with mathematical modelling to gain insights into the role played by L-alanine in amino acid-stimulated insulin secretion (AASIS and in D-glucose-stimulated insulin secretion (GSIS, details important to the understanding of complex β-cell metabolic coupling relationships. We present an ordinary differential equations (ODEs based simplified kinetic model of core metabolic processes leading to ATP production (glycolysis, TCA cycle, L-alanine-specific reactions, respiratory chain, ATPase and proton leak and Ca(2+ handling (essential channels and pumps in the plasma membrane in pancreatic β-cells and relate these to insulin secretion. Experimental work was performed using a clonal rat insulin-secreting cell line (BRIN-BD11 to measure the consumption or production of a range of important biochemical parameters (D-glucose, L-alanine, ATP, insulin secretion and Ca(2+ levels. These measurements were then used to validate the theoretical model and fine-tune the parameters. Mathematical modelling was used to predict L-lactate and L-glutamate concentrations following D-glucose and/or L-alanine challenge and Ca(2+ levels upon stimulation with a non metabolizable L-alanine analogue. Experimental data and mathematical model simulations combined suggest that L-alanine produces a potent insulinotropic effect via both a stimulatory impact on β-cell metabolism and as a direct result of the membrane depolarization due to Ca(2+ influx triggered by L-alanine/Na(+ co-transport. Our simulations indicate that both high intracellular ATP and Ca(2+ concentrations are required in order to develop full insulin secretory responses. The model confirmed that K(+ ATP channel independent mechanisms of stimulation of intracellular Ca(2+ levels, via generation of mitochondrial coupling messengers, are essential for promotion of the full and sustained insulin secretion response in β-cells.

  12. Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids.

    Science.gov (United States)

    Shikata, Nahoko; Maki, Yukihiro; Nakatsui, Masahiko; Mori, Masato; Noguchi, Yasushi; Yoshida, Shintaro; Takahashi, Michio; Kondo, Nobuo; Okamoto, Masahiro

    2010-01-01

    The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.

  13. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  14. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-01-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution. PMID:27767182

  15. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  16. Alimentary proteins, amino acids and cholesterolemia.

    Science.gov (United States)

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  17. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    Science.gov (United States)

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  18. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  19. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    NARCIS (Netherlands)

    Costas, B.; Aragao, C.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arjona, F.J.; Mancera, J.M.; Dinis, M.T.; Conceicao, L.E.

    2012-01-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26 degrees C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino aci

  20. [Effect of synthetic cyclopentane beta,beta'-triketones on amino acid metabolism in roots of buckwheat (Fagopyrum esculentum Moench.) seedlings].

    Science.gov (United States)

    Demina, E A; Tishchenko, L Ia; Shestak, O P; Novikov, V L; Anisimov, M M

    2009-01-01

    Germination of buckwheat seeds in solutions of synthetic mono- and tricyclic cyclopentane-containing beta,beta'-triketones of various concentrations was accompanied by inhibition of seedling root growth and changes in the contents of glutamate, gamma-aminobutyric acid, proline, glutamine, and alanine. The monocyclic triketone also affected the amount of isoleucine. It is likely that the increase in proline content is a nonspecific response significant for enhancing stress tolerance in seedlings.

  1. Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer

    Directory of Open Access Journals (Sweden)

    Ramenghi Ugo

    2009-09-01

    Full Text Available Abstract Background Diamond-Blackfan anaemia (DBA is a rare inherited red cell hypoplasia characterised by a defect in the maturation of erythroid progenitors and in some cases associated with malformations. Patients have an increased risk of solid tumors. Mutations have been found in several ribosomal protein (RP genes, i.e RPS19, RPS24, RPS17, RPL5, RPL11, RPL35A. Studies in haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and fibroblasts display abnormal rRNA processing and impaired proliferation. Results To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that 421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism, as well as genes associated to cell death, cancer and tissue development. Conclusion This analysis reports for the first time an abnormal gene expression profile in a non-haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a defect in general or specific protein synthesis.

  2. Microbial production of amino acids in Japan.

    Science.gov (United States)

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  3. Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory.

    Science.gov (United States)

    Sharma, Gaurav; Attri, Savita Verma; Behra, Bijaylaxmi; Bhisikar, Swapnil; Kumar, Praveen; Tageja, Minni; Sharda, Sheetal; Singhi, Pratibha; Singhi, Sunit

    2014-05-01

    The present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations were carried out using Lichrospher 100 RP-18e (5 μm) 250 × 4.0 mm column connected to 100 CN 4.0 × 4.0 mm guard column on a quaternary HPLC system and run time was 53 min. Linearity of the peak areas for different concentrations ranging from 2.5 to 100 pmol/μL of individual amino acids was determined. A good linearity (R (2) > 0.998) was achieved in the standard mixture for each amino acid. Recovery of amino acids incorporated at the time of derivatization ranged from 95 to 106 %. Using this method we have established the normative data of amino acids in plasma, the profile being comparable to the range reported in literature and identified cases of classical homocystinuria, cobalamin defect/deficiency, non-ketotic hyperglycinemia, hyperprolinemia, ketotic hyperglycinemia, urea cycle defect and maple syrup urine disease.

  4. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  5. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  6. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  7. High-Quality Draft Genome Sequence of Kallotenue papyrolyticum JKG1T Reveals Broad Heterotrophic Capacity Focused on Carbohydrate and Amino Acid Metabolism.

    Science.gov (United States)

    Hedlund, Brian P; Murugapiran, Senthil K; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris; Duffy, Kecia; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Williams, Amanda J; Cole, Jessica K; Dodsworth, Jeremy A; Woyke, Tanja

    2015-12-03

    The draft genome of Kallotenue papyrolyticum JKG1(T), a member of the order Kallotenuales, class Chloroflexia, consists of 4,475,263 bp in 4 contigs and encodes 4,010 predicted genes, 49 tRNA-encoding genes, and 3 rRNA operons. The genome is consistent with a heterotrophic lifestyle including catabolism of polysaccharides and amino acids.

  8. Effect of domoic acid on brain amino acid levels.

    Science.gov (United States)

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  9. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  10. Neonatal sulfur amino acid metabolism

    NARCIS (Netherlands)

    M.A. Riedijk (Maaike)

    2008-01-01

    textabstractAt birth, infants can be classified either by gestational age (GA) or by weight. Neonates born < 37 weeks are classified as preterm, < 28 weeks as very preterm and < 26 weeks as extremely preterm infants. Prematurely born infants can also be classified by birth weight as follows (1): - L

  11. Plant growth, metabolism and adaptation in relation to stress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and mannitol on amino acids, nucleic acids and protein patterns in Vicia faba seedlings?

    Science.gov (United States)

    Younis, M E; Hasaneen, M N A; Kazamel, A M S

    2009-03-01

    The adverse effects of either NaCl or mannitol on amino acids, protein patterns and nucleic acids in Vicia faba seeds were investigated. The exogenous addition of 4 mM ascorbic acid to the stressing media in which the broad bean seeds were germinated in combination with either the ionic (NaCl) or osmotic (mannitol) stressor induced significant protective changes in the total amount and in the relative composition of amino acids in general and in proline, glycine, glutamic, aspartic, alanine and serine in particular. It also induced changes in nucleic acids (RNA and DNA) content. These changes occurred throughout the entire period of the experiments (12 days). Separate administration of NaCl or mannitol enhanced the occurrence of particular novel proteins that were not detected in control bean seeds (water medium). Protein banding patterns of broad bean seedlings treated with NaCl or mannitol in combination with 4 mM ascorbic acid showed different de novo protein bands, with different molecular weights, at different stages of seedlings growth, with lower levels or a nearly complete absence of the major stress proteins. The pattern of changes for amino acids and nucleic acids and the range of protein bands extracted from the variously treated broad bean seedlings indicate a positive role of ascorbic acid in the alleviation of the damage effects induced by NaCl and mannitol. The importance of this role in the stress tolerance of broad beans is discussed.

  12. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  13. Plasma amino acid relationships during parenteral nutrition.

    Science.gov (United States)

    Wells, F E; Smits, B J

    1980-01-01

    The plasma amino acidfs of 17 patients were studied before and during total parenteral nutrition (TPN). The amino acid (AA) pattern changed similarly for all patients. The AA concentration changes relative to preinfusion (PAER) were the most informative index of change. Two groups of AA were defined, the "branched chain" group (five amino acids) and the "hepatic" group (four amino acids) based on the correlation of PAER values. Comparison of PAER values with the ratio of AA intake to requirement indicated that the requirements of the sick patients were more similar to those of children than those of healthy adults.

  14. Nutritional value of D-amino acids, D-peptides, and amino acid derivatives in mice.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-01-01

    This paper describes a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L -phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino acid for such determinations may be preferable to protein-based diets.

  15. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  16. The Apollo Program and Amino Acids

    Science.gov (United States)

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  17. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  18. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  19. Differential distribution of amino acids in plants.

    Science.gov (United States)

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-03-15

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  20. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  1. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  2. Single amino acid supplementation in aminoacidopathies : a systematic review

    NARCIS (Netherlands)

    van Vliet, Danique; Derks, Terry G. J.; van Rijn, Margreet; de Groot, Martijn J.; MacDonald, Anita; Heiner-Fokkema, M. Rebecca; van Spronsen, Francjan J.

    2014-01-01

    Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with

  3. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  4. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  5. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  6. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  7. Amino Acids in the Martian Meteorite Nakhla

    Science.gov (United States)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  8. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity.

    Science.gov (United States)

    Liu, Cuili; Zhao, Li; Yu, Guanghui

    2011-08-01

    γ-Amino butyric acid (GABA) and proline play a crucial role in protecting plants during various environmental stresses. Their synthesis is from the common precursor glutamic acid, which is catalyzed by glutamate decarboxylase and Δ(1) -pyrroline-5-carboxylate synthetase respectively. However, the dominant pathway under water stress has not yet been established. To explore this, excised tobacco leaves were used to simulate a water-stress condition. The results showed GABA content was much higher than that of proline in leaves under water-deficit and non-water-deficit conditions. Specifically, the amount of GABA significantly increased compared to proline under continuous water loss for 16 h, indicating that GABA biosynthesis is the dominant pathway from glutamic acid metabolism under these conditions. Quantitative reverse transcription polymerase chain reaction and protein Western gel-blot analysis further confirmed this. To explore the function of GABA accumulation, a system producing superoxide anion (O(2) (-) ), peroxide hydrogen (H(2) O(2) ), and singlet oxygen ((1) O(2) ) was employed to investigate the scavenging role on free-radical production. The results demonstrated that the scavenging ability of GABA for O(2) (-) , H(2) O(2) , and (1) O(2) was significantly higher than that of proline. This indicated that GABA acts as an effective osmolyte to reduce the production of reactive oxygen species under water stress.

  9. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  10. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  11. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  12. Age-related changes of muscle and plasma amino acids in healthy children.

    Science.gov (United States)

    Hammarqvist, Folke; Angsten, Gertrud; Meurling, Staffan; Andersson, Kerstin; Wernerman, Jan

    2010-07-01

    The aim of the study was to explore if changes in muscle and plasma amino acid concentrations developed during growth and differed from levels seen in adults. The gradient and concentrations of free amino acids in muscle and plasma were investigated in relation to age in metabolic healthy children. Plasma and specimens from the abdominal muscle were obtained during elective surgery. The children were grouped into three groups (group 1: amino acids analysed increased with age, namely taurine, aspartate, threonine, alanine, valine, isoleucine, leucine, histidine, as well as the total sums of branched chain amino acids (BCAA), basic amino acids (BAA) and total sum of amino acids (P amino acids correlated with age (P < 0.05). These results indicate that there is an age dependency of the amino acid pattern in skeletal muscle and plasma during growth.

  13. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  14. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Science.gov (United States)

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased ( P glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved ( P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased ( P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased ( P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased ( P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased ( P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions ( P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  15. Amino acids in the Martian meteorite Nakhla.

    Science.gov (United States)

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  16. Functional amino acids in nutrition and health.

    Science.gov (United States)

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  17. Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2016-12-01

    Full Text Available The objective of this study was to profile plasma amino acids (AA and derivatives of their metabolism during the periparturient period in response to supplemental rumen-protected methionine (MET or rumen-protected choline (CHOL. Forty cows were fed from −21 through 30 days around parturition in a 2 × 2 factorial design a diet containing MET or CHOL. MET supply led to greater circulating methionine and proportion of methionine in the essential AA pool, total AA, and total sulfur-containing compounds. Lysine in total AA also was greater in these cows, indicating a better overall AA profile. Sulfur-containing compounds (cystathionine, cystine, homocystine, and taurine were greater in MET-fed cows, indicating an enriched sulfur-containing compound pool due to enhanced transsulfuration activity. Circulating essential AA and total AA concentrations were greater in cows supplied MET due to greater lysine, arginine, tryptophan, threonine, proline, asparagine, alanine, and citrulline. In contrast, CHOL supply had no effect on essential AA or total AA, and only tryptophan and cystine were greater. Plasma 3-methylhistidine concentration was lower in response to CHOL supply, suggesting less tissue protein mobilization in these cows. Overall, the data revealed that enhanced periparturient supply of MET has positive effects on plasma AA profiles and overall antioxidant status.

  18. An astrophysically-relevant mechanism for amino acid enantiomer enrichment

    NARCIS (Netherlands)

    P. Fletcher, S.; B. C. Jagt, R.; Feringa, B.L.

    2007-01-01

    The sublimation of low ee amino acids was examined while exploring simple mechanisms by which high ee amino acids can be generated under conditions that exist in space; significant enantioenrichment of a variety of amino acids by sublimation was achieved.

  19. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic

    Science.gov (United States)

    Mompeán, Carmen; Bode, Antonio; Gier, Elizabeth; McCarthy, Matthew D.

    2016-08-01

    A comparative analysis of natural abundance of stable N isotopes (δ15N) in individual amino acids and bulk organic matter of size-fractionated plankton revealed the differential impact of nitrogen fixation through the food web in a transect across the subtropical North Atlantic. All δ15N measurements showed low values in the central region, followed by the western zone, while maximum δ15N values were found in the eastern zone. These results were consistent with the prevalence of nitrogen fixation in the central and western zones, and the influence of the west Africa upwelling in the eastern zone. Use of compound-specific amino acid isotope data (CSI-AA) revealed relatively low variability in the impact of diazotrophic nitrogen within the different plankton size fractions, while δ15N of bulk organic matter showed high variability with size. Explicit CSI-AA trophic position estimates showed a small increase with mean plankton size class and varied in a relatively narrow range 1.8-2.5), with the lowest values in the central zone. High correlations between bulk plankton δ15N and individual amino acids (in particular Phe and Thr), as well as reconstructed total protein δ15N values, suggest a set of new relationships that may be important to tracing direct plankton contributions to nitrogen recycling in the ocean, including detrital organic nitrogen pools. Overall, these new results represent the most detailed investigation of CSI-AA data in plankton size classes to date, and indicated a greater importance of diazotrophic N than suggested by concurrent measurements of bulk δ15N, abundance of large nitrogen fixing organisms or nitrogen fixation rates.

  20. 人早期胚胎解冻后氨基酸代谢变化的研究%Research on amino acid metabolism of human early embryo after frozen-thawed

    Institute of Scientific and Technical Information of China (English)

    唐杰; 方丛; 李婷婷; 张敏芳; 梁晓燕

    2011-01-01

    Objective: To study the amino acid metabolism of human early frozen-thawed embryo.Methods: Eighteen spare human embryos obtained from 13 patients undergoing in vitro ferbilization (IVF) were researched.Spare human embryos on day 3 of development were cultured individually in 20 μl drops of pre-equilibrated blastocyst culture medium for 2 hours before vitrification.Embryo-free drops were incubated in the same dish as the controls.The remaining 15 μl mediums from the drops were collected before freezing, 1/2,1,2,4,6 and 24 hours after thawing, and were analyzed for 20 free amino acids level by high performance liquid chromatography ( HPLC).Results: The levels of glutamine, histidine, tryptophan and lysine in blank controls were different among different time points.However, they were not increased or decreased gradually.The concentrations of other 16 amino acids remained same at different time points.One hour after thawing, concentrations of 20 free amino acids were all increased comparing with the blank control at same time point; the amino acid appearance and turnover was significant higher than that pre-freezing ( P < 0.05).The amino acid appearance had no significant difference betweem 2, 6 or 24 hours after thawing and pre-freezing ( P > 0.05).The amino acid depletion pre-freezing was significant lower than that 1/2, 4, 6 and 24 hours after thawing (P <0.05).The amino acid appearance 1/2 and 4 hours after thawing was significant lower than that pre-freezing ( P < 0.05).There was no significant difference in amino acid turnover between 1/2,4 hours after thawing and pre-freezing (P > 0.05).The amino acid turnover 24 hours after thawing was significant higher than that pre-freezing (P < 0.05).The amino acid turnover 1/2,4 and 6 hours after thawing were significant lower than that 1 hour after thawing (P <0.05).Conclusion: Human early embryo begins amino acid metabolism and recovers from metabolism stasis 1/2 hour after embryo thawing , and the amino

  1. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  2. Genetically encoded fluorescent coumarin amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangyun [San Diego, CA; Xie, Jianming [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  3. Rationale and design of a proof-of-concept trial investigating the effect of uninterrupted perioperative (parenteral nutrition on amino acid profile, cardiomyocytes structure, and cardiac perfusion and metabolism of patients undergoing coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Cocchieri Riccardo

    2011-03-01

    Full Text Available Abstract Background Malnutrition is very common in patients undergoing cardiac surgery. Malnutrition can change myocardial substrate utilization which can induce adverse effects on myocardial metabolism and function. We aim to investigate the hypothesis that there is a disturbed amino acids profile in the cardiac surgical patient which can be normalized by (parenteral nutrition before, during and after surgery, subsequently improving cardiomyocyte structure, cardiac perfusion and glucose metabolism. Methods/Design This randomized controlled intervention study investigates the effect of uninterrupted perioperative (parenteral nutrition on cardiac function in 48 patients undergoing coronary artery bypass grafting. Patients are given enteral nutrition (n = 16 or parenteral nutrition (n = 16, at least two days before, during, and two days after coronary artery bypass grafting, or are treated according to the standard guidelines (control (n = 16. We will illustrate the effect of (parenteral nutrition on differences in concentrations of amino acids and asymmetric dimethylarginine and in activity of dimethylarginine dimethylaminohydrolase and arginase in cardiac tissue and blood plasma. In addition, cardiomyocyte structure by histological, immuno-histochemical and ultrastructural analysis will be compared between the (parenteral and control group. Furthermore, differences in cardiac perfusion and global left ventricular function and glucose metabolism, and their changes after coronary artery bypass grafting are evaluated by electrocardiography-gated myocardial perfusion scintigraphy and 18F-fluorodeoxy-glucose positron emission tomography respectively. Finally, fat free mass is measured before and after intervention with bioelectrical impedance spectrometry in order to evaluate nutritional status. Trial registration Netherlands Trial Register (NTR: NTR2183

  4. Evaluation of amino acids as turfgrass nematicides.

    Science.gov (United States)

    Zhang, Yun; Luc, John E; Crow, William T

    2010-12-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.

  5. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.

  6. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  7. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins

    OpenAIRE

    Linares de la Morena, María Lourdes; Agejas Chicharro, Francisco Javier; Alajarín Ferrández, Ramón; Vaquero López, Juan José; Álvarez-Builla Gómez, Julio

    2001-01-01

    The synthesis Of L-2-amino-8-oxodecanoic acid (Aoda) is described. This is a rare amino acid component of apicidins, a family of new cyclic tetrapeptides, inhibitors of histone deacetylase. Aoda was synthesised in seven steps from L-glutamic acid along with some derivatives. Universidad de Alcalá Fundación General de la Universidad de Alcalá FEDER

  8. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  9. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  10. Serum amino acid profiles and their alterations in colorectal cancer.

    Science.gov (United States)

    Leichtle, Alexander Benedikt; Nuoffer, Jean-Marc; Ceglarek, Uta; Kase, Julia; Conrad, Tim; Witzigmann, Helmut; Thiery, Joachim; Fiedler, Georg Martin

    2012-08-01

    Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.

  11. In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos

    DEFF Research Database (Denmark)

    Bhanja, Subrat K.; Hotowy, Anna Malgorzata; Mehra, Manish;

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers...... but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control...... embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, Nano...

  12. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  13. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  14. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  15. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides.

  16. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    Science.gov (United States)

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium.

  17. Altered amino acid excretion in children with autism.

    Science.gov (United States)

    Evans, Craig; Dunstan, R Hugh; Rothkirch, Tony; Roberts, Tim K; Reichelt, Karl L; Cosford, Robyn; Deed, Gary; Ellis, Libby B; Sparkes, Diane L

    2008-02-01

    Autism is a complex and life-long behavioural disorder of unknown aetiology. Recent reports have indicated the involvement of digestive tract dysfunction and possible complications from inadequate nutrition. In this study, 34 autistic children (12 untreated and 22 receiving therapeutic treatments related to digestive function and nutritional uptake) and 29 control subjects (all 5-15 years of age) were investigated to determine whether there were any anomalies in the urinary excretion of amino acids, glucose, sucrose, arabinose and tartaric acid using GC/FID and GC/MS analysis techniques. Significantly lower relative urinary levels of essential amino acids were revealed for both the untreated (mean +/- SEM, 32.53 +/- 3.09%) and treated (31.98 +/- 2.87%) autistic children compared with the controls (37.87 +/- 1.50%). There were no significant differences in measured excretions of sugars or tartaric acid. It was concluded that the untreated autistic children had evidence of altered metabolic homeostasis.

  18. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  19. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  20. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    Science.gov (United States)

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  1. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  2. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    At the Kennedy Centre for Phenylketonuria, Denmark, large neutral amino acids (LNAAs) are being used to treat adult and adolescent patients who are nonadherent to dietary treatment for phenylketonuria (PKU). At the start of treatment, a patient must undergo dietary analysis and regular blood...... sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  3. Microbial degradation of poly(amino acid)s.

    Science.gov (United States)

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  4. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...

  5. Amino Acid Formation on Interstellar Dust Particles

    Science.gov (United States)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  6. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  7. Dietary Supplements and Sports Performance: Amino Acids

    Directory of Open Access Journals (Sweden)

    Williams Melvin

    2005-12-01

    Full Text Available Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations. The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  8. [Sublicons containing amino acids and nucleotides].

    Science.gov (United States)

    Kaĭmakov, E A

    1979-01-01

    Sublicons have been obtained. Sublicons are threadlike structures appearing during sublimation of frozen solutions of small concentrations, containing racemate mixture of amino acids and nucleotides. It is suggested that close location of chains and their zonal distribution by the section of helix spire forming sublicon wall, should provide the formation of stereohomogenous and complementary successions of biomonomers of different clases.

  9. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  10. 21 CFR 172.320 - Amino acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives §...

  11. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers.

    Science.gov (United States)

    Rochell, S J; Parsons, C M; Dilger, R N

    2016-07-01

    An experiment was conducted to evaluate growth performance, apparent ileal digestibility (AID) of amino acids, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein, an acute-phase protein, in broilers inoculated with graded doses of E. acervulina oocysts. Ross 308 male broilers (400 total) were housed in battery cages from 1 to 21 d post-hatch and received common corn-soybean meal-based diets throughout the experiment. At 9 d post-hatch, birds were individually weighed and allotted to 4 treatment groups with 10 replicate cages of 10 birds per cage. At 15 d post-hatch, all birds were inoculated with 1 mL of distilled water that contained 0, 2.5 × 10(5), 5.0 × 10(5), or 1.0 × 10(6) sporulated E. acervulina oocysts. At 21 d, birds were euthanized for collection of blood and ileal digesta. Body weight gain and feed efficiency decreased linearly (P amino acids by an average of 2.6 percentage units for birds inoculated with 1.0 × 10(6) oocysts compared with uninfected birds. Infection with E. acervulina caused a quadratic decrease (P acid glycoprotein of broilers was not influenced (P > 0.05) by E. acervulina infection. In conclusion, E. acervulina challenge adversely impacted growth performance, plasma carotenoids, and AID of amino acids in a dose-dependent manner. However, plasma amino acid responses to graded E. acervulina inoculation doses varied considerably among amino acids. Thus, these results indicated that alterations in amino acid metabolism caused by E. acervulina infection extended beyond reduced amino acid digestibility.

  12. Amino acid quality indices of the leaves of Clerodendrum volubile

    Directory of Open Access Journals (Sweden)

    Ochuko Lucky Erukainure

    2016-04-01

    Full Text Available Objective: To evaluate the amino acid profile and quality indices of Clerodendrum volubile (C. volubile leaves. Methods: Dried leaves of C. volubile were blended, defatted and subjected to amino acid analysis using the technicon sequential multi-sample amino acid analyzer. The amino acid quality indices which covers for chemical score, essential amino acid index, nutritional index, true digestibility, protein digestibility corrected amino acid score, and digestible indispensable amino acid score were evaluated using standard formulas. Results: Amino acid analysis revealed glutamic acid to have the highest concentration, with cysteine having the least. Aspartic acid had the highest chemical score, this was followed by glycine, histidine and arginine, respectively. The least scores were observed in serine and methionine. Glutamic acid had the highest value for true digestibility and protein digestibility corrected amino acid score, with the least observed in cysteine. Digestible indispensable amino acid score evaluation showed histidine to have the highest value for infants (birth to 6 months, threonine for children (6 months to 3 years, while isoleucine was observed to have the highest value for older children, adolescents and adults. The essential amino acid index value was less than 4, while nutritional index value was less than 0.5. Conclusions: These results indicated the leaves of C. volubile as a potential source of amino acids in the human diet as portrayed by its amino acids profile and qualities.

  13. Biosynthesis of natural products containing β-amino acids.

    Science.gov (United States)

    Kudo, Fumitaka; Miyanaga, Akimasa; Eguchi, Tadashi

    2014-08-01

    Covering: up to January, 2014. We focus here on β-amino acids as components of complex natural products because the presence of β-amino acids produces structural diversity in natural products and provides characteristic architectures beyond those of ordinary α-L-amino acids, thus generating significant and unique biological functions in nature. In this review, we first survey the known bioactive β-amino acid-containing natural products including nonribosomal peptides, macrolactam polyketides, and nucleoside-β-amino acid hybrids. Next, the biosynthetic enzymes that form β-amino acids from α-amino acids and the de novo synthesis of β-amino acids are summarized. Then, the mechanisms of β-amino acid incorporation into natural products are reviewed. Because it is anticipated that the rational swapping of the β-amino acid moieties with various side chains and stereochemistries by biosynthetic engineering should lead to the creation of novel architectures and bioactive compounds, the accumulation of knowledge regarding β-amino acid-containing natural product biosynthetic machinery could have a significant impact in this field. In addition, genome mining of characteristic β-amino acid biosynthetic genes and unique β-amino acid incorporation machinery could lead to the discovery of new β-amino acid-containing natural products.

  14. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity.

    Science.gov (United States)

    McGaha, Tracy L; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C; Mellor, Andrew L

    2012-09-01

    Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.

  15. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    Science.gov (United States)

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  16. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    Science.gov (United States)

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.

  17. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  18. Mated Drosophila melanogaster females consume more amino acids during the dark phase.

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.

  19. Mated Drosophila melanogaster females consume more amino acids during the dark phase

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073

  20. Intermolecular Vibrations of Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  1. Direct amino acid analyses of mozzarella cheese.

    Science.gov (United States)

    Hoskins, M N

    1985-12-01

    The amino acid content of mozzarella (low moisture, part skim milk) and asadero cheeses was determined by the column chromatographic method. Data from the direct analyses of the mozzarella cheeses were compared with the calculated amino acid composition reported in tables in Agriculture Handbook No. 8-1. Phenylalanine and tyrosine contents were found to be higher in the direct analyses than in the calculated data in Handbook No. 8-1 (1.390 gm and 1.127 gm for phenylalanine, and 1.493 gm and 1.249 gm for tyrosine per 100 gm edible portion, respectively). That is of particular concern in the dietary management of phenylketonuria, in which accuracy in computing levels of phenylalanine and tyrosine is essential.

  2. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  3. A Green Synthesis of Diisopropyl Phosphoryl Amino Acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.

  4. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    Science.gov (United States)

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  5. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  6. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    Science.gov (United States)

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  7. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  8. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  9. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    Science.gov (United States)

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  10. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 1. Nitrogen metabolism and supply of amino acids.

    Science.gov (United States)

    Vanhatalo, A; Kuoppala, K; Ahvenjärvi, S; Rinne, M

    2009-11-01

    This study investigated the effects of plant species (red clover vs. timothy-meadow fescue) and forage maturity at primary harvest (early vs. late cut silage) on rumen fermentation, nutrient digestion, and nitrogen metabolism including omasal canal AA flow and plasma AA concentration in lactating cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 x 5 Latin square with 21-d periods. The diets consisted of early-cut and late-cut grass and red clover silage, respectively, and a mixture of late-cut grass and early-cut red clover silages given ad libitum with 9 kg/d of a standard concentrate. Grass silage dry matter intake tended to decrease but that of red clover silages tended to increase with advancing maturity. Milk yields were unchanged among treatments, milk protein and fat concentrations being lower for red clover than for grass silage diets. Rumen fluid pH was unchanged but volatile fatty acid and ammonia concentrations were higher for red clover than for grass silage diets. Intake of N, and omasal canal flows of total nonammonia N (NAN), microbial NAN, and dietary NAN were higher for red clover than for grass silage diets but were not affected by forage maturity. However, microbial NAN flow and amount of N excreted in the feces decreased with advancing maturity for grass diets but increased for red clover diets. Apparent ruminal N degradability of the diets was unchanged, but true ruminal N degradability decreased and efficiency of microbial synthesis increased with red clover diets compared with grass silage diets. Omasal canal flows of AA, except those for Met and Cys, were on average 20% higher for red clover than grass silage diets. Omasal canal digesta concentrations of Leu, Phe, branched-chain, and essential AA were higher but those of Met lower for red clover than for grass silage diets. Plasma AA concentrations, except for His (unchanged) and Met (lower), were higher for red clover than for grass diets. However, none

  11. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements.

    Science.gov (United States)

    Bornø, Andreas; van Hall, Gerrit

    2014-03-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined. The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization/ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration curve correlations for amino acids were on average; r(2)=0.998. Interday accuracy for amino acids determined in spiked plasma was on average 97.3% and the coefficient of variation (CV) was 2.6%. The ([ring-(13)C6]/D5Phenylalanine) enrichment CV's for machine reproducibility in muscle tissue fluid and plasma were 4.4 and 0.8%, and the interday variability was 3.4% and the recovery was 90.5%, respectively. In conclusion, we have developed and validated a method for quantitative amino acid profiling that meets the requirements for systemic and tissue human in vivo amino acid and protein turnover kinetics measurements. Moreover, citrulline, ornithine, π-methyl-histidine, τ-methyl-l-histidine, hydroxy-proline and carnitine were analysed but when similar precision and accuray are required an additional stable istopically labeled internal standard for these meatablites should be be added.

  12. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2.

    Science.gov (United States)

    Langouët, S; Welti, D H; Kerriguy, N; Fay, L B; Huynh-Ba, T; Markovic, J; Guengerich, F P; Guillouzo, A; Turesky, R J

    2001-02-01

    Metabolic pathways of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) remain incompletely characterized in humans. In this study, the metabolism of MeIQx was investigated in primary human hepatocytes. Six metabolites were characterized by UV and mass spectroscopy. Novel metabolites were additionally characterized by 1H NMR spectroscopy. The carcinogenic metabolite, 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline, which is formed by cytochrome P450 1A2 (P450 1A2), was found to be transformed into the N(2)-glucuronide conjugate, N(2)-(beta-1-glucosiduronyl)-2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline. The phase II conjugates N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)sulfamic acid and N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, as well as the 7-oxo derivatives of MeIQx and N-desmethyl-MeIQx, 2-amino-3,8-dimethyl-6-hydro-7H-imidazo[4,5-f]quinoxalin-7-one (7-oxo-MeIQx), and 2-amino-6-hydro-8-methyl-7H-imidazo[4,5-f]quinoxalin-7-one (N-desmethyl-7-oxo-MeIQx), thought to be formed exclusively by the intestinal flora, were also identified. A novel metabolite was characterized as 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), and it was the predominant metabolite formed in hepatocytes exposed to MeIQx at levels approaching human exposure. IQx-8-COOH formation is catalyzed by P450 1A2. This metabolite is a detoxication product and does not induce umuC gene expression in Salmonella typhimurium strain NM2009. IQx-8-COOH is also the principal oxidation product of MeIQx excreted in human urine [Turesky, R., et al. (1998) Chem. Res. Toxicol. 11, 217-225]. Thus, P450 1A2 is involved in both the metabolic activation and detoxication of this procarcinogen in humans. Analogous metabolism experiments were conducted with hepatocytes of untreated rats and rats pretreated with the P450 inducer 3-methylcholanthrene. Unlike human hepatocytes, the rat cell preparations did not produce IQx-8

  13. An impaired respiratory electron chain triggers down-regulation of the energy metabolism and de-ubiquitination of solute carrier amino acid transporters

    OpenAIRE

    Aretz, I.; Hardt, C.; Wittig, I.; Meierhofer, D.

    2016-01-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, rho0 cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post transcriptional modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets a...

  14. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  15. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  16. Neighbor preferences of amino acids and context-dependent effects of amino acid substitutions in human, mouse, and dog.

    Science.gov (United States)

    Fu, Mingchuan; Huang, Zhuoran; Mao, Yuanhui; Tao, Shiheng

    2014-09-10

    Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  17. Neighbor Preferences of Amino Acids and Context-Dependent Effects of Amino Acid Substitutions in Human, Mouse, and Dog

    Directory of Open Access Journals (Sweden)

    Mingchuan Fu

    2014-09-01

    Full Text Available Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  18. [Bound amino acids in local strains of Trichomonas vaginalis].

    Science.gov (United States)

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  19. Characterization of amino acids using Raman spectroscopy

    Science.gov (United States)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  20. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  1. Profiles of amino acids and biogenic amines in the plasma of Cri-du-Chat patients.

    Science.gov (United States)

    Furtado, Danielle Zildeana Sousa; de Moura Leite, Fernando Brunale Vilela; Barreto, Cleber Nunes; Faria, Bernadete; Jedlicka, Leticia Dias Lima; de Jesus Silva, Elisângela; da Silva, Heron Dominguez Torres; Bechara, Etelvino Jose Henriques; Assunção, Nilson Antonio

    2017-03-21

    Cri-du-chat syndrome (CDCS) is a rare innate disease attributed to chromosome 5p deletion characterized by a cat-like cry, craniofacial malformation, and altered behavior of affected children. Metabolomic analysis and a chemometric approach allow description of the metabolic profile of CDCS as compared to normal subjects. In the present work, UHPLC/MS was employed to analyze blood samples withdrawn from CDCS carriers (n=18) and normal parental subjects (n=18), all aged 0-34 years, aiming to set up a representative CDCS profile constructed from 33 targeted amino acids and biogenic amines. Methionine sulfoxide (MetO) was of particular concern with respect to CDCS redox balance. Increased serotonin (3-fold), methionine sulfoxide (2-fold), and Asp levels, and a little lower Orn, citrulline, Leu, Val, Ile, Asn, Gln, Trp, Thr, His, Phe, Met, and creatinine levels were found in the plasma of CDCS patients. Nitrotyrosine and Trp did not differ in normal and CDCS individuals.The accumulated metabolites may reflect, respectively, disturbances in the redox balance, deficient purine biosynthesis, and altered behavior, whereas the amino acid abatement in the latter group may affect the homeostasis of the urea cycle, citric acid cycle, branched chain amino acid synthesis, Tyr and Trp metabolism and amino acid biosynthesis. The identification of enzymatic deficiencies leading to the amino acid burden in CDCS is further required for elucidating its molecular bases and eventually propose specific or mixed amino acid supplementation to newborn patients aiming to balance their metabolism.

  2. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    Science.gov (United States)

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  3. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  4. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions.

  5. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    OpenAIRE

    Csilla Albert; Gabriella Pohn; Katalin Lóki; Szidónia Salamon; Beáta Albert; P. Sára; Z. Mándoki; Jánosné Csapó; Csapó, J.

    2007-01-01

    Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particula...

  6. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  7. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgaris L.) Varieties.

    Science.gov (United States)

    John, K M Maria; Luthria, Devanand

    2015-12-01

    In this study, we compared the amino acid, organic acid and sugar profiles of 3 different varieties of dry beans (black bean [BB], dark red bean [DRB], and cranberry bean [CB]). The efficiency of the 2 commonly used extraction solvents (water and methanol:chloroform:water [2.5:1:1, v/v/v/]) for cultivar differentiation based on their metabolic profile was also investigated. The results showed that the BB contained the highest concentration of amino acids followed by DRB and CB samples. Phenylalanine, a precursor for the biosynthesis of phenolic secondary metabolites was detected at low concentration in CB samples and correlated with the reduced anthocyanins content in CB extract as documented in the published literature. Comparing the extractability of 2 extraction solvents, methanol:chloroform:water (2.5:1:1, v/v/v/) showed higher recoveries of amino acids from 3 beans, whereas, sugars were extracted in higher concentration with water. Analytically, gas chromatography detected sugars (9), amino acids (11), and organic acids (3) in a single run after derivatization of the extracts. In comparison, ion chromatography detected only sugars in a single run without any derivatization step with the tested procedure. Bean samples are better differentiated by the sugar content extracted with water as compared to the aqueous organic solvent extracts using partial least-square discriminant analysis.

  8. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  9. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  10. Natural occurrence and industrial applications of D-amino acids: an overview.

    Science.gov (United States)

    Martínez-Rodríguez, Sergio; Martínez-Gómez, Ana Isabel; Rodríguez-Vico, Felipe; Clemente-Jiménez, Josefa María; Las Heras-Vázquez, Francisco Javier

    2010-06-01

    Interest in D-amino acids has increased in recent decades with the development of new analytical methods highlighting their presence in all kingdoms of life. Their involvement in physiological functions, and the presence of metabolic routes for their synthesis and degradation have been shown. Furthermore, D-amino acids are gaining considerable importance in the pharmaceutical industry. The immense amount of information scattered throughout the literature makes it difficult to achieve a general overview of their applications. This review summarizes the state-of-the-art on D-amino acid applications and occurrence, providing both established and neophyte researchers with a comprehensive introduction to this topic.

  11. Conformational properties of oxazoline-amino acids

    Science.gov (United States)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  12. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    Science.gov (United States)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  13. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    Science.gov (United States)

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  14. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes.

    Science.gov (United States)

    MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J

    2015-03-01

    Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of

  15. Uptake and conversion of D-amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Gördes, Dirk; Kolukisaoglu, Üner; Thurow, Kerstin

    2011-02-01

    The D-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of D-amino acids (D-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of D-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their D-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey's reagent and separated by HPLC-MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied D-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of D-AAs. The addition of particular amino acids (D-Trp, D-Phe, D-Met and D-His) led to the accumulation of the corresponding L-amino acid. In almost all cases, the application of a D-AA resulted in the accumulation of D-Ala and D-Glu. The presented results indicate that soil borne D-AAs can actively be taken up and metabolized via central metabolic routes.

  16. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    Science.gov (United States)

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated.

  17. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  18. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    Science.gov (United States)

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  19. Citric acid cycle and role of its intermediates in metabolism.

    Science.gov (United States)

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  20. An Autotrophic Origin for the Coded Amino Acids is Concordant with the Coevolution Theory of the Genetic Code.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-10-01

    The coevolution theory of the origin of the genetic code maintains that the biosynthetic relationships between amino acids co-evolved with the genetic code organization. In other words, the metabolism of amino acids co-evolved with the organization of the genetic code because the biosynthetic pathways of amino acids occurred on tRNA-like molecules. Thus, a heterotrophic origin of amino acids-also only of those involved in the early phase of the structuring of the genetic code-would seem to contradict the main postulate of the coevolution theory. As a matter of fact, this origin not being linked to the metabolism of amino acids in any way-being taken from a physical setting-would seem to remove the possibility that this metabolism had instead heavily contributed to the structuring of the genetic code. Therefore, I have analyzed the structure of the genetic code and mechanisms that brought to its structuring for understanding if the coevolution theory is compatible with autotrophic or heterotrophic conditions. One of the arguments was that an autotrophic origin of amino acids would have the advantage to be able to directly link their metabolism to the structure of the genetic code if-as hypothesized by the coevolution theory-the biosyntheses of amino acids occurred on tRNA-like molecules. Simultaneously, a heterotrophic origin would not have been able to link the metabolism of amino acids to the structure of the genetic code for the absence of a precise determinism of allocation of amino acids, that is to say of a clear mechanism-linked to tRNA-like molecules, for example-that would have determined the specific pattern observed in the genetic code of the biosynthetic relationships between amino acids. The conclusion is that an autotrophic origin of coded amino acids would seem to be the condition under which the genetic code originated.

  1. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  2. The amino acid transporter SLC6A14 in cancer and its potential use in chemotherapy

    Directory of Open Access Journals (Sweden)

    Yangzom D. Bhutia

    2014-12-01

    Full Text Available Tumor cells have an increased demand for glucose and amino acids to support their rapid growth, and also exhibit alterations in biochemical pathways that metabolize these nutrients. Transport across the plasma membrane is essential to feed glucose and amino acids into these tumor cell-selective metabolic pathways. Transfer of amino acids across biological membranes occurs via a multitude of transporters; tumor cells must upregulate one or more of these transporters to satisfy their increased demand for amino acids. Among the amino acid transporters, SLC6A14 stands out with specific functional features uniquely suited for the biological needs of the tumor cells. This transporter is indeed upregulated in tumors of epithelial origin, including colon cancer, cervical cancer, breast cancer, and pancreatic cancer. Since normal cells express this transporter only at low levels, blockade of this transporter should lead to amino acid starvation selectively in tumor cells, thus having little effect on normal cells. This offers a novel, yet logical, strategy for the treatment of cancers that are associated with upregulation of SLC6A14. In addition, a variety of amino acid-based prodrugs are recognized as substrates by SLC6A14, thus raising the possibility that anticancer drugs can be delivered into tumor cells selectively via this transporter in the form of amino acid prodrugs. This strategy allows exposure of SLC6A14-positive tumor cells to chemotherapy with minimal off-target effects. In conclusion, the amino acid transporter SLC6A14 holds great potential not only as a direct drug target for cancer therapy but also for tumor cell-selective delivery of anticancer drugs.

  3. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  4. Twenty natural amino acids identification by a photochromic sensor chip.

    Science.gov (United States)

    Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin

    2015-01-20

    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.

  5. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  6. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  7. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  8. Diversity of amino acids in a typical chernozem of Moldova

    Science.gov (United States)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  9. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  10. Preference for and learning of amino acids in larval Drosophila.

    Science.gov (United States)

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  11. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  12. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    Science.gov (United States)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  13. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans.

    Science.gov (United States)

    Santiago, Brendaliz; MacGilvray, Matthew; Faustoferri, Roberta C; Quivey, Robert G

    2012-04-01

    The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353-1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638-641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007-4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414-419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F(1)-F(o) ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans.

  14. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  15. SIFT: predicting amino acid changes that affect protein function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2003-01-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in...

  16. A new synthetic protocol for coumarin amino acid

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2013-02-01

    Full Text Available The hydrochloride of the racemic amino acid (2-(7-hydroxycoumarin-4-ylethylglycine, which can serve as a fluorescent probe in proteins, and two halogen derivatives of it, were synthesized by using a new synthetic protocol in five steps. It is less costly and relatively easy to prepare this kind of fluorescent amino acid with the new synthetic method. Furthermore, it can be applied to synthesize other derivatives of the coumarin amino acid with some specific properties.

  17. A Novel Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Hui; LI Shuo; XU Pen-gFei

    2003-01-01

    @@ β-hydroxy-α-amino acids constitute an important class of compounds as naturally occurring amino acids and as components of many complex natural products possessing a wide range of biological activities. [1] As a consequence of the essential role played by these amino acids in the biological systems and their utility as synthetic building blocks, a number of useful strategies have been devised for their preparation. [2

  18. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  19. Amino Acid transport in protoplasts isolated from soybean leaves.

    Science.gov (United States)

    Vernooy, C D; Lin, W

    1986-05-01

    We isolated large quantities of mesophyll protoplasts from source and sink leaves of soybean plants and examined them for amino acid uptake. Accumulation of amino acids in isolated protoplasts was linear for at least 40 minutes. Uptake kinetics revealed the presence of both saturable and linear components. Increasing external pH decreases the uptake. The uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone at 15 micromolar inhibited and fusicoccin at 10 micromolar stimulated amino acid uptake. Our data are consistent with a proton-cotransport mechanism for the uptake of l-glutamine and alpha-amino isobutyric acid into soybean mesophyll cells.

  20. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  1. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  2. Synthesis of novel fullerene α-amino acid conjugates

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  3. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  4. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  5. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, Robert F [ORNL; Park, Dr Seung Bum [Seoul National University

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  6. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  7. The effects of the formula of amino acids enriched BCAA on nutritional support in traumatic patients

    Institute of Scientific and Technical Information of China (English)

    Xin-Ying Wang; Ning Li; Jun Gu; Wei-Qin Li; Jie-Shou Li

    2003-01-01

    AIM: To investigate the formula of amino acid enriched BCAA on nutritional support in traumatic patients after operation.METHODS: 40 adult patients after moderate or large abdominal operations were enrolled in a prospective,randomly and single-blind-controlled study, and total parenteral nutrition (TPN) with either formula of amino acid (AA group, 20 cases) or formula of amino acid enriched BCAA (BCAA group, 20 cases). From the second day after operation, total parenteral nutrition was infused to the patients in both groups with equal calorie and equal nitrogen by central or peripheral vein during more than 12 hours per day for 6 days. Meanwhile, nitrogen balance was assayed by collecting 24 hours urine for 6 days. The markers of protein metabolism were investigated such as amino acid patterns, levels of total protein, albumin, prealbumin,transferrin and fibronectin in serum.RESULTS: The positive nitrogen balance in BCAA group occurred two days earlier than that in AA group. The serum levels oftotal protein and albumin in BCAA group were increased more obviously than that in AA group. The concentration of valine was notably increased and the concentration of arginine was markedly decreased in BCAA group after the formula of amino acids enriched BCAA transfusion.CONCLUSION: The formula of amino acid enriched BCAA may normalize the levels of serum amino acids, reduce the proteolysis, increase the synthesis of protein, improve the nutritional status of traumatic patients after operation.

  8. Amino acid uptake in arterio-venous serum of normal and cancerous colon tissues

    Institute of Scientific and Technical Information of China (English)

    Lin-Bo Wang; Jian-Guo Shen; Su-Zhan Zhang; Ke-Feng Ding; Shu Zheng

    2004-01-01

    AIM: To investigate the difference of amino acid uptake between normal and cancerous colon tissues.METHODS: Sixteen patients with colon cancer were enrolled in our study. Blood samples were taken during operations, serum amino acid concentrations of blood from cancerous or normal colon were analyzed. Amino acid uptake rate was calculated by the A-V difference and evaluated statistically.RESULTS: Except for methionine, the uptake rate of amino acids in cancer was higher than that in normal colon (25.01% vs-2.29%, P<0.01). The amino acid uptake rate did not correlate to the size of tumor mass (P>0.05). There was no statistical significance in the amino acid uptake rate according to the Dukes stage, though it was higher in patients with Dukes stage C or D than that with Dukes stage B (P>0.05).CONCLUSION: Abnormal synthetic metabolism of colon cancer may contribute to its higher amino acid uptake rate than that of normal colon.

  9. Cerebral metabolic and circulatory effects of 1,1,1-trichloroethane, a neurotoxic industrial solvent. 2. Tissue concentrations of labile phosphates, glycolytic metabolites, citric acid cycle intermediates, amino acids, and cyclic nucleotides.

    Science.gov (United States)

    Folbergrová, J; Hougaard, K; Westerberg, E; Siesjö, B K

    1984-01-01

    In order to obtain information on the mechanisms of neurotoxicity of 1,1,1-trichloroethane, rats maintained artificially ventilated on N2O:O2 (70:30) were exposed to a concentration of 1,1,1-trichloroethane of 8000 ppm, 43.7 mg L-1, that induces moderate ataxia in awake, spontaneously breathing animals. After 5 and 60 min of exposure, as well as after a 60-min recovery period following 60 min of exposure, the brain was frozen in situ and cortical tissue was assayed for phosphocreatine (PCr), + ATP, ADP, AMP, glycogen, glucose, pyruvate, lactate, citric acid cycle intermediates, associated amino acids, and cyclic nucleotides; in addition, purine nucleotides, nucleosides, and bases were assayed by HPLC techniques. Exposure of animals to 1,1,1-trichloroethane failed to alter blood glucose, lactate, and pyruvate concentrations. However, the solvent induced highly significant increases in tissue lactate and pyruvate concentrations that were also reflected in cisternal CSF. Associated with these changes were increases in all citric acid cycle intermediates except succinate, an increase in alanine concentration, and a rise in the glutamate/aspartate ratio. After 5 min, a small decrease in glycogen concentration also occurred. All these changes were reversed when the exposure was terminated. No changes were observed in tissue concentrations of purine nucleotides, nucleosides, and bases except for a small reduction of ATP concentration after 60 min of exposure, still noticeable after 60 min of recovery. Apart from a small reduction in cAMP concentration after 5 min of exposure, cyclic nucleotide concentrations did not change.

  10. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Csilla Albert

    2007-06-01

    Full Text Available Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particularly significant growth in the microorganism number range from 1.5x106 to 2.9x106. Based on analysis of curds and cheese samples produced using different technologies we have come to the conclusion that for fresh dairy products and for those matured over a short time there was a close relation between total microorganism number and free D-amino acid and free L-amino acid contents. At the same time it was found that the ratio of the enantiomers was not affected by the total microorganism number. For dairy products, however, where amino acid production capability of the microbial cultures considerably exceeds, production of microorganisms originally present in the milk raw material, free amino acid contents of the milk product (both D- and L-enantiomers seem to be independent of the composition of milk raw material.

  11. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  12. Vibrational and photoionization spectroscopy of biomolecules: aliphatic amino acid structures.

    Science.gov (United States)

    Hu, Yongjun; Bernstein, Elliot R

    2008-04-28

    The aliphatic amino acids glycine, valine, leucine, and isoleucine are thermally placed into the gas phase and expanded into a vacuum system for access by time of flight mass spectroscopy and infrared (IR) spectroscopy in the energy range of 2500-4000 cm(-1) (CH, NH, OH, and stretching vibrations). The isolated neutral amino acids are ionized by a single photon of 10.5 eV energy (118 nm), which exceeds by less than 2 eV their reported ionization thresholds. As has been reported for many hydrogen bonded acid-base systems (e.g., water, ammonia, alcohol, acid clusters, and acid molecules), the amino acids undergo a structural rearrangement in the ion state (e.g., in simplest form, a proton transfer) that imparts sufficient excess vibrational energy to the ion to completely fragment it. No parent ions are observed. If the neutral ground state amino acids are exposed to IR radiation prior to ionization, an IR spectrum of the individual isomers for each amino acid can be determined by observation of the ion intensity of the different fragment mass channels. Both the IR spectrum and fragmentation patterns for individual isomers can be qualitatively identified and related to a particular isomer in each instance. Thus, each fragment ion detected presents an IR spectrum of its particular parent amino acid isomer. In some instances, the absorption of IR radiation by the neutral amino acid parent isomer increases a particular fragmentation mass channel intensity, while other fragmentation mass channel intensities decrease. This phenomenon can be rationalized by considering that with added energy in the molecule, the fragmentation channel populations can be modulated by the added vibrational energy in the rearranged ions. This observation also suggests that the IR absorption does not induce isomerization in the ground electronic state of these amino acids. These data are consistent with theoretical predictions for isolated amino acid secondary structures and can be related to

  13. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  14. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  15. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    Science.gov (United States)

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  16. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    Science.gov (United States)

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  17. Synthesis of gold nanoparticles using various amino acids.

    Science.gov (United States)

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  18. Free amino acids in botanicals and botanical preparations.

    Science.gov (United States)

    Carratù, B; Boniglia, C; Giammarioli, S; Mosca, M; Sanzini, E

    2008-06-01

    Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.

  19. Effect of intraoperative amino acid infusion on glucose metabolism in dogs%术中静脉输注氨基酸对犬糖代谢的影响

    Institute of Scientific and Technical Information of China (English)

    金琳; 葛圣金; 薛张纲

    2008-01-01

    Objective To investigate the effect of intraoperative amino acid infusion on perioperative glucose metabolism. Methods Thirty-six adult mongrel dogs of both sexes weighing 12-16 kg undergoing partially small intestine resection under general anesthesia were randomly allocated to one of 4 groups (n=9 each): Ⅰ control group received normal saline (C);Ⅱ,Ⅲ,Ⅳ amino acid group (A1, A2, A3) received iv infusion of 2.85%, 5.70% and 11.4% 18-amino acid respectively at 12 ml·kg-1·h-1 during operation starting from skin incision until the end of operation. The animals were premedicated with ketamine and diazepam. Anesthesia was induced with propofol 5-10 mg/kg, fentanyl 2 μg/kg and vecuronium 0.2 mg/kg and maintained with 1%-3% isoflurane and intermittent iv boluses of fentanyl and vecuronium. The animals were intubated and mechanically ventilated. PET CO2 was maintained at 30-40 mm Hg. ECG, MAP, HR, PET CO2 and esophageal T0 were continuously monitored. Venous blood samples were collected before anesthesia (T1), 15 min after induction of anesthesia (T2), 15, 30 min and 1 h after skin incision (T3-5), when abdomen was closed (T6) and 1,2,4,8 and 24 h after operation (T7-11) for determination of plasma glucose, lactate, insulin and glucagon. Liver biopsy was performed at T6-11 and muscle biopsy at T2,6,11 for measurement of hepatic and muscle glucagon. Homa index was used to estimate the degree of insulin resistance. Results The plasma glucose and insulin concentrations were significantly increased at T3-11 as compared with the baseline at T1 in all 4 groups (P<0.05). The plasma insulin concentrations were significantly higher in group A1 (at T6), group A2 (at T3,6) and group A3 (at T3-11) than in group C (P<0.05). Homa index was significantly higher in group A3(at T3-8) than in group C. Conclusion Intraoperative amino acid infusion increases plasma insulin concentration but does not prevent glycogenolysis especially high dose amino acid infusion.%目的 探讨术

  20. Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Werther, Tobias; Spinka, Michael; Tittmann, Kai; Schütz, Anja; Golbik, Ralph; Mrestani-Klaus, Carmen; Hübner, Gerhard; König, Stephan

    2008-02-29

    The gene rv0853c from Mycobacterium tuberculosis strain H37Rv codes for a thiamine diphosphate-dependent alpha-keto acid decarboxylase (MtKDC), an enzyme involved in the amino acid degradation via the Ehrlich pathway. Steady state kinetic experiments were performed to determine the substrate specificity of MtKDC. The mycobacterial enzyme was found to convert a broad spectrum of branched-chain and aromatic alpha-keto acids. Stopped-flow kinetics showed that MtKDC is allosterically activated by alpha-keto acids. Even more, we demonstrate that also amino acids are potent activators of this thiamine diphosphate-dependent enzyme. Thus, metabolic flow through the Ehrlich pathway can be directly regulated at the decarboxylation step. The influence of amino acids on MtKDC catalysis was investigated, and implications for other thiamine diphosphate-dependent enzymes are discussed.

  1. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.

    Science.gov (United States)

    Owczarek, Alina; Safro, Mark; Wolfson, Alexey D

    2008-01-08

    Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.

  2. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  3. The Path of Carbon in Photosynthesis II. Amino Acids

    Science.gov (United States)

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  4. Metabolic engineering for amino-, oligo-, and polysugar production in microbes.

    Science.gov (United States)

    Hossain, Gazi Sakir; Shin, Hyun-Dong; Li, Jianghua; Wang, Miao; Du, Guocheng; Chen, Jian; Liu, Long

    2016-03-01

    Amino-, oligo-, and polysugars are important for both medicinal and industrial applications. Microbial processes used in production of such sugars are not only carbon-intensive and energy-demanding processes but also have other distinct disadvantages such as low productivity, low yields, and by-product contamination. Therefore, metabolic engineering has emerged as an effective tool for developing engineered strains to deliver production strategies for many valuable sugars, which were previously difficult to manufacture by other means, in necessary amounts to support their applications. In this review, the recent strategies used for metabolic engineering are summarized and future prospects of this technique are discussed. We hope that this review will contribute to the development of functional and high-value sugar production by metabolic engineering strategies.

  5. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  6. Representation of protein-sequence information by amino acid subalphabets

    DEFF Research Database (Denmark)

    Andersen, C.A.F.; Brunak, Søren

    2004-01-01

    -sequence information, using machine learning strategies, where the primary goal is the discovery of novel powerful representations for use in AI techniques. In the case of proteins and the 20 different amino acids they typically contain, it is also a secondary goal to discover how the current selection of amino acids...

  7. Origin of Homochirality of Amino Acids in the Biosphere

    Directory of Open Access Journals (Sweden)

    Shosuke Kojo

    2010-05-01

    Full Text Available Discussions are made concerning realistic mechanisms for the origin of L-amino acids in the biosphere. As the most plausible mechanism, it is proposed that a mixture of racemic amino acids in the prebiotic sea caused spontaneous and effective optical resolution through self crystallization, even if asymmetric synthesis of a single amino acid has never occurred without the aid of an optically active molecule. This hypothesis is based on recrystallization of a mixture of D,L-amino acids in the presence of excess of D,L-asparagine (Asn. The enantiomeric excess (ee of each amino acid in the resulting crystals indicates that crystallization of co-existing amino acids with the configuration same as that of Asn took place, although it was incidental whether the enrichment occurred in L- or D-amino acids. In addition, the resulting ee was sufficiently high (up to 100% to account for the predominance of L-amino acids on the earth.

  8. Amino acid determination in some edible Mexican insects.

    Science.gov (United States)

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  9. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  10. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  11. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA)

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  12. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  13. Heat-Bath Cooling of Spins in Amino Acids

    CERN Document Server

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Heat-bath cooling is a component of practicable algorithmic cooling of spins, an approach which might be useful for in vivo 13C spectroscopy, in particular for prolonged metabolic processes where substrates that are hyperpolarized ex-vivo are not effective. We applied heat-bath cooling to 1,2-13C2-amino acids, using the \\alpha\\ protons to shift entropy from selected carbons to the environment. For glutamate and glycine, the polarizations of both labeled carbons were enhanced, and in other experiments the total entropy of each spin system was shown to decrease. The effect of adding Magnevist, a gadolinium contrast agent, on heat-bath cooling of glutamate was investigated.

  14. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    Directory of Open Access Journals (Sweden)

    Bimal Mohanty

    2014-01-01

    Full Text Available Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

  15. Amino Acid compositions of 27 food fishes and their importance in clinical nutrition.

    Science.gov (United States)

    Mohanty, Bimal; Mahanty, Arabinda; Ganguly, Satabdi; Sankar, T V; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md; Debnath, Dipesh; Vijayagopal, P; Sridhar, N; Akhtar, M S; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Paria, Prasenjit; Das, Debajeet; Das, Pushpita; Vijayan, K K; Laxmanan, P T; Sharma, A P

    2014-01-01

    Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

  16. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  17. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.

    Directory of Open Access Journals (Sweden)

    João Daniel Santos Fernandes

    Full Text Available Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR. We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8. The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i quality of nitrogen (Nitrogen Catabolism Repression, NCR and carbon sources (Carbon Catabolism Repression, CCR, (ii amino acid availability in the extracellular environment (SPS-sensing and (iii nutritional deprivation (Global Amino Acid Control, GAAC. This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.

  18. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids1[OPEN

    Science.gov (United States)

    Deason, Nicholas; DellaPenna, Dean

    2017-01-01

    Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed’s nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. PMID:27872244

  19. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  20. Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

    OpenAIRE

    Yang Jiang; Adam J. Rose; Sijmonsma, Tjeerd P.; Angelika Bröer; Anja Pfenninger; Stephan Herzig; Dieter Schmoll; Stefan Bröer

    2015-01-01

    Objective: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B0AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. Methods: Metabolic tests...

  1. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    Science.gov (United States)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  2. Treatment of Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... report card Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  3. Intestinal amino acid metabolism in neonates

    NARCIS (Netherlands)

    S.R.D. van der Schoor (Sophie)

    2003-01-01

    markdownabstract__Abstract__ At birth infants can be classified on the basis of their gestational age or on their weight. Infants born before 37 weeks of gestation are premature, those born with a weight less than 2500 g are low birth weight infants (LBW), those weighing less than 1500 g are very l

  4. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  5. Adaptive amino acid composition in collagens of parasitic nematodes.

    Science.gov (United States)

    Hughes, Austin L

    2015-04-01

    Amino acid composition was analyzed in the glycine-rich repeat region of 306 collagens belonging to three major families of collagens from both parasitic and free-living nematodes. The collagens of parasitic species showed a tendency toward decreased usage of the hydrophilic residues A, D, and Q and increased usage of the hydrophobic resides I, L, and M; and this trend was seen in parasitic species of both the order Rhabdita and the order Spirurida. The amino acid composition of collagens of parasitic Rhabdita thus tended to resemble those of Spirurida more than that of free-living Rhabdita, suggesting an association between amino acid composition and a parasitic lifestyle. Computer predictions suggested that the more hydrophobic amino acid composition was associated with a reduction of the propensity towards B-cell epitope formation, suggesting that evasion of host immune responses may be a major selective factor responsible for the parasite-specific trend in collagen amino acid composition.

  6. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  7. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  8. Independence divergence-generated binary trees of amino acids.

    Science.gov (United States)

    Tusnády, G E; Tusnády, G; Simon, I

    1995-05-01

    The discovery of the relationship between amino acids is important in terms of the replacement ability, as used in protein engineering homology studies, and gaining a better understanding of the roles which various properties of the residues play in the creation of a unique, stable, 3-D protein structure. Amino acid sequences of proteins edited by evolution are anything but random. The measure of nonrandomness, i.e. the level of editing, can be characterized by an independence divergence value. This parameter is used to generate binary tree relationships between amino acids. The relationships of residues presented in this paper are based on protein building features and not on the physico-chemical characteristics of amino acids. This approach is not biased by the tautology present in all sequence similarity-based relationship studies. The roles which various physico-chemical characteristics play in the determination of the relationships between amino acids are also discussed.

  9. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  10. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  11. Exporters for Production of Amino Acids and Other Small Molecules.

    Science.gov (United States)

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  12. Oral branched-chain amino acids decrease whole-body proteolysis

    Science.gov (United States)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  13. Amino Acid Profile of Some New Vartieties of Oil Seeds

    Directory of Open Access Journals (Sweden)

    Satish Ingale and S.K. Shrivastava

    2011-04-01

    Full Text Available There are large varieties of oil seeds and legumes in India, which are part of traditional food system but whose nutritional and economic values have not been completely determine and are far less exploited for both human and livestock utilization. The objective of this study was to evaluate Sunflower (Helianths annuus LSF-11, Sunflower (Helianths annuus LSF-8, Safflower (Carthamus tinctorius PBNS-12, Safflower (Carthamus tinctorius PBNS-40, and Ground nut (Arachis hypogaea JL-24 seeds with the aim of qualifying and quantifying chemical information that might serve as a guide to exploit its potentials and benefits for human and animal nutrition. The amino acid profile of these oil seed were carried out using standard methods. Amino acid analysis using technical sequential multisampling amino acid analyzer detected all essential and non essential amino acids. The seeds are rich in four amino acids (EAA and NEAA (g/16g N Glutamic acid (5.083, Aspartic acid (3.459, Proline (6.412 and Methionine (3.001%, respectively. The other amino acids compared well with the FAO reference protein, Serine appeared to be the most limiting amino acid percent. Based on results of this study, the lesser known and under-utilized oil seeds, they can be a potential source and energy supplements in livestock feed.

  14. Elevated amniotic fluid amino acid levels in fetuses with gastroschisis

    Directory of Open Access Journals (Sweden)

    A. Kale

    2006-08-01

    Full Text Available Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological amino acid kit by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer. The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine and non-essential amino acids (alanine, glycine, proline, and tyrosine in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05. A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05. The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.

  15. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  16. Excretion of amino acids by humans during space flight

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (pvaline on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  17. Non-protein amino acids in peptide design

    Indian Academy of Sciences (India)

    S Aravinda; N Shamala; Rituparna S Roy; P Balaram

    2003-10-01

    An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the use -aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments and DPro-Xxx segments for nucleating of -hairpin structures. - and -amino acid residues have been used to expand the range of designed polypeptide structures.

  18. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity.

    Science.gov (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi

    2012-11-01

    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  19. Enantioseparation of Amino Acids by Micelle-Enhanced Ultrafiltration : Experimental and Theoretical Studies of Copper(II) Amino Acid Interactions

    NARCIS (Netherlands)

    Bruin, de T.J.M.

    2000-01-01

    A micelle-enhanced ultrafiltration system, which can potentially be used for large scale separations, has been used to investigate the resolution of amino acid enantiomers. For this purpose amino acid derivatives were synthesized, which in combination with copper(II) ions were used as chiral selecto

  20. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution.

    Science.gov (United States)

    Zeng, Yihang; Cai, Wensheng; Shao, Xueguang

    2015-06-01

    A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion-exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non-negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62-108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.

  1. Diauxic growth of Geotrichum candidum and Penicillium camembertii on amino acids and glucose

    Directory of Open Access Journals (Sweden)

    M. Aziza

    2012-06-01

    Full Text Available The purpose of this work was to examine physiological differences between the yeast Geotrichum candidum and the mould Penicillium camembertii, organisms involved in the industrial process of cheese ripening. Three groups of amino acids had previously been characterized, based on their carbon assimilation and dissimilation by the two fungal species. For both of them, a diauxic growth phase had been shown for a group of amino acids, which however had not been examined in light of physiological differences between the two microorganisms. In this work, the higher level of enzymatic activities of P. camembertii if compared to G. candidum was confirmed since a continuous and sequential use of both carbon substrates, glucose and arginine, was recorded during P. camembertii culture; while after glucose depletion, a clear stationary phase was recorded before the assimilation of the considered amino acid as both carbon and nitrogen sources by G. candidum. This behaviour was confirmed for the three amino acids tested, i.e., arginine, proline and glutamic acid. Contrarily, during the two growth phases, on glucose and the test amino acid, respectively, higher growth rates were recorded for G. candidum compared to P. camembertii, showing higher substrate utilisation efficiency by G. candidum. Improving the knowledge regarding the metabolization of amino acids might be helpful in designing strategies aiming at improving processes such as cheese ripening. The work should be followed up by similar works using small peptides.

  2. Organometallic and Bioorganometallic Chemistry – Ferrocene Amino Acids

    Directory of Open Access Journals (Sweden)

    Barišić, L.

    2012-01-01

    Full Text Available This article is the second part of a series dealing with organometallic and bioorganometallic chemistry. In the first part of this series a short review on the history and development of these disciplines was given, emphasizing the importance and scope of bioorganometallic chemistry as a new field dealing with conjugates of organometallics and biomolecules (DNA, PNA, amino acids, peptides.... From the variety of biorganometallics, syntheses and properties of simple conjugates of ferrocene with natural amino acids/peptides were elaborated inter alia. This material is the basis for the second part in which ferrocene amino acids are described. The introduction presents nonproteinogenic alicyclic and aromatic amino acids as the models for the title compounds. Naturally occurring amino acids labelled with ferrocene moiety mostly retain properties of the biomolecules included. Contrary to these ω-ferrocenylamino acids, one could imagine specific amino acids with inserted ferrocene core belonging to either homo- or heterodisubstituted type. The central part of this article is devoted to our investigations of the second type - H2N-(CH2m-Fn-(CH2n-COOH. The general rational procedure for synthesis of these compounds and of their N- and/or C-protected derivatives via the azide intermediates N3-CO-(CH2m- Fn-(CH2n-COOMe has been described. In the solid state derivatives of ferrocene amino acids contain intermolecular hydrogen bonds giving dimeric structures, three-dimensional networks or endless helical chains. The solutions of homologues Ac-NH-(CH2m-Fn-(CH2n-COOMe in nonpolar solvents are dominated by open form conformers. Compounds containing 2–3 ferrocene cores connected by amide, imide and oxalamide spacers were prepared by oligomerization of 1'-aminoferrocene-1-carboxylic acid (Fca or by its condensation with the appropriate reagents. Similar to natural amino acids, ferrocene amino acids are water-soluble substances with high melting points

  3. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  4. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    Science.gov (United States)

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables.

  5. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  6. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    Directory of Open Access Journals (Sweden)

    Akiyoshi Hoshino

    2009-06-01

    Full Text Available Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1 system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source and keto acids (oxylic acid sources. In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin.

  7. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  8. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    Science.gov (United States)

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  9. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  10. Effects of dietary methionine on feed utilization, plasma amino acid profiles and gene expression in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine

    performances. The reason for this is often suggested to be related to difference in amino acid uptake kinetics during digestion, resulting in a temporal mismatch in amino acid availability, resulting in poorer at protein synthesis site. In addition to their role as building blocks in protein synthesis, amino...... acids also serve as substrates for synthesis of metabolic intermediates, and increasing evidence shows that amino acids also function as signaling factors in the regulation of intermediary metabolism and growth related pathways. The present thesis comprises four supporting papers, based on two...... (free or bound) on hepatic intermediary metabolism using the same diets as in Paper III. The diets were fed to rainbow trout for 6 weeks, followed by sampling for i) hepatic gene expressions, ii) hepatosomatic index (HSI), iii) postprandial ammonia excretion, and iv) plasma methionine levels...

  11. Amino Acid Synthesis in Seafloor Environments on Icy Worlds

    Science.gov (United States)

    Flores, Erika; Barge, Laura; VanderVelde, David; Kallas, Kayo; Baum, Marc M.; Russell, Michael J.; Kanik, Isik

    2016-10-01

    In 2005, the Cassini mission detected plumes erupting from Enceladus' surface, containing carbon dioxide, methane, silica, and possibly ammonia. Subsequent laboratory experiments indicated that the silica particles in the plumes were generated under alkaline conditions and at moderate temperatures of ~90°C (Hsu et al., 2015); one scenario for such conditions would be the existence of alkaline (serpentinization-driven) hydrothermal activity within Enceladus. Alkaline vents are significant since they have been proposed as a likely environment for the emergence of metabolism on the early Earth (Russell et al. 2014) and thus could also provide a mechanism for origin of life on ocean worlds with a water-rock interface. Alkaline vents in an acidic, iron-containing ocean could produce mineral precipitates that could act as primitive enzymes or catalysts mediating organic reactions; for example, metal sulfides can catalyze the reductive amination of pyruvate to alanine (Novikov and Copley 2013). We have conducted experiments testing the synthesis of amino acids catalyzed by other iron minerals that might be expected to precipitate on the seafloor of early Earth or Enceladus. Preliminary results indicate that amino acids as well as other organic products can be synthesized in 1-3 days under alkaline hydrothermal conditions. We also find that the yield and type of organic products is highly dependent on pH and temperature, implying that understanding the specifics of the geochemical hydrothermal gradients on Enceladus (or other ocean worlds) will be significant in determining their potential for synthesizing building blocks for life.Hsu, H.-W. et al. (2015), Nature 519, 207-210.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Novikov Y. and Copley S. D. (2013) PNAS 110, 33, 13283-13288.

  12. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  13. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  14. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  15. The origin of amino acids in lunar regolith samples

    Science.gov (United States)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  16. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, Philip Douglas [ORNL; Pan, Chongle [ORNL

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  17. A common periodic table of codons and amino acids.

    Science.gov (United States)

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  18. PROTEINS, PEPTIDES AND AMINO ACIDS AS MARKERS OF BRONCHOPULMONARY DISEASES

    Directory of Open Access Journals (Sweden)

    V. I. Fyodorov

    2013-01-01

    Full Text Available The article is a review of current literature on a content of proteins, peptides and amino acids in human exhaled breath. The results of proteomics and metabolomics applying for selective detection of individual proteins, peptides and amino acids are described. The study of exhaled breath condensate and exhaled endogenous particles contained lung proteins are considered. The peculiarities of protein, peptide and amino acid content in exhaled breath at various respiratory diseases are described. It is shown that the detectable substances may be specific markers of individual diseases.

  19. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  20. SIFT: Predicting amino acid changes that affect protein function.

    Science.gov (United States)

    Ng, Pauline C; Henikoff, Steven

    2003-07-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

  1. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  2. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    OpenAIRE

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E.; Anderson, Ellen J.; Walford, Geoffrey A.

    2016-01-01

    Background: Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective: To test whether a specific dietary intervention, using differences in BCAA intake, alters fasti...

  3. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente;

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  4. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  5. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  6. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men.

    Science.gov (United States)

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; Sato, Juichi; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10-90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrations of plasma isoleucine, valine and phenylalanine subsequently decreased after ingestion, and those of methionine and tyrosine tended to decrease. The effects of ingested leucine on other plasma amino acids were biphasic, being higher at lower doses (10-20 mg/kg body weight). Isoleucine or valine intake also caused corresponding plasma amino acid concentrations to rapidly elevate, and peaks at 30-40 min after ingestion were much higher than that of plasma leucine after leucine ingestion. However, the increase in plasma isoleucine and valine concentrations essentially did not affect those of other plasma amino acids. The rate of decline among peak plasma BCAA concentrations was the highest for leucine, followed by isoleucine and valine. Oral mixed BCAAs promoted the decline in plasma isoleucine and valine concentrations. These results suggest that plasma leucine is a regulator of the plasma concentrations of BCAAs, methionine and aromatic amino acids.

  7. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  8. Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment.

    Directory of Open Access Journals (Sweden)

    Miles Trupp

    Full Text Available UNLABELLED: Statins are widely prescribed for reducing LDL-cholesterol (C and risk for cardiovascular disease (CVD, but there is considerable variation in therapeutic response. We used a gas chromatography-time-of-flight mass-spectrometry-based metabolomics platform to evaluate global effects of simvastatin on intermediary metabolism. Analyses were conducted in 148 participants in the Cholesterol and Pharmacogenetics study who were profiled pre and six weeks post treatment with 40 mg/day simvastatin: 100 randomly selected from the full range of the LDL-C response distribution and 24 each from the top and bottom 10% of this distribution ("good" and "poor" responders, respectively. The metabolic signature of drug exposure in the full range of responders included essential amino acids, lauric acid (p<0.0055, q<0.055, and alpha-tocopherol (p<0.0003, q<0.017. Using the HumanCyc database and pathway enrichment analysis, we observed that the metabolites of drug exposure were enriched for the pathway class amino acid degradation (p<0.0032. Metabolites whose change correlated with LDL-C lowering response to simvastatin in the full range responders included cystine, urea cycle intermediates, and the dibasic amino acids ornithine, citrulline and lysine. These dibasic amino acids share plasma membrane transporters with arginine, the rate-limiting substrate for nitric oxide synthase (NOS, a critical mediator of cardiovascular health. Baseline metabolic profiles of the good and poor responders were analyzed by orthogonal partial least square discriminant analysis so as to determine the metabolites that best separated the two response groups and could be predictive of LDL-C response. Among these were xanthine, 2-hydroxyvaleric acid, succinic acid, stearic acid, and fructose. Together, the findings from this study indicate that clusters of metabolites involved in multiple pathways not directly connected with cholesterol metabolism may play a role in modulating

  9. Mycosporine-like amino acids from coral dinoflagellates.

    Science.gov (United States)

    Rosic, Nedeljka N; Dove, Sophie

    2011-12-01

    Coral reefs are one of the most important marine ecosystems, providing habitat for approximately a quarter of all marine organisms. Within the foundation of this ecosystem, reef-building corals form mutualistic symbioses with unicellular photosynthetic dinoflagellates of the genus Symbiodinium. Exposure to UV radiation (UVR) (280 to 400 nm) especially when combined with thermal stress has been recognized as an important abiotic factor leading to the loss of algal symbionts from coral tissue and/or a reduction in their pigment concentration and coral bleaching. UVR may damage biological macromolecules, increase the level of mutagenesis in cells, and destabilize the symbiosis between the coral host and their dinoflagellate symbionts. In nature, corals and other marine organisms are protected from harmful UVR through several important photoprotective mechanisms that include the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). MAAs are small (<400-Da), colorless, water-soluble compounds made of a cyclohexenone or cyclohexenimine chromophore that is bound to an amino acid residue or its imino alcohol. These secondary metabolites are natural biological sunscreens characterized by a maximum absorbance in the UVA and UVB ranges of 310 to 362 nm. In addition to their photoprotective role, MAAs act as antioxidants scavenging reactive oxygen species (ROS) and suppressing singlet oxygen-induced damage. It has been proposed that MAAs are synthesized during the first part of the shikimate pathway, and recently, it has been suggested that they are synthesized in the pentose phosphate pathway. The shikimate pathway is not found in animals, but in plants and microbes, it connects the metabolism of carbohydrates to the biosynthesis of aromatic compounds. However, both the complete enzymatic pathway of MAA synthesis and the extent of their regulation by environmental conditions are not known. This minireview discusses the current knowledge of MAA

  10. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  11. Covalently functionalized graphene sheets with biocompatible natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-07-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  12. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  13. Alterations in the levels of plasma amino acids in polycystic ovary syndrome- A pilot study

    Directory of Open Access Journals (Sweden)

    Sumithra N Unni C

    2015-01-01

    Full Text Available Background & objectives: Plasma amino acid levels are known to be altered in conditions like sepsis and burns which are situations of metabolic stress. Polycystic ovary syndrome (PCOS, a condition which affects a woman throughout her life, is said to be associated with metabolic stress. This study was undertaken to assess if there were significant alterations in the levels of plasma amino acids in women with PCOS. Methods: Sixty five women with PCOS along with the similar number of age matched normal controls were included in this study. Levels of 14 amino acids were determined using reverse phase high performance liquid chromatography. Results: The levels of methionine, cystine, isoleucine, phenylalanine, valine, tyrosine, proline, glycine, lysine and histidine were found to be significantly (P<0.001 lower in cases than in controls. Arginine and alanine levels were found to be significantly (P<0.001 higher in cases compared with controls. Interpretation & conclusions: Our findings showed significant derangement in the levels of plasma amino acids in women with PCOS which might be due to the oxidative and metabolic stress associated with it. Further studies need to be done to confirm the findings.

  14. L-citrulline-malate influence over branched chain amino acid utilization during exercise.

    Science.gov (United States)

    Sureda, Antoni; Córdova, Alfredo; Ferrer, Miguel D; Pérez, Gerardo; Tur, Josep A; Pons, Antoni

    2010-09-01

    Exhaustive exercise induces disturbances in metabolic homeostasis which can result in amino acid catabolism and limited L-arginine availability. Oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling. Our aim was to evaluate the effects of diet supplementation with L-citrulline-malate prior to intense exercise on the metabolic handle of plasma amino acids and on the products of metabolism of arginine as creatinine, urea and nitrite and the possible effects on the hormonal levels. Seventeen voluntary male pre-professional cyclists were randomly assigned to one of two groups: control or supplemented (6 g L-citrulline-malate 2 h prior exercise) and participated in a 137-km cycling stage. Blood samples were taken in basal conditions, 15 min after the race and 3 h post race (recovery). Most essential amino acids significantly decreased their plasma concentration as a result of exercise; however, most non-essential amino acids tended to significantly increase their concentration. Citrulline-malate ingestion significantly increased the plasma concentration of citrulline, arginine, ornithine, urea, creatinine and nitrite (p urea.

  15. Sugar amino acids and related molecules: Some recent developments

    Indian Academy of Sciences (India)

    Tushar Kanti Chakraborty; Pothukanuri Srinivasu; Subhasish Tapadar; Bajjuri Krishna Mohan

    2004-06-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create `nature-like’ and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature’s molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solidphase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies.

  16. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat;

    2010-01-01

    BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP...

  17. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  18. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  19. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7...... and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  20. Synthesis and catalytic application of amino acid based dendritic macromolecules

    NARCIS (Netherlands)

    Koten, G. van; Gossage, R.A.; Jastrzebski, J.T.B.H.; Ameijde, J. van; Mulders, S.J.E.; Brouwer, Arwin J.; Liskamp, R.M.J.

    1999-01-01

    The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active organometallic Ni ''pincer'' complexes, via a urea functionality, is described; the dendrimer catalysts have comparable activity to their mononuclear (NCN)NiX analogues.

  1. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  2. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    Science.gov (United States)

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures.

  3. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  4. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  5. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    Science.gov (United States)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  6. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-06-01

    The origin of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threonine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from α-ketoisovaleric acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use of the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  7. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  8. AMINO ACID BLOOD POOL OF CHILDREN WITH ALLERGIC DISEASES

    Directory of Open Access Journals (Sweden)

    Shmulich O. V.

    2014-01-01

    Full Text Available The amino acid blood pool of children with atopic dermatitis, bronchial asthma, urticaria, angioedema was investigated. The variability of blood plasma amino acid content (tryptophan, histidine, tyrosine, cysteine, methionine was observed. The changes of histidine and tryptophan levels might be connected with the formation of biogenic amines, such as histamine, serotonine, with take part in the development of allergic reactions and inflammatory processes in organism.

  9. Expression of heteromeric amino acid transporters along the murine intestine.

    Science.gov (United States)

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  10. Co2 chemosorption by functionalized amino acid derivatives

    DEFF Research Database (Denmark)

    2015-01-01

    The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid.......The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid....

  11. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  12. Amino acids – Guidelines on Parenteral Nutrition, Chapter 4

    Directory of Open Access Journals (Sweden)

    Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine

    2009-11-01

    Full Text Available Protein catabolism should be reduced and protein synthesis promoted with parenteral nutrion (PN. Amino acid (AA solutions should always be infused with PN. Standard AA solutions are generally used, whereas specially adapted AA solutions may be required in certain conditions such as severe disorders of AA utilisation or in inborn errors of AA metabolism. An AA intake of 0.8 g/kg/day is generally recommended for adult patients with a normal metabolism, which may be increased to 1.2–1.5 g/kg/day, or to 2.0 or 2.5 g/kg/day in exceptional cases. Sufficient non-nitrogen energy sources should be added in order to assure adequate utilisation of AA. A nitrogen calorie ratio of 1:130 to 1:170 (g N/kcal or 1:21 to 1:27 (g AA/kcal is recommended under normal metabolic conditions. In critically ill patients glutamine should be administered parenterally if indicated in the form of peptides, for example 0.3–0.4 g glutamine dipeptide/kg body weight/day (=0.2–0.26 g glutamine/kg body weight/day. No recommendation can be made for glutamine supplementation in PN for patients with acute pancreatitis or after bone marrow transplantation (BMT, and in newborns. The application of arginine is currently not warranted as a supplement in PN in adults. N-acetyl AA are only of limited use as alternative AA sources. There is currently no indication for use of AA solutions with an increased content of glycine, branched-chain AAs (BCAA and ornithine-α-ketoglutarate (OKG in all patients receiving PN. AA solutions with an increased proportion of BCAA are recommended in the treatment of hepatic encephalopathy (III–IV.

  13. Amino acid modifiers in guayule rubber compounds

    Science.gov (United States)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  14. Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy.

    Directory of Open Access Journals (Sweden)

    Karen L Lindsay

    Full Text Available Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as

  15. Release of selected amino acids from zinc carriers

    Directory of Open Access Journals (Sweden)

    Dyja Renata

    2016-06-01

    Full Text Available The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2 of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol is limited by the tyrosine low solubility in water.

  16. Computational protein design quantifies structural constraints on amino acid covariation.

    Directory of Open Access Journals (Sweden)

    Noah Ollikainen

    Full Text Available Amino acid covariation, where the identities of amino acids at different sequence positions are correlated, is a hallmark of naturally occurring proteins. This covariatio