WorldWideScience

Sample records for amino acid metabolism inborn errors

  1. Inborn errors of metabolism

    Science.gov (United States)

    Metabolism - inborn errors of ... Bodamer OA. Approach to inborn errors of metabolism. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 205. Rezvani I, Rezvani G. An ...

  2. Inborn errors of metabolism underlying primary immunodeficiencies.

    Science.gov (United States)

    Parvaneh, Nima; Quartier, Pierre; Rostami, Parastoo; Casanova, Jean-Laurent; de Lonlay, Pascale

    2014-10-01

    A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.

  3. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Marta Spodenkiewicz

    2016-10-01

    Full Text Available Glutamine synthetase (GS is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

  4. Cardiac manifestations of inborn errors of metabolism.

    NARCIS (Netherlands)

    Evangeliou, A.; Papadopoulou-Legbelou, K.; Daphnis, E.; Ganotakis, E.; Vavouranakis, I.; Michailidou, H.; Hitoglou-Makedou, A.; Nicolaidou, P.; Wevers, R.A.; Varlamis, G.

    2007-01-01

    AIM: The aim of the study was to investigate the frequency and type of cardiac manifestations in a defined group of patients with inborn errors of metabolism. This paper also explores the key role of cardiac manifestations in the diagnosis of inborn errors of metabolism in daily practice. METHODS: O

  5. Screening for Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    F.A. Elshaari

    2013-09-01

    Full Text Available Inborn errors of metabolism (IEM are a heterogeneous group of monogenic diseases that affect the metabolic pathways. The detection of IEM relies on a high index of clinical suspicion and co-ordinated access to specialized laboratory services. Biochemical analysis forms the basis of the final confirmed diagnosis in several of these disorders. The investigations fall into four main categories1.General metabolic screening tests2.Specific metabolite assays3.Enzyme studies4.DNA analysis The first approach to the diagnosis is by a multi-component analysis of body fluids in clinically selected patients, referred to as metabolic screening tests. These include simple chemical tests in the urine, blood glucose, acid-base profile, lactate, ammonia and liver function tests. The results of these tests can help to suggest known groups of metabolic disorders so that specific metabolites such as amino acids, organic acids, etc. can be estimated. However, not all IEM needs the approach of general screening. Lysosomal, peroxisomal, thyroid and adrenal disorders are suspected mainly on clinical grounds and pertinent diagnostic tests can be performed. The final diagnosis relies on the demonstration of the specific enzyme defect, which can be further confirmed by DNA studies.

  6. [Inborn errors of metabolism in adult neurology].

    Science.gov (United States)

    Sedel, F

    2013-02-01

    Inborn errors of metabolism (IEM) are caused by mutations in genes coding for enzymes and other proteins involved in cell metabolism. Many IEM can be treated effectively. Although IEM have usually been considered pediatric diseases, they can present at any age, mostly with neurological and psychiatric symptoms, and therefore constitute an integral subspeciality of neurology. However, although they are increasingly being recognized, IEM remain rare, and the care for patients should be optimized in specialized reference centers. Since the number of different diseases is very large, the diagnostic approach needs to be rigorous, starting at the clinics and calling upon the additional help of neuroradiology, biochemistry and molecular biology. In practice, it is important for the neurologist to recognize: (1) when to start suspecting an IEM; and (2) how to correlate a given clinical presentation with one of the five major groups of diseases affecting the nervous system. These five groups may be classified as: (a) energy metabolism disorders such as respiratory chain disorders, pyruvate dehydrogenase deficiency, GLUT1 deficiency, fatty-acid β-oxidation defects, and disorders involving key cofactors such as electron transfer flavoprotein, thiamine, biotin, riboflavin, vitamin E and coenzyme Q10; (b) intoxication syndromes such as porphyrias, urea-cycle defects, homocystinurias, organic acidurias and amino acidopathies; (c) lipid-storage disorders such as lysosomal storage disorders (Krabbe disease, metachromatic leukodystrophy, Niemann - Pick disease type C, Fabry disease and Gaucher's disease), peroxisomal disorders (adrenomyeloneuropathy, Refsum disease, disorders of pristanic acid metabolism, peroxisome biogenesis disorders), Tangier disease and cerebrotendinous xanthomatosis; (d) metal-storage diseases such as iron, copper and manganese metabolic disorders; and (e) neurotransmitter metabolism defects, including defects of serotonin, dopamine and glycine metabolism

  7. Infant with cardiomyopathy: When to suspect inborn errors of metabolism?

    Institute of Scientific and Technical Information of China (English)

    Stephanie; L; Byers; Can; Ficicioglu

    2014-01-01

    Inborn errors of metabolism are identified in 5%-26% of infants and children with cardiomyopathy. Although fatty acid oxidation disorders, lysosomal and glycogen storage disorders and organic acidurias are well-known to be associated with cardiomyopathies, emerging reports suggest that mitochondrial dysfunction and congenital disorders of glycosylation may also account for a proportion of cardiomyopathies. This review article clarifies when primary care physicians and cardiologists should suspect inborn errors of metabolism in a patient with cardiomyopathy, and refer the patient to a metabolic specialist for a further metabolic work up, with specific discussions of “red flags” which should prompt additional evaluation.

  8. Inborn errors of cytoplasmic triglyceride metabolism.

    Science.gov (United States)

    Wu, Jiang Wei; Yang, Hao; Wang, Shu Pei; Soni, Krishnakant G; Brunel-Guitton, Catherine; Mitchell, Grant A

    2015-01-01

    Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified. PMID:25300978

  9. Inborn errors of cytoplasmic triglyceride metabolism.

    Science.gov (United States)

    Wu, Jiang Wei; Yang, Hao; Wang, Shu Pei; Soni, Krishnakant G; Brunel-Guitton, Catherine; Mitchell, Grant A

    2015-01-01

    Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.

  10. Inborn errors of metabolism: a cause of abnormal brain development.

    Science.gov (United States)

    Nissenkorn, A; Michelson, M; Ben-Zeev, B; Lerman-Sagie, T

    2001-05-22

    Brain malformations are caused by a disruption in the sequence of normal development by various environmental or genetic factors. By modifying the intrauterine milieu, inborn errors of metabolism may cause brain dysgenesis. However, this association is typically described in single case reports. The authors review the relationship between brain dysgenesis and specific inborn errors of metabolism. Peroxisomal disorders and fatty acid oxidation defects can produce migration defects. Pyruvate dehydrogenase deficiency, nonketotic hyperglycinemia, and maternal phenylketonuria preferentially cause a dysgenetic corpus callosum. Abnormal metabolism of folic acid causes neural tube defects, whereas defects in cholesterol metabolism may produce holoprosencephaly. Various mechanisms have been proposed to explain abnormal brain development in inborn errors of metabolism: production of a toxic or energy-deficient intrauterine milieu, modification of the content and function of membranes, or disturbance of the normal expression of intrauterine genes responsible for morphogenesis. The recognition of a metabolic disorder as the cause of the brain malformation has implications for both the care of the patient and for genetic counseling to prevent recurrence in subsequent pregnancies. PMID:11383558

  11. Dysfunction in macrophage toll-like receptor signaling caused by an inborn error of cationic amino acid transport.

    Science.gov (United States)

    Kurko, Johanna; Vähä-Mäkilä, Mari; Tringham, Maaria; Tanner, Laura; Paavanen-Huhtala, Sari; Saarinen, Maiju; Näntö-Salonen, Kirsti; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2015-10-01

    Amino acids, especially arginine, are vital for the well-being and activity of immune cells, and disruption of amino acid balance may weaken immunity and predispose to infectious and autoimmune diseases. We present here a model of an inborn aminoaciduria, lysinuric protein intolerance (LPI), in which a single mutation in y(+)LAT1 cationic amino acid transporter gene SLC7A7 leads to a multisystem disease characterized by immunological complications, life-threatening pulmonary alveolar proteinosis and nephropathy. Macrophages are suggested to play a central role in LPI in the development of these severe secondary symptoms. We thus studied the effect of the Finnish y(+)LAT1 mutation on monocyte-derived macrophages where toll-like receptors (TLRs) act as the key molecules in innate immune response against external pathogens. The function of LPI patient and control macrophage TLR signaling was examined by stimulating the TLR2/1, TLR4 and TLR9 pathways with their associated pathogen-associated molecular patterns. Downregulation in expression of TLR9, IRF7, IRF3 and IFNB1 and in secretion of IFN-α was detected, suggesting an impaired response to TLR9 stimulation. In addition, secretion of TNF-α, IL-12 and IL-1RA by TLR2/1 stimulation and IL-12 and IL-1RA by TLR4 stimulation was increased in the LPI patients. LPI macrophages secreted significantly less nitric oxide than control macrophages, whereas plasma concentrations of inflammatory chemokines CXCL8, CXCL9 and CXCL10 were elevated in the LPI patients. In conclusion, our results strengthen the relevance of macrophages in the pathogenesis of LPI and, furthermore, suggest that cationic amino acid transport plays an important role in the regulation of innate immune responses. PMID:26210182

  12. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases. PMID:22699794

  13. Inborn Errors of Energy Metabolism Associated with Myopathies

    OpenAIRE

    Das, Anibh M.; Ulrike Steuerwald; Sabine Illsinger

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiolo...

  14. Antenatal manifestations of inborn errors of metabolism: biological diagnosis.

    Science.gov (United States)

    Vianey-Saban, Christine; Acquaviva, Cécile; Cheillan, David; Collardeau-Frachon, Sophie; Guibaud, Laurent; Pagan, Cécile; Pettazzoni, Magali; Piraud, Monique; Lamazière, Antonin; Froissart, Roseline

    2016-09-01

    Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %). PMID:27393412

  15. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids

    NARCIS (Netherlands)

    Wortmann, S.B.; Espeel, M.; Almeida, L.; Reimer, A.; Bosboom, D.G.; Roels, F.; Brouwer, A.P.M. de; Wevers, R.A.

    2015-01-01

    Since the proposal to define a separate subgroup of inborn errors of metabolism involved in the biosynthesis and remodelling of phospholipids, sphingolipids and long chain fatty acids in 2013, this group is rapidly expanding. This review focuses on the disorders involved in the biosynthesis of phosp

  16. Inborn Errors of Intermediary Metabolism in Critically Ill Mexican Newborns

    Directory of Open Access Journals (Sweden)

    Ibarra-González Isabel MSc

    2014-04-01

    Full Text Available Inborn errors of intermediary metabolism (IEiM are complex diseases with high clinical heterogeneity, and some patients who have severe enzyme deficiencies or are subjected to stress (catabolism/infections actually decompensate in the neonatal period. In this study, we performed metabolic tests on 2025 newborns in Mexico admitted to 35 neonatal intensive care units or emergency wards (NICUs/EWs over a 6-year period, in whom a metabolic disorder was clinically suspected. Of these 2025 newborns with sickness, 11 had IEiM, revealing a prevalence of 1:184. Clinical characteristics and outcomes of the newborns with confirmed IEiM are shown. Of these 11 patients, 4 had isolated methylmalonic acidemia, 3 had maple syrup urine disease, 2 had urea cycle disorders, 1 had 3-hydroxy-3-methylglutaric acidemia, and 1 had isovaleric acidemia. During the first week of life (average 3 days, all of these newborns presented with impaired alertness, hypotonia, feeding difficulties, and vomiting along with metabolic acidosis and hyperammonemia. Of the 11 newborns with IEiM, 7 died, leading to a mortality rate of 64%. In conclusion, the differential diagnosis of newborns admitted to the NICU/EW must include IEiM, requiring systematic screening of this population.

  17. The individual (single patient) IND for inborn errors of metabolism.

    Science.gov (United States)

    Dickson, Patricia I; Tolar, Jakub

    2015-01-01

    Under the United States Food and Drug Administration's Expanded Access program, a physician may treat a single patient with an experimental medication under an individual investigational new drug application (iIND). Metabolic geneticists may be among the specialists most likely to be asked to obtain an iIND, because there are many experimental treatments for inborn errors of metabolism which work in animals but suffer delays in translation to the bedside. The iIND has the potential to help bridge that gap, by gathering initial evidence in support of the use of an experimental drug in humans. If done with experimental rigor, the data will be useful, despite being limited to a single patient. However, iINDs may pose risks to drug development if patients are not carefully selected. Whatever their advantages and disadvantages, iIND studies are here to stay. Metabolic specialists should cautiously consider the iIND as a tremendous opportunity for therapeutic experimentation. PMID:25456747

  18. An introduction to nutritional treatment in inborn errors of metabolism--different disorders, different approaches.

    Science.gov (United States)

    Wilcken, Bridget

    2003-01-01

    Treatment of metabolic disease aims to restore homeostasis, where possible. This can be achieved in a number of ways. For disorders of intermediary metabolism, treatment involves a thorough understanding of the disorder and the pathogenesis of the deleterious effects The various approaches indicated may involve substrate restriction, replacement of deficient products, removal of toxic metabolites or stimulation of residual enzymes. Newer therapies include enzyme replacement and gene therapy. Often, the cornerstone of treatment is dietary. Substrate restriction includes not only a diet low in the substrate indicated by the disorder, but also strict calorie support in times of illness to avoid catabolism. Useful levels of substrate restriction may require the use of supplements of "medical foods", for example amino acid mixtures. Provision of the deficient products is important in disorders affecting energy metabolism. To understand the problems involved in nutritional treatment it is helpful to consider examples of different types of disorders. In Maple syrup urine disease (MSUD), treatment with a very strict low-protein diet, supplemented by a branched-chain-free amino acid mixture is successful, but each intercurrent illness is hazardous, regimens for sick days vital, and strict lifelong treatment is needed. Treatment for phenylketonuria is similar in restricting a substrate but there is no tendency for systemic illness if the phenylalanine levels are too high. Disorders of the urea cycle are difficult dietary challenges because while a very low-protein diet is required, no specific amino acid needs to be avoided and there is a fine line between adequate protein intake and chronic catabolism. Fatty acid oxidation disorders affect energy production and can be detected by newborn screening using tandem mass spectrometry. For long-chain fatty acid disorders, long chain fats must largely be avoided and medium-chain fats must be substituted while strictly avoiding

  19. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency

    NARCIS (Netherlands)

    Banka, S.; Blom, H.J.; Walter, J.; Aziz, M.; Urquhart, J.; Clouthier, C.M.; Rice, G.I.; Brouwer, A.P.M. de; Hilton, E.; Vassallo, G.; Will, A.; Smith, D.E.; Smulders, Y.M.; Wevers, R.A.; Steinfeld, R.; Heales, S.; Crow, Y.J.; Pelletier, J.N.; Jones, S.; Newman, W.G.

    2011-01-01

    Dihydrofolate reductase (DHFR) is a critical enzyme in folate metabolism and an important target of antineoplastic, antimicrobial, and antiinflammatory drugs. We describe three individuals from two families with a recessive inborn error of metabolism, characterized by megaloblastic anemia and/or pan

  20. Aminoacylase I deficiency: a novel inborn error of metabolism.

    NARCIS (Netherlands)

    Coster, R. van; Gerlo, E.A.; Giardina, T.G.; Engelke, U.F.H.; Smet, J.E.; Praeter, C.M. de; Meersschaut, V.A.; Meirleir, L. de; Seneca, S.; Devreese, B.; Leroy, J.G.; Herga, S.; Perrier, J.P.; Wevers, R.A.; Lissens, W.

    2005-01-01

    This is the first report of a patient with aminoacylase I deficiency. High amounts of N-acetylated amino acids were detected by gas chromatography-mass spectrometry in the urine, including the derivatives of serine, glutamic acid, alanine, methionine, glycine, and smaller amounts of threonine, leuci

  1. Amino Acid Metabolism Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  2. Neonatal screening for inborn errors of metabolism: cost, yield and outcome.

    Science.gov (United States)

    Pollitt, R J; Green, A; McCabe, C J; Booth, A; Cooper, N J; Leonard, J V; Nicholl, J; Nicholson, P; Tunaley, J R; Virdi, N K

    1997-01-01

    OBJECTIVES. To systematically review the literature on inborn errors of metabolism, neonatal screening technology and screening programmes in order to analyse the costs and benefits of introducing screening based on tandem mass-spectrometry (tandem MS) for a wide range of disorders of amino acid and organic acid metabolism in the UK. To evaluate screening for cystic fibrosis, Duchenne muscular dystrophy and other disorders which are tested on an individual basis. HOW THE RESEARCH WAS CONDUCTED. Systematic searches were carried out of the literature on inborn errors of metabolism, neonatal screening programmes, tandem MS-based neonatal screening technology, economic evaluations of neonatal screening programmes and psychological aspects of neonatal screening. Background material on the biology of inherited metabolic disease, the basic philosophy, and the history and current status of the UK screening programme was also collected. Relevant papers in the grey literature and recent publications were identified by hand-searching. Each paper was graded. For each disease an aggregate grade for the state of knowledge in six key areas was awarded. Additional data were prospectively collected on activity and costs in UK neonatal screening laboratories, and expert clinical opinion on current treatment modalities and outcomes. These data were used to construct a decision-analysis model of neonatal screening technologies, comparing tandem MS with the existing phenylketonuria screening methods. This model determined the cost per additional case identified and, for each disease, the additional treatment costs per case, and the cost per life-year saved. All costs and benefits were discounted at 6% per annum. One-way sensitivity analysis was performed showing the effect of varying the discount rate, the incidence rate of each disorder, the number of neonates screened and the cost of tandem MS, on the cost per life-year gained. RESEARCH FINDINGS. The UK screening programmes for

  3. Report: Human biochemical genetics: an insight into inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    YU Chunli; SCOTT C. Ronald

    2006-01-01

    Inborn errors of metabolism (IEM) include a broad spectrum of defects of various gene products that affect intermediary metabolism in the body. Studying the molecular and biochemical mechanisms of those inherited disorder, systematically summarizing the disease phenotype and natural history, providing diagnostic rationale and methodology and treatment strategy comprise the context of human biochemical genetics. This session focused on: (1) manifestations of representative metabolic disorders; (2) the emergent technology and application of newborn screening of metabolic disorders using tandem mass spectrometry; (3) principles of managing IEM; (4) the concept of carrier testing aiming prevention. Early detection of patients with IEM allows early intervention and more options for treatment.

  4. Inborn errors of metabolism and expanded newborn screening: review and update.

    Science.gov (United States)

    Mak, Chloe Miu; Lee, Han-Chih Hencher; Chan, Albert Yan-Wo; Lam, Ching-Wan

    2013-11-01

    Inborn errors of metabolism (IEM) are a phenotypically and genetically heterogeneous group of disorders caused by a defect in a metabolic pathway, leading to malfunctioning metabolism and/or the accumulation of toxic intermediate metabolites. To date, more than 1000 different IEM have been identified. While individually rare, the cumulative incidence has been shown to be upwards of 1 in 800. Clinical presentations are protean, complicating diagnostic pathways. IEM are present in all ethnic groups and across every age. Some IEM are amenable to treatment, with promising outcomes. However, high clinical suspicion alone is not sufficient to reduce morbidities and mortalities. In the last decade, due to the advent of tandem mass spectrometry, expanded newborn screening (NBS) has become a mandatory public health strategy in most developed and developing countries. The technology allows inexpensive simultaneous detection of more than 30 different metabolic disorders in one single blood spot specimen at a cost of about USD 10 per baby, with commendable analytical accuracy and precision. The sensitivity and specificity of this method can be up to 99% and 99.995%, respectively, for most amino acid disorders, organic acidemias, and fatty acid oxidation defects. Cost-effectiveness studies have confirmed that the savings achieved through the use of expanded NBS programs are significantly greater than the costs of implementation. The adverse effects of false positive results are negligible in view of the economic health benefits generated by expanded NBS and these could be minimized through increased education, better communication, and improved technologies. Local screening agencies should be given the autonomy to develop their screening programs in order to keep pace with international advancements. The development of biochemical genetics is closely linked with expanded NBS. With ongoing advancements in nanotechnology and molecular genomics, the field of biochemical genetics

  5. Perspectives on dietary adherence among women with inborn errors of metabolism.

    Science.gov (United States)

    Kemper, Alex R; Brewer, Cheryl A; Singh, Rani H

    2010-02-01

    Adherence to highly restrictive diets is critical for women of childbearing age who have inborn errors of metabolism such as phenylketonuria. The purpose of this study was to explore attitudes about diet, barriers to and facilitators of dietary adherence, and experiences with the health care system in promoting dietary adherence among adolescent and adult women with inborn errors of metabolism to identify policy-level interventions to improve adherence. We analyzed the results of four focus groups including a total of 19 women between the ages of 12 and 52 years with phenylketonuria, methylmalonic acidemia, or maple syrup urine disease attending an educational summer camp in 2008. Themes were identified after independent analysis of transcripts. Most participants were highly knowledgeable about their dietary requirements and some could describe their own specific negative experiences of nonadherence. Many reported specific challenges, such as feelings of being different, that they experienced in elementary and middle school. Friends and family play an important role in maintaining dietary adherence. Participants identified one registered dietitian in particular who has played an important supportive role. Insurance coverage for medical foods was a common concern. Most participants identified concerns about transitioning from pediatric to adult medical services. We identified four specific strategies for future evaluation that may improve dietary adherence and health outcomes for women and their potential offspring: symptom-based dietary monitoring for some, educating school officials about medical diets, expanding the role of registered dietitians; and assisting with the transition from pediatric to adult health care providers. PMID:20102852

  6. Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease.

    Science.gov (United States)

    Kuhara, T; Shinka, T; Inoue, Y; Ohse, M; Zhen-wei, X; Yoshida, I; Inokuchi, T; Yamaguchi, S; Takayanagi, M; Matsumoto, I

    1999-08-01

    Gas chromatographic-mass spectrometric (GC-MS) techniques for urinary organic acid profiling have been applied to high-risk screening for a wide range of diseases, mainly for inborn errors of metabolism (IEM), rather than to low-risk screening or mass screening. Using a simplified procedure with urease-pretreatment and the GC-MS technique, which allows simultaneous determination of organic acids, amino acids, sugars and sugar acids, we performed a pilot study of the application of this procedure to neonatal urine screening for 22 IEM. Out of 16,246 newborns screened, 11 cases of metabolic disorders were chemically diagnosed: two each of methylmalonic aciduria and glyceroluria, four of cystinuria, and one each of Hartnup disease, citrullinemia and alpha-aminoadipic aciduria/alpha-ketoadipic aciduria. The incidence of IEM was thus one per 1477, which was higher than the one per 3000 obtained in the USA in a study targeting amino acids and acylcarnitines in newborn blood spots by tandem mass spectrometry. Also, 227 cases were found to have transient metabolic abnormalities: 108 cases with neonatal tyrosinuria, 99 cases with neonatal galactosuria, and 20 cases with other transient metabolic disorders. Two hundred and thirty-eight cases out of 16,246 neonates (approximately 1/68) were thus diagnosed using this procedure as having either persistent or transient metabolic abnormalities. PMID:10492000

  7. Long-chain polyunsaturated fatty acid concentration in patients with inborn errors of metabolism Concentración de ácidos grasos poliinsaturados de cadena larga en pacientes con errores innatos del metabolismo

    Directory of Open Access Journals (Sweden)

    M.ª A. Vilaseca

    2011-02-01

    Full Text Available Introduction: Long-chain polyunsaturated fatty acid (LCPUFA can be provided by diet (fatty fish, eggs, viscera and human milk or synthetised from essential fatty acids linoleic and α-linolenic acids through the microsomal pathway. However, endogenous LCPUFA synthesis is rather low, especially for docosahexaenoic (DHA, and seems insufficient to achieve normal DHA values in individuals devoid of preformed dietary supply. Inborn errors of metabolism (IEMs are therefore diseases with a special risk for LCPUFA deficient status. Aim: Our aim was to evaluate LCPUFA status in 132 patients with different IEMs. Methods: We performed a cross-sectional study of plasma and erythrocyte LCPUFA composition of 63 patients with IEMs treated with protein-restricted diets compared with data from 69 patients with IEMs on protein-unrestricted diets, and 43 own reference values. Results: Erythrocyte and plasma DHA and arachidonic acid concentrations were significantly decreased in patients treated with protein-restriction compared with those on protein-unrestricted diets and with our reference values (p Introducción: Los ácidos grasos poliinsaturados de cadena larga (LCPUFA pueden ser suministrados por la dieta o sintetizados a partir de los ácidos grasos esenciales, linoleico y α-linolénico. La síntesis endógena de LCPUFA es escasa, especialmente la de ácido docosahe-xaenoico (DHA, e insuficiente para alcanzar los valores normales de DHA en individuos que carecen de un suministro dietético de dichos ácidos preformados. Por ello, los errores innatos del metabolismo (IEM son enfermedades con riesgo especial de deficiencia de LCPUFAs. Objetivos: Evaluar el estado de LCPUFA en 132 pacientes con diferentes IEMs. Métodos: Estudio transversal de LCPUFA en plasma y eritrocitos de 63 pacientes con IEMs tratados con dieta restringida en proteínas comparados con 69 pacientes con IEMs con una dieta libre y 43 valores de referencia. Resultados: Las concentraciones de

  8. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Saffari, Afshin; Wahlster, Lara; Lu, Jenny; Byrne, Susan; Hoffmann, Georg F; Jungbluth, Heinz; Sahin, Mustafa

    2016-02-01

    Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating

  9. Rare disease landscape in Brazil: report of a successful experience in inborn errors of metabolism.

    Science.gov (United States)

    Giugliani, Roberto; Vairo, Filippo P; Riegel, Mariluce; de Souza, Carolina F M; Schwartz, Ida V D; Pena, Sérgio D J

    2016-01-01

    Brazil is a country of continental dimensions, with many social inequalities. The latter are reflected on its health system, which comprises a large public component called SUS, a small paid health insurance component and a third very small private component, in which patients pay personally for medical services. Seventy five percent of the population depends on SUS, which thus far does not provide adequate coverage for genetic medical procedures. In 2014, SUS introduced the "Policy for the Integral Attention to Subjects with Rare Diseases", establishing guidelines for offering diagnosis and treatment. The policy defines the two main axes, genetic and non-genetic rare diseases. In this fashion, public genetic services in SUS will be installed and funded not by themselves, but as part of the more general policy of rare diseases. Unfortunately, up to now this policy is still depending on financial allowances to be effectively launched. In this article, our intention was to describe activities developed in the area of inborn errors of metabolism by a Brazilian reference center. In spite of the lack of support of SUS, thousands of Brazilian families affected by rare genetic metabolic disorders, and many health professionals from all regions of Brazil, already have benefited from the services, training programs and research projects provided by this comprehensive center. PMID:27282290

  10. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism.

    Science.gov (United States)

    Peters, Heidi; Buck, Nicole; Wanders, Ronald; Ruiter, Jos; Waterham, Hans; Koster, Janet; Yaplito-Lee, Joy; Ferdinandusse, Sacha; Pitt, James

    2014-11-01

    Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.

  11. Management and emergency treatments of neonates with a suspicion of inborn errors of metabolism.

    Science.gov (United States)

    Ogier de Baulny, Hélène

    2002-02-01

    During the neonatal period, inborn errors of metabolism mostly present with an overwhelming illness that requires prompt diagnosis and both supportive and specific treatments. The most frequent situations are due to branched-chain organic acidurias that present with ketoacidosis and urea cycle defects that are characterized by hyperammonaemia. During both situations, toxin removal procedures and nutritional support with a free-protein and high-energy diet are pivotal treatments. In patients presenting with hypoglycaemia blood glucose levels must be corrected. Progress following glucose provision is useful in recognizing the disorders that are mainly implicated. Hyperinsulinism requires high-glucose infusion. Glycogen storage diseases and gluconeogenesis defects are easily treated with a permanent glucose provision while hypoglycaemias quickly recur. In patients with galactosaemia, hereditary fructose intolerance or tyrosinaemia type I, the presentation is dominated by a liver failure requiring galactose and fructose exclusion associated with a low-protein diet. Many patients with beta-oxidation defects may present with hypoglycaemia that is usually easily corrected. The precise diagnosis can be easily missed in those patients that do well in the following weeks but may develop cardiac failure, arrhythmia and/or liver failure. Patients presenting with intractable convulsions, vitamin responsiveness to biotin, pyridoxine and folate must be considered. PMID:12069535

  12. Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria.

    Science.gov (United States)

    Pierce, Sarah B; Spurrell, Cailyn H; Mandell, Jessica B; Lee, Ming K; Zeligson, Sharon; Bereman, Michael S; Stray, Sunday M; Fokstuen, Siv; MacCoss, Michael J; Levy-Lahad, Ephrat; King, Mary-Claire; Motulsky, Arno G

    2011-11-01

    Pentosuria is one of four conditions hypothesized by Archibald Garrod in 1908 to be inborn errors of metabolism. Mutations responsible for the other three conditions (albinism, alkaptonuria, and cystinuria) have been identified, but the mutations responsible for pentosuria remained unknown. Pentosuria, which affects almost exclusively individuals of Ashkenazi Jewish ancestry, is characterized by high levels of the pentose sugar L-xylulose in blood and urine and deficiency of the enzyme L-xylulose reductase. The condition is autosomal-recessive and completely clinically benign, but in the early and mid-20th century attracted attention because it was often confused with diabetes mellitus and inappropriately treated with insulin. Persons with pentosuria were identified from records of Margaret Lasker, who studied the condition in the 1930s to 1960s. In the DCXR gene encoding L-xylulose reductase, we identified two mutations, DCXR c.583ΔC and DCXR c.52(+1)G > A, each predicted to lead to loss of enzyme activity. Of nine unrelated living pentosuric subjects, six were homozygous for DCXR c.583ΔC, one was homozygous for DCXR c.52(+1)G > A, and two were compound heterozygous for the two mutant alleles. L-xylulose reductase was not detectable in protein lysates from subjects' cells and high levels of xylulose were detected in their sera, confirming the relationship between the DCXR genotypes and the pentosuric phenotype. The combined frequency of the two mutant DCXR alleles in 1,067 Ashkenazi Jewish controls was 0.0173, suggesting a pentosuria frequency of approximately one in 3,300 in this population. Haplotype analysis indicated that the DCXR c.52(+1)G > A mutation arose more recently than the DCXR c.583ΔC mutation.

  13. Living donor liver transplantation for inborn errors of metabolism - An underutilized resource in the United States.

    Science.gov (United States)

    Pham, Thomas A; Enns, Gregory M; Esquivel, Carlos O

    2016-09-01

    Inborn metabolic diseases of the liver can be life-threatening disorders that cause debilitating and permanent neurological damage. Symptoms may manifest as early as the neonatal period. Liver transplant replaces the enzymatically deficient liver, allowing for metabolism of toxic metabolites. LDLT for metabolic disorders is rarely performed in the United States as compared to countries such as Japan, where they report >2000 cases performed within the past two decades. Patient and graft survival is comparable to that of the United States, where most of the studies are based on deceased donors. No living donor complications were observed, suggesting that LDLT is as safe and effective as deceased donor transplants performed in the USA. Increased utilization of living donors in the USA will allow for early transplantation to prevent permanent neurological damage in those with severe disease. Pediatric transplant centers should consider utilizing living donors when feasible for children with metabolic disorders of the liver. PMID:27392539

  14. Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism.

    Science.gov (United States)

    Tredano, M; De Blic, J; Griese, M; Fournet, J C; Elion, J; Bahuau, M

    2001-02-01

    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surfactant proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to have specific structural, metabolic, or immune properties. Inborn or acquired abnormalities of the surfactant, qualitative or quantitative in nature, account for a number of human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases has been characterized by periodic acid-Schiff-positive material filling the alveoli. From this heterogeneous nosologic group, at least two discrete entities presently emerge. The first is the SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which represents an autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640). The disease usually generally entails neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed. The second is alveolar proteinosis, characterized by the storage of a mixed protein and lipid material, which constitutes a relatively heterogeneous clinical and biological syndrome, especially with regard to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models, with a targeted mutation of the gene encoding granulocyte macrophage colony-stimulating factor (GM-CSF) (Csfgm) or the beta subunit of its receptor (II3rb1) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage is a key player. Apart from SP-B deficiency, in which a near-consensus diagnostic

  15. Evidence for Treatable Inborn Errors of Metabolism in a Cohort of 187 Greek Patients with Autism Spectrum Disorder (ASD

    Directory of Open Access Journals (Sweden)

    Martha eSpilioti

    2013-12-01

    Full Text Available We screened for the presence of inborn errors of metabolism (IEM in 187 children (105 males; 82 females, ages 4 -14 years old who presented with confirmed features of ASD. Twelve patients (7% manifested increased 3-hydroxyisovaleric acid (3-OH-IVA excretion in urine, and minor to significant improvement in autistic features was observed in seven patients following supplementation with biotin. Five diagnoses included: Lesch Nyhan syndrome (2, succinic semialdehyde dehydrogenase (SSADH deficiency (2 and phenylketonuria (1 (2.7%. Additional metabolic disturbances suggestive of IEMs included two patients whose increased urine 3-OH-IVA was accompanied by elevated methylcitrate and lactate in sera, and 30 patients that showed abnormal glucose-loading tests. In the latter group, 16/30 patients manifested increased sera beta hydroxybutyrate (b-OH-b production and 18/30 had a paradoxical increase of sera lactate. Six patients with elevated b-OH-b in sera showed improved autistic features following implementation of a ketogenic diet. Five patients showed decreased serum ketone body production with glucose loading. Twelve of 187 patients demonstrated nonspecific MRI pathology, while 25/187 had abnormal EEG findings. Finally, family history was positive for 22/187 patients (1st or 2nd degree relative with comparable symptomatology and consanguinity was documented for 12/187 patients. Our data provide evidence for a new biomarker (3-OH-IVA and novel treatment approaches in ASD patients.Concise 1 sentence take-home message: Detailed metabolic screening in a Greek cohort of autismspectrum disorder (ASD patients revealed biomarkers (urine 3-hydroxyisovaleric acid and serum b-OH-b in 7% (13/187 of patients for whom biotin supplementation or institution of a ketogenic diet resulted in mild to significant clinical improvement in autistic features.

  16. Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD).

    Science.gov (United States)

    Spilioti, Martha; Evangeliou, Athanasios E; Tramma, Despoina; Theodoridou, Zoe; Metaxas, Spyridon; Michailidi, Eleni; Bonti, Eleni; Frysira, Helen; Haidopoulou, A; Asprangathou, Despoina; Tsalkidis, Aggelos J; Kardaras, Panagiotis; Wevers, Ron A; Jakobs, Cornelis; Gibson, K Michael

    2013-01-01

    We screened for the presence of inborn errors of metabolism (IEM) in 187 children (105 males; 82 females, ages 4-14 years old) who presented with confirmed features of autism spectrum disorder (ASD). Twelve patients (7%) manifested increased 3-hydroxyisovaleric acid (3-OH-IVA) excretion in urine, and minor to significant improvement in autistic features was observed in seven patients following supplementation with biotin. Five diagnoses included: Lesch Nyhan syndrome (2), succinic semialdehyde dehydrogenase (SSADH) deficiency (2), and phenylketonuria (1) (2.7%). Additional metabolic disturbances suggestive of IEMs included two patients whose increased urine 3-OH-IVA was accompanied by elevated methylcitrate and lactate in sera, and 30 patients that showed abnormal glucose-loading tests. In the latter group, 16/30 patients manifested increased sera beta hydroxybutyrate (b-OH-b) production and 18/30 had a paradoxical increase of sera lactate. Six patients with elevated b-OH-b in sera showed improved autistic features following implementation of a ketogenic diet (KD). Five patients showed decreased serum ketone body production with glucose loading. Twelve of 187 patients demonstrated non-specific MRI pathology, while 25/187 had abnormal electroencephalogram (EEG) findings. Finally, family history was positive for 22/187 patients (1st or 2nd degree relative with comparable symptomatology) and consanguinity was documented for 12/187 patients. Our data provide evidence for a new biomarker (3-OH-IVA) and novel treatment approaches in ASD patients. Concise 1 sentence take-home message: Detailed metabolic screening in a Greek cohort of ASD patients revealed biomarkers (urine 3-hydroxyisovaleric acid and serum b-OH-b) in 7% (13/187) of patients for whom biotin supplementation or institution of a KD resulted in mild to significant clinical improvement in autistic features. PMID:24399946

  17. 先天性胆汁酸合成障碍%Inborn errors of bile acid synthesis

    Institute of Scientific and Technical Information of China (English)

    代东伶

    2015-01-01

    由酶缺陷引起的先天性胆汁酸合成障碍是罕见的遗传代谢性疾病,大多属于常染色体隐性遗传病,临床表现为进行性胆汁淤积性肝病、神经系统病变及脂溶性维生素吸收不良等。其中进行性胆汁淤积性肝病的特点是结合胆红素升高、转氨酶升高、γ谷氨酸转移酶正常,组织活检显示为巨细胞性肝炎;神经系统病变在儿童晚期或成年后出现,即痉挛性瘫痪。胆汁酸替代治疗对上述两种病变有效,因此早期诊断十分重要。文章总结胆汁酸合成障碍的病理生理、临床特点以及各种酶缺陷的特点。%Inborn errors of bile acid synthesis caused by enzyme defects are inherited metabolic rare diseases and mostly belong to the autosomal recessive hereditary diseases. They are clinically manifested as progressive cholestasis liver disease, neurological disorders, and fat-soluble vitamin malabsorption. The progressive cholestasis liver disease is characterized by conju-gated hyperbilirubinaemia with raised transaminase, but normal γ-glutamyl transpeptidase (γ-GT), and a biopsy specimen shows giant cell hepatitis. The neurological disorders usually present with childhood-onset or adult-onset spastic paraplegia. Early diag-nosis is important because oral administration of bile acids is effective for two disorders above. This article reviews pathophyso-logy, clinical features and various enzyme defects of inborn errors of bile acid synthesis.

  18. Vaccination coverage of patients with inborn errors of metabolism and the attitudes of their parents towards vaccines.

    Science.gov (United States)

    Cerutti, Marta; De Lonlay, Pascale; Menni, Francesca; Parini, Rossella; Principi, Nicola; Esposito, Susanna

    2015-11-27

    To evaluate vaccination coverage of children and adolescents with inborn errors of metabolism (IEMs) and the attitudes of their parents towards vaccination, the vaccination status of 128 patients with IEM and 128 age- and gender-matched healthy controls was established by consulting the official vaccination chart. In children with IEMs, compared with healthy controls, low vaccination rates and/or delays in administration were observed for pneumococcal conjugate, meningococcus C, measles, mumps, rubella, diphtheria-tetanus-pertussis-inactivated polio, Bacillus Calmette-Guerin, and influenza vaccines. Among the parents of IEM patients, vaccine schedule compliance was primarily driven by the doctors at the hospital's reference centres; among the parents of the healthy controls, compliance was driven by the primary care paediatricians. These results show that IEM patients demonstrate sub-optimal vaccination coverage. Further studies of the different vaccines in each IEM disorder and educational programmes aimed at physicians and parents to increase immunization coverage in these patients are urgently needed.

  19. Achieving the "triple aim" for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework.

    Science.gov (United States)

    Potter, Beth K; Chakraborty, Pranesh; Kronick, Jonathan B; Wilson, Kumanan; Coyle, Doug; Feigenbaum, Annette; Geraghty, Michael T; Karaceper, Maria D; Little, Julian; Mhanni, Aizeddin; Mitchell, John J; Siriwardena, Komudi; Wilson, Brenda J; Syrowatka, Ania

    2013-06-01

    Across all areas of health care, decision makers are in pursuit of what Berwick and colleagues have called the "triple aim": improving patient experiences with care, improving health outcomes, and managing health system impacts. This is challenging in a rare disease context, as exemplified by inborn errors of metabolism. There is a need for evaluative outcomes research to support effective and appropriate care for inborn errors of metabolism. We suggest that such research should consider interventions at both the level of the health system (e.g., early detection through newborn screening, programs to provide access to treatments) and the level of individual patient care (e.g., orphan drugs, medical foods). We have developed a practice-based evidence framework to guide outcomes research for inborn errors of metabolism. Focusing on outcomes across the triple aim, this framework integrates three priority themes: tailoring care in the context of clinical heterogeneity; a shift from "urgent care" to "opportunity for improvement"; and the need to evaluate the comparative effectiveness of emerging and established therapies. Guided by the framework, a new Canadian research network has been established to generate knowledge that will inform the design and delivery of health services for patients with inborn errors of metabolism and other rare diseases. PMID:23222662

  20. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases. Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients. Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death. Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  1. Selective screening of 650 high risk Iranian patients for detection of inborn error of metabolism

    Directory of Open Access Journals (Sweden)

    Narges Pishva

    2015-02-01

    Full Text Available Objective: Although metabolic diseases individually are rare ,but overall have an incidence of 1/2000 and can cause devastating and irreversible effect if not diagnosed early and treated promptly. selective screening is an acceptable method for detection of these multi presentation diseases.Method: using panel neonatal screening for detection of metabolic diseases in 650 high risk Iranian patients in Fars province. The following clinical features were used as inclusion criteria for investigation of the patients.Lethargy, poor feeding ,persistent vomiting, cholestasis, intractable seizure ,decreased level of consciousness ,persistent hypoglycemia, unexplained acid base disturbance and unexplained neonatal death.Result: Organic acidemia with 40 cases (42% was the most frequent disorder diagnosed in our high risk populations, followed by disorder of galactose metabolism(30%, 15 patient had classic galactosemia(GALT

  2. A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry-rapid, practical, and simultaneous urinary metabolites analysis.

    Science.gov (United States)

    Matsumoto, I; Kuhara, T

    1996-01-01

    In most developed countries, neonatal mass screening programs for the early diagnosis of inborn errors of metabolism (IEM) have been implemented and have been found to be effective for the prevention or significant reduction of clinical symptoms such as mental retardation. These programs rely primarily on simple bacterial inhibition assays (the "Guthrie tests"). We developed a new method for screening IEM using GC/MS, which enables accurate chemical diagnoses through urinary analyses with a simple practical procedure. The urine sample preparation for GC/MS takes one hour for one sample or three hours for a batch of 30 samples (will be fully automated shortly), and the following GC/MS measurement is completed within 15 min per sample. This method allows the simultaneous analyses of amino acids, organic acids, sugars, sugar alcohols, sugar acids, and nucleic acid bases. Therefore, a large number of metabolic disorders can be simultaneously tested by this chemical diagnostic procedure. This method is quite comprehensive and different from conventional GC/MS organic acidemia screening procedures, which are not well-suited to detect metabolic disorders except organic acidurias. Sample preparation includes urease treatment, deproteinization, and derivatization. The method has also been applied to neonate urine specimens that are absorbed into filter paper. The air-dried samples were mailed to the analytical laboratory and eluted with water. The eluate (0.1 mL) was incubated with urease, followed by deproteinization with alcohol, evaporation to dryness of the supernatant, and trimethylsilylation; the samples were applied to GC/MS. A pilot study of the application of this diagnostic procedure to the neonatal mass screening of 22 disorders was started in Japan on February 1, 1995 in cooperation with four medical institutes. This program is supported by the Japanese Society for Biomedical Mass Spectrometry and the Japanese Mass Screening Society. The initial twenty

  3. The significance of opthalmologic evaluation in the early diagnosis of inborn errors of metabolism: the Cretan experience

    Directory of Open Access Journals (Sweden)

    Lionis Christos

    2002-04-01

    Full Text Available Abstract Background The Inborn Errors of Metabolism (IEM are far from the rare systemic diseases that mainly affect the neural tissue. There are very few written reports on ocular findings in subjects with IEM, thus it was interesting to study the frequency of ocular findings in the studied population and explore their contribution to the early diagnosis of IEM. Methods Our study involved the evaluation of IEM suspected cases, which had been identified in a rural population in Crete, Greece. Over a period of 3 years, 125 patients, who fulfilled the inclusion criteria of this study, were examined. Analytical physical examination, detailed laboratory investigation as well as a thorough ocular examination were made. Results A diagnosis of IEM was established in 23 of the 125 patients (18.4%. Ten (43.5% of the diagnosed IEM had ocular findings, while 8 of them (34.8% had findings which were specific for the diagnosed diseases. One patient diagnosed with glycogenosis type 1b presented a rare finding. Of the 102 non-diagnosed patients, 53 (51.96 % presented various ophthalmic findings, some of which could be related to a metabolic disease and therefore may be very helpful in the future. Conclusions The ocular investigation can be extremely useful for raising the suspicion and the establishment of an early diagnosis of IEM. It could also add new findings related to these diseases. The early management of the ocular symptoms can improve the quality of life to these patients.

  4. 遗传代谢病与小儿癫(癎)%Inborn errors of metabolism and epilepsy in children

    Institute of Scientific and Technical Information of China (English)

    张月华; 田小娟

    2015-01-01

    Epilepsy is a common disorder of neurological system in children.Inborn errors of metabolism (IEMs) is one of an important etiology of epilepsy.Seizures may be the first and the major presenting feature of IEMs.IEMs are a relatively rare cause of epilepsy,but their recognition and diagnosis is very important because several disorders are treatable.This review will concentrate on diseases where epilepsy is the predominant clinical manifestation and especially where the disease course can be positively influenced by specific metabolic therapies.%癫(癎)是小儿神经系统常见疾病,遗传代谢病(IEMs)是导致癫(癎)的重要病因之一.IEMs以神经系统受累最常见,癫(癎)发作可作为首发症状或主要症状.虽然IEMs导致癫(癎)相对少见,但早期识别和明确诊断非常重要,因为部分IEMs有可以治疗的方法.患儿的预后与IEMs的类型及诊断和治疗是否及时密切相关.现将结合发病年龄重点介绍与癫(癎)密切相关的IEMs,尤其是可治疗的IEMs.

  5. AB152. Inborn errors of metabolism spectrum in symptomatic children of north India: 5-year prospective data from tertiary care centre

    Science.gov (United States)

    Kumar, Somesh; Lomash, Avinash; Varughese, Bijo; Bidhan, Sourabh; Khalil, Sumaira; Polipalli, Sunil K.; Kapoor, Seema

    2015-01-01

    Background Children with high suspicion of IEM is a more effective screening strategy in a resource limited country like India. We present a prospective analysis of symptomatic children with red flag signs suggestive of IEM referred for analysis by LCMSMS. This study investigated the spectrum of IEM in symptomatic children over a period of 5 years (1st June 2010 to May 31st 2015). Methods A total of 3,250 symptomatic children for IEM were screened. Dried blood spots were collected and processed by MS/MS (API-2000 & 3200 Qtrap), using a non derivatized kit, analysed by R-4 Stork algorithm. Results A total of 3,250 children, 1,803 boys (56.34%), 1,397 girls (43.66%) with a median age of 20.8 months (range, 0.04-148.2 months) were screened. The 125 were diagnosed with an inborn error of metabolism, with a detection rate of 3.90%. Of these, 78 (62.40%) were males and 47 (38.60%) were females with a median age of 6.55 months. Clinical variation among the patients were unexplained encephalopathy, seizures, convulsions, delayed milestones with global developmental delay, persistent metabolic acidosis with increase anion GAP. The commonest group was amino acid disorders affecting 61 (48.8%) with phenylketonuria (n=5), hyperphenylalaninemia (n=4), maple syrup urine disease (n=8), hypermethioninemia (n=3), hyperglycemia (n=14), tyrosinemia (n=5), classic neonatal onset citrullinemia (n=4), 3 with hyperornithinemia, 10 with rasied alanine (as a secondary indicator), 3 with argininemia and 2 with remethylation defect. Organic acidemias 37 (29.60%) were methylmalonic academia (n=15), malonic aciduria (n=3), propionic aciduria (n=5), glutaric academia type I (n=5) and with 3-Methyl crotonyl-CoA carboxylase deficiency (n=9). Fatty acids disorders were seen in 27 (21.60%) children with medium-chain acyl-CoA dehydrogenase deficiency being the commonest (n=5), and very-long chain acyl-CoA dehydrogenase deficiency (n=2), carnitine palmitoyl-transferase Ia deficiency (n=12), carnitine

  6. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-01-01

    The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era. PMID:27649151

  7. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations.

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-01-01

    The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.

  8. Neonatal Screening for Inborn Errors of Metabolism in Shanghai%上海地区遗传代谢病的新生儿筛查

    Institute of Scientific and Technical Information of China (English)

    顾学范; 叶军; 韩连书

    2009-01-01

    Objectives Inborn errors of metabolism (IEM) has a diverse spectrum and different incidence in different countries, the early diagnosis at presymptomatic stage is imperative to benefic patient from sequelae. Phenylke-tonuria (PKU) / hyperphenylalaninemia (HPA) is the most common metabolism disorder in Shanghai as well as in other regions. The study is to further clarify the incidence of inborn errors of metabolism among newborn in Shanghai. Methods The dried blood spot specimens were collected from near 90 local maternity and children's hospitals or general hospitals in Shanghai. PKU/HPA screening was carried out by fluorometric method. Neonatal screening using tandem mass spectrometry was performed in one of the study centers, Xinhua neonatal screening center. Results A total of 815 160 cases were screened from 2001 - 2007 in Shanghai, the incidence of PKU/HPA was 1 : 12 351. The tetrahydrobiopterin deficiency was 12.9% among hyperphenylalaninemia patients. According to the 116 000 neonatal samples data detected by tandem mass spectrometry, 20 cases were confirmed diagnosis, including 6 kinds diseases, it was PKU/HPA, maple syrup urine disease, methylmalonicacidemia, propionic acidemia, 3-methylcrotonyl-CoA carboxylase defection, and short chain aeyl-CoA dehydrogenase deficiency. Conclusions The pilot study shown that inborn errors of metabolism neonatal screen-ing using tandem mass was 1 : 5 800 in Shanghai, PKU/HPA was the most common disease. It is expected that the expansion of newborn screening using tandem mass spectrometry could be further considered and further improving inborn errors of metabolism preventive services in Shanghai.

  9. [GASTROSTOMY POSITIVELY AFFECTS NUTRITIONAL STATUS AND DIMINISHES HOSPITAL DAYS IN PATIENTS WITH INBORN ERRORS OF METABOLISM].

    Science.gov (United States)

    Guillén-López, Sara; Vela-Amieva, Marcela; Juárez-Cruz, Merit Valeria; González-Zamora, José Francisco; Monroy-Santoyo, Susana; Belmont-Martínez, Leticia

    2015-07-01

    Introducción: el tratamiento nutricional de los pacientes con errores innatos del metabolismo (EIM) implica el uso permanente de fórmulas modificadas en aminoácidos cuyas características organolépticas pueden dificultar su aceptación por vía oral. Estos pacientes pueden tener alteraciones gastrointestinales y requieren el uso constante de medicamentos, lo cual complica la adherencia al tratamiento, comprometiéndose con ello su estado nutricional y el control de la enfermedad. La gastrostomía es una alternativa para facilitar la alimentación y el tratamiento, pero existen controversias sobre su uso. Objetivo: comparar el estado nutricional y la duración de las hospitalizaciones antes y después de la realización de la gastrostomía en un grupo de pacientes con EIM. Métodos: análisis retrospectivo de datos antropométricos, número de internamientos por descompensación metabólica y su duración en pacientes pediátricos con EIM antes y después de la gastrostomía. Resultados: se analizaron 16 niños; 40% con defectos del propionato, 25% con alteraciones del ciclo de la urea y 35% con otros EIM. Después de la gastrostomía, la proporción de pacientes eutróficos aumentó del 6 al 56% y la desnutrición disminuyó del 94 al 44%. Después de la gastrostomía, la duración de los periodos hospitalarios disminuyó significativamente de 425 a 131 días (p = 0.011); el número de internamientos disminuyó de 33 antes de la intervención a 17, sin embargo, esta diferencia no tuvo significación estadística. Conclusión: en esta muestra, la gastrostomía mejoró el estado nutricional en 56% de los pacientes con EIM, y redujo significativamente los días de hospitalización por descompensación metabólica.

  10. Nutritional Treatment for Inborn Errors of Metabolism: Indications, Regulations, and Availability of Medical Foods and Dietary Supplements Using Phenylketonuria as an Example

    OpenAIRE

    Camp, Kathryn M.; Lloyd-Puryear, Michele A.; Huntington, Kathleen L.

    2012-01-01

    Medical foods and dietary supplements are used to treat rare inborn errors of metabolism (IEM) identified through state-based universal newborn screening. These products are regulated under Food and Drug Administration (FDA) food and dietary supplement statutes. The lack of harmony in terminology used to refer to medical foods and dietary supplements and the misuse of words that imply that FDA regulates these products as drugs have led to confusion. These products are expensive and, although ...

  11. From genome to phenome-Simple inborn errors of metabolism as complex traits

    NARCIS (Netherlands)

    Touw, C M L; Derks, T G J; Bakker, B M; Groen, A K; Smit, G P A; Reijngoud, D J

    2014-01-01

    Sporadically, patients with a proven defect in either mFAO or OXPHOS are described presenting with a metabolic profile and clinical phenotype expressing concurrent defects in both pathways. Biochemical linkages between both processes are tight. Therefore, it is striking that concurrent dysfunction o

  12. 儿科重症医学与遗传代谢病%Pediatric intensive care unit and inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    黄敬孚

    2014-01-01

    Patients with inborn errors of metabolism and metabolic crisis sometimes are admitted in PICU.The symptoms include severe acidosis,hyperammonemia,cerebral edema,coma,lethargy,convulsion,vomit,muscles weakness,jaundice,respiratory disorders and so on.We should improve the understanding of inherited metabolism diseases.This paper reviewed the manifestation,diagnosis,management and therapeutic approach of inborn errors of metabolism,especially mentioned the importance of purification in treatment of metabolic crisis.%遗传代谢病患儿经常以严重酸中毒、高氨血症、脑水肿、昏迷、嗜睡、抽搐、呕吐、肌无力、黄疸、呼吸困难等症状在PICU住院,小儿重症医学科医生应重视对遗传代谢病诊断和治疗的认识,提高对遗传代谢病的诊治水平.本文介绍了小儿重症医学科医生应基本掌握的遗传代谢病的概念、临床表现、诊断方法和基本治疗方法,并提出了对遗传代谢病重症危象患儿血液净化治疗的重要性.

  13. [Clinical, biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism: SP-B deficiency and alveolar proteinosis].

    Science.gov (United States)

    Tredano, M; Blic, J D; Griese, M; Fournet, J C; Elion, J; Bahuau, M

    2001-01-01

    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus and to which a bulk of functions has been assigned, physical (surface-active properties) as well as immune or depurant. This complex consists of a surface active lipid layer (mainly phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions, one can isolate very hydrophobic proteins SP-B and SP-C as well as the collectins SP-A and SP-D, which were shown to have structural, metabolic, or defensive properties. Inborn or acquired abnormalities of surfactant, qualitative or quantitative in nature, account for a number human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases have been characterized by the storage of periodic acid Schiff-positive material filling the alveoli. From this heterogeneous nosologic bulk, at least two discrete entities presently seem to emerge: 1) SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which is a bona fide autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640), generally entailing neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed; 2) alveolar proteinosis, characterized by the storage of a mixed, protein and lipid material, and which constitutes a relatively heterogeneous clinical biological syndrome, with regards to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models with a targeted mutation of the gene encoding GM-CSF (Csfgm) or the beta subunit of its receptor (Il3rbl) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage would be a key player. Beside SP-B deficiency, in which a near-consensus diagnostic chart can be designed, the ascertainment of other abnormalities of surfactant metabolism is not

  14. Diagnosis of inborn errors of metabolism using tandem mass spectrometry and gas chromatography mass spectrometry%串联质谱联合气相色谱-质谱检测遗传性代谢病

    Institute of Scientific and Technical Information of China (English)

    韩连书; 叶军; 邱文娟; 高晓岚; 王瑜; 金晶; 顾学范

    2008-01-01

    Objective To investigate the effects of tandem mass spectrometry (MS/MS) combined with gas chromatography mass spectrometry (GC-MS) in the diagnosis of inborn errors of metabolism in children. Methods Amino acids and acylcarnitines in the dry blood filter papers were tested by MS/MS, and the organic acid profiles in urea were tested by GC-MS among 4981 children suspected to be with inborn errors of metabolism from more than 100 hospitals in China. A few pediatric patients underwent analysis of activity of enzyme and gene mutation analysis too. Results 319 of the 4981 children (6.4%) were diagnosed as with 24 kinds of diseases: 155 of the 319 cases (48.6%) with 8 kinds of amino acid diseases (97 with hyperphenylalaninemia, 14 with maple syrup urine disease 13 with ornithine transcarbamylase deficiency, 13 with citrullinemia type Ⅱ, 10 with tyrosinemia type Ⅰ , 5 with citrullinemia type Ⅰ ,2 with homocystinuria, and 1 with arginasemia) ; 150 of the 319 cases (47.0%) were diagnosed as with 10 kinds of organic acidemias (81 with methylmalonic acidemia, 17 with propionic acidemia, 17 with multiple CoA carboxylase deficiency, 11 with glutaric acidemia type Ⅱ, 8 with isovaleric acidemia, 6 with β-keto thiolase deficiency, 5 with 3-methylcrotonyl-CoA carboxylase deficiency, and 3 with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency) ; 14 cases (4.4%) were diagnosed as with 6 kinds of fatty acid disorders (5 with medium chain acyl-CoA dehydrogenase deficiency, 3 with very long chain acyl CoA dehydrogenase deficiency, 2 with short chain acyl-CoA dehydrogenase deficiency, 2 with multiple acyl-CoA dehydrogenase deficiency, 1 with carnitine palmitoyl transferase type Ⅱ , and 1 with carnitine palmitoyl transferase type Ⅰ ). Conclusion MS/MS is specific for amino acid diseases and fatty acid disorders. GC-MS is specific for detect organic acidemias. And the diagnoses of part of amino acid diseases need the combination of both methods.%目的 应用串联质谱检测

  15. Glycosidases: inborn errors of glycosphingolipid catabolism.

    Science.gov (United States)

    Ashida, Hisashi; Li, Yu-Teh

    2014-01-01

    Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease. PMID:25151392

  16. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However....... However, this does not seem applicable for inflammatory diseases or human models of sepsis, in which the enhanced imbalance between these two processes is observed within an enhanced, normal or reduced muscle protein turnover.......PURPOSE OF REVIEW: This review highlights the role of cytokines, in particular tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in relation to the nature of human in-vivo muscle wasting in disease. RECENT FINDINGS: Infusion of human TNF-α and IL-6 in healthy individuals, acutely...

  17. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  18. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning.

    Science.gov (United States)

    Therrell, Bradford L; Lloyd-Puryear, Michele A; Camp, Kathryn M; Mann, Marie Y

    2014-01-01

    Inborn errors of metabolism (IEM) are genetic disorders in which specific enzyme defects interfere with the normal metabolism of exogenous (dietary) or endogenous protein, carbohydrate, or fat. In the U.S., many IEM are detected through state newborn screening (NBS) programs. To inform research on IEM and provide necessary resources for researchers, we are providing: tabulation of ten-year state NBS data for selected IEM detected through NBS; costs of medical foods used in the management of IEM; and an assessment of corporate policies regarding provision of nutritional interventions at no or reduced cost to individuals with IEM. The calculated IEM incidences are based on analyses of ten-year data (2001-2011) from the National Newborn Screening Information System (NNSIS). Costs to feed an average person with an IEM were approximated by determining costs to feed an individual with an IEM, minus the annual expenditure for food for an individual without an IEM. Both the incidence and costs of nutritional intervention data will be useful in future research concerning the impact of IEM disorders on families, individuals and society. PMID:25085281

  19. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning✰

    Science.gov (United States)

    Therrell, Bradford L.; Lloyd-Puryear, Michele A.; Camp, Kathryn M.; Mann, Marie Y.

    2014-01-01

    Inborn errors of metabolism (IEM) are genetic disorders in which specific enzyme defects interfere with the normal metabolism of exogenous (dietary) or endogenous protein, carbohydrate, or fat. In the U.S., many IEM are detected through state newborn screening (NBS) programs. To inform research on IEM and provide necessary resources for researchers, we are providing: tabulation of ten-year state NBS data for selected IEM detected through NBS; costs of medical foods used in the management of IEM; and an assessment of corporate policies regarding provision of nutritional interventions at no or reduced cost to individuals with IEM. The calculated IEM incidences are based on analyses of ten-year data (2001–2011) from the National Newborn Screening Information System (NNSIS). Costs to feed an average person with an IEM were approximated by determining costs to feed an individual with an IEM, minus the annual expenditure for food for an individual without an IEM. Both the incidence and costs of nutritional intervention data will be useful in future research concerning the impact of IEM disorders on families, individuals and society. PMID:25085281

  20. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    Science.gov (United States)

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  1. Automated Screening for Three Inborn Metabolic Disorders: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kavitha S

    2006-12-01

    Full Text Available Background: Inborn metabolic disorders (IMDs form a large group of rare, but often serious, metabolic disorders. Aims: Our objective was to construct a decision tree, based on classification algorithm for the data on three metabolic disorders, enabling us to take decisions on the screening and clinical diagnosis of a patient. Settings and Design: A non-incremental concept learning classification algorithm was applied to a set of patient data and the procedure followed to obtain a decision on a patient’s disorder. Materials and Methods: Initially a training set containing 13 cases was investigated for three inborn errors of metabolism. Results: A total of thirty test cases were investigated for the three inborn errors of metabolism. The program identified 10 cases with galactosemia, another 10 cases with fructosemia and the remaining 10 with propionic acidemia. The program successfully identified all the 30 cases. Conclusions: This kind of decision support systems can help the healthcare delivery personnel immensely for early screening of IMDs.

  2. Nutritional treatment for inborn errors of metabolism: indications, regulations, and availability of medical foods and dietary supplements using phenylketonuria as an example.

    Science.gov (United States)

    Camp, Kathryn M; Lloyd-Puryear, Michele A; Huntington, Kathleen L

    2012-09-01

    Medical foods and dietary supplements are used to treat rare inborn errors of metabolism (IEM) identified through state-based universal newborn screening. These products are regulated under Food and Drug Administration (FDA) food and dietary supplement statutes. The lack of harmony in terminology used to refer to medical foods and dietary supplements and the misuse of words that imply that FDA regulates these products as drugs have led to confusion. These products are expensive and, although they are used for medical treatment of IEM, third-party payer coverage of these products is inconsistent across the United States. Clinicians and families report termination of coverage in late adolescence, failure to cover treatment during pregnancy, coverage for select conditions only, or no coverage. We describe the indications for specific nutritional treatment products for IEM and their regulation, availability, and categorization. We conclude with a discussion of the problems that have contributed to the paradox of identifying individuals with IEM through newborn screening but not guaranteeing that they receive optimal treatment. Throughout the paper, we use the nutritional treatment of phenylketonuria as an example of IEM treatment. PMID:22854513

  3. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  4. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  5. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  6. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  7. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  8. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  9. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  10. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  11. An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters.

    Science.gov (United States)

    Aretz, Ina; Hardt, Christopher; Wittig, Ilka; Meierhofer, David

    2016-05-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, ρ(0) cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post-translational modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets and selected enzyme activities in the osteosarcoma cell line 143B.TK(-) A shotgun based SILAC LC-MS proteomics and a targeted metabolomics approach was applied to elucidate the consequences of the ρ(0) state. Pathway and protein-protein interaction (PPI) network analyses revealed a nonuniform down-regulation of the respiratory electron chain, the tricarboxylic acid (TCA) cycle, and the pyruvate metabolism in ρ(0) cells. Metabolites of the TCA cycle were dysregulated, such as a reduction of citric acid and cis-aconitic acid (six and 2.5-fold), and an increase of lactic acid, oxalacetic acid (both twofold), and succinic acid (fivefold) in ρ(0) cells. Signaling pathways such as GPCR, EGFR, G12/13 alpha, and Rho GTPases were up-regulated in ρ(0) cells, which could be indicative for the mitochondrial retrograde response, a pathway of communication from mitochondria to the nucleus. This was supported by our phosphoproteome data, which revealed two main processes, GTPase-related signal transduction and cytoskeleton organization. Furthermore, a general de-ubiquitination in ρ(0) cells was observed, for example, 80S ribosomal proteins were in average threefold and SLC amino acid transporters fivefold de-ubiquitinated. The latter might cause the observed significant increase of amino acid levels in ρ(0) cells. We conclude that an elimination of the respiratory electron chain, e.g. mtDNA depletion, not only leads to an uneven down-regulation of mitochondrial energy pathways, but also

  12. Amino acid supplementation alters bone metabolism during simulated weightlessness

    Science.gov (United States)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  13. Los errores congénitos del metabolismo como enfermedades raras con un planteamiento global específico Inborn errors of metabolism as rare diseases with a specific global situation

    Directory of Open Access Journals (Sweden)

    P. Sanjurjo

    2008-01-01

    result in the alteration of a protein. Depending on this protein’s function - whether as an enzyme, a hormone, a receiver-transporter of a cellular membrane or forming part of a cellular organelle (lysosome, peroxysome - different groups of diseases emerge, which cause the most outstanding characteristic of inborn errors of metabolism (IEM: their clinical heterogeneity. The majority of these diseases are autosomal recessive, with a limited number of asymptomatic carriers, but there are also those ruled by an autonomous, dominant character inheritance or linked to the X chromosome. Taken individually, CMDs are highly infrequent, but taken as a whole CMDs (of which over 500 have been described to date can affect 1/500 of the newborn. A common characteristic of many CMDs is the possibility of dietary treatment and treatment with enzymatic replacement. For essentially didactic purposes the following groups should be considered: CMDs of the intermediary metabolism (whose types are intoxication and energy deficit, CMDs of cellular organelles, complex CMDs due to cycle alterations and others. A summary is presented of the clinical, diagnostic and therapeutic aspects of one disease of each type of those previously described: hyperphenylalaninemias, deficiencies of the mitochondrial oxidative phosphorilation (OXPHOS and lysosomal storage diseases.

  14. Inborn Error of Metabolism (IEM) screening in Singapore by electrospray ionization-tandem mass spectrometry (ESI/MS/MS): An 8 year journey from pilot to current program.

    Science.gov (United States)

    Lim, J S; Tan, E S; John, C M; Poh, S; Yeo, S J; Ang, J S M; Adakalaisamy, P; Rozalli, R A; Hart, C; Tan, E T H; Ranieri, E; Rajadurai, V S; Cleary, M A; Goh, D L M

    2014-01-01

    IEM screening by ESI/MS/MS was introduced in Singapore in 2006. There were two phases; a pilot study followed by implementation of the current program. The pilot study was over a 4 year period. During the pilot study, a total of 61,313 newborns were screened, and 20 cases of IEM were diagnosed (detection rate of 1:3065; positive predictive value (PPV) of 11%). Regular self-review, participation in external quality assessment and the Region 4 Genetic collaborative programs (http://www.region4genetics.org/) had led to the robust development of our current NBS MS/MS program. Overall, from July 2006 to April 2014, we screened a total of 177,267 newborns. The mean age at the time of sampling was 47.9h. Transportation of samples to the testing laboratory averaged 0.92 day. Upon receipt of sample, the NBS result was available within 1.64 days and within 3.8 days if a second tier test was required. Using absolute cut-off values in place of the initial 99th percentile reference range for the analyte markers and the introduction of two 2nd tier tests (MMA and Succinylacetone) had significantly reduced the high recall rate from an initial 1.5% during the period 2006-07 to 0.12% in 2013. The NBS MS/MS program was supported by a centralized confirmatory/diagnostic testing laboratory and a rapid response team of metabolic specialists. The detection rate was 1: 3165 (1:2727 if maternal conditions were also included). There were 23 newborns affected with organic acidemias (incidence: 1:6565), 23 with fatty acid oxidation disorders (incidence: 1:6565), and 10 with amino acidopathies (incidence 1:17,726). The performance metrics for the screening test were acceptable (sensitivity: 95.59%, specificity: 99.85%, PPV: 20%, FPR: 0.15). Participation in the NBS MS/MS program by hospitals was voluntary, and in 2013, the uptake rate was 71% of the annual births. We hope that newborn screening by MS/MS will become a standard of care for all babies in Singapore.

  15. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  16. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Science.gov (United States)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  17. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [13] - leucine and α- [15N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  18. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  19. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Directory of Open Access Journals (Sweden)

    Marko Kreft

    2012-04-01

    Full Text Available Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  20. AMINO ACID METABOLISM IN COWS DURING THE TRANSITION PERIOD IN BALANCING DIET ON THE EXCHANGE PROTEIN AND DIGESTIBLE AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Ryadchikov V. G.

    2014-02-01

    Full Text Available Application of a factorial method for determining the needs in metabolic protein and essential amino acids, helps to deepen knowledge on physiology of protein and amino acid supply and allow to improve the standards for dairy cows during the transition period; in insufficient of metabolic protein and essential amino acids increased coefficients of their transformation into net protein and absorptive amino acids as a result of mobilization of body of cows; with an optimal protein nutrition their transformation in net milk protein, lysine and methionine accordingly amounted to 0.67, 0,83 and 0,82. The most significant changes in the concentration of methionine, proline, glutamate, glutamine, glycine were observed in cows before calving and immediately after birth, stabilization of their level starts with a 24 lactation day, that is connected with the peculiarities of the feeding behavior of the cows and the gradual intensification of the processes of metabolism and milk production. To control the status of protein metabolism we have offered benchmarks compositions of free amino acids in cows’ blood plasma phases: 21-0 days before calving, 0-21 and 22-120 days after calving

  1. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  2. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  3. Plasma amino acids

    Science.gov (United States)

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  4. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  5. Enfermedades metabólicas en el periodo neonatal con presentación neurológica Inborn errors of metabolism with neurological manifestations in the neonatal period

    Directory of Open Access Journals (Sweden)

    Jaume Campistol

    2007-01-01

    mejorar la precocidad diagnóstica y terapéutica, especialmente con cofactores para reducir la morbimortalidad.Congenital metabolic diseases are considered as rare diseases because of their low incidence and their clinical symptoms at onset. Sometimes they can just begin in the neonatal period. Their progressive knowledge and the availability of specific and sensitive biochemical procedures allow us to diagnose many congenital metabolic diseases, which were not recognized some years ago. We reviewed the 52 patients with congenital metabolic diseases diagnosed during the last 25 years in our centre, evaluating the clinical presentation, neurological symptoms, complementary exams and clinical evolution. The mean age at onset of symptoms was 5 days and the mean age at diagnosis was 88 days of age. We considered a first group of 36 patients with inborn errors of intermediary metabolism, in whom hypotonia, weight loss and seizures are the main symptoms. The second group was composed of 8 patients with defective energy metabolism, who showed abnormal respiratory rhythm and hypotonia. Finally, we considered 8 patients with diseases of the complex molecules, who presented with hypotonia and cataracts as common symptoms at onset. The more common neurological symptoms in this period were hypotonia (60%, sensorial deficit (35% and refractory seizures (23%. The complementary laboratory tests in the first phases of the diseases allowed us to suspect a congenital metabolic disease especially among intermediary and energy defects. EEG and CSF samples were important to diagnose some inborn errors of intermediary metabolism. In the first steps, the neuroimaging was less orientative, even if it allow the exclusion of other diseases. More than half of the patients with inborn errors of metabolism with onset in the neonatal period died within the first two years of life. It is really important to suspect these diseases in the neonatal period so as to achieve an early diagnosis and prompt

  6. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  7. Quantification of Five Clinically Important Amino Acids by HPLC-Triple TOF™ 5600 Based on Pre-column Double Derivatization Method.

    Science.gov (United States)

    Deng, Shuang; Scott, David; Garg, Uttam

    2016-01-01

    Phenylalanine, tyrosine, glycine, cystine, and phosphoethanolamine are commonly measured amino acids in various physiological fluids to diagnose or follow-up various inborn errors of metabolism. The gold standard method for the amino acids quantitation has been ion exchange chromatography with ninhydrin post-column derivatization. However, this method is very laborious and time consuming. In recent years, liquid-chromatography mass spectrometry is being increasingly used for the assay of amino acids. Pre-column butyl derivatization with reverse phase chromatography has been widely used for mass spectrometry analysis of amino acids. Phosphoethanolamine is not butylated and cannot be measured by this method. Nevertheless, phosphoethanolamine can be dansyl-derivatized using dansyl chloride. We developed a double derivatization method by using butanol and dansyl chloride to derivatize carboxylic and amino groups separately, and then combining the derivatives to simultaneously measure these five amino acids using TOF-MS scan. Stable isotope-labeled internal standards were used. PMID:26602116

  8. Quantification of Five Clinically Important Amino Acids by HPLC-Triple TOF™ 5600 Based on Pre-column Double Derivatization Method.

    Science.gov (United States)

    Deng, Shuang; Scott, David; Garg, Uttam

    2016-01-01

    Phenylalanine, tyrosine, glycine, cystine, and phosphoethanolamine are commonly measured amino acids in various physiological fluids to diagnose or follow-up various inborn errors of metabolism. The gold standard method for the amino acids quantitation has been ion exchange chromatography with ninhydrin post-column derivatization. However, this method is very laborious and time consuming. In recent years, liquid-chromatography mass spectrometry is being increasingly used for the assay of amino acids. Pre-column butyl derivatization with reverse phase chromatography has been widely used for mass spectrometry analysis of amino acids. Phosphoethanolamine is not butylated and cannot be measured by this method. Nevertheless, phosphoethanolamine can be dansyl-derivatized using dansyl chloride. We developed a double derivatization method by using butanol and dansyl chloride to derivatize carboxylic and amino groups separately, and then combining the derivatives to simultaneously measure these five amino acids using TOF-MS scan. Stable isotope-labeled internal standards were used.

  9. Study of clinic etiologies about newborn infants with high risk of inborn error of metabolism%高危新生儿遗传代谢病临床病因学分析

    Institute of Scientific and Technical Information of China (English)

    庄太凤; 马建荣; 温春玲; 邢继伟; 张巍; 杨艳玲

    2011-01-01

    Objective To investigate the clinic etiologies about newborn infants with high risk of inborn error of metabolism ( IEM) in NICU. Methods We did a urine organic acid analysis about 100 newhom infants with high risk of IEM by GC/MS. At the same time . blood routine , liver and renal function , blood lactic acid, blood pyruvic acid , β-hydroxyhutyric acid ,blood ammonia and serum homocysteine were determined. There were 24 patients diagnosed IEM by analysis results among the 100 cases. After 1 or 2 courses of treatment to the 24 patients , we did follow-up examination. Results There were 12 cases confirmed with IEM in the 24 patients ,including 2 patients with propionic acidemia ( PA) ,2 with tyrosinemia,2 with homocystinemia , 1 with methylmalonic aciduria ( MMA) ,1 with glutaric acidosis type Ⅱ ( GAⅡ) ,1 with congenital lactose intolerance,1 with hypermethioninemia ,1 with β-ketothiolase deficiency and 1 with ornithine carbamoyltransferase deficiency ( OCTD). Those diseases were autosomal recessive inheritance . There were different clinical features in 12 IEM cases ,including 3 patients with blood vessel pathological changes ( microthrombus engendered and encephalon parenchyma haemo -rrhage),2 with eclampsia ,2 with recurred metabolic acidosis ,1 with sudden death,1 with recurred hypoglycemia,1 with obstinated diarrhoea ,1 with jaundice correlated with inheritance and 1 with severe pneumonia. In the crises of the 12 IEM patients , 100% patients showed hyperammonemia, 83% metabolic acidosis and pyruvemia , 67% nephridium impaired , 50% with liver impaired ,42% with blood impaired. Conclusions The newbom infants with high risk of IEM had complicated etiologies . The neonates' IEM spectrum were amplification by new technique ( eg. GC/MS ). The amplification of IEM spectrum would show more etiologies of newborn and help diagnosis and treatment .%目的 初步研究新生儿重症监护室(NICU)先天性遗传代谢病(IEM)高危新

  10. How can cobalamin injections be spaced in long-term therapy for inborn errors of vitamin B(12) absorption?

    Science.gov (United States)

    Boina Abdallah, Amina; Ogier de Baulny, Hélène; Kozyraki, Renata; Passemard, Sandrine; Fenneteau, Odile; Lebon, Sophie; Rigal, Odile; Mesples, Bettina; Yacouben, Karima; Giraudier, Stéphane; Benoist, Jean-François; Schiff, Manuel

    2012-09-01

    Inborn errors of cobalamin (Cbl, vitamin B(12)) absorption include hereditary intrinsic factor deficiency (HIFD) and Imerslund-Gräsbeck disease (IGD). HIFD is secondary to mutations in the HIF gene while IGD is due to mutations in one of the 2 subunits of the intrinsic factor receptor that is cubilin (CUBN) or amnionless (AMN). These disorders lead to intracellular Cbl depletion which in turn causes megaloblastic bone marrow failure, accumulation of homocysteine and methylmalonic acid (MMA), and methionine depletion. The clinical presentation reflects Cbl deficiency, with gastrointestinal symptoms, pancytopenia, and megaloblastic anemia. Mixed proteinuria, when it is present is strongly suggestive of IGD. Accurate diagnosis is always an emergency because early detection and treatment with life-long parenteral pharmacological doses of hydroxocobalamin are life saving and prevent further deterioration. However, the optimal frequency for cobalamin injections as a maintenance therapy is poorly reported. In order to evaluate the optimal maintenance schedule of cobalamin injections, we retrospectively collected clinical, biological, molecular and treatment data on 7 patients affected with congenital Cbl malabsorption. Unlike previous recommendations, we showed that a maintenance dosage of 1 mg cobalamin twice a year was enough to ensure a normal clinical status and keep the hematological and metabolic parameters in the normal range. These data suggest that patients affected with inborn errors of cobalamin absorption may be safely long-term treated with cobalamin injections every 6 months with careful follow-up of hematological and metabolic parameters. This maintenance regime is beneficial because the patients' quality of life improves. PMID:22854512

  11. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  12. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.......Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy...

  13. Tay-Sachs disease as a model for screening inborn errors.

    Science.gov (United States)

    Blitzer, M G; McDowell, G A

    1992-09-01

    In the absence of treatments for most inborn errors of metabolism, the goal of both geneticists and health care providers has been the prevention of disease through identification of at-risk couples. When the enzyme deficiency responsible for a disorder is known, heterozygotes can frequently be identified by enzyme assay. The presence or absence of specific mutations in the genes coding for these enzymes may be determined directly if the gene of interest has been identified and characterized. Because the inherited metabolic disorders are rare, these approaches are useful only for individuals with a family history of a specific disease or for populations in which the gene frequency for a specific disease is increased. Tay-Sachs disease is a fatal, autosomal recessive, metabolic disease caused by deficient activity of the lysosomal enzyme Hex A. Although it is rare in the general population, in which the heterozygote frequency is approximately 1/167, it is elevated in a few populations, including the Ashkenazi Jewish community, in which the heterozygote frequency is 1/30. The ability to detect TSD heterozygotes reliably and to diagnose TSD prenatally using a simple and rapid enzyme assay has made prevention of this disorder possible through education and carrier screening. The identification of specific TSD mutations at the DNA level enables laboratories to provide more accurate screening and diagnosis in some families. The success of TSD screening in the Ashkenazi Jewish population has made it the prototype for screening among the inborn errors of metabolism. The TSD example becomes increasingly relevant as heterozygote detection becomes possible for other genetic disorders that are increased in well-defined populations. Cystic fibrosis is such a disease in the caucasian population. PMID:1355703

  14. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Science.gov (United States)

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  15. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets

    NARCIS (Netherlands)

    MacDonald, A.; van Rijn, M.; Feillet, F.; Lund, A. M.; Bernstein, L.; Bosch, A. M.; Gizewska, M.; van Spronsen, F. J.

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor-free or essenti

  16. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism......During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... at 3 h 23 min ± 11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P

  17. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Bonarius, H.P.J.; Tramper, J.; Bol, J.

    1998-01-01

    Metabolic flows, especially those of amino acids, were determined and analyzed at different stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense. The method is mainly based on mass balances and measurements of amino acids and other metabolites. T

  18. Metabolic regulation of amino acid uptake in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  19. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  20. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  1. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection-An efficient tool for monitoring of inborn metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Tuma, Petr, E-mail: petr.tuma@lf3.cuni.cz [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Samcova, Eva [Institute of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10 (Czech Republic); Stulik, Karel [Department of Analytical Chemistry, Charles University, Albertov 2030, 128 43 Prague 2 (Czech Republic)

    2011-01-24

    A mixture of 29 organic acids (OAs) occurring in urine was analyzed by capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C{sup 4}D) and UV photometric detection. The optimized analytical system involved a 100 cm long polyacrylamide-coated capillary (50 {mu}m i.d.) and the background electrolyte of 20 mM 2-morpholinoethanesulfonic acid (MES)/NaOH + 10% (v/v) methanol, pH 6.0 (pH is related to the 20 mM MES/NaOH buffer in water). The LOD values obtained by C{sup 4}D for the OAs which do not absorb UV radiation range from 0.6 {mu}M (oxalic acid) to 6.8 {mu}M (pyruvic acid); those obtained by UV photometry for the remaining OAs range from 2.9 {mu}M (5-hydroxy-3-indoleacetic acid) to 10.2 {mu}M (uric acid). The repeatability of the procedure developed is characterized by the coefficients of variation, which vary between 0.3% (tartaric acid) and 0.6% (5-hydroxy-3-indoleacetic acid) for the migration time and between 1.3% (tartaric acid) and 3.5% (lactic acid) for the peak area. The procedure permitted quantitation of 20 OAs in a real urine sample and was applied to monitoring of the occurrence of the inborn metabolic fault of methylmalonic aciduria.

  2. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    acid production was also 10-fold higher during exercise compared with that at rest (difference not significant). The net production rates of threonine, glycine and tyrosine and of the sum of the non-metabolized amino acids were about 1.5-2.5-fold higher during exercise with the leg with a low glycogen...... in the concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60......-65% of maximal one-leg power output, starting either with the normal-glycogen or the low-glycogen leg, at random. The net production of threonine, lysine and tyrosine and the sum of the non-metabolized amino acids were 9-20-fold higher (Prest. Total amino...

  3. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  4. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    Science.gov (United States)

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  5. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  6. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    OpenAIRE

    Nagaoka, Noriko; ASHIHARA, Hiroshi

    1988-01-01

    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  7. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  8. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    Science.gov (United States)

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  9. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Institute of Scientific and Technical Information of China (English)

    Purnima Guda; Chittibabu Guda; Shankar Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  10. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Knudsen, Karen Birgitte Moos; Kondrup, Jens;

    2001-01-01

    BACKGROUND & AIMS: High circulating levels of ammonia have been suggested to be involved in the development of cerebral edema and herniation in fulminant hepatic failure (FHF). The aim of this study was to measure cerebral metabolism of ammonia and amino acids, with special emphasis on glutamine...

  11. Change of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Hua-Ling Ruan; Li Zhao; Kun-Quan Guo; Kun Yang; Lin-Xiu Ye; Xue Sun

    2016-01-01

    Objective:To study the change situation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism.Methods:Eighty-one patients with hyperthyroidism who were treated in our hospital from May 2013 to October 2014 were selected as the observation group, while 81 healthy persons with health examination at the same period were the control group. Then, the serum oxygen free radical indexes and free amino acids of the two groups were respectively detected and compared, and the detection results of patients in the observation group with different etiologic types and basal metabolic rate were also compared. Results:The serum oxygen free radical related indexes of the observation group were all higher than those of the control group; the serum antioxidant related indexes were all lower than those of the control group; and the serum free amino acids levels were all obviously lower than those of the control group. Besides, the detection results of patients with severe hyperthyroidism in the observation group were worse than those of patients with mild and moderate disease, while the detection results of the observation group with different types of hyperthyroidism had no significant differences.Conclusions:The fluctuation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism are obvious, and the detection results of patients with different basal metabolic rates are also quite obvious.

  12. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    reasons: first, BCAA share the same enzymes in their catabolic pathways, and there is an interaction among them in a way that excess Leu for example increases the catabolism of them all and changes the requirements. Second, BCAA are not only building blocks of protein biosynthesis, but are also involved......, and Leu requirements in ratio to Lys for pigs after weaning and second, to study the metabolic profile in blood and urine of pigs fed with different BCAA in the diet, and finally, to identify the biomarkers of BCAA, when pigs were fed with the optimum dietary BCAA level to support the best growth...... of the last “-omics”, is a global analysis and interpretation of metabolome in specific health or nutritional status. Non-targeted metabolomics is used for screening the metabolic profile, and the metabolic signature could be used for hypothesis generation. The results of a non-targeted LC-MS metabolomics...

  13. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  14. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines?

    OpenAIRE

    Puel, Anne; Picard, Capucine; Cypowyj, Sophie; Lilic, Desa; Abel, Laurent; Casanova, Jean-Laurent

    2010-01-01

    The various clinical manifestations of chronic mucocutaneous candidiasis (CMC) often result from acquired T-cell immunodeficiencies. More rarely, CMC results from inborn errors of immunity, the recent dissection of which has shed light on the molecular mechanisms of mucocutaneous immunity to Candida albicans. CMC may accompany various other infectious diseases in patients with almost any broad and profound T-cell primary immunodeficiency. By contrast, CMC is one of the few key infections in p...

  15. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias;

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from......, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism...... conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon...

  16. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  17. Serum neutral amino acid concentrations in cirrhotic patients with impaired carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-08-01

    Full Text Available Serum neutral amino acid levels in cirrhotic patients with abnormal oral glucose tolerance test patterns were not different from those of subjects without impaired carbohydrate metabolism. However, the characteristic features of serum aminograms in the patients, that is, increased levels of tyrosine, decreased levels of valine and leucine and the diminished ratio of branched chain amino acids to phenylalanine and tyrosine levels, were less pronounced in those treated with insulin. This finding is clinically important for evaluating the serum aminogram of cirrhotic patients under insulin therapy.

  18. Los errores congénitos del metabolismo como enfermedades raras con un planteamiento global específico Inborn errors of metabolism as rare diseases with a specific global situation

    OpenAIRE

    Sanjurjo, P; A. Baldellou; K. Aldámiz-Echevarría; Montejo, M; M.C. García Jiménez

    2008-01-01

    Las llamadas enfermedades congénitas del metabolismo (ECM) son consecuencia de alteraciones bioquímicas de origen génico que tienen como consecuencia la alteración de una proteína. Dependiendo de la función de esta proteína, ya sea como un enzima; como una hormona; como un receptor-transportador de membrana celular; o formando parte de una organela celular (lisosoma, peroxisoma) surgen diferentes grupos de enfermedades, lo cual origina la característica más destacada de los errores innatos de...

  19. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    Science.gov (United States)

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  20. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery

    DEFF Research Database (Denmark)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin;

    2015-01-01

    (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. CONCLUSIONS/INTERPRETATION: Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate......AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite...... showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation...

  1. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  2. Essential amino acid metabolism in infected/non-infected, poor, Guatemalan children

    International Nuclear Information System (INIS)

    Traditional methods used to evaluate protein metabolism left unanswered some of the relevant questions in public health in developing countries, such as growth retardation in children. Particularly, in developing countries, infection (clinical and subclinical) and malnutrition are still relevant problems, and the most important scientific issues for the application of stable isotope tracer methods are related to the impact of infection, such as the oxidative disposal of essential amino acids in well-nourished and malnourished children. The objectives of the present proposal are: (1) To simplify, make less expensive, less time-consuming, and less invasive, methods in clinical research on amino acid metabolism using stable-isotope tracers in children; and (2) To assess the effects of infection (clinical or subclinical) on whole-body protein turnover in children with and without malnutrition. The objectives involve the engineering and assessment of a portable instrument to be used in evaluations of protein oxidation in the developing world. Methodological issues such as intra- and inter-subject variability, which are of great importance for the interpretation of amino acid metabolism and protein turnover, will also be considered. 18 refs, 2 figs

  3. Amino acid metabolism during total parenteral nutrition in healthy volunteers: evaluation of a new amino acid solution.

    Science.gov (United States)

    Berard, M P; Hankard, R; Cynober, L

    2001-10-01

    The aim of this study was to determine the metabolism and the tolerance of a new amino acid (AA) solution administered under conditions mimicking cyclical parenteral nutrition (PN) in humans. Eight healthy volunteers received peripheral PN for 10 h providing 10.5 mg N x kg(-1) x h(-1) and 2.0 kcal x kg(-1) x h(-1) (glucose-to-lipids ratio: 70/30%). For adaptation, a non-protein energy intake was increased progressively for 90 min; thereafter, AA infusion was started and maintained at a constant rate for 10 h. Plasma and urine concentrations of all the AAs were measured before, during and after the PN. For each given AA, the relation between plasma variations at the steady-state and infusion rate, plasma clearance (Cl), renal clearance (Clr), re-absorption rate (Reab) and, retention rate (Reten) were determined. The nitrogen balance (DeltaN) was calculated during the PN period. The results are presented as means+/-sem. All plasma AA concentrations decreased during the starting period of non-protein energy intake. The plasma AA concentrations reached a steady-state within 3 h upon AA infusion, except for glycine and lysine (6 h). At the steady state, the plasma concentrations of the infused AAs were closely correlated to their infusion rate (y= -18.3+1.5x, r(2)=0.92). The plasma glutamine concentration was maintained during the PN, which indicates that the solution might stimulate the de novo synthesis of this AA. When the PN was stopped, plasma levels of the AAs decreased, most of them returning to their basal levels, or significantly below for lysine (Por= 99%, Reten >or=99% and for non-essential AAs: Cl or= 98% except glycine (95+/-1), aspartate (94+/-2) and histidine (94+/-1), Reten >or=97% except histidine (94+/-1), glycine (95+/-3). These results indicate that in healthy subjects, the amounts of AAs provided by the new solution were well balanced for an intravenous administration, and so were well utilized without excessive urinary excretion. The present study

  4. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  5. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  6. Characteristic metabolism of free amino acids in cetacean plasma: cluster analysis and comparison with mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Miyaji

    Full Text Available From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaptation used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future.

  7. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2012-01-01

    Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were...... incremental increase in hepatic glucose release rather than hepatic catabolism of amino acids....

  8. Amino acid metabolism in the kidneys of genetic and nutritionally obese rats.

    Science.gov (United States)

    Herrero, M C; Remesar, X; Bladé, C; Arola, L

    1997-06-01

    The ability of the kidney to take up and/or release amino acids has been determined in two models of obesity in Zucker rats, one genetic and the other nutritional (diet-obese). There was a noticeable increase in gluconeogenic amino acids in the arterial blood of diet-obese animals whereas the genetically obese rats showed small variations in the levels of these amino acids. There were significant decreases in renal Gly and Ser, only in the genetically obese rats. Genetically obese animals showed an increase in Glutamine synthetase activity. The uptake and/or release of amino acids showed important variations between the groups. The diet-obese group exhibited greater variation, since this group took up Glu, Ala, Gy, Phe and Citrulline and released Gln, Ser, Arg and Tyr. Genetically obese rats took up Gln, His and Taurine and released Ser. These different patterns may be related to variations in the whole body metabolic rate, since the diet-obese group was more active than the genetically obese group.

  9. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    Science.gov (United States)

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  10. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F;

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor-free or esse......Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor...... deteriorates from the age of 10 years onwards, at least in part representing the transition of responsibility from the principal caregivers to the patients. However, patients may have particular difficulties in managing the complexity of their treatment because of the impact of the condition...

  11. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  12. Severe infectious diseases of childhood as monogenic inborn errors of immunity.

    Science.gov (United States)

    Casanova, Jean-Laurent

    2015-12-22

    This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications. PMID:26621750

  13. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  14. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  15. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    Directory of Open Access Journals (Sweden)

    Pelletier Eric

    2010-10-01

    Full Text Available Abstract Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C

  16. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.

    Science.gov (United States)

    Mayers, Jared R; Torrence, Margaret E; Danai, Laura V; Papagiannakopoulos, Thales; Davidson, Shawn M; Bauer, Matthew R; Lau, Allison N; Ji, Brian W; Dixit, Purushottam D; Hosios, Aaron M; Muir, Alexander; Chin, Christopher R; Freinkman, Elizaveta; Jacks, Tyler; Wolpin, Brian M; Vitkup, Dennis; Vander Heiden, Matthew G

    2016-09-01

    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements. PMID:27609895

  17. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria.

    Science.gov (United States)

    van Calcar, Sandra C; Ney, Denise M

    2012-08-01

    Phenylketonuria (PKU), an inborn error in phenylalanine metabolism, requires lifelong nutrition management with a low-phenylalanine diet, which includes a phenylalanine-free amino acid-based medical formula to provide the majority of an individual's protein needs. Compliance with this diet is often difficult for older children, adolescents, and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet because it is naturally low in phenylalanine. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein use and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phenylalanine dietary protein for people with PKU.

  18. Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino Acid-based medical foods for nutrition management of phenylketonuria.

    Science.gov (United States)

    van Calcar, Sandra C; Ney, Denise M

    2012-08-01

    Phenylketonuria (PKU), an inborn error in phenylalanine metabolism, requires lifelong nutrition management with a low-phenylalanine diet, which includes a phenylalanine-free amino acid-based medical formula to provide the majority of an individual's protein needs. Compliance with this diet is often difficult for older children, adolescents, and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet because it is naturally low in phenylalanine. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein use and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phenylalanine dietary protein for people with PKU. PMID:22818728

  19. Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids.

    Science.gov (United States)

    Panosyan, Eduard H; Lasky, Joseph L; Lin, Henry J; Lai, Albert; Hai, Yang; Guo, Xiuqing; Quinn, Michael; Nelson, Stanley F; Cloughesy, Timothy F; Nghiemphu, P Leia

    2016-05-01

    Glutamine, glutamate, asparagine, and aspartate are involved in an enzyme-network that controls nitrogen metabolism. Branched-chain-amino-acid aminotransferase-1 (BCAT1) promotes proliferation of gliomas with wild-type IDH1 and is closely connected to the network. We hypothesized that metabolism of asparagine, glutamine, and branched-chain-amino-acids is associated with progression of malignant gliomas. Gene expression for asparagine synthetase (ASNS), glutaminase (GLS), and BCAT1 were analyzed in 164 gliomas from 156 patients [33-anaplastic gliomas (AG) and 131-glioblastomas (GBM), 64 of which were recurrent GBMs]. ASNS and GLS were twofold higher in GBMs versus AGs. BCAT1 was also higher in GBMs. ASNS expression was twofold higher in recurrent versus new GBMs. Five patients had serial samples: 4-showed higher ASNS and 3-higher GLS at recurrence. We analyzed grade and treatment in 4 groups: (1) low ASNS, GLS, and BCAT1 (n = 96); (2) low ASNS and GLS, but high BCAT1 (n = 26); (3) high ASNS or GLS, but low BCAT1 (n = 25); and (4) high ASNS or GLS and high BCAT1 (n = 17). Ninety-one  % of patients (29/32) with grade-III lesions were in group 1. In contrast, 95 % of patients (62/65) in groups 2-4 had GBMs. Treatment was similar in 4 groups (radiotherapy-80 %; temozolomide-30 %; other chemotherapy-50 %). High expression of ASNS, GLS, and BCAT1 were each associated with poor survival in the entire group. The combination of lower ASNS, GLS, and BCAT1 levels correlated with better survival for newly diagnosed GBMs (66 patients; P = 0.0039). Only tumors with lower enzymes showed improved outcome with temozolomide. IDH1(WT) gliomas had higher expression of these genes. Manipulation of amino acid metabolism in malignant gliomas may be further studied for therapeutics development. PMID:26922345

  20. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics.

    Science.gov (United States)

    van den Akker, Chris H P; Schierbeek, Henk; Minderman, Gardi; Vermes, Andras; Schoonderwaldt, Ernst M; Duvekot, Johannes J; Steegers, Eric A P; van Goudoever, Johannes B

    2011-12-01

    Human fetal metabolism is largely unexplored. Understanding how a healthy fetus achieves its fast growth rates could eventually play a pivotal role in improving future nutritional strategies for premature infants. To quantify specific fetal amino acid kinetics, eight healthy pregnant women received before elective cesarean section at term, continuous stable isotope infusions of the essential amino acids [1-13C,15N]leucine, [U-13C5]valine, and [1-13C]methionine. Umbilical blood was collected after birth and analyzed for enrichments and concentrations using mass spectrometry techniques. Fetuses showed considerable leucine, valine, and methionine uptake and high turnover rates. α-Ketoisocaproate, but not α-ketoisovalerate (the leucine and valine ketoacids, respectively), was transported at net rate from the fetus to the placenta. Especially, leucine and valine data suggested high oxidation rates, up to half of net uptake. This was supported by relatively low α-ketoisocaproate reamination rates to leucine. Our data suggest high protein breakdown and synthesis rates, comparable with, or even slightly higher than in premature infants. The relatively large uptakes of total leucine and valine carbon also suggest high fetal oxidation rates of these essential branched chain amino acids.

  1. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  2. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    Science.gov (United States)

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  3. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  4. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Science.gov (United States)

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  5. Essential amino-acid metabolism in infected/non-infected, poor, Guatemalan children

    International Nuclear Information System (INIS)

    As mentioned above, it was our intention to develop and test a simplified version of the protocol to assess amino acid metabolism in children. With the combined efforts of a team of experts in the field, a generic protocol was developed as a mandate of the first CRP held at Boston in the fall of 1993. During the beginning of 1994, the final version of such a protocol was released to all the participants of the CRP meeting and arrangements were made in order to apply it and assess its usefulness in the field setting. Therefore, we have shifted our activities to apply, assess and adapt the generic protocol. We are now testing the protocol in the field to establish the variability parameters in both between and within individuals. After testing and refining the protocol, with the help of other groups in developed countries, by validation and/or comparative studies, we would be in a better position to recommend it as a tool to study amino acid metabolism in children in developing countries, whether to describe some specific profiles or to evaluate nutrition interventions. 1 fig., 3 tabs

  6. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;

    2015-01-01

    and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process....... Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found...

  7. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism.

    Directory of Open Access Journals (Sweden)

    Gareth D Westrop

    Full Text Available Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.

  8. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen;

    2015-01-01

    The use of aquafeeds formulated with plant protein sources supplemented with crystalline amino acids (CAAs) is believed to influence amino acid (AA) uptake patterns and AA metabolic fate. Oxygen consumption and ammonia excretion rates were measured in rainbow trout (468.5 +/- A 86.5 g) force fed 0.......75 % of their body mass with a diet based on either (1) fish meal (FM), (2) pea protein concentrate (PPC), or (3) pea protein concentrate supplemented with histidine, lysine, methionine and threonine (PPC+) to mimic FM AA profile. The specific dynamic action and nitrogen quotient (NQ) were calculated for 48 h...... to be caused by an unbalanced dietary AA profile and CAA supplementation, rather than inclusion of plant protein concentrate....

  9. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  10. Amino acids – Guidelines on Parenteral Nutrition, Chapter 4

    Directory of Open Access Journals (Sweden)

    Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine

    2009-11-01

    Full Text Available Protein catabolism should be reduced and protein synthesis promoted with parenteral nutrion (PN. Amino acid (AA solutions should always be infused with PN. Standard AA solutions are generally used, whereas specially adapted AA solutions may be required in certain conditions such as severe disorders of AA utilisation or in inborn errors of AA metabolism. An AA intake of 0.8 g/kg/day is generally recommended for adult patients with a normal metabolism, which may be increased to 1.2–1.5 g/kg/day, or to 2.0 or 2.5 g/kg/day in exceptional cases. Sufficient non-nitrogen energy sources should be added in order to assure adequate utilisation of AA. A nitrogen calorie ratio of 1:130 to 1:170 (g N/kcal or 1:21 to 1:27 (g AA/kcal is recommended under normal metabolic conditions. In critically ill patients glutamine should be administered parenterally if indicated in the form of peptides, for example 0.3–0.4 g glutamine dipeptide/kg body weight/day (=0.2–0.26 g glutamine/kg body weight/day. No recommendation can be made for glutamine supplementation in PN for patients with acute pancreatitis or after bone marrow transplantation (BMT, and in newborns. The application of arginine is currently not warranted as a supplement in PN in adults. N-acetyl AA are only of limited use as alternative AA sources. There is currently no indication for use of AA solutions with an increased content of glycine, branched-chain AAs (BCAA and ornithine-α-ketoglutarate (OKG in all patients receiving PN. AA solutions with an increased proportion of BCAA are recommended in the treatment of hepatic encephalopathy (III–IV.

  11. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation.

    Science.gov (United States)

    Kilberg, Michael S; Terada, Naohiro; Shan, Jixiu

    2016-07-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine because of their ability to differentiate into all 3 primary germ layers. This review describes recent advances in the understanding of the link between the metabolism of ESCs/iPSCs and their maintenance/differentiation in the cell culture setting, with particular emphasis on amino acid (AA) metabolism. ESCs are endowed with unique metabolic features with regard to energy consumption, metabolite flux through particular pathways, and macromolecular synthesis. Therefore, nutrient availability has a strong influence on stem cell growth, self-renewal, and lineage specification, both in vivo and in vitro. Evidence from several laboratories has documented that self-renewal and differentiation of mouse ESCs are critically dependent on proline metabolism, with downstream metabolites possibly serving as signal molecules. Likewise, catabolism of either threonine (mouse) or methionine (human) is required for growth and differentiation of ESCs because these AAs serve as precursors for donor molecules used in histone methylation and acetylation. Epigenetic mechanisms are recognized as critical steps in differentiation, and AA metabolism in ESCs appears to modulate these epigenetic processes. Recent reports also document that, in vitro, the nutrient composition of the culture medium in which ESCs are differentiated into embryoid bodies can influence lineage specification, leading to enrichment of a specific cell type. Although research designed to direct tissue specification of differentiating embryoid bodies in culture is still in its infancy, early results indicate that manipulation of the nutrient milieu can promote or suppress the formation of specific cell lineages. PMID:27422515

  12. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected].

    Directory of Open Access Journals (Sweden)

    Francois-Pierre J Martin

    Full Text Available Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2 under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.

  13. Studies on Models,Patterns and Require-ments of Digestible Amino Acids for Layers by Nitrogen Metabolism

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The nitrogen (N) metabolic experiments were made to estimate separately amino acid requirements of 43~48 weeks old layers for maintenance, for protein accretion to estabolish models to estimate digestible amino acid requirements. The regression relationship of nitrogen retention vs amino acid intake was estimated for each amino acid by giving, at rate of N intake of 0.91, 0.52, 0.15 and 0.007g.kg-1 body-weight (W0.75) per d, the semi-synthetic diets was made specially deficient in one amino acid. From the regression coefficients, it was calculated that, for the accretion of 1 g protein, the dietary digestible amino acid requirements were (mg) Thr 63.1, Val 100.4, Met 39.9, Ile 88.6, Leu 114.3, Phe 63.2, Lys 87.0, His 20.5, Arg 87.9, Trp 21.4, Met+Cys 77.6, and Phe+Tyr 114.3. Daily amino acid requirements for N equilibrium were estimated to be (mg.kg-1W0.75 per day) Thr 50.6, Val 74.7, Met 30.3, ILe 66.7 Leu 81.4, Phe 44.8, Lys 60.5 His 14.7, Arg 73.9 ,Trp 17.3, Met+Cys 58.6, and Phe+Tyr 83.9 The dietary degestible amino acid patterns for protein accretion and N equilibrium were also proposed. The models of estimating digestible amino acid requirements for the different productions were developed.

  14. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    Science.gov (United States)

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  15. EFFECTS OF CORDYCEPS SINENSIS PREPARATION ON BODY PROTEIN AND AMINO ACID METABOLISM IN PATIENTS AND RATS WITH CHRONIC RENAL FAILURE

    Institute of Scientific and Technical Information of China (English)

    朱淳; 刘强; 左静南; 朱汉威; 马济民

    2002-01-01

    Objective To study the effects of Cordyceps sinensis (CS) on the metabolism of body protein and intra-extracellular amino acids in patients with chronic renal failure( CRF) , and on the rates of protein synthesis in rats with CRF. Methods In patients with CRF, free amino acid concentrations in plasma and skeletal muscle before and after CS treatment were measured by the LKB-4400 amino acid automatic analytical instrument and the changes of body protein metabolism were observed by the method of 15 N-labeled glycine.Meanwhile, the rates of protein synthesis in liver ( SL % /d ) and muscle (SM%/d) of rats with CRF were determinedd by 3f-phenylalanine radioactive tracer. Results After patients with CRF were treated by CS, the Leu, lie, Thr , Lys, Cys, Tyr concentrations in plasma approached the normal levels. In one sample of skeletal muscle the Thr and Lys concentrations approached the normal, whereas both the intracellular and extracellular Val concentrations were still remarkably decreased as compared with the normal controls. Moreover, the nitrogen flow rate (Q) , rates of protein synthesis (S) and catabolism ( C) , and amino nitrogen utilization ratio (S/Q) in patients with CRF and the SL % /d and SM%/d in rats with CRF were significantly increased as compared with those before CS treatment. Conclusion CS can notably improve the amino acid metabolism, promote the body protein synthesis in patients with CRF , and increase the rates of SL % /d and SM%/d in rats with CRF.

  16. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism

    DEFF Research Database (Denmark)

    Larsen, Mogens; Galindo, C; Ouellet, D R;

    2015-01-01

    Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were......, and Lys tended to be greater for AA-CN, and the net PDV recovery of these infused AA ranged from 69 to 73%, indicating increased PDV metabolism with AA-CN. The fractional hepatic removal of these AA did not differ from zero and was unaffected by the increased supply. Consequently, the splanchnic release...... of these AA was approximately equivalent to their net PDV release for both CTRL and AA-CN. Overall, greater early postpartum AA supply increased milk and milk protein yields substantially based on increased mammary AA uptake. The PDV metabolism of branched-chain AA and Lys were increased, whereas it seemed...

  17. Phenylketonuria: protein content and amino acids profile of dishes for phenylketonuric patients. The relevance of phenylalanine.

    Science.gov (United States)

    Pimentel, Filipa B; Alves, Rita C; Costa, Anabela S G; Torres, Duarte; Almeida, Manuela F; Oliveira, M Beatriz P P

    2014-04-15

    Phenylketonuria is an inborn error of metabolism, involving, in most cases, a deficient activity of phenylalanine hydroxylase. Neonatal diagnosis and a prompt special diet (low phenylalanine and natural-protein restricted diets) are essential to the treatment. The lack of data concerning phenylalanine contents of processed foodstuffs is an additional limitation for an already very restrictive diet. Our goals were to quantify protein (Kjeldahl method) and amino acid (18) content (HPLC/fluorescence) in 16 dishes specifically conceived for phenylketonuric patients, and compare the most relevant results with those of several international food composition databases. As might be expected, all the meals contained low protein levels (0.67-3.15 g/100 g) with the highest ones occurring in boiled rice and potatoes. These foods also contained the highest amounts of phenylalanine (158.51 and 62.65 mg/100 g, respectively). In contrast to the other amino acids, it was possible to predict phenylalanine content based on protein alone. Slight deviations were observed when comparing results with the different food composition databases.

  18. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids

    OpenAIRE

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; PAPET, Isabelle

    2011-01-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on ...

  19. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    Science.gov (United States)

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2016-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  20. Amino acid metabolism of Astacus leptodactylus (Esch.)—II. Biosynthesis of the non-essential amino acids

    NARCIS (Netherlands)

    Marrewijk, Willibrordus J.A.; Zandee, Daniel I.

    1975-01-01

    1. 1. Incubation of Astacus leptodactylus with U-14C-glucose or 1-14C-acetate induced labelling of α- and β-alanine, aspartic and glutamic acids, glutamine, glycine, proline and serine. No radioactivity was incorporated into arginine, asparagine, histidine, isoleucine, leucine, lysine, ornithine, ph

  1. Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L.

    Science.gov (United States)

    Mente, E; Houlihan, D F; Smith, K

    2001-06-01

    The effect of feeding frequency on growth and protein metabolism in the European lobster, Homarus gammarus, was investigated. Fourth (IV) stage lobsters H. gammarus were fed individually a marine animal meal (herring/mussels meal) for 56 days. Feeding a daily ration equivalent to 10% of their body weight gave better growth than feeding daily rations of 5% and 20%. Protein synthesis rates were similar for the three food rations but protein growth rates were significantly lower and protein degradation rates highest in the 5% body weight per day ration group. The efficiency with which synthesised protein was retained as growth was found to be 38% in the in the 10% ratio group. Protein synthesis rates of lobsters were found to be lower than those for shrimps (Penaeus vannamei). The amino acid flux also suggests a lower protein conversion efficiency than shrimps P. vannamei. The results suggests that lobsters are slow, periodic feeders and that growth can be readily increased by manipulation of particular environmental factors such as feeding frequency. PMID:11351329

  2. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism.

    Science.gov (United States)

    Larsen, M; Galindo, C; Ouellet, D R; Maxin, G; Kristensen, N B; Lapierre, H

    2015-11-01

    Nine Holstein cows with rumen cannulas and indwelling catheters in splanchnic blood vessels were used in a generalized randomized incomplete block design with repeated measures to study the effect of increased early postpartum AA supply on splanchnic and mammary AA metabolism. At calving, cows were blocked according to parity (second and third or greater) and allocated to 2 treatments: abomasal infusion of water (CTRL; n=4) or free AA with casein profile (AA-CN; n=5) in addition to a basal diet. The AA-CN infusion started with half of the maximal dose at the calving day (1 d in milk; DIM) and then steadily decreased from 791 to 226 g/d until 29 DIM. On 5, 15, and 29 DIM, 6 sample sets of arterial, portal, hepatic, and mammary blood were taken at 45-min intervals. Over the whole period, increasing AA supply increased milk (+7.8 ± 1.3 kg/d) and milk protein yields (+220 ± 65 g/d) substantially. The increased milk yield was not supported by greater dry matter intake (DMI) as, overall, DMI decreased with AA-CN (-1.6 ± 0.6 kg/d). Arterial concentrations of essential AA were greater for AA-CN compared with CTRL. The net portal-drained viscera (PDV) release of His, Met, and Phe was greater for AA-CN compared with CTRL, and the net PDV recovery of these infused AA ranged from 72 to 102% once changes in DMI were accounted for. The hepatic removal of these AA was increased equivalently to the increased net PDV release, resulting in an unaltered net splanchnic release. The net PDV release of Ile, Leu, Val, and Lys tended to be greater for AA-CN, and the net PDV recovery of these infused AA ranged from 69 to 73%, indicating increased PDV metabolism with AA-CN. The fractional hepatic removal of these AA did not differ from zero and was unaffected by the increased supply. Consequently, the splanchnic release of these AA was approximately equivalent to their net PDV release for both CTRL and AA-CN. Overall, greater early postpartum AA supply increased milk and milk protein

  3. Hematopoietic Stem Cell Transplantation (HCT) for Inborn Errors of Metabolism

    Science.gov (United States)

    2012-11-06

    Hurler's Syndrome; Maroteaux-Lamy Syndrome; Sly Syndrome; Alpha Mannosidosis; Fucosidosis; Aspartylglucosaminuria; Sphingolipidoses; Krabbe Disease; Wolman's Disease; Niemann-Pick Disease Type B; Niemann-Pick Disease, Type C

  4. Stem Cell Transplant for Inborn Errors of Metabolism

    Science.gov (United States)

    2012-11-06

    Adrenoleukodystrophy; Metachromatic Leukodystrophy; Globoid Cell Leukodystrophy; Gaucher's Disease; Fucosidosis; Wolman Disease; Niemann-Pick Disease; Batten Disease; GM1 Gangliosidosis; Tay Sachs Disease; Sandhoff Disease

  5. Uptake of amino acids in brain tumours using positron emission tomography as an indicator for assessing metabolic activity and malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Schober, O.; Meyer, G.J.; Duden, C.; Lauenstein, L.; Niggemann, J.; Mueller, J.A.; Hundeshagen, H.; Gaab, M.R.; Dietz, H.; Becker, H.

    1987-11-01

    Diagnosis and post-therapeutic follow-up of tumour patients necessitates morphological and particularly functional imaging methods. For the latter approach positron emission tomography has proven a valid tool for the measurement of perfusion, of energy consumption parameters such as oxygen extraction, glucose metabolism and amino acid uptake. However, neither perfusion nor energy consumption parameters have yielded unambiguous information on the clinical status of various tumours in respect of their malignancy and their growth status. It is shown in this paper that amino acid uptake seems to be a valid measure for the functional activity of tumour tissue for a broad range of neoplasms. The uptake of /sup 11/C-L-Methionine was measured in 33 patients having various brain tumours, and was compared with 6 patients who had an infarction, and with 8 patients suffering from arachnoidal cysts. The amino acid uptake correlated well with the histological grading of the tumours and the clinical status of the patient. The uptake was well differentiated against metabolically inactive lesions. Parallel investigations on the uptake mechanisms of amino acids in an animal model have shown that transport phenomena regulate the uptake rather than protein synthesis rates. However, protein synthesis may nevertheless exercise a control function on the transport process.

  6. [3H]-amino acid uptake and metabolic studies on Gigantocotyle explanatum and Gastrothylax crumenifer (Digenea: Paramphistomidae)

    International Nuclear Information System (INIS)

    The amphistomes Gigantocotyle explanatum and Gastrothylax crumenifer utilize leucine, alanine, proline and methionine during in vitro incubations. Autoradiography on sections of these flukes reveal a time-dependent differential incorporation of tritium-labelled amino acids in various tissues. The tegument appears to be the primary surface through which amino acids are absorbed. Following absorption, the reappearance of [3H]-leucine and [3H]-alanine on the tegumental surface during late chase periods indicates their possible involvement in tegumental secretion. A combination of diffusion and carrier-mediated uptake, possibly involving gamma-glutamyl transpeptidase, is indicated. The transport loci show differences in carrier-affinity (Kt) and maximum uptake velocities (Vmax) for amino acids under study, which suggest multiple transport molecules. Metabolic studies reveal that aspartate, alanine, ornithine, proline, leucine and methionine undergo transamination through 2-oxoglutarate-linked transaminases, distributed in the cytosolic and mitochondrial fractions of G. explanatum and G. crumenifer. With the exception of alanine transaminase, the enzyme levels in the cytosolic fraction were higher than the mitochondrial fraction of the two amphistomes. Predominantly cytosolic glutamate dehydrogenase which was comparatively higher in G. explanatum, catalyse amination of alpha-ketoglutarate. A high level of cytosolic arginase alone does not indicate a functional urea cycle. A tentative pathway of amino acid metabolism in these amphistomes is proposed

  7. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  8. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism.

    Science.gov (United States)

    Chace, Donald H; Kalas, Theodore A; Naylor, Edwin W

    2002-01-01

    This review is intended to serve as a practical guide for geneticists to current applications of tandem mass spectrometry to newborn screening. By making dried-blood spot analysis more sensitive, specific, reliable, and inclusive, tandem mass spectrometry has improved the newborn detection of inborn errors of metabolism. Its innate ability to detect and quantify multiple analytes from one prepared blood specimen in a single analysis permits broad recognition of amino acid, fatty acid, and organic acid disorders. An increasing number of newborn screening programs are either utilizing or conducting pilot studies with tandem mass spectrometry. It is therefore imperative that the genetics community be familiar with tandem mass spectrometric newborn screening.

  9. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    Science.gov (United States)

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (pmodel used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function.

  10. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    Science.gov (United States)

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  11. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  12. Effect of Lead on Microorganisms with Respect to Antibiogram, Glucose and Amino Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Aishwarya Pradeep Rao

    2014-07-01

    Full Text Available Background: Lead poisoning is a prevalent health hazard in today's world of industrialization and is gaining the concern of medical professionals globally. The first organisms in the biosphere to be affected by this are the microorganisms. Many studies have established that metal tolerance is accompanied by antibiotic resistance as both the genes are present on plasmids. Aims and Objectives: The study was conducted to identify the concentrations of lead at which the microbial growth and antibiotic sensitivity was affected and also to identify whether any of the key metabolic activities were influenced. Microorganisms like Escherichia coli, Staphylococcus aureus and Candida albicans. Pseudomonas aeruginosa were chosen due to their increasing importance as a potent hospital acquired pathogen. Material and Methods: American Type Culture Collection (ATCC strains were chosen and exposed to varying concentrations of lead acetate ranging from 1 to 1000 ppm. The growth was quantitatively analyzed spectrophotometrically at 600 nm. The antibiogram was done using disk diffusion method. The sugar fermenting property and the amino acid utilization was studied as they are the basic requirements for growth of any microorganism. Results: On exposure to lead, a decrease in the growth was seen with the three organisms but the growth pattern was different with Pseudomonas as it showed a sudden increase at 100 ppm accompanied by the production of H S at certain concentrations. The 2 antibiotic sensitivity tests which were carried out after exposure to lead, showed a resistance pattern to the β lactam group of antibiotics, hence implying that tolerance to the heavy metal affected the sensitivity of these organisms to the antibiotics. The biochemical tests showed no change in the presence of lead. Lead may exist in the soil in various concentrations but may exert a selective pressure only at certain concentrations. It has been established that a pattern exists

  13. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2005-10-01

    Full Text Available Abstract Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns

  14. Potential use of carbon-11 labeled alpha-aminoisobutyric acid (AIB) as an in vivo tracer of amino acid uptake in differing metabolic states

    International Nuclear Information System (INIS)

    AIB has been used as a model amino acid for the evaluation of alanine-preferring amino acid transport. Hormonal factors and starvation alter the tissue distribution of amino acids, particularly in liver and muscle. With positron emission tomography and labeling of biochemical tracers with C-11, (t1/2=20.4 min), it is now possible to study amino acid kinetics in vivo using external imaging. In order to investigate the utility of C-11 AIB as an in vivo tracer of altered tissue metabolism, C-14 AIB was studied in groups of rats with either streptozotocin-induced diabetes, insulin-induced hypoglycemia or starvation. The data suggest an increased amino acid uptake in liver in starvation, an increased uptake in muscle in response to insulin and associated hypoglycemia and decreased transport in muscle in starvation, as seen by other investigators. These results suggest that C-11 AIB may be useful as an in vivo monitor of metabolic changes in body tissues

  15. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Dalbach, Kristine Foged; Larsen, Mogens; Raun, Birgitte Marie Løvendahl;

    2011-01-01

    The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated by differ...... the first 29 DIM. Extra-splanchnic EAA mobilization can be crucial to sustain milk protein yield in the postpartum transition period and HMBi is a fast-working Met source that can improve Met status of postpartum transition cows.......The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated...... by difference: EAA excretion in milk protein − net portal absorption of EAA or net splanchnic release of EAA. Eight Holstein cows fitted with permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery in the dry period preceding second parturition were used...

  16. The cerebral metabolism of amino acids and related metabolites as studied by 13C and 14C labelling

    International Nuclear Information System (INIS)

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by 13C-and 14C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [13C[acetate, it was shown that glial cells export ∼60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [13C[glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of 13CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs

  17. The cerebral metabolism of amino acids and related metabolites as studied by {sup 13}C and {sup 14}C labelling

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, B.

    1995-11-01

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by {sup 13}C-and {sup 14}C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [{sup 13}C]acetate, it was shown that glial cells export {approx}60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [{sup 13}C]glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of {sup 13}CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs.

  18. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Science.gov (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  19. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Science.gov (United States)

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling. PMID:25956449

  20. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    Science.gov (United States)

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.

  1. Selective screening of inborn errors of metabolism by using the tandem mass spectrometry:pilot study of 552 children at high risk%串联质谱技术选择性筛查遗传代谢病高危患儿552例初步分析

    Institute of Scientific and Technical Information of China (English)

    娄燕; 尹娜; 陈凤琴; 程亚颖; 徐丽瑾; 戴方; 宋晓涛

    2011-01-01

    目的 应用串联质谱(tandem mass spectrometry,MS/MS)技术进行遗传代谢病(IEM)高危儿筛查,初步了解我国IEM的发病种类和阳性率,为其有效防治提供科学依据.方法 利用MS/MS技术对在河北省石家庄市8所省、市级医院就医的552例可疑IEM患儿的血液样本进行IEM筛查.结果 发现阳性患儿64例,阳性率为11.6%.其中甲基丙二酸血症或丙酸血症33例,苯丙酮尿症2例,肉碱棕桐酞转移酶缺乏I型3例,长链酞基辅酶A脱氢酶缺乏症1例,中链酸基辅酶A脱氢酶缺乏症2例,枫糖尿症6例,短链酸基辅酶A脱氢酶缺乏症2例,戊二酸血症I型2例,异戊酸血症2例,同型肤氨酸尿症2例,肉碱缺乏症4例,酪氨酸血症1例,精氨酸境拍酸尿症1例,瓜氨酸血症2例,精氨酸血症1例.结论 MS/MS技术是筛查诊断IEM的有效工具.%Objective To study the application of tandem mass spectrometry (MS/MS) in the selective screening of inborn errors of metabolism (IEM) in high risk children and to understand the positive rate and types of IEM.Methods MS/MS was used to examine 552 blood samples from high risk cases of IEM who came from 8 hospitals in Shijiazhuang,Hebei Province.Results Sixty-four children ( 11.6% ) were confirmed with IEM by the MS/MS, including 33 cases of methylmalonic acidemia or propionic acidemias, 2 cases of phenylketonuria, 3 cases of carnitine palmotoyl transferase Ⅰ deficiency, 1 case of long-chain acyl-CoA dehydrogenase deficiency, 2 cases of medium-chain acyl-CoA dehydrogenase deficiency, 6 cases of maple syrup urine disease, 2 cases of short-chain acyl-CoA dehydrogenase deficiency, 2 cases of glutaric acidemia type Ⅰ, 2 cases of isovaleric acidemia, 2 cases of homocystinuria, 4 cases of carnitine deficiency, 1 case of tyrosinemia, 1 case of argininosuccinic aciduria, 2 cases of citrullinemia and 1 case of argininemia.Conclusions MS/MS can be used to screen and classify IEM.

  2. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction.

    Science.gov (United States)

    Thackeray, James T; Bankstahl, Jens P; Wang, Yong; Wollert, Kai C; Bengel, Frank M

    2016-01-01

    Acute tissue inflammation after myocardial infarction influences healing and remodeling and has been identified as a target for novel therapies. Molecular imaging holds promise for guidance of such therapies. The amino acid (11)C-methionine is a clinically approved agent which is thought to accumulate in macrophages, but not in healthy myocytes. We assessed the suitability of positron emission tomography (PET) with (11)C-methionine for imaging post-MI inflammation, from cell to mouse to man. Uptake assays demonstrated 7-fold higher (11)C-methionine uptake by polarized pro-inflammatory M1 macrophages over anti-inflammatory M2 subtypes (ptranslation of novel image-guided, inflammation-targeted regenerative therapies. PMID:27570549

  3. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form fr...

  4. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  5. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  6. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease.

    Science.gov (United States)

    Kennedy, Barry E; Hundert, Amos S; Goguen, Donna; Weaver, Ian C G; Karten, Barbara

    2016-06-01

    The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis. PMID:27083515

  7. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  8. Free amino acid formula: nitrogen utilization and metabolic effects in normal subjects.

    Science.gov (United States)

    Heller, P A; Shronts, E; Akrabawi, S; Heymsfield, S B

    1987-01-01

    A previous study indicated increased urea production and low nitrogen (N) retention on a free amino acid elemental formula (FAA; Vivonex-HN). The limitations of this earlier study were: irregular nitrogen absorption in the malabsorption patients, high nitrogen intake, and failure to match FAA to control formula (hydrolyzed casein; CAS; Criticare-HN) with respect to kcal/nitrogen. A more critical test of FAA quality was sought in the current study. Four healthy males received the minimal daily nitrogen requirements (0.6 g protein/kg) from either FAA or CAS in a 10-day balance study; a second balance on the alternate formula followed. Maintenance energy, minerals, and vitamins were supplied in each period. The results indicated a higher apparent nitrogen absorption (p less than 0.05) from FAA relative to CAS in the first 5 days of the balance, although these differences were no longer present in the remaining 5 days of the period. Urinary total nitrogen increased on FAA, most of which could be accounted for by urea nitrogen; urinary creatinine nitrogen, ammonia nitrogen, and uric acid nitrogen were nearly identical between formulas. The unmeasured fraction of urinary nitrogen was markedly diminished on FAA while the urea nitrogen to total nitrogen ratio was significantly increased (p less than 0.05) compared to CAS. During the initial 5 days of study nitrogen balance was lower on FAA than on CAS and this difference became significant during the last 5 days of the period (mean +/- SD for FAA = -0.42 +/- 0.59 g/D vs CAS = 0.98 +/- 0.30 g/day, p less than 0.001). Hyperglycinemia was consistently present during FAA infusion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3430685

  9. Second-tier test for quantification of underivatized amino acids in dry blood spot for metabolic diseases in newborn screening.

    Science.gov (United States)

    Wang, Chunyan; Zhu, Hongbin; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-01

    The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC-MS/MS method in 17-19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC-MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol.

  10. Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids.

    Science.gov (United States)

    Shikata, Nahoko; Maki, Yukihiro; Nakatsui, Masahiko; Mori, Masato; Noguchi, Yasushi; Yoshida, Shintaro; Takahashi, Michio; Kondo, Nobuo; Okamoto, Masahiro

    2010-01-01

    The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.

  11. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

    Science.gov (United States)

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel

    2010-09-01

    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia.

  12. Branched-chain amino acid interactions with reference to amino acid requirements in adult men: Valine metabolism at different leucine intakes

    International Nuclear Information System (INIS)

    The authors explored whether the oxidation of valine and by implication the physiological requirement for this amino acid are affected by changes in leucine intake over a physiological range. Six young adult men received, in random order, four L-amino acid-based diets for 5 d supplying either 20 or 10 mg valine.kg body wt-1.d-1, each in combination with 80 or 40 mg leucine.kg-1.d-1. On day 6 subjects were studied with an 8-h continuous intravenous infusion of [1-13C]valine (and [2H3]leucine) to determine valine oxidation in the fasted state (first 3 h) and fed state (last 5 h). Valine oxidation in the fasted state was similar among all diets but was lower (P less than 0.05) in the fed state for the 10 vs 20 mg valine.kg-1.d-1 intake. Leucine intake did not affect valine oxidation. Mean daily valine balance approximated +1.3 mg.kg-1.d-1 for the 20-mg intake and -1.6 mg.kg-1.d-1 for the 10-mg intake. These findings support our previously suggested mean valine requirement estimate of approximately 20 mg.kg-1.d-1

  13. 6th Amino Acid Assessment Workshop

    Science.gov (United States)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  14. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport.

    Directory of Open Access Journals (Sweden)

    Pricilla E Day

    Full Text Available Maternal environment and lifestyle factors may modify placental function to match the mother's capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content on a selection of metabolic and amino acid transporter genes and their associations with fetal growth.RNA was extracted from 102 term Southampton Women's Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR.Increased placental LAT2 (p = 0.01, y+LAT2 (p = 0.03, aspartate aminotransferase 2 (p = 0.02 and decreased aspartate aminotransferase 1 (p = 0.04 mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01, ASCT1 (p = 0.03, mitochondrial branched chain aminotransferase (p = 0.02 and glutamine synthetase (p = 0.05 was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05 associated with higher maternal diet quality (prudent dietary pattern pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05 and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01 associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01. Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001.A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking

  15. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    Science.gov (United States)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  16. PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle

    OpenAIRE

    Yukino Hatazawa; Miki Tadaishi; Yuta Nagaike; Akihito Morita; Yoshihiro Ogawa; Osamu Ezaki; Takako Takai-Igarashi; Yasuyuki Kitaura; Yoshiharu Shimomura; Yasutomi Kamei; Shinji Miura

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellula...

  17. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    Full Text Available BACKGROUND: Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. METHODOLOGY/PRINCIPAL FINDINGS: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  18. Comparative Autoradiographic Study of the RNA and Protein Metabolism within the Various Tissues and Cells of the Mouse with Tritiated RNA Precursors and Labelled Amino Acids

    International Nuclear Information System (INIS)

    The first part of this report deals with autoradiographic studies of the incorporation of labelled amino acids into the various kinds of cells in mice and rats. The amount of the incorporation into the nucleus and into the cytoplasm was determined by grain counting. The results show that all nuclei within one cell-type and the nuclei of different cell-types have approximately the same incorporation rate per unit of nuclear volume. That means, that the amino acid incorporation within certain limits is generally proportional to the volume of a nucleus. Furthermore, the amino acid incorporation into the whole cytoplasm of the various examined cell-types was found to be 5 — 10 times greater than the nuclear incorporation. Therefore, the blackening distribution on autoradiographs with labelled amino acids can be understood by this simple incorporation scheme in connection with the varying size of the nuclear and cytoplasmatic volume of the different cell-types. On the other hand autoradiographic studies with tritiated cytidine and uridine have shown, that the incorporation of RNA precursors into the various tissues of mice and rats is proportional to that of amino acids. That suggests, that in all cells of the organism there exists a constant ratio between the size of protein metabolism and the size of (macromolecular) RNA metabolism. The protein metabolism in a cell is generally 20—30 times greater than the RNA metabolism. As in the case of amino acids incorporation the incorporation of tritiated cytidine into the nuclei of one cell-type and into the nuclei of different cell-types was found to be approximately proportional to the nuclear volume. (author)

  19. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism.

    Directory of Open Access Journals (Sweden)

    Sebastiano Collino

    Full Text Available The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic (1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG and p-cresol sulfate (PCS in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.

  20. The Impact of Streptozotocin-induced Diabetes Mellitus on Cyclic Nucleotide Regulation of Skeletal Muscle Amino Acid Metabolism in the Rat

    OpenAIRE

    Garber, Alan J.

    1980-01-01

    The impact of diabetes on cyclic nucleotide-associated mechanisms regulating skeletal muscle protein and amino acid metabolism was assessed using epitrochlaris preparations from streptozotocin-induced diabetic rats. 1 nM epinephrine inhibited alanine and glutamine release from control preparations, but no inhibition was observed from diabetic preparations with

  1. Amino acid analysis.

    Science.gov (United States)

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  2. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  3. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise

    DEFF Research Database (Denmark)

    Graham, T E; Turcotte, L P; Kiens, Bente;

    1995-01-01

    .4 +/- 6.8 mmol/kg wet wt in Tr and Utr, respectively. Tr had greater (P catabolism. The efflux of NH3 and Gln was much...... greater than that expected from AMP deamination, suggesting that deamination of AA was occurring. Many of the AA responses use Glu, and Tr maintained the intramuscular Glu pool at a higher concentration (P catabolism and/or AA transaminations....... Under these conditions, prolonged dynamic knee extensor exercise is associated with a large release of alpha-amino moieties both as NH3 and as Gln as well as a net protein catabolism; these responses are similar in Tr and Utr....

  4. Has a mixture of amino acids and micronutrients influence on glucose metabolism and dietary fatty acid pattern in chronic psychosocially stressed persons? A pilot study.

    Science.gov (United States)

    Bitterlich, Norman; Chaborski, Katrin; Parsi, Elke; Rösler, Daniela; Metzner, Christine

    2016-01-01

    Brain food, e.g. L-tryptophan, antioxidative substances, B vitamins and magnesium are thought to be beneficial for obesity, inflammation and insulin resistance. In the present pilot study we hypothesised that a specific amino acid mixture with micronutrients improves the cardiometabolic situation of chronically stressed persons. Cardiovascular and metabolic parameters were analysed as per protocol in 32 patients. Chronic stress disorders in the same patients were assessed by a psychological neurological questionnaire (PNF). After dietary intervention a reduction of the fasting serum insulin concentrations occurred in the treatment group. An association was found between PNF values, insulin concentrations at baseline and an insulin reduction after 12 weeks. The results support the use of our specific dietary supplement for improved stress management and a decrease in metabolic dysfunction. PMID:26878772

  5. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    Science.gov (United States)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  6. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women.

    Science.gov (United States)

    Boirie, Y; Gachon, P; Cordat, N; Ritz, P; Beaufrère, B

    2001-02-01

    Regulation of glucose homeostasis by insulin is modified during aging, but whether this alteration is associated with changes in protein metabolism is less defined. Insulin dose responses of whole body glucose, leucine, and albumin metabolism have been investigated using isotopic dilution of D-[6, 6-(2)H(2)]glucose and L-[1-(13)C]leucine in 14 young (Y; 24.0 +/- 0.9 yr; mean +/- SEM, 20.5 +/- 0.4 kg/m(2)) and 12 healthy elderly subjects (E; 69.4 +/- 0.6 yr; 24.6 +/- 0.8 kg/m(2)) using a euglycemic and euaminoacidemic hyperinsulinemic clamp at two insulin infusion rates of 0.2 and 0.5 mU/kg.min (CL1 and CL2, respectively). Despite significantly higher plasma insulin in E than in Y, the glucose disposal rate was lower in E than in Y at both insulin levels, whereas glucose production was normally suppressed. Whole body protein breakdown was less inhibited by insulin in E than in Y at CL1 (-13.5 +/- 1.4% vs. -8.8 +/- 1.3%, Y vs. E, P CL2 (-22.0 +/- 1.4% vs. -18.8 +/- 1.7%, Y vs. E, P = NS). The albumin synthesis rate was identical and stimulated to the same extent by insulin in groups Y and E. Gender affected basal leucine metabolism, but the response to insulin was similar in both groups. In conclusion, decreased insulin action on glucose disposal is associated with a reduced insulin sensitivity for protein breakdown in healthy elderly subjects at low insulin concentrations. Higher insulin levels compensate for a reduced insulin action on protein metabolism in elderly subjects. PMID:11158022

  7. Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human.

    Science.gov (United States)

    Rustin, P; Bourgeron, T; Parfait, B; Chretien, D; Munnich, A; Rötig, A

    1997-08-22

    Krebs cycle disorders constitute a group of rare human diseases which present an amazing complexity considering our current knowledge on the Krebs cycle function and biogenesis. Acting as a turntable of cell metabolism, it is ubiquitously distributed in the organism and its enzyme components encoded by supposedly typical house-keeping genes. However, the investigation of patients presenting specific defects of Krebs cycle enzymes, resulting from deleterious mutations of the considered genes, leads to reconsider this simple envision by revealing organ-specific impairments, mostly affecting neuromuscular system. This often leaves aside organs the metabolism of which strongly depends on mitochondrial energy metabolism as well, such as heart, kidney or liver. Additionally, in some patients, a complex pattern of tissue-specific enzyme defect was also observed. The lack of functional additional copies of Krebs cycle genes suggests that the complex expression pattern should be ascribed to tissue-specific regulations of transcriptional and/or translational activities, together with a variable cell adaptability to Krebs cycle functional defects.

  8. Postprandial fate of amino acids: adaptation to molecular forms

    OpenAIRE

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, incorporated into body proteins part of these amino acids are oxidized, and can, thus, no longer be utilized to support protein metabolism in the body. The objective of this thesis was to increase the ...

  9. Amino Acid Metabolism of Thermoanaerobacter Strain AK90: The Role of Electron-Scavenging Systems in End Product Formation

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2015-01-01

    Full Text Available The catabolism of the 20 amino acids by Thermoanaerobacter strain AK90 (KR007667 was investigated under three different conditions: as single amino acids without an electron-scavenging system, in the presence of thiosulfate, and in coculture with a hydrogenotrophic methanogen. The strain degraded only serine without an alternative electron acceptor but degraded 11 amino acids (alanine, cysteine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tyrosine, and valine under both of the electron-scavenging systems investigated. Acetate was the dominant end product from alanine, cysteine, lysine, serine, and threonine under electron-scavenging conditions. The branched-chain amino acids, isoleucine, leucine, and valine, were degraded to their corresponding fatty acids under methanogenic conditions and to a mixture of their corresponding fatty acids and alcohols in the presence of thiosulfate. The partial pressure of hydrogen seems to be of importance for the branched-chain alcohol formation. This was suggested by low but detectable hydrogen concentrations at the end of cultivation on the branched-chain amino acid in the presence of thiosulfate but not when cocultured with the methanogen. A more detailed examination of the role of thiosulfate as an electron acceptor was performed with Thermoanaerobacter ethanolicus (DSM 2246 and Thermoanaerobacter brockii (DSM 1457.

  10. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  11. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    OpenAIRE

    Petri Wiklund; Xiaobo Zhang; Satu Pekkala; Reija Autio; Lingjia Kong; Yifan Yang; Sirkka Keinänen-Kiukaanniemi; Markku Alen; Sulin Cheng

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectr...

  12. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains

    DEFF Research Database (Denmark)

    Broadbent, J.R.; Cai, H.; Larsen, R.L.;

    2011-01-01

    of different strains to affect these characteristics can vary widely. Because these attributes are associated with enzymes involved in proteolysis or AA catabolism, we performed comparative genome hybridizations to a CNRZ 32 microarray to explore the distribution of genes encoding such enzymes across a bank...... of 38 Lb. helveticus strains, including 2 archival samples of CNRZ 32. Genes for peptidases and AA metabolism were highly conserved across the species, whereas those for cell envelope-associated proteinases varied widely. Some of the genetic differences that were detected may help explain...

  13. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...... plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the day of calving to 29 DIM....

  14. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.

    Science.gov (United States)

    Zignego, Donald L; Hilmer, Jonathan K; June, Ronald K

    2015-12-16

    Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.

  15. Fluorine-Tagged 5-Hydroxytryptophan to Investigate Amino Acid Metabolism In Vivo

    Directory of Open Access Journals (Sweden)

    Zofia E. Gagnon

    2010-01-01

    Full Text Available Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay for the tag. Serotonin (5-HT levels were measured with spectrofluorometry and thin-layer chromatography. Plants in treatment conditions had serotonin levels five to six times higher than controls. PF-5-HTP served as a precursor for serotonin in a biosynthetic pathway in this plant model, providing evidence for the bioavailability of the novel molecule. The increase in serotonin in plants grown in media culture supplemented with 5-HTP or PF-5-HTP might have useful applications in pharmacology.

  16. Fluorine-tagged 5-hydroxytryptophan to investigate amino Acid metabolism in vivo.

    Science.gov (United States)

    Gagnon, Zofia E; Dingman, Sherry; Thomas, Rhys N

    2010-01-01

    Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta) were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP) being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay for the tag. Serotonin (5-HT) levels were measured with spectrofluorometry and thin-layer chromatography. Plants in treatment conditions had serotonin levels five to six times higher than controls. PF-5-HTP served as a precursor for serotonin in a biosynthetic pathway in this plant model, providing evidence for the bioavailability of the novel molecule. The increase in serotonin in plants grown in media culture supplemented with 5-HTP or PF-5-HTP might have useful applications in pharmacology. PMID:22331995

  17. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.

    Science.gov (United States)

    Hussein, H S; Jordan, R M; Stern, M D

    1991-05-01

    Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. PMID:1648551

  18. THE DISTURBANCE OF METABOLISM OF THE AMINO ACIDS AS A CAUSATIVE FOR THE MENTAL RETARDATION-PHENYLKETONURIA

    Directory of Open Access Journals (Sweden)

    Jasmina IVANOVSKA

    2000-06-01

    Full Text Available PKU is the rare single-gene disease belonging to disturbance of metabolism of the amino acids, which in its own basics halved the mutated gene, whose leaning at the 12-chromosome charge for the synthesis of phenylalanine hydroxylase, turning on phenylalanine into tyrosine. Enzyme block usually leads to the accumulation of a toxic substrate and/or the deficient synthesis of a product needed for normal body function. In PKU there is a toxic accumulation of phenylalanine behind the deficient enzyme, phenylalanine hydrоxylase. The symptoms are: lighten hare, blue eyes, lithe pigmented skin, convulsion, mental retardation, low level of adrenalin caused for the lack of tyrosine, the urine have a specific smell of rats or gab.Inheritance of disease become in autosomal recessive way which always become possibility to stay hidden in the family and to inherit from knee to knee without manifestation of its own phenotype.The only therapy that successfully avoids the causes of this disease is phenylalanine-restricted diet. Today we have some affords for improvement of gene therapy, which can help us for determination to these disease. The success of the therapy depends from timing of the right detection also diagnostics all trough equivalent therapy which can successfully interrupt the new forms of mental retardation and other symptoms.

  19. Effect of Carbon and Nitrogen Availability on Metabolism of Amino Acids in Germinating Spores of Arbuscular Mycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-Ru; JIANG Dong-Hua; ZHANG Ping-Hua

    2011-01-01

    The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.

  20. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

    Science.gov (United States)

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  1. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Ashraf El-Kereamy

    Full Text Available Temperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming. Here, we show that OsMYB55 is induced by high temperature and overexpression of OsMYB55 resulted in improved plant growth under high temperature and decreased the negative effect of high temperature on grain yield. Transcriptome analysis revealed an increase in expression of several genes involved in amino acids metabolism. We demonstrate that OsMYB55 binds to the promoter regions of target genes and directly activates expression of some of those genes including glutamine synthetase (OsGS1;2 glutamine amidotransferase (GAT1 and glutamate decarboxylase 3 (GAD3. OsMYB55 overexpression resulted in an increase in total amino acid content and of the individual amino acids produced by the activation of the above mentioned genes and known for their roles in stress tolerance, namely L-glutamic acid, GABA and arginine especially under high temperature condition. In conclusion, overexpression of OsMYB55 improves rice plant tolerance to high temperature, and this high tolerance is associated with enhanced amino acid metabolism through transcription activation.

  2. Effect of ethanol consumption during gestation on maternal-fetal amino acid metabolism in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Lin, G.W.

    1981-01-01

    The distribution of /sup 14/C-alpha-aminoisobutyric acid (AIB), administered intravenously, in maternal, fetal and placental tissues was examined in the rat on gestation-day 21. Ethanol consumption during gestation (day 6 through 21) significantly reduced the uptake of AIB by the placenta and fetus while exerting no influence on maternal tissue AIB uptake. The concentration of fetal plasma free histidine was decreased 50% as a result of maternal ethanol ingestion, but the free histidine level of maternal plasma was not altered. Since no effect on protein content of fetal tissue could be detected, it is speculated that reduced histidine to the fetus might significantly alter the amounts of histamine and carnosine formed via their precursor. The significance of these findings in relation to the Fetal Alcohol Syndrome is discussed.

  3. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.;

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...

  4. Cystinuria: an inborn cause of urolithiasis

    Directory of Open Access Journals (Sweden)

    Eggermann Thomas

    2012-04-01

    Full Text Available Abstract Cystinuria (OMIM 220100 is an inborn congenital disorder characterised by a defective cystine metabolism resulting in the formation of cystine stones. Among the heterogeneous group of kidney stone diseases, cystinuria is the only disorder which is exclusively caused by gene mutations. So far, two genes responsible for cystinuria have been identified: SLC3A1 (chromosome 2p21 encodes the heavy subunit rBAT of a renal b0,+ transporter while SLC7A9 (chromosome 19q12 encodes its interacting light subunit b0,+AT. Mutations in SLC3A1 are generally associated with an autosomal-recessive mode of inheritance whereas SLC7A9 variants result in a broad clinical variability even within the same family. The detection rate for mutations in these genes is larger than 85%, but it is influenced by the ethnic origin of a patient and the pathophysiological significance of the mutations. In addition to isolated cystinuria, patients suffering from the hypotonia-cystinuria syndrome have been reported carrying deletions including at least the SLC3A1 and the PREPL genes in 2p21. By extensive molecular screening studies in large cohort of patients a broad spectrum of mutations could be identified, several of these variants were functionally analysed and thereby allowed insights in the pathology of the disease as well as in the renal trafficking of cystine and the dibasic amino acids. In our review we will summarize the current knowledge on the physiological and the genetic basis of cystinuria as an inborn cause of kidney stones, and the application of this knowledge in genetic testing strategies.

  5. Human Protein and Amino Acid Requirements.

    Science.gov (United States)

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  6. Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: A rat urine metabonomic study.

    Science.gov (United States)

    Chen, Yanyan; Duan, Jin-Ao; Guo, Jianming; Shang, Erxin; Tang, Yuping; Qian, Yefei; Tao, Weiwei; Liu, Pei

    2016-07-15

    This research was designed to study metabonomic characteristics of the toxicity induced by yuanhuapine, a major bioactive diterpenoid in a well-known traditional Chinese medicine-Genkwa Flos. General observation, blood biochemistry and histopathological examination were used to reflect yuanhuapine-induced toxicity. Urine samples from rats in control and yuanhuapine treated rats were analyzed by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Pattern recognition methods including principal components analysis (PCA), partial least-squared discriminant analysis (PLS-DA), orthogonal partial least-squared discriminant analysis (OPLS-DA) and computational system analysis were integrated to obtain comprehensive metabonomic profiling and pathways of the biological data sets. The results suggested that yuanhuapine could induce intestinal and liver damage. And 14 endogenous metabolites as biomarkers related to the amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora were significantly changed in the urine of yuanhuapine treated rats, which were firstly constructed the metabolomic feature profiling and metabolite interaction network of yuanhuapine-induced injury using pattern recognition methods and Ingenuity Pathway Analysis (IPA) approach. The present study showed that yuanhuapine-induced intestinal and hepatic toxicity were correlated with disturbance of amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora. PMID:26341729

  7. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers : Findings from a prospective cohort study

    NARCIS (Netherlands)

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H. B.; Peeters, Petra H.; Weiderpass, Elisabete; Quirós, J. Ramón; Agudo, Antonio; Sánchez, María José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay Tee; Travis, Ruth C.; Schmidt, Julie A.; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-01

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), a

  8. Effects of Various Dietary Amino Acid Preparations for Phenylketonuric Patients on the Metabolic Profiles along with Postprandial Insulin and Ghrelin Responses

    OpenAIRE

    Weigel, Corina; Rauh, Manfred; Kiener, C.; Rascher, Wolfgang; Knerr, Ina

    2013-01-01

    Aim: We investigated the metabolic profiles along with insulin and ghrelin responses following ingestion of various amino acid (AA) substitutes commonly used in the treatment of phenylketonuria to study the effects of added macronutrients. Methods: Twenty healthy and 6 phenylketonuric adults ingested AA mixtures with or without carbohydrates and fat (Anamix, Easiphen, or p-am 3; 0.35 g AA/kg body weight); milk powder shakes were used for control purposes. Serum AA, glucose, urea, insulin, and...

  9. Studies on the protein and amino acid metabolism of laying hens using 15N-labelled casein. 8

    International Nuclear Information System (INIS)

    Four colostomized Leghorn hens were fed, during 6 days, 15N-labelled casein as sole protein source. Two animals were slaughtered 48 hours, the other two 144 hours after the last 15N-application. The share of TCE-soluble N in total N averaged 16% for the body parts analysed, i.e. meat, bone, liver, kidneys, oviducts, residual viscera and other. The variation of the lysine, histidine and arginine levels in the body parts ranged from 3.6 to 7.9 g, 1.1 to 3.7 g and 6.4 to 7.4 g in 16.7 g hydrolysate N, respectively. Except for feathers, the analysed body parts contained an excess amount of heavy nitrogen. The degree of labelling was found to depend on the time of slaughtering after the tracer application. In the liver and in the oviduct being metabolically active organs, the 15N-excess in the total N fraction decreased by 45% between the 2nd and the 6th days after 15N-feeding, whilst in the meat it went down by 20%. The decline of the 15N-concentration in the TCE-soluble N compounds was faster than in the total N-fraction. Out of the body samples analysed, the lysine of the liver having 0.26 atom% 15N-excess was found to be more strongly labelled in hens 1 and 2. The amino acid arginine reached about the same level of labelling, the 15N-frequency of histidine being the lowest. (author)

  10. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... build up in the body. For these people, eating foods that are high in protein can cause serious health problems and, sometimes, death. People with these kinds of disorders may need to limit or avoid certain foods ...

  11. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Subrat K. Bhanja

    2015-04-01

    Full Text Available Due to their physicochemical and biological properties, silver nanoparticles (NanoAg have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α and interleukin-6 (IL-6 did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10 expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2 expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4 expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken.

  12. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    Science.gov (United States)

    Costas, Benjamín; Aragão, Cláudia; Ruiz-Jarabo, Ignacio; Vargas-Chacoff, Luis; Arjona, Francisco J; Mancera, Juan M; Dinis, Maria T; Conceição, Luís E C

    2012-07-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26°C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino acid changes during thermal acclimation. Senegalese sole maintained at 18°C were acclimated to either cold (12°C) or warm (26°C) environmental temperatures for 21 days. Fish maintained at 18°C served as control. Plasma concentrations of cortisol, glucose, lactate, triglycerides, proteins, and free amino acids were assessed. Cold acclimation influenced interrenal responses of sole by increasing cortisol release. Moreover, plasma glucose and lactate concentrations increased linearly with temperature, presumably reflecting a higher metabolic activity of sole acclimated to 26°C. Acclimation temperature affected more drastically plasma concentrations of dispensable than that of indispensable amino acids, and different acclimation temperatures induced different responses. Asparagine, glutamine and ornithine seem to be of particular importance for ammonia detoxification mechanisms, synthesis of triglycerides that may be used during homeoviscous adaptation and, to a lesser extent, as energetic substrates in specimens acclimated to 12°C. When sole is acclimated to 26°C taurine, glutamate, GABA and glycine increased, which may suggest important roles as antioxidant defences, in osmoregulatory processes and/or for energetic purposes at this thermal regimen. In conclusion, acclimation to different environmental temperatures induces several metabolic changes in Senegalese sole, suggesting that amino acids may be important for thermal acclimation. PMID:21947601

  13. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  14. Newborn screening of inherited metabolic diseases by tandem mass spectrometry%串联质谱仪在新生儿遗传代谢病筛查中的应用

    Institute of Scientific and Technical Information of China (English)

    Chun-li YU; 顾学范

    2006-01-01

    Application of TMS technology in newborn screening has resulted in major expansion of disorder panel for metabolic diseases in recent years. This automated, multiplex testing methodology detects multiple analytes from single analysis of one blood spot, which leads to detection of 30-35 disorders of amino acids, organic acids, and fatty acids metabolism. The early identification of persons affected with inborn errors of metabolism has led to unexpected discoveries related to the natural history of the disorder or options for therapy. This article summarized (1) the basic principles of this technology and methodology. (2) Current status of application of this methodology in the United States, European countries and in China. (3) The positive impacts on the public health and advances in medical genetics. Finally (4) Challenges, issues and possible solutions. The purpose of this article aimed at introducing new technology and exploring the possibilities of implementing into developing countries where medical genetics is not developed and foreseeing the possible problems and obstacles.

  15. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms

    Science.gov (United States)

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  16. GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-derivatized amino acids and its application to (13)C-metabolic flux analysis of Escherichia coli central metabolism.

    Science.gov (United States)

    Okahashi, Nobuyuki; Kawana, Shuichi; Iida, Junko; Shimizu, Hiroshi; Matsuda, Fumio

    2016-09-01

    Stable isotope labeling experiments using mass spectrometry have been employed to investigate carbon flow levels (metabolic flux) in mammalian, plant, and microbial cells. To achieve a more precise (13)C-metabolic flux analysis ((13)C-MFA), novel fragmentations of tert-butyldimethylsilyl (TBDMS)-amino acids were investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS). The product ion scan analyses of 15 TBDMS-amino acids revealed 24 novel fragment ions. The amino acid-derived carbons included in the five fragment ions were identified by the analyses of (13)C-labeled authentic standards. The identification of the fragment ion at m/z 170 indicated that the isotopic abundance of S-methyl carbon in methionine could be determined from the cleavage of C5 in the precursor of [M-159](+) (m/z 218). It was also confirmed that the precision of (13)C-MFA in Escherichia coli central carbon metabolism could be improved by introducing (13)C-labeling data derived from novel fragmentations. Graphical Abstract Novel collision-induced dissociation fragmentations of tert-butyldimethylsilyl amino acids were investigated and identified by GC-MS/MS.

  17. Microfluidics in amino acid analysis.

    Science.gov (United States)

    Pumera, Martin

    2007-07-01

    Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices. PMID:17542043

  18. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Li, Yuefei; Tong, Bin; Harris, Marvin; Zhu-Salzman, Keyan; Ge, Feng

    2013-10-01

    Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).

  19. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation

    International Nuclear Information System (INIS)

    Maple syrup urine disease (MSUD) is an inborn error of amino acid metabolism, which affects the brain tissue resulting in impairment or death if untreated. Imaging studies have shown reversible brain edema during acute metabolic decompensation. The purpose of this paper is to describe the diffusion-weighted imaging (DWI) and spectroscopy findings during metabolic decompensation and to assess the value of these findings in the prediction of patient outcome. Six patients with the diagnosis of MSUD underwent conventional MR imaging with DWI during acute presentation with metabolic decompensation. Spectroscopy with long TE was performed in four of the six patients. Follow-up examinations were performed after clinical and metabolic recovery. DWI demonstrated marked restriction of proton diffusion compatible with cytotoxic or intramyelinic sheath edema in the brainstem, basal ganglia, thalami, cerebellar and periventricular white matter and the cerebral cortex. This was accompanied by the presence of an abnormal branched-chain amino acids (BCAA) and branched-chain alpha-keto acids (BCKA) peak at 0.9 ppm as well as elevated lactate on proton spectroscopy in all four patients. The changes in all six patients were reversed with treatment without evidence of volume loss or persistent tissue damage. The presence of cytotoxic or intramyelinic edema as evidenced by restricted water diffusion on DWI, with the presence of lactate on spectroscopy, could imply imminent cell death. However, in the context of metabolic decompensation in MSUD, it appears that changes in cell osmolarity and metabolism can reverse completely after metabolic correction. (orig.)

  20. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  1. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist.

    Directory of Open Access Journals (Sweden)

    James Mu

    Full Text Available Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.

  2. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 8

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received, together with the ration, 36 g wheat with 14.37 atom-% 15N excess (15N'). The basic amino acids were nearly equally labelled. Three animals each were butchered after 12 h, 36 h, 60 h, and 108 h, resp., after the last 15N' application. Emission spectrometric determination of 15N' in liver and in amino acids was carried out. In addition, atom-% 15N' was determined in free amino acids and peptides. The labelling in the liver 12 h after the last 15N' application amounted to 1.75 atom-% 15N' and decreased after 108 h to 0.81 atom-% 15N'. The average TCA precipitable 15N' quota in the total 15N' amounted to 81.4% and was nearly identical at all four measuring points. The arginine 15N' amount in the liver was twice as high as that of lysine 15N'. In dependence on the period after the last 15N' application the decrease in the labelling of free arginine is considerable in comparison to free lysine. At the first measuring point (12 h) it was 1.69 atom-% 15N' and at the last one (108 h) 0.57 atom-% 15N'. Based on the results of 15N' labelling of peptides in the liver further, more detailed experiments for studies of peptide metabolism in the liver should be carried out. (author)

  3. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    Science.gov (United States)

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  4. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji;

    2015-01-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds...... with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid...... was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4K229L, chorismate mutase ARO7G141S and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced...

  5. Amino acid uptake in rust fungi.

    Science.gov (United States)

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways.

  6. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio).

    Science.gov (United States)

    Tian, Juan; He, Gen; Mai, Kangsen; Liu, Chengdong

    2015-06-01

    The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased. PMID:25805459

  7. Amino acid analysis in biological fluids by GC-MS

    OpenAIRE

    Kaspar, Hannelore

    2009-01-01

    Amino acids are intermediates in cellular metabolism and their quantitative analysis plays an important role in disease diagnostics. A gas chromatography-mass spectrometry (GC-MS) based method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate could be carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acid...

  8. Textbook Errors & Misconceptions in Biology: Cell Metabolism.

    Science.gov (United States)

    Storey, Richard D.

    1991-01-01

    The idea that errors and misconceptions in biology textbooks are often slow to be discovered and corrected is discussed. Selected errors, misconceptions, and topics of confusion about cell metabolism are described. Fermentation, respiration, Krebs cycle, pentose phosphate pathway, uniformity of catabolism, and metabolic pathways as models are…

  9. Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: Findings from a prospective cohort study.

    Science.gov (United States)

    Stepien, Magdalena; Duarte-Salles, Talita; Fedirko, Veronika; Floegel, Anne; Barupal, Dinesh Kumar; Rinaldi, Sabina; Achaintre, David; Assi, Nada; Tjønneland, Anne; Overvad, Kim; Bastide, Nadia; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Bamia, Christina; Lagiou, Pagona; Saieva, Calogero; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Naccarati, Alessio; Bueno-de-Mesquita, H B As; Peeters, Petra H; Weiderpass, Elisabete; Quirós, J Ramón; Agudo, Antonio; Sánchez, María-José; Dorronsoro, Miren; Gavrila, Diana; Barricarte, Aurelio; Ohlsson, Bodil; Sjöberg, Klas; Werner, Mårten; Sund, Malin; Wareham, Nick; Khaw, Kay-Tee; Travis, Ruth C; Schmidt, Julie A; Gunter, Marc; Cross, Amanda; Vineis, Paolo; Romieu, Isabelle; Scalbert, Augustin; Jenab, Mazda

    2016-01-15

    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), and gallbladder and extrahepatic biliary tract (GBTC). Circulating standard AA, biogenic amines and hexoses were measured (Biocrates AbsoluteIDQ-p180Kit) in a case-control study nested within a large prospective cohort (147 HCC, 43 IHBC and 134 GBTC cases). Liver function and hepatitis status biomarkers were determined separately. Multivariable conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI) for log-transformed standardised (mean = 0, SD = 1) serum metabolite levels and relevant ratios in relation to HCC, IHBC or GBTC risk. Fourteen metabolites were significantly associated with HCC risk, of which seven metabolites and four ratios were the strongest predictors in continuous models. Leucine, lysine, glutamine and the ratio of branched chain to aromatic AA (Fischer's ratio) were inversely, while phenylalanine, tyrosine and their ratio, glutamate, glutamate/glutamine ratio, kynurenine and its ratio to tryptophan were positively associated with HCC risk. Confounding by hepatitis status and liver enzyme levels was observed. For the other cancers no significant associations were observed. In conclusion, imbalances of specific AA and biogenic amines may be involved in HCC development. PMID:26238458

  10. CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.

    Science.gov (United States)

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-03-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP.

  11. Application of stable isotope tracer methods to studies of amino acid, protein, and energy metabolism in malnourished populations of developing countries. Report of an IAEA consultants' meeting held in Vienna, Austria, 14-16 December 1992

    International Nuclear Information System (INIS)

    A Consultants' Meeting convened by the IAEA in December 1992, made recommendations on the organization of a Co-ordinated Research Programme (CRP) using stable isotopic techniques for international comparative studies of amino acid, protein, and energy metabolism in chronically undernourished people. The CRP will use recent developments in stable isotope tracer techniques (13C and 15N) to assess the impact of infection in undernourished people on the kinetics of protein breakdown, protein synthesis, amino acid metabolism, and on the synthetic rates of selected plasma proteins. Studies will be conducted in developing countries, particularly in young children. The programme goals are to (i) elaborate methods and model protocols which can be implemented in developing countries to investigate the impact on protein metabolism of infection superimposed on chronic undernutrition; (ii) test they hypothesis that dietary requirements for protein and amino acids are related to the place of nutrition and are altered substantially when infection is superimposed on chronic undernutrition. When feasible, the primary focus on protein/amino acid metabolism will be extended to assessments of protein/energy interactions when H218O becomes more readily available and/or at research sites with indirect calorimetry equipment. The data generated should be appropriate as a basis for reevaluating amino acid/protein requirements in these populations. Refs

  12. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  13. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  14. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Science.gov (United States)

    Prati, Federica; Goldman-Pinkovich, Adele; Lizzi, Federica; Belluti, Federica; Koren, Roni; Zilberstein, Dan; Bolognesi, Maria Laura

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives. PMID:25254495

  15. Quinone-Amino Acid Conjugates Targeting Leishmania Amino Acid Transporters

    OpenAIRE

    Federica Prati; Adele Goldman-Pinkovich; Federica Lizzi; Federica Belluti; Roni Koren; Dan Zilberstein; Maria Laura Bolognesi

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxi...

  16. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Directory of Open Access Journals (Sweden)

    Federica Prati

    Full Text Available The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7 to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III with amino acids (i.e. arginine and lysine by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes and intracellular (amastigotes forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively. Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.

  17. Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line.

    Science.gov (United States)

    Lutz, Norbert W; Banerjee, Pallavi; Wilson, Brian J; Ma, Jie; Cozzone, Patrick J; Frank, Markus H

    2016-01-01

    We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e. wildtype melanoma cells with intact ABCB5 expression (ABCB5-WT) and corresponding melanoma cell variants with inhibited ABCB5 expression, through shRNA-mediated gene knockdown (ABCB5-KD). A comprehensive metabolomic analysis was performed by using proton and phosphorus NMR spectroscopy of cell extracts to examine water-soluble metabolites and lipids. Parametric and non-parametric statistical analysis of absolute and relative metabolite levels yielded significant differences for compounds involved in glucose, amino acid and phospholipid (PL) metabolism. By contrast, energy metabolism was virtually unaffected by ABCB5 expression. The sum of water-soluble metabolites per total protein was 17% higher in ABCB5-WT vs. ABCB5-KD G3361 variants, but no difference was found for the sum of PLs. Enhanced abundance was particularly pronounced for lactate (+ 23%) and alanine (+ 26%), suggesting an increase in glycolysis and potentially glutaminolysis. Increases in PL degradation products, glycerophosphocholine and glycerophosphoethanolamine (+ 85 and 123%, respectively), and redistributions within the PL pool suggested enhanced membrane PL turnover as a consequence of ABCB5 expression. The possibility of glycolysis modulation by an ABCB5-dependent IL1β-mediated mechanism was supported by functional studies employing monoclonal antibody (mAb)-dependent ABCB5 protein inhibition in wildtype G3361 melanoma cells. Our metabolomic results suggest that the underlying biochemical pathways may offer targets for melanoma therapy, potentially in combination with other treatment forms. PMID:27560924

  18. [Clinical picture of Hartnup disease. Without urine amino acids or any other identified metabolic disorder (a new entity)].

    Science.gov (United States)

    Da Gloria, E R; Assunção, J G; Costa, M A

    1990-01-01

    Harthnup disease clinical picture without aminoaciduria or other identified metabolic disturb (New entity?). The authors present a patient with clinical picture superposed to the Hartnup disease's, a rare, autosomic and recessive metabolic disturbance, characterized by typical aminoaciduria consequent to tryptophan and other neutral aminoacids defective transport by jejunal mucous membrane and renal tubules, clinically expressed by photosensitive pellagra-like dermatitis, mental retardation and intermittent cerebellar ataxia. The laboratorial results did not confirm Hartnup aminoaciduria nor other identified metabolic change that justify his clinical manifestations. PMID:2077308

  19. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P;

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation....... Quantitation of less than 10 fmol of protein standards with errors below 10% has been demonstrated using this method (1)....

  20. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 7

    International Nuclear Information System (INIS)

    In a 15N labelling experiment 12 colostomized laying hens received 15N-labelled wheat with 14.37 atom-% 15N excess (15N') over 4 days. 3 hens each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15N' application. The gastrointestinal tract was divided into 3 parts (esophagus with crop and gizzard as well as glandular stomach, small intestine, large intestine). These parts and the pancreas were hydrolyzed with 6 N HCl and the individual basic as well as the sum of acid and neutral amino acids were determined in the hydrolyzed fractions. In addition, the amino acids and peptides were determined in the TCA soluble N fraction. The atom-% 15N' was determined in the individual amino acid and peptide fractions. The labelling of the basic amino acids in the individual tract segments was lower than in the acid and neutral amino acids. In comparison to the peptides, a higher atom-% 15N' could be determined in the free amino acids. (author)

  1. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  2. [Inherited amino acid transport disorders].

    Science.gov (United States)

    Igarashi, Y; Tada, K

    1992-07-01

    Disorders due to inherited amino acids transport defect are reviewed. The disorders were categorized into three types of transport defects, namely, brush-border membrane of epithelial cells of small intestine and kidney tubules (Hartnup disease, blue diaper syndrome, cystinuria, iminoglycinuria and lysine malabsorption syndrome), basolateral membrane (lysinuric protein intolerance) and membrane of intracellular organelles (cystinosis and hyperornitinemia-hyperammonemia-homocitrullinuria syndrome). Pathogenesis, clinical feature, laboratory findings, diagnosis, genetics and treatment of these disorders are described, briefly. There is not much data for the transport systems themselves, so that further investigation in molecular and gene levels for transport systems is necessary to clarify the characteristics of the transport and heterogeneity of phenotypes in inherited amino acids transport disorders. PMID:1404888

  3. Selective screening in neonates suspected to have inborn errors of metabolism

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2015-04-01

    Conclusion: IEM represent a high percent (32.5% of neonates who had sepsis like symptoms, and when diagnosed, patients showed marked improvement after therapy. IEM should be considered in differential diagnosis of the sick neonates, and investigations, and management should be started rapidly to decrease morbidity, and mortality till nationwide screen for IEM is applied in Egypt.

  4. Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism

    OpenAIRE

    Tredano, Mohammed; de Blic, Jacques; Griese, Matthias; Fournet, Jean-Christophe; Elion, Jacques; Bahuau, Michael

    2001-01-01

    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surf acta nt proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to...

  5. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.;

    2016-01-01

    Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon and nitrogen limited chemostat...

  6. Metabolomic Profiling of Post-Mortem Brain Reveals Changes in Amino Acid and Glucose Metabolism in Mental Illness Compared with Controls.

    Science.gov (United States)

    Zhang, Rong; Zhang, Tong; Ali, Ali Muhsen; Al Washih, Mohammed; Pickard, Benjamin; Watson, David G

    2016-01-01

    Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB. PMID:27076878

  7. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15N excess (15N') together with a conventional ration. After the homogenisation of each oviduct N and 15N' were determined. After the precipitation with TCA the 15N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14N and 15N' in the total 14N and 15N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14N of the basic amino acids in the total 14N of the oviduct only amounts to 21.6% and that of 15N' only to 15.4%. The average atom-% 15N' of the free amino acids 12 h after the last 15N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15N'. 36 h after the last 15N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15N application. (author)

  8. Amino acid analyses of Apollo 14 samples.

    Science.gov (United States)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.

  9. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  12. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  13. Rhabdomyolysis-Associated Mutations in Human LPIN1 Lead to Loss of Phosphatidic Acid Phosphohydrolase Activity

    OpenAIRE

    Schweitzer, George G.; Collier, Sara L.; Chen, Zhouji; Eaton, James M.; Connolly, Anne M.; Bucelli, Robert C.; Pestronk, Alan; Harris, Thurl E.; Finck, Brian N.

    2015-01-01

    Rhabdomyolysis is an acute syndrome due to extensive injury of skeletal muscle. Recurrent rhabdomyolysis is often caused by inborn errors in intermediary metabolism, and recent work has suggested that mutations in the human gene encoding lipin 1 (LPIN1) may be a common cause of recurrent rhabdomyolysis in children. Lipin 1 dephosphorylates phosphatidic acid to form diacylglycerol (phosphatidic acid phosphohydrolase; PAP) and acts as a transcriptional regulatory protein to control metabolic ge...

  14. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs.

    Science.gov (United States)

    Duan, Yehui; Duan, Yangmiao; Li, Fengna; Li, Yinghui; Guo, Qiuping; Ji, Yujiao; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-09-01

    Branched-chain amino acids (BCAA), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in energy homeostasis and lipid metabolism in addition to their other functions, such as in protein metabolism. This study investigated the effects of different dietary BCAA ratios on the intramuscular fat (IMF) content and fatty acid composition in different location of skeletal muscles, including the longissimus dorsi (LD), biceps femoris (BF), and psoas major (PM) muscles of growing pigs, and also examined the mRNA expression levels of genes involved in lipid metabolism in these muscle tissues. The experiment was performed on 40 growing pigs (Large White × Landrace) with a similar initial weight (9.85 ± 0.35 kg). The pigs were randomly assigned to one of five diets: diet A was a positive control and contained 20 % crude protein (CP) with a Leu:Ile:Val ratio of 1:0.51:0.63 according to the recommendation of the National Research Council (NRC); for diets B to E, the CP level was reduced to 17 %, and the Leu:Ile:Val ratios were 1:1:1, 1:0.75:0.75, 1:0.51:0.63, and 1:0.25:0.25, respectively. No significant difference was observed in the average feed intake and feed efficiency of the pigs fed the low protein diet (17 % CP) with BCAA treatments relative to the positive control. However, there was a tendency for increased feed efficiency of the 1:0.75:0.75 group compared with the 1:1:1 group (P = 0.09). The BCAA ratio of 1:0.75:0.75 (17 % CP) increased the IMF content of BF muscle (P protein level had different effects on the fatty acid composition of the LD, BF, and PM muscles. The BCAA ratio of 1:0.51:0.63-1:0.75:0.75 (17 % CP) significantly lowered the ratio of n-6 to n-3 polyunsaturated fatty acid in these muscles compared with the positive control group (20 % CP). This effect was associated with an increase in mRNA expression levels of acetyl-CoA carboxylase, lipoprotein lipase, fatty acid transport protein, and fatty acid binding

  15. The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat

    OpenAIRE

    Rees, William; Hay, Susan; Antipatis, Christos

    2006-01-01

    International audience To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from...

  16. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-01-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution. PMID:27767182

  17. Roles of Bacteria in First-Pass Intestinal Metabolism of Amino Acids%细菌在氨基酸首过肠道代谢中的作用

    Institute of Scientific and Technical Information of China (English)

    杨宇翔; 慕春龙; 朱伟云

    2015-01-01

    Intestinal bacteria play important roles in nutrient metabolism, which furtherly affect body metabo-lism. Small intestine is the main region for amnio acids metabolism, and is critical to the host protein nutrition and gut health. However, large amount of amino acids entered into small intestine was degraded during the first-pass intestinal metabolism by bacteria. Amino acid metabolism in the small intestine is compartmentalized, not only segmented, but also layered. Amino acid metabolites, such as polyamine and dipeptide, are important for host gut health. Moreover, urea degradation and subsequent amino acid synthesis by the bacteria might be nutritionally valuable for the host. This article mainly reviewed the roles and out-ways in the first-pass intestinal metabolism of amino acids, metabolic compartments of amino acids, and the impacts of the metabolites on host health of small intestinal bacteria.%肠道细菌在营养素代谢过程中起重要作用,进而影响机体整体代谢。小肠是氨基酸代谢的重要场所,对宿主蛋白质营养与肠道健康至关重要。然而,大量进入小肠的氨基酸在首过肠道代谢中被细菌转化代谢和利用。此外,小肠细菌对氨基酸的代谢呈现出区室化特征,这不仅表现在不同肠段上,还体现在层面上的差异。细菌对氨基酸的代谢产物包括二肽、多胺,它们能影响宿主肠道健康,细菌分解尿素再合成氨基酸的功能可能在一定程度上缓解宿主对氨基酸的需求。本文主要综述了小肠细菌在氨基酸首过肠道代谢中的作用与去路、对氨基酸代谢的区室化以及氨基酸代谢产物对宿主的影响。

  18. Alimentary proteins, amino acids and cholesterolemia.

    Science.gov (United States)

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  19. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    Science.gov (United States)

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  20. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    NARCIS (Netherlands)

    Costas, B.; Aragao, C.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arjona, F.J.; Mancera, J.M.; Dinis, M.T.; Conceicao, L.E.

    2012-01-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26 degrees C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino aci

  1. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  2. Pairwise amino acid secondary structural propensities

    Science.gov (United States)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  3. [Effect of synthetic cyclopentane beta,beta'-triketones on amino acid metabolism in roots of buckwheat (Fagopyrum esculentum Moench.) seedlings].

    Science.gov (United States)

    Demina, E A; Tishchenko, L Ia; Shestak, O P; Novikov, V L; Anisimov, M M

    2009-01-01

    Germination of buckwheat seeds in solutions of synthetic mono- and tricyclic cyclopentane-containing beta,beta'-triketones of various concentrations was accompanied by inhibition of seedling root growth and changes in the contents of glutamate, gamma-aminobutyric acid, proline, glutamine, and alanine. The monocyclic triketone also affected the amount of isoleucine. It is likely that the increase in proline content is a nonspecific response significant for enhancing stress tolerance in seedlings.

  4. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila

    Directory of Open Access Journals (Sweden)

    Ryuichi Yamada

    2015-02-01

    Full Text Available Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

  5. Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory.

    Science.gov (United States)

    Sharma, Gaurav; Attri, Savita Verma; Behra, Bijaylaxmi; Bhisikar, Swapnil; Kumar, Praveen; Tageja, Minni; Sharda, Sheetal; Singhi, Pratibha; Singhi, Sunit

    2014-05-01

    The present study reports the simultaneous analysis of 26 physiological amino acids in plasma along with total cysteine and homocysteine by high-performance liquid chromatography (HPLC) employing 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) as precolumn derivatizing reagent. Separations were carried out using Lichrospher 100 RP-18e (5 μm) 250 × 4.0 mm column connected to 100 CN 4.0 × 4.0 mm guard column on a quaternary HPLC system and run time was 53 min. Linearity of the peak areas for different concentrations ranging from 2.5 to 100 pmol/μL of individual amino acids was determined. A good linearity (R (2) > 0.998) was achieved in the standard mixture for each amino acid. Recovery of amino acids incorporated at the time of derivatization ranged from 95 to 106 %. Using this method we have established the normative data of amino acids in plasma, the profile being comparable to the range reported in literature and identified cases of classical homocystinuria, cobalamin defect/deficiency, non-ketotic hyperglycinemia, hyperprolinemia, ketotic hyperglycinemia, urea cycle defect and maple syrup urine disease.

  6. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 9

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received 36 g coarse wheat meal with a 15N excess (15N') of 14.37 atom-% together with a conventional diet. The labelling of lysine amounted to 13.58 atom-% 15N', that of histidine to 14.38 and of arginine to 13.63 atom-% 15N'. Three animals each were butchered 12 h, 36 h, 60 h and 108 h after the last 15N application. In the two charges of follicles (above and below 25 g) N and 15N' were determined in the individual basic amino acids as well as their sum in the non-basic ones. The atom-% 15N' was determined in the TCA soluble fraction of the free amino acid and peptide fractions. The average atom-% 15N' of the big follicles is 12 and 36 h after the last 15N application lower, and higher at the last two measuring points than that of the medium and small follicles. The atom-% of the total nitrogen and of the non-basic amino acids was significantly higher in both the bigger and the smaller follicles than in the basic amino acids. 70% of the heavy nitrogen in the total 15N' of the big follicles could be detected in amino acids; its quota in the small follicles was 67%. (author)

  7. Fat and Sugar Metabolism During Exercise in Patients With Metabolic Myopathy

    Science.gov (United States)

    2016-04-05

    Metabolism, Inborn Errors; Lipid Metabolism, Inborn Errors; Carbohydrate Metabolism, Inborn Errors; Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency; Glycogenin-1 Deficiency (Glycogen Storage Disease Type XV); Carnitine Palmitoyl Transferase 2 Deficiency; VLCAD Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Multiple Acyl-CoA Dehydrogenase Deficiency; Carnitine Transporter Deficiency; Neutral Lipid Storage Disease; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Muscle Phosphofructokinase Deficiency; Phosphoglucomutase 1 Deficiency; Phosphoglycerate Mutase Deficiency; Phosphoglycerate Kinase Deficiency; Phosphorylase Kinase Deficiency; Beta Enolase Deficiency; Lactate Dehydrogenase Deficiency; Glycogen Synthase Deficiency

  8. Uptake of Branched-Chain Amino Acids by Streptococcus thermophilus

    OpenAIRE

    Akpemado, K. M.; Bracquart, P. A.

    1983-01-01

    The transport of branched-chain amino acids in Streptococcus thermophilus was energy dependent. The metabolic inhibitors of glycolysis and ATPase enzymes were active, but the proton-conducting uncouplers were not. Transport was optimal at temperatures of between 30 and 45°C and at pH 7.0 for the three amino acids leucine, valine, and isoleucine; a second peak existed at pH 5.0 with valine and isoleucine. By competition and kinetics studies, the branched-chain amino acids were found to share a...

  9. Changes in Free Amino Acid Concentration in Rye Grain in Response to Nitrogen and Sulfur Availability, and Expression Analysis of Genes Involved in Asparagine Metabolism.

    Science.gov (United States)

    Postles, Jennifer; Curtis, Tanya Y; Powers, Stephen J; Elmore, J S; Mottram, Donald S; Halford, Nigel G

    2016-01-01

    Free asparagine plays a central role in nitrogen storage and transport in many plant species due to its relatively high ratio of nitrogen to carbon. However, it is also a precursor for acrylamide, a Class 2a carcinogen that forms during high-temperature processing and cooking. The concentration of free asparagine was shown to increase by approximately 70% in rye grain in response to severe sulfur deficiency (F-test, p = 0.004), while the concentration of both free asparagine and free glutamine increased (by almost threefold and approximately 62%, respectively) in response to nitrogen application (F-test, p supply on other free amino acids: The concentration of free proline, for example, showed a significant (F-test, p = 0.019) effect of nitrogen interacting with sulfur, with the highest concentration occurring when the plants were deprived of both nitrogen and sulfur. Polymerase chain reaction products for several genes involved in asparagine metabolism and its regulation were amplified from rye grain cDNA. These genes were asparagine synthetase-1 (ScASN1), glutamine synthetase-1 (ScGS1), potassium-dependent asparaginase (ScASP), aspartate kinase (ScASK), and general control non-derepressible-2 (ScGCN2). The expression of these genes and of a previously described sucrose non-fermenting-1-related protein kinase-1 gene (ScSnRK1) was analyzed in flag leaf and developing grain in response to nitrogen and sulfur supply, revealing a significant (F-test, p supply on ScGS1 expression in the grain at 21 days post-anthesis. There was also evidence of an effect of sulfur deficiency on ScASN1 gene expression. However, although this effect was large (almost 10-fold) it was only marginally statistically significant (F-test, 0.05 < p < 0.10). The study reinforced the conclusion that nutrient availability can have a profound impact on the concentrations of different free amino acids, something that is often overlooked by plant physiologists but which has important implications for

  10. α-Amino Acid-Isosteric α-Amino Tetrazoles

    NARCIS (Netherlands)

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt; Dömling, Alexander

    2016-01-01

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection c

  11. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-08-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized -aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur.

  12. Using a genome-scale metabolic model of Enterococcus faecalis V583 to assess amino acid uptake and its impact on central metabolism

    NARCIS (Netherlands)

    N. Veith; M. Solheim; K.W.A. van Grinsven; B.G. Olivier; J. Levering; R. Grosseholz; J. Hugenholtz; H. Holo; I. Nes; B. Teusink; U. Kummer

    2015-01-01

    Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metab

  13. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  14. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    Science.gov (United States)

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed. PMID:14051820

  15. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord;

    2011-01-01

    Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle metabo...

  16. α-Amino Acid-Isosteric α-Amino Tetrazoles.

    Science.gov (United States)

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt; Dömling, Alexander

    2016-02-24

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531

  17. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  18. Rationale and design of a proof-of-concept trial investigating the effect of uninterrupted perioperative (par)enteral nutrition on amino acid profile, cardiomyocytes structure, and cardiac perfusion and metabolism of patients undergoing coronary artery bypass grafting

    OpenAIRE

    Cocchieri Riccardo; van Venrooij Lenny MW; Niessen Hans WM; Kok Wouter EM; Verberne Hein J; Davids Mariska; Visser Marlieke; Wisselink Willem; de Mol Bas AJM; van Leeuwen Paul AM

    2011-01-01

    Abstract Background Malnutrition is very common in patients undergoing cardiac surgery. Malnutrition can change myocardial substrate utilization which can induce adverse effects on myocardial metabolism and function. We aim to investigate the hypothesis that there is a disturbed amino acids profile in the cardiac surgical patient which can be normalized by (par)enteral nutrition before, during and after surgery, subsequently improving cardiomyocyte structure, cardiac perfusion and glucose met...

  19. Relationship between amino acid usage and amino acid evolution in primates.

    Science.gov (United States)

    Liu, Haoxuan; Xie, Zhengqing; Tan, Shengjun; Zhang, Xiaohui; Yang, Sihai

    2015-02-25

    Amino acid usage varies from species to species. A previous study has found a universal trend in amino acid gain and loss in many taxa and a one-way model of amino acid evolution in which the number of new amino acids increases as the number of old amino acids decreases was proposed. Later studies showed that this pattern of amino acid gain and loss is likely to be compatible with the neutral theory. The present work aimed to further study this problem by investigating the evolutionary patterns of amino acids in 8 primates (the nucleotide and protein alignments are available online http://gattaca.nju.edu.cn/pub_data.html). First, the number of amino acids gained and lost was calculated and the evolution trend of each amino acid was inferred. These values were found to be closely related to the usage of each amino acid. Then we analyzed the mutational trend of amino acid substitution in human using SNPs, this trend is highly correlated with fixation trend only with greater variance. Finally, the trends in the evolution of 20 amino acids were evaluated in human on different time scales, and the increasing rate of 5 significantly increasing amino acids was found to decrease as a function of time elapsed since divergence, and the dS/dN ratio also found to increase as a function of time elapsed since divergence. These results suggested that the observed amino acid substitution pattern is influenced by mutation and purifying selection. In conclusion, the present study shows that usage of amino acids is an important factor capable of influencing the observed pattern of amino acid evolution, and also presented evidences suggesting that the observed universal trend of amino acid gain and loss is compatible with neutral evolution. PMID:25527119

  20. 氨基酸感应与糖脂代谢调控的研究进展%Research progress on amino acid sensing and its role in the regulation of glucose and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    吕子全; 郭非凡

    2013-01-01

    氨基酸是机体必需的小分子代谢物,其作为信号分子广泛参与了对机体糖脂代谢稳态的维持和调控.研究表明,在糖脂能量代谢的调节过程中,支链氨基酸(尤其是亮氨酸)发挥了重要作用.机体与糖脂代谢相关的多个外周脏器(如肝脏、胰腺、白脂、褐脂、胃肠道等)和代谢调控中枢下丘脑均可以感应外界氨基酸水平的变化,并调节糖脂能量代谢.此外,氨基酸调节糖脂代谢的关键信号通路也已被广泛证实,如mTOR/S6K信号通路、GCN2/ATF4信号通路等.鉴于2型糖尿病等营养相关慢性代谢病的发病率不断攀升,对氨基酸的营养感应和糖脂代谢调控功能进行进一步探索将为代谢性疾病的防控提供重要的指导意义.%Amino acid is a type of micro-molecular metabolite essential for the maintenance of life. As a signal transducing molecule, amino acid extensively participates in the maintenance and regulation of glucose and lipid metabolism homeostasis. Previous research has confirmed the crucial role of amino acid, especially branched chain amino acid (BCAA; e.g., leucine) in the regulation of glucose/lipid and energy homeostasis. The metabolic control center hypothalamus, as well as multiple periphery organs correlated with glucose and lipid metabolism (such as liver, pancreas, white adipose tissue, brown adipose tissue, gastrointestinal tract) can sense the level of amino acid in external environment, and regulate glucose/lipid and energy metabolism. What is more, key signal transduction pathways affected by amino acid in the modulation of glucose and lipid metabolism have been well established, such as mTOR/S6K, GCN2/ATF4 pathway. In the view of constant increase of chronic metabolic diseases such as type 2 diabetes, further exploring on amino acid nutrient sensing and its metabolic control on glucose and lipid metabolism will provide significant guidance for the prevention and control of metabolic diseases.

  1. Research for amino acids in lunar samples.

    Science.gov (United States)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.

  2. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  3. Plasma amino acid relationships during parenteral nutrition.

    Science.gov (United States)

    Wells, F E; Smits, B J

    1980-01-01

    The plasma amino acidfs of 17 patients were studied before and during total parenteral nutrition (TPN). The amino acid (AA) pattern changed similarly for all patients. The AA concentration changes relative to preinfusion (PAER) were the most informative index of change. Two groups of AA were defined, the "branched chain" group (five amino acids) and the "hepatic" group (four amino acids) based on the correlation of PAER values. Comparison of PAER values with the ratio of AA intake to requirement indicated that the requirements of the sick patients were more similar to those of children than those of healthy adults.

  4. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  5. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 4

    International Nuclear Information System (INIS)

    12 colostomized laying hybrids with an 81% laying performance received 36 g wheat containing a 15N excess (15N') of 14.37 atom-% in a customary ration over 4 days. The wheat lysine contained 13.58 atom-% 15N', histidine 14.38 and arginine 13.63 atom-% 15N'. In the 4-day period of 15N' application 540 mg 15N', 18.1 mg lysine 15N', 21.5 mg histidine 15N' and 47.9 mg arginine 15N' were consumed per hen. Subsequently the animals received the same ration with unlabelled wheat. 12 h, 36 h, 60 h and 108 h after the last 15N' application 3 animals each were butchered. The atom-% 15N' of the lysine was below that of the two other basic and of the non-basic amino acids. The labelling of the amino acids of the egg white decreased rapidly 2 days after 15N' application. The atom-% of the 15N' of the yolk of egg, however, increased after the discontinuation and remained the same for 4 days after the last 15N' application. The 14N and 15N' amounts measured in the complete experiment period are distributed over the 3 basic and the 12 non-basic (excluding thioamino acids) amino acids in the white of egg for 14N as 25.0%:57.6% and for 15N' as 18.2%:57.5%. In the yolk of egg 28.5% 14N for the basic and 56.8% for the non-basic amino acids could be calculated; the corresponding values for 15N' were 17.8% and 55.5%. (author)

  6. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  7. The Apollo Program and Amino Acids

    Science.gov (United States)

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  8. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine amino... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  9. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  10. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    Science.gov (United States)

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  11. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    Science.gov (United States)

    ... features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010 Jul 6;75(1):64-71. doi: ... WNL.0b013e3181e620ae. Epub 2010 May 26. Erratum in: Neurology. 2010 Aug 10;75(6):576. Dosage error ...

  12. Genetics of Amino Acid Taste and Appetite.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  13. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 11

    International Nuclear Information System (INIS)

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N-labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days, resp., after the main period until they were butchered. The total of skeleton muscles, heart and stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half-life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50 %. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time. (author)

  14. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 2

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received toghether with a commercial ration labelled wheat with a 15N excess (15N') of 14.37 atom-%. The labelling of the basic amino acids amounted to 13.58 atom-% for lysine, to 14.38 atom-% for histidine and to 13.63 atom-% 15N' for arginine. 3 animals each were butchered 12 h, 36 h, 60 h and 108 h, resp. after the last application of 15N. The heavy nitrogen in the total N and in the N fraction of non-protein origin as well as in the basic amino acids in feces was daily determined for the individual hens in the total experimental period. On average the crude protein of feces contained 5.45% lysine, 2.32% histidine and 3.68% arginine: the protein of feces correspondingly contained 5.43% lysine, 2.32% histidine and 4.07% arginine. The quota of TCA-soluble N in the total N of feces amounts to one third on the 3rd and 4th days of the experiment and that of 15N' to 28%. The average atom-% 15N' of the protein fraction is 3.48 atom-% 15N' and that of the non-protein N fraction of feces 2.93 atom-% 15N'. The apparent digestibility of the 14N of the ration on average amounts to 82.8% and that of the wheat 15N' to 87.5%. The average quota of the basic amino acids in the protein compounds of feces amounts to 70.9% for lysine 15N', 73.7% for histidine 15N' and 70.3% for arginine 15N'. The digestibility of the 15N-labelled amino acids amounts to 80.4% for lysine, 90.8% for histidine and 90.2% for arginine. (author)

  15. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    Science.gov (United States)

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  16. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  17. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    . The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization...... curve correlations for amino acids were on average; r(2)=0.998. Interday accuracy for amino acids determined in spiked plasma was on average 97.3% and the coefficient of variation (CV) was 2.6%. The ([ring-(13)C6]/D5Phenylalanine) enrichment CV's for machine reproducibility in muscle tissue fluid......An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined...

  18. Single amino acid supplementation in aminoacidopathies : a systematic review

    NARCIS (Netherlands)

    van Vliet, Danique; Derks, Terry G. J.; van Rijn, Margreet; de Groot, Martijn J.; MacDonald, Anita; Heiner-Fokkema, M. Rebecca; van Spronsen, Francjan J.

    2014-01-01

    Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with

  19. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  20. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  1. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  2. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  3. Conformational Interconversions of Amino Acid Derivatives.

    Science.gov (United States)

    Kaminský, Jakub; Jensen, Frank

    2016-02-01

    Exhaustive conformational interconversions including transition structure analyses of N-acetyl-l-glycine-N-methylamide as well as its alanine, serine, and cysteine analogues have been investigated at the MP2/6-31G** level, yielding a total of 142 transition states. Improved estimates of relative energies were obtained by separately extrapolating the Hartree-Fock and MP2 energies to the basis set limit and adding the difference between CCSD(T) and MP2 results with the cc-pVDZ basis set to the extrapolated MP2 results. The performance of eight empirical force fields (AMBER94, AMBER14SB, MM2, MM3, MMFFs, CHARMM22_CMAP, OPLS_2005, and AMOEBAPRO13) in reproducing ab initio energies of transition states was tested. Our results indicate that commonly used class I force fields employing a fixed partial charge model for the electrostatic interaction provide mean errors in the ∼10 kJ/mol range for energies of conformational transition states for amino acid conformers. Modern reparametrized versions, such as CHARMM22_CMAP, and polarizable force fields, such as AMOEBAPRO13, have slightly lower mean errors, but maximal errors are still in the 35 kJ/mol range. There are differences between the force fields in their ability for reproducing conformational transitions classified according to backbone/side-chain or regions in the Ramachandran angles, but the data set is likely too small to draw any general conclusions. Errors in conformational interconversion barriers by ∼10 kJ/mol suggest that the commonly used force field may bias certain types of transitions by several orders of magnitude in rate and thus lead to incorrect dynamics in simulations. It is therefore suggested that information for conformational transition states should be included in parametrizations of new force fields. PMID:26691979

  4. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  5. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  6. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  7. Age-related changes of muscle and plasma amino acids in healthy children.

    Science.gov (United States)

    Hammarqvist, Folke; Angsten, Gertrud; Meurling, Staffan; Andersson, Kerstin; Wernerman, Jan

    2010-07-01

    The aim of the study was to explore if changes in muscle and plasma amino acid concentrations developed during growth and differed from levels seen in adults. The gradient and concentrations of free amino acids in muscle and plasma were investigated in relation to age in metabolic healthy children. Plasma and specimens from the abdominal muscle were obtained during elective surgery. The children were grouped into three groups (group 1: amino acids analysed increased with age, namely taurine, aspartate, threonine, alanine, valine, isoleucine, leucine, histidine, as well as the total sums of branched chain amino acids (BCAA), basic amino acids (BAA) and total sum of amino acids (P amino acids correlated with age (P < 0.05). These results indicate that there is an age dependency of the amino acid pattern in skeletal muscle and plasma during growth.

  8. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  9. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxa...

  10. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Science.gov (United States)

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased ( P glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved ( P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased ( P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased ( P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased ( P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased ( P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions ( P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  11. Functional amino acids in nutrition and health.

    Science.gov (United States)

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  12. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  13. Transport of aromatic amino acids by Brevibacterium linens.

    OpenAIRE

    Boyaval, P; Moreira, E; Desmazeaud, M. J.

    1983-01-01

    Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L for...

  14. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  15. AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    I. S. Chekman

    2014-12-01

    Full Text Available Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.

  16. Amino Acid Intake in Preterm Infants.

    Science.gov (United States)

    Burattini, Ilaria; Bellagamba, Maria Paola; D''Ascenzo, Rita; Biagetti, Chiara; Carnielli, Virgilio Paolo

    2016-01-01

    A large proportion of extremely low-birth-weight infants requires parenteral nutrition for variable lengths of time. Amino acids are the key ingredients of parenteral nutrition. The goal of appropriate amino acid administration is to promote anabolism and normal cellular development in order to limit the incidence of postnatal growth restriction, which is associated with neurodevelopmental delays. The benefits of early amino acid commencement soon after birth are compelling, especially on nitrogen balance, while long-term outcome studies are lacking. Amino acid administration at 2.5 g/kg per day has been shown to be superior to lower intakes; however, the benefits of intakes above 2.5 g/kg per day remain controversial. PMID:27336474

  17. 人早期胚胎解冻后氨基酸代谢变化的研究%Research on amino acid metabolism of human early embryo after frozen-thawed

    Institute of Scientific and Technical Information of China (English)

    唐杰; 方丛; 李婷婷; 张敏芳; 梁晓燕

    2011-01-01

    Objective: To study the amino acid metabolism of human early frozen-thawed embryo.Methods: Eighteen spare human embryos obtained from 13 patients undergoing in vitro ferbilization (IVF) were researched.Spare human embryos on day 3 of development were cultured individually in 20 μl drops of pre-equilibrated blastocyst culture medium for 2 hours before vitrification.Embryo-free drops were incubated in the same dish as the controls.The remaining 15 μl mediums from the drops were collected before freezing, 1/2,1,2,4,6 and 24 hours after thawing, and were analyzed for 20 free amino acids level by high performance liquid chromatography ( HPLC).Results: The levels of glutamine, histidine, tryptophan and lysine in blank controls were different among different time points.However, they were not increased or decreased gradually.The concentrations of other 16 amino acids remained same at different time points.One hour after thawing, concentrations of 20 free amino acids were all increased comparing with the blank control at same time point; the amino acid appearance and turnover was significant higher than that pre-freezing ( P < 0.05).The amino acid appearance had no significant difference betweem 2, 6 or 24 hours after thawing and pre-freezing ( P > 0.05).The amino acid depletion pre-freezing was significant lower than that 1/2, 4, 6 and 24 hours after thawing (P <0.05).The amino acid appearance 1/2 and 4 hours after thawing was significant lower than that pre-freezing ( P < 0.05).There was no significant difference in amino acid turnover between 1/2,4 hours after thawing and pre-freezing (P > 0.05).The amino acid turnover 24 hours after thawing was significant higher than that pre-freezing (P < 0.05).The amino acid turnover 1/2,4 and 6 hours after thawing were significant lower than that 1 hour after thawing (P <0.05).Conclusion: Human early embryo begins amino acid metabolism and recovers from metabolism stasis 1/2 hour after embryo thawing , and the amino

  18. Neutron inelastic scattering from amino acids

    International Nuclear Information System (INIS)

    Neutron incoherent inelastic scattering technique is used for studying the extensive hydrogen bonding that connects the molecules together and gives the structure cohesion in three dimension in amino acids. Results on five amino acids namely, α-glycine, DL-alanine, L-valine, L-tyrosine and L-phenyl-alanine having different side groups are reported and compared with those from other methods. The main emphasis is on the torsional motions of NH3+ and CH3 groups. (K.B.)

  19. Genetically encoded fluorescent coumarin amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangyun (San Diego, CA); Xie, Jianming (San Diego, CA); Schultz, Peter G. (La Jolla, CA)

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  20. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  1. A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome

    Directory of Open Access Journals (Sweden)

    Julie Thompson Legault

    2015-11-01

    Full Text Available A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines, as well as unexpected markers of cardiometabolic risk (insulin and adiponectin, amino acid catabolism linked to NADH status (α-hydroxybutyrate, and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid. Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.

  2. Amino acid efflux in the isolated perfused rat pancreas: trans-stimulation by extracellular amino acids.

    Science.gov (United States)

    Mann, G E; Norman, P S; Smith, I C

    1989-01-01

    1. Epithelial uptake and efflux of the non-metabolized system A analogue 2-methylaminoisobutyric acid (MeAIB) and L-serine were studied in the isolated perfused rat pancreas using a dual tracer loading and wash-out technique. Uptakes of 2-[14C]MeAIB and L-[3H]serine were measured relative to D-[3H or 14C]mannitol (extracellular tracer) during a 20 min cell loading period. Maximal uptake for MeAIB (34 +/- 2%, n = 6) occurred within 2-3 min and decreased to 14 +/- 2% after 20 min tracer loading. Uptake for L-serine reached a maximum (62 +/- 4%, n = 7) within 1 min and decreased to 19 +/- 2% after 20 min tracer loading. 2. When tracer wash-out was monitored during subsequent perfusion of the preloaded pancreas with an isotope-free solution, D-mannitol predominantly cleared from a fast exchanging compartment (0.54 +/- 0.05 ml g-1, n = 9) with a time constant (Tfast) of 0.68 +/- 0.04 min. Although MeAIB and L-serine exhibited similar fast phases of wash-out, a much larger efflux occurred from a slowly exchanging pool with respective time constants (Tslow) of 15.47 +/- 0.45 min (n = 6) and 5.98 +/- 0.46 min (n = 7). 3. A rapid vascular challenge of the pancreas with 100 mM-L-serine transiently accelerated cellular efflux of 2-[14C]MeAIB and L-[3H]serine without affecting wash-out of D-[14C]mannitol. Tracer efflux following cell loading with 2-[14C]MeAIB or L-[3H]serine was not stimulated by a challenge with 100 mM-MeAIB. 4. The time course of amino acid evoked 2-[14C]MeAIB and L-[3H]serine efflux paralleled the extracellular dilution profile of a vascular stimulus, suggesting that the acceleration of efflux was due to trans-stimulation. 5. Trans-stimulation of 2-[14C]MeAIB and L-[3H]serine efflux by a further twenty-two naturally occurring and three synthetic amino acids was then examined. L-Proline, N-methyl-DL-alanine, L-lysine and D-lysine selectively stimulated MeAIB efflux. Efflux of both tracer amino acids was accelerated by aminoisobutyric acid (AIB), L-serine, L

  3. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  4. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  5. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  6. D-Serine metabolism in C6 glioma cells: Involvement of alanine-serine-cysteine transporter (ASCT2) and serine racemase (SRR) but not D-amino acid oxidase (DAO)

    OpenAIRE

    Sikka, Pilleriin; Walker, Rosie; Cockayne, Rebecca; Wood, Matthew JA; Harrison, Paul J; Burnet, Philip WJ

    2010-01-01

    D-serine is an endogenous N-methyl-D-aspartate (NMDA) receptor coagonist. It is synthesized from L-serine by serine racemase (SRR), but many aspects of its metabolism remain unclear, especially in the forebrain, which lacks active D-amino acid oxidase (DAO), the major D-serine degradative enzyme. Candidate mechanisms include SRR operating in α,β-eliminase mode (converting D-serine to pyruvate) and regulation by serine transport, in which the alanine-serine-cysteine transporter ASCT2 is implic...

  7. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  8. Metabolism and transport of gamma-carboxyglutamic acid.

    Science.gov (United States)

    Shah, D V; Tews, J K; Harper, A E; Suttie, J W

    1978-03-01

    gamma-Carboxyglutamic acid residues have beeh shown to be present in prothrombin, the other vitamin K-dependent clotting factors, and more recently in bone and kidney proteins. This amino acid is formed by a posttranslational vitamin K-dependent carboxylation of glutamyl residues in polypeptide precursors of these protens. It has now been demonstrated that this amino acid, either in the free or peptide-bound form, is not metabolically degraded by the rat, but is quantitatively excreted in the urine. In nephrectomized rats, the tissue concentration of intravenously administered gamma-carboxyglutamic acid is increased, but there is still no evidence of any oxidative metabolism of this amino acid. These amino acid is transported by kidney slices against a concentration gradient, but does not accumulate in liver, intestinal or brain tissues. Preliminary data suggest that gamma-carboxyglutamic acid may be concentrated by a carrier system different from that utilized by other amino acids. PMID:629998

  9. Serum amino acid profiles and their alterations in colorectal cancer.

    Science.gov (United States)

    Leichtle, Alexander Benedikt; Nuoffer, Jean-Marc; Ceglarek, Uta; Kase, Julia; Conrad, Tim; Witzigmann, Helmut; Thiery, Joachim; Fiedler, Georg Martin

    2012-08-01

    Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.

  10. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  11. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  12. In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos

    DEFF Research Database (Denmark)

    Bhanja, Subrat K.; Hotowy, Anna Malgorzata; Mehra, Manish;

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers...... but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control...... embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, Nano...

  13. β-氨基丁酸诱导水稻稻瘟病抗性对活性氧代谢的影响%Effects of β-Amino Butyric Acid Induced Rice Blast Resistance on Reactive Oxygen Metabolism

    Institute of Scientific and Technical Information of China (English)

    李莉; 郭晓丽; 刘晓梅; 温嘉伟; 张秀容; 孙辉; 赵宇; 任金平

    2009-01-01

    [Objective] This study was to understand the effects of β-Amino butyric acid(abbreviated as BABA) induced rice blast resistance on reactive oxygen metabolism. [Method] Using the cultivar Chaochan 2 that is highly susceptible to disease as experimental material, the changes of catalase(CAT), and superoxide dismutase(SOD) and MDA activities in rice treated by BABA were investigated. [Result] In rice plants treated by BABA, the activities of CAT and SOD increased, meanwhile the MDA content also rose to some extent, resulting in the disease resistance to rice blast. [Conclusion] By influencing reactive oxygen metabolism, BABA endows rice plants with resistance to rice blast. BABA is safe to environment and has highly resistance-inducing capacity, it could be generalized in production.

  14. Detection of non-protein amino acids in the presence of protein amino acids. II.

    Science.gov (United States)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  15. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W;

    1996-01-01

    population, respectively. One hundred and thirty-five patients from Germany, Denmark, the Czech Republic, Spain, and the United States were selected for this study on the basis of abnormal EMA excretion ranging from 18 to 1185 mmol/mol of creatinine (controls ...Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  16. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1.

    Science.gov (United States)

    Nässl, Anna-Maria; Rubio-Aliaga, Isabel; Fenselau, Henning; Marth, Mena Katharina; Kottra, Gabor; Daniel, Hannelore

    2011-07-01

    The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism. PMID:21350187

  17. Co-ordinated research programme on application of stable isotope tracer methods to studies of amino acid, protein, and energy metabolism in malnourished populations of developing countries. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    The use of isotopes has revolutionized the field of human nutrition research, but has been of greatest benefit to industrialized countries. The International Atomic Energy Agency is sponsoring programmes using isotopic and related technologies in human nutrition research to address issues that are of priority to developing countries. Scientists participating in the Coordinated Research Programme (CRP) on ''Amino Acid and Protein Metabolism in Malnourished Populations of Developing Countries'' are conducting research on the interaction between infection and amino acid metabolism, particularly the potential diversion of substrates from anabolic pathways to fight infection in marginally nourished children during periods of infections. This topic is of great importance to the nutritional status of children in developing countries, who frequently or chronically have infections and who, as a consequence, may have alterations in nutrient requirements. The CRP has developed and implemented a standardized protocol for measuring leucine oxidation during infection in 8 different countries. The CRP is expected to contribute important new knowledge about interactions between protein utilization, the stresses of unhygienic environments, and infections in marginally nourished people. This information is expected to be applicable to efforts to increase efficient utilization of limited food resources in developing countries. Another highlight of the CRP is that it represents an international team of nutrition scientists who together are building nutritional biology research capabilities in developing countries. Refs, figs, tabs

  18. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism.

    Science.gov (United States)

    Ikon, Nikita; Ryan, Robert O

    2016-09-01

    3-methylglutaconic acid (3MGA)-uria occurs in numerous inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. This organic acid arises from thioester cleavage of 3-methylglutaconyl CoA (3MG CoA), an intermediate in leucine catabolism. In individuals harboring mutations in 3MG CoA hydratase (i.e., primary 3MGA-uria), dietary leucine is the source of 3MGA. In secondary 3MGA-uria, however, no leucine metabolism defects have been reported. While others have suggested 3MGA arises from aberrant isoprenoid shunting from cytosol to mitochondria, an alternative route posits that 3MG CoA arises in three steps from mitochondrial acetyl CoA. Support for this biosynthetic route in IEMs is seen by its regulated occurrence in microorganisms. The fungus, Ustilago maydis, the myxobacterium, Myxococcus xanthus and the marine cyanobacterium, Lyngbya majuscule, generate 3MG CoA (or acyl carrier protein derivative) in the biosynthesis of iron chelating siderophores, iso-odd chain fatty acids and polyketide/nonribosomal peptide products, respectively. The existence of this biosynthetic machinery in these organisms supports a model wherein, under conditions of mitochondrial dysfunction, accumulation of acetyl CoA in the inner mitochondrial space as a result of inefficient fuel utilization drives de novo synthesis of 3MG CoA. Since humans lack the downstream biosynthetic capability of the organisms mentioned above, as 3MG CoA levels rise, thioester hydrolysis yields 3MGA, which is excreted in urine as unspent fuel. Understanding the metabolic origins of 3MGA may increase its utility as a biomarker. PMID:27091556

  19. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  20. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  1. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  2. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  3. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides.

  4. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    Science.gov (United States)

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium.

  5. Postprandial fate of amino acids: adaptation to molecular forms

    NARCIS (Netherlands)

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, inco

  6. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  7. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 5

    International Nuclear Information System (INIS)

    12 colostomized laying hens which received 15N-labelled wheat over 4 days were butchered 12 h, 36 h, and 108 h (3 animals each) after the last 15N application. The intake of 15N exess (15N') from the wheat amounted to 540 mg 15N' during the application period. The 15N' in the blood plasma decreased after the last 15N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15N'. 96.6% of the plasma 15N' and 93,8% of that in the corpuscles is precipitable in trichloroacetic acid. The atom-% 15N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15N' wheat feeding. (author)

  8. INTERRUPTION OF AMINO ACIDS MOLECULAR ASYMMETRY (D/L- ENANTIOMERS DURING NORMAL AGING AND NEURODEGENERATIVE DISEASES

    Directory of Open Access Journals (Sweden)

    A.V. Chervyakov

    2010-05-01

    Full Text Available Some facts about D-amino acids, their diffusion in human’s and animal’s organisms, metabolism, identification methods, involving in ageing and pathogenesis of some neurodegenerative diseases are show in this review. Also there is discussing the role of amino acid molecular asymmetry (D and L enantiomers ratio as a fundamental asymmetry of living matter.

  9. Biosynthesis of the Aromatic Amino Acids.

    Science.gov (United States)

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  10. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    Science.gov (United States)

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  11. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  12. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino ...

  13. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  14. Dietary Supplements and Sports Performance: Amino Acids

    OpenAIRE

    Williams Melvin

    2005-01-01

    Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations). The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  15. Dietary Supplements and Sports Performance: Amino Acids

    Directory of Open Access Journals (Sweden)

    Williams Melvin

    2005-12-01

    Full Text Available Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations. The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  16. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  17. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  18. The seasonal fluctuation of plasma amino acids in aquarium-maintained bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Miyaji, Kazuki; Ohta, Mitsuaki; Nagao, Kenji; Ohtani, Nobuyo; Bannai, Makoto

    2012-07-01

    Although there has been extensive research on plasma amino acid profiles of mammals, there is currently a lack of information on seasonal differences in the concentrations of plasma amino acids specifically in cetaceans. The present study examined the response of the plasma amino acids to seasonal changes in the culture environment after controlling for the effect of sex and age. Significant seasonal changes in plasma carnosine (P=0.012), cystine (P=0.0014), isoleucine (P=0.0042), methionine (P=0.002), ornithine (P=0.0096), and taurine (P=0.032) were observed. These amino acids were mainly related to capacity for exercise, ammonia detoxification, thermoregulation, and osmoregulation. We proposed that optimizing plasma amino acids levels by supplementation of amino acids should be of considerable benefit for aquarium-maintained bottlenose dolphins. This study constitutes a first step towards improving our understanding of the metabolism of aquarium-maintained bottlenose dolphins. We also revealed that the ratio of tryptophan to large neutral amino acids significantly declined (P=0.0076), suggesting reduction in serotonin synthesis in winter and autumn. Although further studies are needed, this finding implied that bottlenose dolphins could produce behavioral changes seasonally by the alteration of serotonin activity. To better understand the metabolic machinery for amino acids that facilitate the adaptation of marine mammals to their environments, it is essential to continue monitoring of and further investigations into relationships between plasma amino acids and specific environmental factors. PMID:22333514

  19. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.

    Science.gov (United States)

    Fletcher, Timothy L; Popelier, Paul L A

    2016-06-14

    A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids. PMID:27224739

  20. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    Science.gov (United States)

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development.

  1. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    Science.gov (United States)

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development. PMID:27336588

  2. The effect of dispensable amino acids on nitrogen and amino acid losses in Atlantic salmon (Salmo salar) fry fed a protein-free diet

    OpenAIRE

    Abboudi, T.; Mambrini, M.; Larondelle, Y.; Rollin, X.

    2009-01-01

    The nutritional role of dispensable amino acids (DAAs) has been seldom studied in fish, while the metabolism of these species is orientated toward the oxidation of amino acids (AAs) for energetic purpose. The objective of this study was to characterize the role of DAAs in the absence of indispensable (1) AA supply in Atlantic salmon and to verify if, as in mammals they play a nutritional role under near maintenance conditions. Therefore we measured the effect of adding DAAs on nitrogen and AA...

  3. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  4. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers.

    Science.gov (United States)

    Rochell, S J; Parsons, C M; Dilger, R N

    2016-07-01

    An experiment was conducted to evaluate growth performance, apparent ileal digestibility (AID) of amino acids, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein, an acute-phase protein, in broilers inoculated with graded doses of E. acervulina oocysts. Ross 308 male broilers (400 total) were housed in battery cages from 1 to 21 d post-hatch and received common corn-soybean meal-based diets throughout the experiment. At 9 d post-hatch, birds were individually weighed and allotted to 4 treatment groups with 10 replicate cages of 10 birds per cage. At 15 d post-hatch, all birds were inoculated with 1 mL of distilled water that contained 0, 2.5 × 10(5), 5.0 × 10(5), or 1.0 × 10(6) sporulated E. acervulina oocysts. At 21 d, birds were euthanized for collection of blood and ileal digesta. Body weight gain and feed efficiency decreased linearly (P acids by an average of 2.6 percentage units for birds inoculated with 1.0 × 10(6) oocysts compared with uninfected birds. Infection with E. acervulina caused a quadratic decrease (P acid glycoprotein of broilers was not influenced (P > 0.05) by E. acervulina infection. In conclusion, E. acervulina challenge adversely impacted growth performance, plasma carotenoids, and AID of amino acids in a dose-dependent manner. However, plasma amino acid responses to graded E. acervulina inoculation doses varied considerably among amino acids. Thus, these results indicated that alterations in amino acid metabolism caused by E. acervulina infection extended beyond reduced amino acid digestibility.

  5. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    International Nuclear Information System (INIS)

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  6. Intermolecular Vibrations of Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  7. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  8. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters.

    Science.gov (United States)

    Babu, Ellappan; Kanai, Yoshikatsu; Chairoungdua, Arthit; Kim, Do Kyung; Iribe, Yuji; Tangtrongsup, Sahatchai; Jutabha, Promsuk; Li, Yuewei; Ahmed, Nesar; Sakamoto, Shinichi; Anzai, Naohiko; Nagamori, Seishi; Endou, Hitoshi

    2003-10-31

    A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters. PMID:12930836

  9. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  10. A Green Synthesis of Diisopropyl Phosphoryl Amino Acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.

  11. Neonates with inborn errors of metabolism: spectrum and short-term outcomes at a tertiary care hospital.

    Science.gov (United States)

    Gündüz, Mehmet; Ünal, Sevim; Okur, İlyas; Ayrancı Sucaklı, İclal; Güzel, Fatma; Koç, Nevra

    2015-01-01

    We aimed to evaluate the neonates diagnosed as IEM in our neonatal intensive care unit and their outcomes. Among 2994 neonates hospitalized, 51 were diagnosed as IEM (1.7%). Admission complaints were poor feeding, decreased activity, jaundice, seizures, abnormal screening and respiratory problems. Phenylketonuria (11), organic acidemias (8), maple syrup urine disease (5), citrullinemia (5), galactosemia (4), nonketotic hyperglycinemia (4) and tyrosinemia (2) were the most commonly diagnosed IEMs. The follow-up period was 2.5-43 months. Among the 33 neonates followed, 19 had normal development, 9 had developmental delays and 5 had cerebral palsy according to the Guide for Monitoring Child Development. Postnatal age on admission, Apgar score at 5 minutes, being transferred, peritoneal dialysis, cranial ultrasonographic findings, consanguinity and sibling history had significant effects on outcome. Early diagnosis through expanded neonatal screening in countries with high rates of consanguinity, enabling the initiation of early treatment, is essential for achieving low mortality rates and good prognoses. PMID:26613220

  12. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  13. Evaluation of quality of life in PKU before and after introducing tetrahydrobiopterin (BH4) : A prospective multi-center cohort study

    NARCIS (Netherlands)

    Demirdas, Serwet; Maurice-Stam, Heleen; Boelen, Carolien C. A.; Hofstede, Floris C.; Janssen, Mirian C. H.; Langendonk, Janneke G.; Mulder, Margot F.; Rubio-Gozalbo, M. Estela; van Spronsen, FrancJan; de Vries, Maaike; Grootenhuis, Martha A.; Bosch, Annet M.

    2013-01-01

    Background: Phenylketonuria (PKU) is a rare inborn error of metabolism caused by phenylalanine hydroxylase enzyme (PAH) deficiency. Treatment constitutes a strict Phe restricted diet with unpalatable amino acid supplements. Residual PAH activity enhancement with its cofactor tetrahydrobiopterin (BH4

  14. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    Science.gov (United States)

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  15. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  16. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  17. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...

  18. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  19. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2.

    Science.gov (United States)

    Langouët, S; Welti, D H; Kerriguy, N; Fay, L B; Huynh-Ba, T; Markovic, J; Guengerich, F P; Guillouzo, A; Turesky, R J

    2001-02-01

    Metabolic pathways of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) remain incompletely characterized in humans. In this study, the metabolism of MeIQx was investigated in primary human hepatocytes. Six metabolites were characterized by UV and mass spectroscopy. Novel metabolites were additionally characterized by 1H NMR spectroscopy. The carcinogenic metabolite, 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline, which is formed by cytochrome P450 1A2 (P450 1A2), was found to be transformed into the N(2)-glucuronide conjugate, N(2)-(beta-1-glucosiduronyl)-2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline. The phase II conjugates N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)sulfamic acid and N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, as well as the 7-oxo derivatives of MeIQx and N-desmethyl-MeIQx, 2-amino-3,8-dimethyl-6-hydro-7H-imidazo[4,5-f]quinoxalin-7-one (7-oxo-MeIQx), and 2-amino-6-hydro-8-methyl-7H-imidazo[4,5-f]quinoxalin-7-one (N-desmethyl-7-oxo-MeIQx), thought to be formed exclusively by the intestinal flora, were also identified. A novel metabolite was characterized as 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), and it was the predominant metabolite formed in hepatocytes exposed to MeIQx at levels approaching human exposure. IQx-8-COOH formation is catalyzed by P450 1A2. This metabolite is a detoxication product and does not induce umuC gene expression in Salmonella typhimurium strain NM2009. IQx-8-COOH is also the principal oxidation product of MeIQx excreted in human urine [Turesky, R., et al. (1998) Chem. Res. Toxicol. 11, 217-225]. Thus, P450 1A2 is involved in both the metabolic activation and detoxication of this procarcinogen in humans. Analogous metabolism experiments were conducted with hepatocytes of untreated rats and rats pretreated with the P450 inducer 3-methylcholanthrene. Unlike human hepatocytes, the rat cell preparations did not produce IQx-8

  20. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements.

    Science.gov (United States)

    Bornø, Andreas; van Hall, Gerrit

    2014-03-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined. The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization/ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration curve correlations for amino acids were on average; r(2)=0.998. Interday accuracy for amino acids determined in spiked plasma was on average 97.3% and the coefficient of variation (CV) was 2.6%. The ([ring-(13)C6]/D5Phenylalanine) enrichment CV's for machine reproducibility in muscle tissue fluid and plasma were 4.4 and 0.8%, and the interday variability was 3.4% and the recovery was 90.5%, respectively. In conclusion, we have developed and validated a method for quantitative amino acid profiling that meets the requirements for systemic and tissue human in vivo amino acid and protein turnover kinetics measurements. Moreover, citrulline, ornithine, π-methyl-histidine, τ-methyl-l-histidine, hydroxy-proline and carnitine were analysed but when similar precision and accuray are required an additional stable istopically labeled internal standard for these meatablites should be be added.

  1. Fuzzy clustering of physicochemical and biochemical properties of amino acids.

    Science.gov (United States)

    Saha, Indrajit; Maulik, Ujjwal; Bandyopadhyay, Sanghamitra; Plewczynski, Dariusz

    2012-08-01

    In this article, we categorize presently available experimental and theoretical knowledge of various physicochemical and biochemical features of amino acids, as collected in the AAindex database of known 544 amino acid (AA) indices. Previously reported 402 indices were categorized into six groups using hierarchical clustering technique and 142 were left unclustered. However, due to the increasing diversity of the database these indices are overlapping, therefore crisp clustering method may not provide optimal results. Moreover, in various large-scale bioinformatics analyses of whole proteomes, the proper selection of amino acid indices representing their biological significance is crucial for efficient and error-prone encoding of the short functional sequence motifs. In most cases, researchers perform exhaustive manual selection of the most informative indices. These two facts motivated us to analyse the widely used AA indices. The main goal of this article is twofold. First, we present a novel method of partitioning the bioinformatics data using consensus fuzzy clustering, where the recently proposed fuzzy clustering techniques are exploited. Second, we prepare three high quality subsets of all available indices. Superiority of the consensus fuzzy clustering method is demonstrated quantitatively, visually and statistically by comparing it with the previously proposed hierarchical clustered results. The processed AAindex1 database, supplementary material and the software are available at http://sysbio.icm.edu.pl/aaindex/ .

  2. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  3. Protein and Amino Acid Requirements during Pregnancy.

    Science.gov (United States)

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  4. Comparative Amino Acid Sequences of Dengue Viruses

    OpenAIRE

    Haishi, Shozo; TANAKA Mariko; Igarashi, Akira

    1990-01-01

    Amino acid (AA) sequences of 4 serotype of dengue viruses deduced from their nucleotide (nt) sequences of genomic RNA were analyzed for each genome segment and each stretch of 10 AA residues. Precursor of membrane protein (pM), and 4 nonstructural proteins (NS1, NS3, NS4B, NS5) were highly conserved, while another nonstructural protein (NS2A) was least conserved among 5 strains of dengue viruses. When homology was compared among heterotypic viruses, type 1 and type 3 dengue viruses showed clo...

  5. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  6. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  7. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  8. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    Science.gov (United States)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  9. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  10. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  11. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgaris L.) Varieties.

    Science.gov (United States)

    John, K M Maria; Luthria, Devanand

    2015-12-01

    In this study, we compared the amino acid, organic acid and sugar profiles of 3 different varieties of dry beans (black bean [BB], dark red bean [DRB], and cranberry bean [CB]). The efficiency of the 2 commonly used extraction solvents (water and methanol:chloroform:water [2.5:1:1, v/v/v/]) for cultivar differentiation based on their metabolic profile was also investigated. The results showed that the BB contained the highest concentration of amino acids followed by DRB and CB samples. Phenylalanine, a precursor for the biosynthesis of phenolic secondary metabolites was detected at low concentration in CB samples and correlated with the reduced anthocyanins content in CB extract as documented in the published literature. Comparing the extractability of 2 extraction solvents, methanol:chloroform:water (2.5:1:1, v/v/v/) showed higher recoveries of amino acids from 3 beans, whereas, sugars were extracted in higher concentration with water. Analytically, gas chromatography detected sugars (9), amino acids (11), and organic acids (3) in a single run after derivatization of the extracts. In comparison, ion chromatography detected only sugars in a single run without any derivatization step with the tested procedure. Bean samples are better differentiated by the sugar content extracted with water as compared to the aqueous organic solvent extracts using partial least-square discriminant analysis.

  12. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  13. Degradation of Arginine and Other Amino Acids by Eubacterium nodatum ATCC 33099

    OpenAIRE

    Uematsu, H.; Hoshino, E.

    2011-01-01

    The utilisation of a total of 20 amino acids by Eubacterium nodatum, a predominant asaccharolytic anaerobe isolated from human periodontal pockets, was studied. Washed cells of the microorganism produced substantial amounts of acetate, butyrate and ammonia from lysine, and butyrate and ammonia from arginine as main products under anaerobic conditions. They also produced a small amount of formate from histidine. Metabolic products were not detected from any of the other 17 amino acids. These r...

  14. The Overnight Effect of Dietary Energy Balance on Postprandial Plasma Free Amino Acid (PFAA) Profiles in Japanese Adult Men

    OpenAIRE

    Manabu Nishioka; Akira Imaizumi; Toshihiko Ando; Osamu Tochikubo

    2013-01-01

    The plasma free amino acid (PFAA) profile is affected by various nutritional conditions, such as the dietary energy balance. Regarding the clinical use of PFAA profiling, it is of concern that differences in food ingestion patterns may generate systematic errors in a plasma amino acid profile and constitute a confounding factor in assessment. In this study, the overnight impact of the dietary energy balance on the postprandial plasma amino acid profile was investigated to elucidate in particu...

  15. Conformational properties of oxazoline-amino acids

    Science.gov (United States)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  16. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    Directory of Open Access Journals (Sweden)

    Peter J. McGuire

    2014-02-01

    Full Text Available The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA. A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza using spf-ash mice, a model of OTC deficiency. Both wild-type (WT and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other

  17. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Science.gov (United States)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  18. Enhanced antibody production associated with altered amino acid metabolism in a hybridoma high-density perfusion culture established by gravity separation.

    Science.gov (United States)

    Hansen, H A; Damgaard, B; Emborg, C

    1993-01-01

    A high density hybridoma perfusion culture was established by separating and recycling cells from the product stream to the reactor using a simple external sedimentation-based separator-an inclined modified Erlenmeyer flask. After 3 weeks, when the optimal perfusion rate of 1.0 day-1 had been reached, viable cell density stabilized at around 10 x 10(6) cells ml-1, a level five times that obtained by simple batch culture. The efficiency of the separator was enhanced by cell flocculation. Specific antibody productivity, which was initially 0.4 micrograms 1 x 10(6) cells-1 h-1, decreased to half that value while cell density was increasing, but recovered to the initial level when the culture finally stabilized at a high cell density. During the final phase, when viable cell density and specific antibody production were high, there was a marked shift in metabolism. Consumption of the two most important substrates for energy generation, glucose and glutamine, caused their broth concentrations to decrease to 1.5 mM and 1 mM, respectively, from input medium concentrations of 25 mM and 10 mM, respectively. At the same time there was an increase in the specific production of glycine and aspartate, their broth concentrations reaching 1.5 mM and 0.02 mM, respectively. We suggest that this shift in metabolism results in enhanced production of ATP from glutamine. The specific glucose consumption and lactate production also indicate that there is a shift to more energy efficient metabolism. The mechanism whereby this leads to enhanced specific antibody production remains to be elucidated. Nevertheless, the combination of high cell density and enhanced productivity obtained with the present perfusion culture resulted in a high monoclonal antibody production-100 mg 1-1 d-1. PMID:7763691

  19. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes.

    Science.gov (United States)

    MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J

    2015-03-01

    Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of

  20. Uptake and conversion of D-amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Gördes, Dirk; Kolukisaoglu, Üner; Thurow, Kerstin

    2011-02-01

    The D-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of D-amino acids (D-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of D-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their D-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey's reagent and separated by HPLC-MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied D-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of D-AAs. The addition of particular amino acids (D-Trp, D-Phe, D-Met and D-His) led to the accumulation of the corresponding L-amino acid. In almost all cases, the application of a D-AA resulted in the accumulation of D-Ala and D-Glu. The presented results indicate that soil borne D-AAs can actively be taken up and metabolized via central metabolic routes.

  1. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    Science.gov (United States)

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated.

  2. Turkey-hen amino acid composition of brain and eyes

    International Nuclear Information System (INIS)

    The amino acids composition of the brain and eyes of the mature Turkey-hen (Meleagris gallopavo L.), were determined on dry weight basis. Total essential amino acids ranged from 35.1-36.0 g/100 g as 49.5-49.8% of the total amino acids. The amino acid score showed that lysine ranged from 0.76-0.91 (on whole hen.s egg comparison), 0.85-1.03 (on provisional essential amino acid scoring pattern), and 0.81-0.98 (on suggested requirement of the essential amino acid of a preschool child). The predicted protein efficiency ratio was 1.94-2.41, whilst essential amino acid index range was 1.06-1.08 and the calculated isoelectric point range was 3.97-4.18. The correlation coefficient (rxy) was positively high and significant at r = 0.01 for the total amino acids, amino acid scores (on the whole hen.s egg comparisons made) and the isoelectric point. On the whole, the eyes were better in 12/18 or 66.7% parameters of the amino acids than the brain of Turkey-Hen. (author)

  3. Citric acid cycle and role of its intermediates in metabolism.

    Science.gov (United States)

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  4. Alpha-amino acid behaves differently from beta- or gamma-amino acids as treated by trimetaphosphate.

    Science.gov (United States)

    Gao, X; Liu, Y; Xu, P X; Cai, Y M; Zhao, Y F

    2008-01-01

    The condensation reactions of sodium trimetaphosphate with single amino acids, namely glycine, L-alanine, beta-alanine and gamma-aminobutyric acid or pairs of these amino acids were reinvestigated by electrospray ion-trap mass spectrometry and high performance liquid chromatography. It was found when mixtures were treated by sodium trimetaphosphate only in the presence of alpha-amino acid dipeptides were formed. Without addition of alpha-amino acids, the beta-amino acid or gamma-aminobutyric acid could not form peptide either by themselves or with their mixtures under the same conditions. From the data it is concluded that phosphate might select alpha-amino acids to produce the peptides being important precursors for the origin of life. PMID:17973074

  5. Medication error: Subarachnoid injection of tranexamic acid

    Directory of Open Access Journals (Sweden)

    Bina P Butala

    2012-01-01

    Full Text Available Some factors have been identified as contributing to medical errors, such as labels, appearance and location of ampoules. We present a case of accidental injection of tranexamic acid instead of Bupivacaine during spinal anaesthesia. One minute after the injection of 3 mL of the solution, the patient developed myoclonus of her lower extremities. Accidental intrathecal injection of the wrong drug was suspected and a used ampoule of tranexamic acid was discovered in the trash can. The ampoules of Bupivacaine (5 mg/mL, trade name "Sensovac Heavy" and tranexamic acid (500 mg/mL, Trade name "Nexamin" were similar in appearance. Her myoclonus was successfully treated with phenytoin, sodium valproate, thiopental sodium infusion, midazolam infusion and supportive care of haemodynamic and respiratory systems. The surgery was temporarily deferred. The patient′s condition progressively improved to full recovery.

  6. Dynamics of amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 1

    International Nuclear Information System (INIS)

    In a 6-day preliminary period with a pelleted ration 12 colostomized laying hybrids received 15N-labelled wheat protein over 4 days. The labelling of the wheat was 14.37 atom-% 15N excess (15N'). During the 4-day application of 15N-labelled wheat protein each hen consumed 12.08 g N, 3.52 g lysine, 2.12 g histidine, 4.41 g arginine, of which were 540 mg 15N', 18.1 mg lysine 15N', 21.5 mg histidine 15N' and 47.9 mg arginine 15N'. Heavy nitrogen was determined in urine and its uric acid N in the daily urine samples of the individual animals. The average daily urine N excretion was 54% of the total nitrogen consumed with the ration. The labelling of the urine N reached a plateau on the fourth day of the experiment with 3.2 atom-% 15N'. On an average of the total experiment the quota of heavy nitrogen of the uric acid in the total 15N' of the urine was 83.4% and that of uric acid nitrogen in the total urine nitrogen 80.8%. (author)

  7. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  8. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    Science.gov (United States)

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  9. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  10. Diversity of amino acids in a typical chernozem of Moldova

    Science.gov (United States)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  11. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  12. Trend analysis of the correlation of amino acid plasma profile with glycemic status in Saudi diabetic patients

    Directory of Open Access Journals (Sweden)

    Fahad A. Al-Abbasi

    2012-10-01

    Full Text Available The role of amino acids in diabetes mellitus and its metabolic traits have been suggested previously; however, studied to a very limited scale in the Saudi patient population. Patients diagnosed with diabetes mellitus were included in the current clinical study. Sample was representative and in accordance with the national population distribution. Blood samples were drawn and assayed for glucose, total cholesterol, triglyceride, high density lipoprotein and low density lipoprotein. General biochemical markers, such as alkaline phosphatase (ALP, creatinine kinase (CK, aspartate transaminase (AST, alanine transaminase (ALT and blood urea nitrogen (BUN were assessed. Serum amino acids of different categories (essential, semi-essential and metabolic indicator amino acids were assessed. Correlation co-efficient between each amino acid and serum glucose level was calculated. The current study showed positive correlation between amino acid level and glucose serum concentration in male while it showed negative correlation in female Saudi diabetic patients. Male patients had significantly higher methionine concentration parallel to their glycemic status. Metabolic indicator amino acids significantly changed in concordance with the glycemic status of female patients more than in male patients. In conclusion, serum amino acid is positively correlated with glycemic status in Saudi male diabetic patients while negatively correlated in female patients. Yet, further study would be recommended to utilize serum amino acid profile as surrogate parameter for the metabolic complications of diabetes mellitus.

  13. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    Science.gov (United States)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  14. A new synthetic protocol for coumarin amino acid

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2013-02-01

    Full Text Available The hydrochloride of the racemic amino acid (2-(7-hydroxycoumarin-4-ylethylglycine, which can serve as a fluorescent probe in proteins, and two halogen derivatives of it, were synthesized by using a new synthetic protocol in five steps. It is less costly and relatively easy to prepare this kind of fluorescent amino acid with the new synthetic method. Furthermore, it can be applied to synthesize other derivatives of the coumarin amino acid with some specific properties.

  15. Reconstructing Amino Acid Interaction Networks by an Ant Colony Approach

    OpenAIRE

    Gaci, Omar; Balev, Stefan

    2009-01-01

    In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. We consider the problem of reconstructing protein's interaction network from its amino acid sequence. We rely on a probability that two amino acids interact as a function of their physico-chemical properties coupled to an ant colony system to solve this problem.

  16. GLC of amino acids - A survey of contamination.

    Science.gov (United States)

    Rash, J. J.; Gehrke, C. W.; Kuo, K. C.; Kvenvolden, K. A.; Stalling, D. L.; Zumwalt, R. W.

    1972-01-01

    Analyses of biological substances and geochemical samples, of both terrestrial and extraterrestrial origin, are reported for amino acids at the 1-10 nanogram per gram level achieved by gas-liquid and ion-exchange chromatographic methods. These studies have shown that nanogram quantities of amino acids, present in water extracts of geochemical samples or in other samples of low amino acid concentration, can be successfully determined only if the researcher is well aware of the possible sources of contamination.

  17. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  18. A Novel Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Hui; LI Shuo; XU Pen-gFei

    2003-01-01

    @@ β-hydroxy-α-amino acids constitute an important class of compounds as naturally occurring amino acids and as components of many complex natural products possessing a wide range of biological activities. [1] As a consequence of the essential role played by these amino acids in the biological systems and their utility as synthetic building blocks, a number of useful strategies have been devised for their preparation. [2

  19. The effect of the excitatory amino acid receptor antagonist dizocilipine maleate (MK-801) on hemispheric cerebral blood flow and metabolism in dogs: modification by prior complete cerebral ischemia.

    Science.gov (United States)

    Perkins, W J; Lanier, W L; Karlsson, B R; Milde, J H; Michenfelder, J D

    1989-09-25

    The effect of the N-methyl-D-aspartate (NMDA) receptor antagonist dizociplipine maleate (MK-801) on cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), intracranial pressure and systemic variables was examined in 6 normal dogs (Group I). In 6 additional dogs (Group II), the effects of a prior 11 min episode of complete cerebral ischemia on the response to dizocilipine was studied. CBF was measured with a sagittal sinus outflow technique and CMRO2 was calculated as the product of CBF and the arterial to sagittal sinus O2 content difference. Dizocilipine was administered as a 150 micrograms/kg i.v. bolus followed by a 75 micrograms.kg-1.h-1 infusion for 90 min. Plasma dizocilipine levels were greater than 25 ng/ml for the duration of the infusion. The CSF levels were approximately half the plasma levels. Five minutes after initiation of dizocilipine treatment, Group I dogs experienced a 63% increase in heart rate (P less than 0.01) and an 8% decrease in the mean arterial blood pressure (P less than 0.05). Over the same time interval. CBF increased by 85% (P less than 0.01) and intracranial pressure nearly doubled (P less than 0.05). In addition, dizocilipine treatment in all Group I animals resulted in EEG quasiperiodic bursts of delta-waves and polyspikes on a background of beta-activity. With the exception of the intracranial pressure, the above changes in systemic and cerebral variables persisted for the duration of the drug infusion. Intracranial pressure was no longer significantly elevated after 80 min of drug infusion. Hemispheric CMRO2 was unchanged by dizocilipine in Group I dogs. There was a decrease in the cortical glucose level at the end of the study, but no significant change in phosphocreatine, ATP, lactate, or energy charge when compared with 6 laboratory normals. An identical dose of dizocilipine administered after an 11 min episode of complete cerebral ischemia resulted in no significant changes in either cerebral or systemic

  20. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  1. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  2. Method for Enzyme Design with Genetically Encoded Unnatural Amino Acids.

    Science.gov (United States)

    Hu, C; Wang, J

    2016-01-01

    We describe the methodologies for the design of artificial enzymes with genetically encoded unnatural amino acids. Genetically encoded unnatural amino acids offer great promise for constructing artificial enzymes with novel activities. In our studies, the designs of artificial enzyme were divided into two steps. First, we considered the unnatural amino acids and the protein scaffold separately. The scaffold is designed by traditional protein design methods. The unnatural amino acids are inspired by natural structure and organic chemistry methods, and synthesized by either organic chemistry methods or enzymatic conversion. With the increasing number of published unnatural amino acids with various functions, we described an unnatural amino acids toolkit containing metal chelators, redox mediators, and click chemistry reagents. These efforts enable a researcher to search the toolkit for appropriate unnatural amino acids for the study, rather than design and synthesize the unnatural amino acids from the beginning. After the first step, the model enzyme was optimized by computational methods and directed evolution. Lastly, we describe a general method for evolving aminoacyl-tRNA synthetase and expressing unnatural amino acids incorporated into a protein. PMID:27586330

  3. Analysis of amino acids network based on distance matrix

    Science.gov (United States)

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  4. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  5. Which Amino Acids Should Be Used in Prebiotic Chemistry Studies?

    Science.gov (United States)

    Zaia, Dimas A. M.; Zaia, Cássia Thaïs B. V.; de Santana, Henrique

    2008-12-01

    The adsorption of amino acids on minerals and their condensation under conditions that resemble those of prebiotic earth is a well studied subject. However, which amino acids should be used in these experiments is still an open question. The main goal of this review is to attempt to answer this question. There were two sources of amino acids for the prebiotic earth: (1) exogenous—meaning that the amino acids were synthesized outside the earth and delivered to our planet by interplanetary dust particles (IDPs), meteorites, comets, etc. and (2) endogenous—meaning that they were synthesized on earth in atmospheric mixtures, hydrothermal vents, etc. For prebiotic chemistry studies, the use of a mixture of amino acids from both endogenous and exogenous sources is suggested. The exogenous contribution of amino acids to this mixture is very different from the average composition of proteins, and contains several non-protein amino acids. On the other hand, the mixture of amino acids from endogenous sources is seems to more closely resemble the amino acid composition of terrestrial proteins.

  6. Synthesis of novel fullerene α-amino acid conjugates

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  7. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  8. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 3

    International Nuclear Information System (INIS)

    12 colostomized laying hybrids received a ration meeting their requirement of 15N-labelled wheat with a 15N excess (15N') of 14.37 atom-% over 4 days. The 15N' of the total ration amounted to 4.47 atom-%. Each hen consumed 135 mg 15N' per day. On another 4 days the same rations with non-labelled wheat were fed. The 12 hens laid 56 eggs during the 8 days of the experiment. They were divided into egg shell, white and yolk of egg. In addition, the protein of the white and yolk of egg was precipitated with trichloric acetic acid (TCA) and the nitrogen in these fractions was determined. On an average the N quota in the egg shell was 5.3%, in the white of egg 49.1% and in the yolk 45.6%. The atom-% 15N' in the shells of the eggs laid on the first day of the experiment was on an average 0.21, whereas only 0.03 and 0.02 atom-% 15N' resp. could be detected in the white and yolks of the eggs. On the first day after the last 15N application the atom-% 15N' in the egg shell and the white of egg was highest and amounted to 2.33 and 2.43 atom-% resp. The highest value of 1.83 atom-% 15N' in the yolk was ascertained 3 days after the last 15N intake. The mean quota of TCA-precipitable N in the white of egg is 97.6% and in the yolk 94.4% of the respective total N. The atom-% 15N' in the non-protein N compounds was higher than in the protein fractions. (author)

  9. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    Science.gov (United States)

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  10. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  11. Do anticodons of misacylated tRNAs preferentially mismatch codons coding for the misloaded amino acid?

    Directory of Open Access Journals (Sweden)

    Seligmann Hervé

    2010-05-01

    Full Text Available Abstract Background Accurate amino acid insertion during peptide elongation requires tRNAs loaded by cognate amino acids and that anticodons match codons. However, tRNA misloading does not necessarily cause misinsertions: misinsertion is avoided when anticodons mismatch codons coding for misloaded amino acids. Presentation of the hypothesis Occasional compensation of misacylation by codon-anticodon mismatch necessarily occurs. Putatively, occasional error compensation may be enhanced beyond the random combination of independent errors in tRNA loading and codon-anticodon interactions: tRNA misacylation might alter potentials for codon-anticodon mismatches, perhaps specifically increasing potentials for mismatching those codons coding for the misacylated non-cognate amino acid. This hypothetical phenomenon is called 'error coordination', in distinction from 'error compensation' that assumes independence between misacylation and mismatch. Testing the hypothesis Eventually, the hypothesis should be tested for each combination of amino acid misacylation and codon-anticodon mismatch, by comparing stabilities or frequencies of mismatched codon-anticodon duplexes formed by tRNAs loaded by their cognate amino acid with stabilities formed by that tRNA when misloaded with the amino acid coded by the mismatched codon. Competitive mismatching experiments between misloaded and correctly loaded tRNAs could also be useful, yet more sophisticated experiments. Implications of the hypothesis Detecting error coordination implies estimating error compensation, which also promotes protein synthesis accuracy. Hence even in the absence of evidence for error coordination, experiments would yield very useful insights into misacylation and mismatch processes. In case experiments consider post-transcriptional RNA modifications (especially at wobble positions, results on codon-anticodon mismatches would enable significant improvements and sophistications of secondary

  12. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).

    Science.gov (United States)

    Haribal, Meena; Jander, Georg

    2015-12-01

    Plant roots incorporate inorganic nitrogen into the amino acids glutamine, glutamic acid, asparagine and aspartic acid, which together serve as the primary metabolites of nitrogen transport to other tissues. Given the preponderance of these four amino acids, phloem sap is a nutritionally unbalanced diet for phloem-feeding insects. Therefore, aphids and other phloem feeders typically rely on microbial symbionts for the synthesis of essential amino acids. To investigate the metabolism of the four main transport amino acids by the pea aphid (Acyrthosiphon pisum), and its Buchnera aphidicola endosymbionts, aphids were fed defined diets with stable isotope-labeled glutamine, glutamic acid, asparagine or aspartic acid (U-(13)C, U-(15)N; U-(15)N; α-(15)N; or γ-(15)N). The metabolic fate of the dietary (15)N and (13)C was traced using gas chromatography-mass spectrometry (GC-MS). Nitrogen was the major contributor to the observed amino acid isotopomers with one additional unit mass (M+1). However, there was differential incorporation, with the amine nitrogen of asparagine being incorporated into other amino acids more efficiently than the amide nitrogen. Higher isotopomers (M+2, M+3 and M+4) indicated the incorporation of varying numbers of (13)C atoms into essential amino acids. GC-MS assays also showed that, even with an excess of dietary labeled glutamine, glutamic acid, asparagine or aspartic acid, the overall content of these amino acids in aphid bodies was mostly the product of catabolism of dietary amino acids and subsequent re-synthesis within the aphids. Thus, these predominant dietary amino acids are not passed directly to Buchnera endosymbionts for synthesis of essential amino acids, but are rather are produced de novo, most likely by endogenous aphid enzymes. PMID:26632455

  13. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men

    OpenAIRE

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; SATO, JUICHI; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10–90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrati...

  14. Branched-chain amino acids and brain function.

    Science.gov (United States)

    Fernstrom, John D

    2005-06-01

    Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g., uncontrolled diabetes), brain BCAA concentrations rise, and ArAA concentrations decline. Such effects occur acutely and chronically. Such reductions in brain ArAA concentrations have functional consequences: biochemically, they reduce the synthesis and the release of neurotransmitters derived from ArAAs, notably serotonin (from tryptophan) and catecholamines (from tyrosine and phenylalanine). The functional effects of such neurochemical changes include altered hormonal function, blood pressure, and affective state. Although the BCAAs thus have biochemical and functional effects in the brain, few attempts have been made to characterize time-course or dose-response relations for such effects. And, no studies have attempted to identify levels of BCAA intake that might produce adverse effects on the brain. The only "model" of very high BCAA exposure is a very rare genetic disorder, maple syrup urine disease, a feature of which is substantial brain dysfunction but that probably cannot serve as a useful model for excessive BCAA intake by normal individuals. Given the known biochemical and functional effects of the BCAAs, it should be a straightforward exercise to design studies to assess dose-response relations for biochemical and functional effects and, in this context, to explore for adverse effect thresholds. PMID:15930466

  15. Cerebral metabolic and circulatory effects of 1,1,1-trichloroethane, a neurotoxic industrial solvent. 2. Tissue concentrations of labile phosphates, glycolytic metabolites, citric acid cycle intermediates, amino acids, and cyclic nucleotides.

    Science.gov (United States)

    Folbergrová, J; Hougaard, K; Westerberg, E; Siesjö, B K

    1984-01-01

    In order to obtain information on the mechanisms of neurotoxicity of 1,1,1-trichloroethane, rats maintained artificially ventilated on N2O:O2 (70:30) were exposed to a concentration of 1,1,1-trichloroethane of 8000 ppm, 43.7 mg L-1, that induces moderate ataxia in awake, spontaneously breathing animals. After 5 and 60 min of exposure, as well as after a 60-min recovery period following 60 min of exposure, the brain was frozen in situ and cortical tissue was assayed for phosphocreatine (PCr), + ATP, ADP, AMP, glycogen, glucose, pyruvate, lactate, citric acid cycle intermediates, associated amino acids, and cyclic nucleotides; in addition, purine nucleotides, nucleosides, and bases were assayed by HPLC techniques. Exposure of animals to 1,1,1-trichloroethane failed to alter blood glucose, lactate, and pyruvate concentrations. However, the solvent induced highly significant increases in tissue lactate and pyruvate concentrations that were also reflected in cisternal CSF. Associated with these changes were increases in all citric acid cycle intermediates except succinate, an increase in alanine concentration, and a rise in the glutamate/aspartate ratio. After 5 min, a small decrease in glycogen concentration also occurred. All these changes were reversed when the exposure was terminated. No changes were observed in tissue concentrations of purine nucleotides, nucleosides, and bases except for a small reduction of ATP concentration after 60 min of exposure, still noticeable after 60 min of recovery. Apart from a small reduction in cAMP concentration after 5 min of exposure, cyclic nucleotide concentrations did not change.

  16. Amino acid uptake in arterio-venous serum of normal and cancerous colon tissues

    Institute of Scientific and Technical Information of China (English)

    Lin-Bo Wang; Jian-Guo Shen; Su-Zhan Zhang; Ke-Feng Ding; Shu Zheng

    2004-01-01

    AIM: To investigate the difference of amino acid uptake between normal and cancerous colon tissues.METHODS: Sixteen patients with colon cancer were enrolled in our study. Blood samples were taken during operations, serum amino acid concentrations of blood from cancerous or normal colon were analyzed. Amino acid uptake rate was calculated by the A-V difference and evaluated statistically.RESULTS: Except for methionine, the uptake rate of amino acids in cancer was higher than that in normal colon (25.01% vs-2.29%, P<0.01). The amino acid uptake rate did not correlate to the size of tumor mass (P>0.05). There was no statistical significance in the amino acid uptake rate according to the Dukes stage, though it was higher in patients with Dukes stage C or D than that with Dukes stage B (P>0.05).CONCLUSION: Abnormal synthetic metabolism of colon cancer may contribute to its higher amino acid uptake rate than that of normal colon.

  17. Plasma amino acid concentrations in 36 dogs with histologically confirmed superficial necrolytic dermatitis.

    Science.gov (United States)

    Outerbridge, Catherine A; Marks, Stanley L; Rogers, Quinton R

    2002-08-01

    Plasma amino acid concentrations were measured in 36 dogs diagnosed with superficial necrolytic dermatitis (SND) via skin biopsy. The median age of the dogs was 10 years, and 27 out of 36 (75%) were male. Twenty-two out of 36 (61%) of the dogs were accounted for by six breeds; West Highland white terriers (six), Shetland sheepdogs (five), cocker spaniels (four), Scottish terriers (three), Lhasa apsos (two) and Border collies (two). The mean concentration (+/- standard deviation) was calculated for each measured plasma amino acid and compared to previously documented concentrations of plasma amino acids measured in dogs with acute and chronic hepatitis. The ratio of branched chain amino acids to aromatic amino acids in the dogs with SND was 2.6, slightly lower than that in normal dogs. The mean plasma amino acid concentrations for dogs with SND were significantly lower than for dogs with acute and chronic hepatitis. A metabolic hepatopathy in which there is increased hepatic catabolism of amino acids is hypothesized to explain the hypoaminoacidaemia seen in SND. PMID:12174180

  18. The effects of the formula of amino acids enriched BCAA on nutritional support in traumatic patients

    Institute of Scientific and Technical Information of China (English)

    Xin-Ying Wang; Ning Li; Jun Gu; Wei-Qin Li; Jie-Shou Li

    2003-01-01

    AIM: To investigate the formula of amino acid enriched BCAA on nutritional support in traumatic patients after operation.METHODS: 40 adult patients after moderate or large abdominal operations were enrolled in a prospective,randomly and single-blind-controlled study, and total parenteral nutrition (TPN) with either formula of amino acid (AA group, 20 cases) or formula of amino acid enriched BCAA (BCAA group, 20 cases). From the second day after operation, total parenteral nutrition was infused to the patients in both groups with equal calorie and equal nitrogen by central or peripheral vein during more than 12 hours per day for 6 days. Meanwhile, nitrogen balance was assayed by collecting 24 hours urine for 6 days. The markers of protein metabolism were investigated such as amino acid patterns, levels of total protein, albumin, prealbumin,transferrin and fibronectin in serum.RESULTS: The positive nitrogen balance in BCAA group occurred two days earlier than that in AA group. The serum levels oftotal protein and albumin in BCAA group were increased more obviously than that in AA group. The concentration of valine was notably increased and the concentration of arginine was markedly decreased in BCAA group after the formula of amino acids enriched BCAA transfusion.CONCLUSION: The formula of amino acid enriched BCAA may normalize the levels of serum amino acids, reduce the proteolysis, increase the synthesis of protein, improve the nutritional status of traumatic patients after operation.

  19. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, Robert F [ORNL; Park, Dr Seung Bum [Seoul National University

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  20. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Csilla Albert

    2007-06-01

    Full Text Available Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particularly significant growth in the microorganism number range from 1.5x106 to 2.9x106. Based on analysis of curds and cheese samples produced using different technologies we have come to the conclusion that for fresh dairy products and for those matured over a short time there was a close relation between total microorganism number and free D-amino acid and free L-amino acid contents. At the same time it was found that the ratio of the enantiomers was not affected by the total microorganism number. For dairy products, however, where amino acid production capability of the microbial cultures considerably exceeds, production of microorganisms originally present in the milk raw material, free amino acid contents of the milk product (both D- and L-enantiomers seem to be independent of the composition of milk raw material.

  1. Random amino acid mutations and protein misfolding lead to Shannon limit in sequence-structure communication.

    Directory of Open Access Journals (Sweden)

    Andreas Martin Lisewski

    Full Text Available The transmission of genomic information from coding sequence to protein structure during protein synthesis is subject to stochastic errors. To analyze transmission limits in the presence of spurious errors, Shannon's noisy channel theorem is applied to a communication channel between amino acid sequences and their structures established from a large-scale statistical analysis of protein atomic coordinates. While Shannon's theorem confirms that in close to native conformations information is transmitted with limited error probability, additional random errors in sequence (amino acid substitutions and in structure (structural defects trigger a decrease in communication capacity toward a Shannon limit at 0.010 bits per amino acid symbol at which communication breaks down. In several controls, simulated error rates above a critical threshold and models of unfolded structures always produce capacities below this limiting value. Thus an essential biological system can be realistically modeled as a digital communication channel that is (a sensitive to random errors and (b restricted by a Shannon error limit. This forms a novel basis for predictions consistent with observed rates of defective ribosomal products during protein synthesis, and with the estimated excess of mutual information in protein contact potentials.

  2. Effect of intraoperative amino acid infusion on glucose metabolism in dogs%术中静脉输注氨基酸对犬糖代谢的影响

    Institute of Scientific and Technical Information of China (English)

    金琳; 葛圣金; 薛张纲

    2008-01-01

    Objective To investigate the effect of intraoperative amino acid infusion on perioperative glucose metabolism. Methods Thirty-six adult mongrel dogs of both sexes weighing 12-16 kg undergoing partially small intestine resection under general anesthesia were randomly allocated to one of 4 groups (n=9 each): Ⅰ control group received normal saline (C);Ⅱ,Ⅲ,Ⅳ amino acid group (A1, A2, A3) received iv infusion of 2.85%, 5.70% and 11.4% 18-amino acid respectively at 12 ml·kg-1·h-1 during operation starting from skin incision until the end of operation. The animals were premedicated with ketamine and diazepam. Anesthesia was induced with propofol 5-10 mg/kg, fentanyl 2 μg/kg and vecuronium 0.2 mg/kg and maintained with 1%-3% isoflurane and intermittent iv boluses of fentanyl and vecuronium. The animals were intubated and mechanically ventilated. PET CO2 was maintained at 30-40 mm Hg. ECG, MAP, HR, PET CO2 and esophageal T0 were continuously monitored. Venous blood samples were collected before anesthesia (T1), 15 min after induction of anesthesia (T2), 15, 30 min and 1 h after skin incision (T3-5), when abdomen was closed (T6) and 1,2,4,8 and 24 h after operation (T7-11) for determination of plasma glucose, lactate, insulin and glucagon. Liver biopsy was performed at T6-11 and muscle biopsy at T2,6,11 for measurement of hepatic and muscle glucagon. Homa index was used to estimate the degree of insulin resistance. Results The plasma glucose and insulin concentrations were significantly increased at T3-11 as compared with the baseline at T1 in all 4 groups (P<0.05). The plasma insulin concentrations were significantly higher in group A1 (at T6), group A2 (at T3,6) and group A3 (at T3-11) than in group C (P<0.05). Homa index was significantly higher in group A3(at T3-8) than in group C. Conclusion Intraoperative amino acid infusion increases plasma insulin concentration but does not prevent glycogenolysis especially high dose amino acid infusion.%目的 探讨术

  3. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  4. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    Science.gov (United States)

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  5. Strategies for comprehensive analysis of amino acid biomarkers of oxidative stress.

    Science.gov (United States)

    Ptolemy, A S; Lee, R; Britz-McKibbin, P

    2007-07-01

    Despite the wide interest in using modified amino acids as putative biomarkers of oxidative stress, many issues remain as to their overall reliability for early detection and diagnosis of diseases. In contrast to conventional single biomarker studies, comprehensive analysis of biomarkers offers an unbiased strategy for global assessment of modified amino acid metabolism due to reactive oxygen and nitrogen species. This review examines recent analytical techniques amenable for analysis of modified amino acids in biological samples reported during 2003-2007. Particular attention is devoted to the need for validated methods applicable to high-throughput analysis of multiple amino acid biomarkers, as well as consideration of sample pretreatment protocols on artifact formation for improved clinical relevance. PMID:17514495

  6. Involvement of the Neutral Amino Acid Transporter SLC6A15 and Leucine in Obesity-Related Phenotypes

    OpenAIRE

    Jana Drgonova; Jacobsson, Josefin A.; Han, Joan C.; Yanovski, Jack A.; Robert Fredriksson; Claude Marcus; Schiöth, Helgi B; Uhl, George R.

    2013-01-01

    Brain pathways, including those in hypothalamus and nucleus of the solitary tract, influence food intake, nutrient preferences, metabolism and development of obesity in ways that often differ between males and females. Branched chain amino acids, including leucine, can suppress food intake, alter metabolism and change vulnerability to obesity. The SLC6A15 (v7-3) gene encodes a sodium-dependent transporter of leucine and other branched chain amino acids that is expressed by neurons in hypothal...

  7. The Path of Carbon in Photosynthesis II. Amino Acids

    Science.gov (United States)

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  8. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    OpenAIRE

    Claude Daneault; Saïd Barazzouk

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, th...

  9. Separation of amino acid enantiomers by micelle-enhanced ultrafiltration

    NARCIS (Netherlands)

    Bruin, de T.J.M.; Marcelis, A.T.M.; Zuilhof, H.; Rodenburg, L.M.; Overdevest, P.E.M.; Padt, van der A.; Sudhölter, E.J.R.

    2000-01-01

    A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids so

  10. Interactive Hangman Teaches Amino Acid Structures and Abbreviations

    Science.gov (United States)

    Pennington, Britney O.; Sears, Duane; Clegg, Dennis O.

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying…

  11. Ant Colony Approach to Predict Amino Acid Interaction Networks

    OpenAIRE

    Gaci, Omar; Balev, Stefan

    2009-01-01

    In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. We consider the problem of reconstructing protein's interaction network from its amino acid sequence. An ant colony approach is used to solve this problem.

  12. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  13. Site specific incorporation of keto amino acids into proteins

    Science.gov (United States)

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories.

    Science.gov (United States)

    Elsila, Jamie E; Aponte, José C; Blackmond, Donna G; Burton, Aaron S; Dworkin, Jason P; Glavin, Daniel P

    2016-06-22

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  15. The protein digestibility-corrected amino acid score

    NARCIS (Netherlands)

    Schaafsma, G.

    2000-01-01

    The protein digestibility–corrected amino acid score (PDCAAS) has been adopted by FAO/WHO as the preferred method for the measurement of the protein value in human nutrition. The method is based on comparison of the concentration of the first limiting essential amino acid in the test protein with th

  16. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  17. Heat-Bath Cooling of Spins in Amino Acids

    CERN Document Server

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Heat-bath cooling is a component of practicable algorithmic cooling of spins, an approach which might be useful for in vivo 13C spectroscopy, in particular for prolonged metabolic processes where substrates that are hyperpolarized ex-vivo are not effective. We applied heat-bath cooling to 1,2-13C2-amino acids, using the \\alpha\\ protons to shift entropy from selected carbons to the environment. For glutamate and glycine, the polarizations of both labeled carbons were enhanced, and in other experiments the total entropy of each spin system was shown to decrease. The effect of adding Magnevist, a gadolinium contrast agent, on heat-bath cooling of glutamate was investigated.

  18. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    Directory of Open Access Journals (Sweden)

    Bimal Mohanty

    2014-01-01

    Full Text Available Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

  19. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.

    Directory of Open Access Journals (Sweden)

    João Daniel Santos Fernandes

    Full Text Available Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR. We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8. The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i quality of nitrogen (Nitrogen Catabolism Repression, NCR and carbon sources (Carbon Catabolism Repression, CCR, (ii amino acid availability in the extracellular environment (SPS-sensing and (iii nutritional deprivation (Global Amino Acid Control, GAAC. This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.

  20. Recommended ingestion of indispensable amino acids to young men . A study using stable isotopes, plasmatic amino acids and nitrogen balance

    International Nuclear Information System (INIS)

    It has been previously stated that the minimum physiological recommendations for the indispensable amino acids in health adults, as proposed by FAO/WHO/UNU in 1985, are far too low, except for the methionine. An amino acid stable isotopic kinetic study was conducted to seek further experimental support to this hypothesis. Twenty healthy young men received an l-amino acid based diet, supplying 140 mg N.kg-1.d-1, patterned on egg protein for 1 week, then for 3 weeks either i) a pattern based on current international recommendations (FAO diet, n=7), ii) a the tentative Laboratory of Human Nutrition of the Massachusetts Institute of Technology, new amino acid recommendation pattern (MIT diet, n=7) or iii) again the egg hen pattern (EGG diet, n=6). All subjects were again studied for one final, consecutive week of the egg diet. At the end of the initial week, at the first and third week with the three experimental diets,and after three days following the return of the egg diet, an 8 h primed continuous intravenous infusion with l-13 C-leucine was conducted (3 h, fast, 5 h fed - while subjects received hourly meals supplying the equivalent of 5/12 total daily intake). Estimation of leucine balance were carried out with measurements plasma free amino acids changes. Daily nitrogen balances were obtained through the study. Interpretation of plasma amino acids profile, and changes of leucine kinetics balances, indicated that the FAO diet was not able to maintain amino acids homeostasis whereas the MIT and the egg diets sustained body amino acids equilibrium with a positive amino acid balance. nitrogen balances tended to be more negative with the FAO diet but failed to show statistically significant differences among the three diets. The finding point out that it would be prudent to use the new, tentative recommended amino acid pattern (MIT diet 0 as the minimum physiological amino acid needs of healthy human adults (author)

  1. Electronic coupling through natural amino acids

    International Nuclear Information System (INIS)

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design

  2. Electronic coupling through natural amino acids

    Science.gov (United States)

    Berstis, Laura; Beckham, Gregg T.; Crowley, Michael F.

    2015-12-01

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green's function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  3. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  4. Incretin effect after oral amino Acid ingestion in humans

    DEFF Research Database (Denmark)

    Lindgren, Ola; Pacini, Giovanni; Tura, Andrea;

    2015-01-01

    is also present after amino acid ingestion is not known. OBJECTIVE: The objective of the study was to explore insulin secretion and incretin hormones after oral and iv amino acid administration at matched total amino acid concentrations in healthy subjects. DESIGN: An amino acid mixture (Vaminolac......CONTEXT: The incretin effect is the augmented insulin secretion by oral vs iv glucose at matching glucose levels. We previously demonstrated an augmented insulin secretion when fat is given orally rather than iv, suggesting an incretin effect also after fat. However, whether an incretin effect......) was administered orally or iv at a rate resulting in matching total amino acid concentrations to 12 male volunteers with age 22.5 ± 1.4 years and a body mass index 22.4 ± 1.4 kg/m(2), who had no history of diabetes. MAIN OUTCOME MEASURES: Main outcome measures were area under the 120-minute curve for insulin, C...

  5. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  6. Adaptive amino acid composition in collagens of parasitic nematodes.

    Science.gov (United States)

    Hughes, Austin L

    2015-04-01

    Amino acid composition was analyzed in the glycine-rich repeat region of 306 collagens belonging to three major families of collagens from both parasitic and free-living nematodes. The collagens of parasitic species showed a tendency toward decreased usage of the hydrophilic residues A, D, and Q and increased usage of the hydrophobic resides I, L, and M; and this trend was seen in parasitic species of both the order Rhabdita and the order Spirurida. The amino acid composition of collagens of parasitic Rhabdita thus tended to resemble those of Spirurida more than that of free-living Rhabdita, suggesting an association between amino acid composition and a parasitic lifestyle. Computer predictions suggested that the more hydrophobic amino acid composition was associated with a reduction of the propensity towards B-cell epitope formation, suggesting that evasion of host immune responses may be a major selective factor responsible for the parasite-specific trend in collagen amino acid composition.

  7. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  8. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  9. Amino acids and osmolarity in honeybee drone haemolymph.

    Science.gov (United States)

    Leonhard, B; Crailsheim, K

    1999-01-01

    In the haemolymph of honeybee drones, concentrations of free amino acids were higher than in worker haemolymph, with different relative proportions of individual amino acids. The overall concentration of free amino acids reached its highest level at the 5th day after adult drone emergence, and after the 9th day only minor changes in the concentration and distribution of free amino acids were observed. This coincides with the age when drones reach sexual maturity and change their feeding behaviour. Levels of essential free amino acids were high during the first 3 days of life and thereafter decreased. Osmolarity was lowest at emergence (334 +/- 42 mOsm), increased until the age of 3 days (423 +/- 32 mOsm) and then stayed generally constant until the 16th day of life. Only 25-day-old drones had significantly higher osmolarity (532 +/- 38 mOsm). The overall change in osmolarity during a drone's lifetime was about 40%. PMID:10524277

  10. Independence divergence-generated binary trees of amino acids.

    Science.gov (United States)

    Tusnády, G E; Tusnády, G; Simon, I

    1995-05-01

    The discovery of the relationship between amino acids is important in terms of the replacement ability, as used in protein engineering homology studies, and gaining a better understanding of the roles which various properties of the residues play in the creation of a unique, stable, 3-D protein structure. Amino acid sequences of proteins edited by evolution are anything but random. The measure of nonrandomness, i.e. the level of editing, can be characterized by an independence divergence value. This parameter is used to generate binary tree relationships between amino acids. The relationships of residues presented in this paper are based on protein building features and not on the physico-chemical characteristics of amino acids. This approach is not biased by the tautology present in all sequence similarity-based relationship studies. The roles which various physico-chemical characteristics play in the determination of the relationships between amino acids are also discussed.

  11. Plasma Amino Acid Concentrations Predict Mortality in Patients with End-Stage Liver Disease

    Science.gov (United States)

    Kinny-Köster, Benedict; Bartels, Michael; Becker, Susen; Scholz, Markus; Thiery, Joachim

    2016-01-01

    Background The liver plays a key role in amino acid metabolism. In former studies, a ratio between branched-chain and aromatic amino acids (Fischer’s ratio) revealed associations with hepatic encephalopathy. Furthermore, low concentrations of branched-chain amino acids were linked to sarcopenia in literature. Encephalopathy and sarcopenia are known to dramatically worsen the prognosis. Aim of this study was to investigate a complex panel of plasma amino acids in the context of mortality in patients with end-stage liver disease. Methods 166 patients evaluated for orthotopic liver transplantation were included. 19 amino acids were measured from citrated plasma samples using mass spectrometry. We performed survival analysis for plasma amino acid constellations and examined the relationship to established mortality predictors. Results 33/166 (19.9%) patients died during follow-up. Lower values of valine (p<0.001), Fischer’s ratio (p<0.001) and valine to phenylalanine ratio (p<0.001) and higher values of phenylalanine (p<0.05) and tyrosine (p<0.05) were significantly associated with mortality. When divided in three groups, the tertiles discriminated cumulative survival for valine (p = 0.016), phenylalanine (p = 0.024) and in particular for valine to phenylalanine ratio (p = 0.003) and Fischer’s ratio (p = 0.005). Parameters were also significantly correlated with MELD and MELD-Na score. Conclusions Amino acids in plasma are valuable biomarkers to determine increased risk of mortality in patients with end-stage liver disease. In particular, valine concentrations and constellations composed of branched-chain and aromatic amino acids were strongly associated with prognosis. Due to their pathophysiological importance, the identified amino acids could be used to examine individual dietary recommendations to serve as potential therapeutic targets. PMID:27410482

  12. Oral branched-chain amino acids decrease whole-body proteolysis

    Science.gov (United States)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  13. Amino Acid Profile of Some New Vartieties of Oil Seeds

    Directory of Open Access Journals (Sweden)

    Satish Ingale and S.K. Shrivastava

    2011-04-01

    Full Text Available There are large varieties of oil seeds and legumes in India, which are part of traditional food system but whose nutritional and economic values have not been completely determine and are far less exploited for both human and livestock utilization. The objective of this study was to evaluate Sunflower (Helianths annuus LSF-11, Sunflower (Helianths annuus LSF-8, Safflower (Carthamus tinctorius PBNS-12, Safflower (Carthamus tinctorius PBNS-40, and Ground nut (Arachis hypogaea JL-24 seeds with the aim of qualifying and quantifying chemical information that might serve as a guide to exploit its potentials and benefits for human and animal nutrition. The amino acid profile of these oil seed were carried out using standard methods. Amino acid analysis using tec