WorldWideScience

Sample records for amino acid change

  1. SIFT: predicting amino acid changes that affect protein function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2003-01-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in...

  2. SIFT: Predicting amino acid changes that affect protein function.

    Science.gov (United States)

    Ng, Pauline C; Henikoff, Steven

    2003-07-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

  3. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  4. Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes.

    Science.gov (United States)

    Abadir, G B; Walus, K; Pulfrey, D L

    2010-01-08

    We study the interaction between short semi-metallic carbon nanotubes and different amino acids using molecular dynamics and ab initio (density functional theory/non-equilibrium Green's function) simulations. We identify two different mechanisms of nanotube conductance change upon adsorption of amino acids: one due to the change of the coordinates of the nanotube arising from van der Waals forces of interaction with the adsorbed amino acid; and one due to electrostatic interactions, which appear only in the case of charged amino acids. We also find that the transport mechanism and the changes in the conductance of the tube upon amino acid adsorption are bias dependent.

  5. Age-related changes of muscle and plasma amino acids in healthy children.

    Science.gov (United States)

    Hammarqvist, Folke; Angsten, Gertrud; Meurling, Staffan; Andersson, Kerstin; Wernerman, Jan

    2010-07-01

    The aim of the study was to explore if changes in muscle and plasma amino acid concentrations developed during growth and differed from levels seen in adults. The gradient and concentrations of free amino acids in muscle and plasma were investigated in relation to age in metabolic healthy children. Plasma and specimens from the abdominal muscle were obtained during elective surgery. The children were grouped into three groups (group 1: amino acids analysed increased with age, namely taurine, aspartate, threonine, alanine, valine, isoleucine, leucine, histidine, as well as the total sums of branched chain amino acids (BCAA), basic amino acids (BAA) and total sum of amino acids (P amino acids correlated with age (P < 0.05). These results indicate that there is an age dependency of the amino acid pattern in skeletal muscle and plasma during growth.

  6. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    Science.gov (United States)

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (pamino acids and acrylamide contents in Pu-erh ripened tea.

  7. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  8. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation.

    Science.gov (United States)

    Li, Wei-Qin; Hu, Qing-Ping; Xu, Jian-Guo

    2015-05-15

    In this study, changes in physicochemical characteristics associated with fruit quality and free amino acids were investigated during maturation of hawthorn fruits. Significant differences in these parameters were found during maturation. The color turned progressively from mature green to semi-red, to reach bright red; the shape changed gradually from oval to round or approached round; the size, weight, and edible part (flesh/core ratio) of hawthorns increased while the density of intact fruits did not change. The content of moisture, total soluble sugars, soluble pectin, reduced ascorbic acid, total ascorbic acid, fructose, and sucrose increased while crude protein content decreased significantly. The levels of starch, sucrose, titratable acidity, protopectin, pectin, total free amino acids, and total essential amino acids initially increased and then decreased gradually during maturation. The outcomes of this study provide additional and useful information for fresh consumption and processing as well as utilization of dropped unripe hawthorn fruits.

  9. Compositional changes of proteins and amino acids in germinating coffee seeds

    Directory of Open Access Journals (Sweden)

    Milton Massao Shimizu

    2000-01-01

    Full Text Available Endosperm is the main reserve tissue in coffee seeds. Coffee (Coffea arabica L. seeds were germinated for six weeks and qualitative and quantitative changes in amino acids and proteins were investigated. The total content of free amino acids were reduced during germination, however, protein content remained constant. SDS-PAGE profiles showed that legumin-like proteins became less stained in the last weeks. Asparagine, glutamic acid, aspartic acid, alanine and lysine were the major free amino acids, although serine and glutamine were also significant. Except for tyrosine, which increased with germination, all other amino acids were reduced. Analysis of the amino acid composition of the total soluble protein showed glutamic acid/glutamine and glycine as the main amino acids. However, other amino acids such as leucine, aspartic acid/asparagine, alanine, lysine, serine were also found in reasonable amounts.Endosperma é o principal tecido de reserva em sementes de café. Sementes de café (Coffea arabica L. foram germinadas por seis semanas e as alterações qualitativas e quantitativas de aminoácidos e proteínas foram investigadas. O conteúdo total de aminoácidos livres reduziu durante a germinação, no entanto, o conteúdo de proteínas permaneceu constante. Perfis eletroforéticos de proteínas em SDS-PAGE mostraram que proteínas do tipo legumina foram menos coradas nas últimas semanas. Asparagina, ácido glutâmico, ácido aspártico, alanina e lisina foram os principais aminoácidos, apesar de que serina e glutamina também estavam presentes em quantidades significativas. Exceto tirosina, a qual aumentou durante a germinação, todos os outros aminoácidos tiveram redução em sua concentração. A análise aminoacídica da fração de proteína solúvel total mostrou que ácido glutâmico/glutamina e glicina eram os principais aminoácidos presentes. No entanto, outros aminoácidos, tais como leucina, ácido asp

  10. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  11. Changes in free amino acid and monoamine concentrations in the chick brain associated with feeding behavior.

    Science.gov (United States)

    Tran, Phuong V; Chowdhury, Vishwajit S; Nagasawa, Mao; Furuse, Mitsuhiro

    2015-01-01

    Domesticated chicks are precocial and therefore have relatively well-developed feeding behavior. The role of hypothalamic neuropeptides in food-intake regulation in chicks has been reported for decades. However, we hypothesized that nutrients and their metabolites in the brain may be involved in food intake in chicks because these animals exhibit a very frequent feeding pattern. Therefore, the purpose of this study was to examine the feeding behavior of chicks as well as the associated changes in free amino acid and monoamine concentrations in the chick brain. The feeding behavior of chicks was recorded continuously for 6 h. The next day, brain and blood samples were collected when the chicks either attempted to have food (hungry group) or turned food down (satiated group), in order to analyze the concentrations of the free amino acids and monoamines. We confirmed that the feeding behavior of neonatal chicks was characterized by short resting periods between very brief times spent on food intake. Several free amino acids in the mesencephalon were significantly lower in the satiated group than in the hungry group, while l-histidine and l-glutamine were significantly higher. Notably, there was no change in the free amino acid concentrations in other brain regions or plasma. As for monoamines, serotonin and norepinephrine were significantly lower in the mesencephalon of the hungry group compared with the satiated group, but 5 hydroxyindolacetic acid (5-HIAA) was higher. In addition, serotonin and norepinephrine levels were significantly higher in the brain stem of the hungry chicks compared with the satiated group, but levels of 5-HIAA and homovanillic acid were lower. Levels of both dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid, were significantly higher in the diencephalon and telencephalon of the chicks in the hungry group. In conclusion, the changes in the free amino acids and monoamines in the brain may have some role in the feeding behavior of

  12. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  13. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change

    Science.gov (United States)

    Yokoyama, Shozo; Radlwimmer, F. Bernhard; Blow, Nathan S.

    2000-01-01

    UV vision has profound effects on the evolution of organisms by affecting such behaviors as mating preference and foraging strategies. Despite its importance, the molecular basis of UV vision is not known. Here, we have transformed the zebra finch UV pigment into a violet pigment by incorporating one amino acid change, C84S. By incorporating the reverse mutations, we have also constructed UV pigments from the orthologous violet pigments of the pigeon and chicken. These results and comparative amino acid sequence analyses of the pigments in vertebrates demonstrate that many avian species have achieved their UV vision by S84C. PMID:10861005

  14. Changes in Serum Free Amino Acids and Muscle Fatigue Experienced during a Half-Ironman Triathlon.

    Science.gov (United States)

    Areces, Francisco; González-Millán, Cristina; Salinero, Juan José; Abian-Vicen, Javier; Lara, Beatriz; Gallo-Salazar, Cesar; Ruiz-Vicente, Diana; Del Coso, Juan

    2015-01-01

    The aim of this study was to investigate the relationship between changes in serum free amino acids, muscle fatigue and exercise-induced muscle damage during a half-ironman triathlon. Twenty-six experienced triathletes (age = 37.0 ± 6.8 yr; experience = 7.4 ± 3.0 yr) competed in a real half-ironman triathlon in which sector times and total race time were measured by means of chip timing. Before and after the race, a countermovement jump and a maximal isometric force test were performed, and blood samples were withdrawn to measure serum free amino acids concentrations, and serum creatine kinase levels as a blood marker of muscle damage. Total race time was 320 ± 37 min and jump height (-16.3 ± 15.2%, P triathlon, serum amino acids concentrations were reduced by > 20%. However, neither the changes in serum free amino acids nor the tryptophan/BCAA ratio were related muscle fatigue or muscle damage during the race.

  15. Change of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Hua-Ling Ruan; Li Zhao; Kun-Quan Guo; Kun Yang; Lin-Xiu Ye; Xue Sun

    2016-01-01

    Objective:To study the change situation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism.Methods:Eighty-one patients with hyperthyroidism who were treated in our hospital from May 2013 to October 2014 were selected as the observation group, while 81 healthy persons with health examination at the same period were the control group. Then, the serum oxygen free radical indexes and free amino acids of the two groups were respectively detected and compared, and the detection results of patients in the observation group with different etiologic types and basal metabolic rate were also compared. Results:The serum oxygen free radical related indexes of the observation group were all higher than those of the control group; the serum antioxidant related indexes were all lower than those of the control group; and the serum free amino acids levels were all obviously lower than those of the control group. Besides, the detection results of patients with severe hyperthyroidism in the observation group were worse than those of patients with mild and moderate disease, while the detection results of the observation group with different types of hyperthyroidism had no significant differences.Conclusions:The fluctuation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism are obvious, and the detection results of patients with different basal metabolic rates are also quite obvious.

  16. Changes in extracellular levels of amygdala amino acids in genetically fast and slow kindling rat strains.

    Science.gov (United States)

    Shin, Rick S; Anisman, Hymie; Merali, Zul; McIntyre, Dan C

    2002-08-01

    A neurochemical basis for many of the epilepsies has long been suspected to result from an imbalance between excitatory and inhibitory neurotransmitter mechanisms. Data supporting changes in extrasynaptic amino acid levels during epileptogenesis, however, remain controversial. In the present study, we used in vivo microdialysis to measure the levels of extracellular GABA (gamma-aminobutyric acid) and glutamate during seizure development in rats with a genetic predisposition for (Fast), or against (Slow), amygdala kindling. Dialysates were collected from both amygdalae before, during, and up to 12 min after a threshold-triggered amygdala afterdischarge (AD). One hour later, samples were again collected from both amygdalae in response to a hippocampal threshold AD. Daily amygdala kindling commenced the next day but without dialysis. After the rats were fully kindled, the same protocol was again employed. Amino acid levels were not consistently increased above baseline with triggered seizures in either strain. Instead, before kindling, a focal seizure in the Slow rats was associated with a large decrease in GABA in the non-stimulated amygdala, while amino acid levels in the Fast rats remained near baseline in both amygdalae. Similar results were seen after kindling. By contrast, before and after kindling, hippocampal stimulation caused large decreases in all amino acid levels in both amygdalae in both strains. These data suggest that, in response to direct stimulation, extracellular amino acid concentrations remain stable in tissues associated with either greater natural (Fast) or induced (kindled Fast/Slow) excitability, but are lowered with indirect stimulation (hippocampus) and/or low excitability.

  17. Changes in the amino acid composition of buffalo milk after chemical activation of its lactoperoxidase system

    Directory of Open Access Journals (Sweden)

    M. Tsankova

    2010-02-01

    Full Text Available The amino acid content of bulked buffalo milk, collected from 130 buffaloes reared at a buffalo farm in the settlement of Dimitrievo, Stara Zagora region, was investigated during the period January-April 2006. The activation of the lactoperoxidase system (LPS was done by supplementation of sodium percarbonate, providing 16 ppm active oxygen and 10 ppm thiocyanate to 1 l of milk. The amino acid content was assayed by an amino acid analyzer. It was found out that the total content of amino acids in inactivated milk was insignificantly lower than that in activated one. More considerable increase was established for the amino acids valine, methionine, and lysine, but the differences were not statistically significant. The total amount of essential amino acids was higher in the milk with chemically activated LPS. The limiting essential amino acid in the studied buffalo milk was methionine.

  18. Selective constraints on amino acids estimated by a mechanistic codon substitution model with multiple nucleotide changes.

    Directory of Open Access Journals (Sweden)

    Sanzo Miyazawa

    Full Text Available BACKGROUND: Empirical substitution matrices represent the average tendencies of substitutions over various protein families by sacrificing gene-level resolution. We develop a codon-based model, in which mutational tendencies of codon, a genetic code, and the strength of selective constraints against amino acid replacements can be tailored to a given gene. First, selective constraints averaged over proteins are estimated by maximizing the likelihood of each 1-PAM matrix of empirical amino acid (JTT, WAG, and LG and codon (KHG substitution matrices. Then, selective constraints specific to given proteins are approximated as a linear function of those estimated from the empirical substitution matrices. RESULTS: Akaike information criterion (AIC values indicate that a model allowing multiple nucleotide changes fits the empirical substitution matrices significantly better. Also, the ML estimates of transition-transversion bias obtained from these empirical matrices are not so large as previously estimated. The selective constraints are characteristic of proteins rather than species. However, their relative strengths among amino acid pairs can be approximated not to depend very much on protein families but amino acid pairs, because the present model, in which selective constraints are approximated to be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can provide a good fit to other empirical substitution matrices including cpREV for chloroplast proteins and mtREV for vertebrate mitochondrial proteins. CONCLUSIONS/SIGNIFICANCE: The present codon-based model with the ML estimates of selective constraints and with adjustable mutation rates of nucleotide would be useful as a simple substitution model in ML and Bayesian inferences of molecular phylogenetic trees, and enables us to obtain biologically meaningful information at both nucleotide and amino acid levels from codon and protein sequences.

  19. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change

    OpenAIRE

    Yokoyama, Shozo; Radlwimmer, F. Bernhard; Blow, Nathan S.

    2000-01-01

    UV vision has profound effects on the evolution of organisms by affecting such behaviors as mating preference and foraging strategies. Despite its importance, the molecular basis of UV vision is not known. Here, we have transformed the zebra finch UV pigment into a violet pigment by incorporating one amino acid change, C84S. By incorporating the reverse mutations, we have also constructed UV pigments from the orthologous violet pigments of the pigeon and chicken. These results and comparative...

  20. CHANGES IN THE QUANTATIVE COMPOSITION OF AMINO ACIDS DURING BATONNAGE IN THE TECHNOLOGY OF WHITE TABLE WINES

    Directory of Open Access Journals (Sweden)

    Lisovets U. A.

    2016-06-01

    Full Text Available The results of the study of amino acids of white table wines depending on the yeast strain, continuous contact of wine with yeast biomass and the presence of lees stirring are presented. The dynamics of amino acids, which affect wine organoleptic characteristics and the formation of wine defects, specifically, tyrosine, methionine, threonine and lysine is shown. Conducted researches made it possible to divide the amino acids into three groups depending on the carrying out the batonnage or lack of it. The first group consisted of amino acids, the concentration of which practically has not changed in the presence or lack of stirring. The second and third groups include amino acids, the concentration of which increased and decreased, respectively during batonnage. The stirring of the wine with yeast biomass facilitated to the activation of mass transfer processes between cell and medium, and the access of air lead to oxidation of some amino acids and the change of its concentration. The absence of stirring influenced to a slight increase in the concentration of such amino acids as cystine, cysteine, β-phenylalanine, serine, α-alanine, leucine and glutamic acid. The experimental data allowed to arrange amino acids in a row depending on the speed of release into the medium: ά-aminobutyric acid > glutamic acid > α-alanine > leucine

  1. Parenteral Nutrition: Amino Acids

    Science.gov (United States)

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  2. Parenteral Nutrition: Amino Acids.

    Science.gov (United States)

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  3. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    Science.gov (United States)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  4. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    Science.gov (United States)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2017-03-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  5. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    Science.gov (United States)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-10-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  6. Changes in Serum Free Amino Acids and Muscle Fatigue Experienced during a Half-Ironman Triathlon.

    Directory of Open Access Journals (Sweden)

    Francisco Areces

    Full Text Available The aim of this study was to investigate the relationship between changes in serum free amino acids, muscle fatigue and exercise-induced muscle damage during a half-ironman triathlon. Twenty-six experienced triathletes (age = 37.0 ± 6.8 yr; experience = 7.4 ± 3.0 yr competed in a real half-ironman triathlon in which sector times and total race time were measured by means of chip timing. Before and after the race, a countermovement jump and a maximal isometric force test were performed, and blood samples were withdrawn to measure serum free amino acids concentrations, and serum creatine kinase levels as a blood marker of muscle damage. Total race time was 320 ± 37 min and jump height (-16.3 ± 15.2%, P 20%. However, neither the changes in serum free amino acids nor the tryptophan/BCAA ratio were related muscle fatigue or muscle damage during the race.

  7. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  8. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  9. The changes of fatty acid and amino acid compositions in sea bream (Sparus aurata) during irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Erkan, Nuray [Faculty of Fisheries, Department of the Seafood Processing and Quality Control, Istanbul University, Ordu, Cad. No. 200, 34470 Laleli/Istanbul (Turkey)]. E-mail: nurerkan@istanbul.edu.tr; Ozden, Ozkan [Faculty of Fisheries, Department of the Seafood Processing and Quality Control, Istanbul University, Ordu, Cad. No. 200, 34470 Laleli/Istanbul (Turkey)]. E-mail: ozden@istanbul.edu.tr

    2007-10-15

    Aqua cultured fish (sea bream) were irradiated by Cobalt-60 at commercial irradiation facility at dose of 2.5 and 5 kGy at 2-4 deg. C. The proximate composition, fatty acid and amino acid composition changes of irradiated aqua cultured sea bream (Sparus aurata) of Aegean Sea were investigated. Total saturated (28.01%) and total monounsaturated (28.42%) fatty acid contents of non-irradiated decreased content of 27.69-27.97% for 2.5 kGy irradiated groups and increased content of 28.33-28.56% for 5 kGy irradiated groups after irradiation process. Total polyunsaturated fatty acid content for irradiated samples was lower than that of non-irradiated samples. Aspartic acid, glutamic acid, serine, glycine, arginine, alanine, tyrosine, cystine, tryptophan, lysine and proline contents for 2.5 and 5 kGy irradiated sea bream are significantly different (p<0.05)

  10. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  11. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  12. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.

    Science.gov (United States)

    Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R

    2016-03-22

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.

  13. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids.

    Science.gov (United States)

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-03-01

    In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ-aminobutyrate (GABA), tyrosine (Tyr), S-adenosylhomocysteine (SAH), l-cystathionine (l-Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N-acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham-operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long-lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l-Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu-Gln/GABA cycle between neurons and astrocytes, and of the methyl-cycle (demonstrated by decrease in Met, and increase in SAH and l-Cystat), throughout the post-injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.

  14. Copper(II) complexes of bis(amino amide) ligands: effect of changes in the amino acid residue.

    Science.gov (United States)

    Martí, Inés; Ferrer, Armando; Escorihuela, Jorge; Burguete, M Isabel; Luis, Santiago V

    2012-06-14

    A family of ligands derived from bis(amino amides) containing aliphatic spacers has been prepared, and their protonation and stability constants for the formation of Cu(2+) complexes have been determined potentiometrically. Important differences are associated to both the length of the aliphatic spacer and the nature of the side chains derived from the amino acid. In general, ligands containing aliphatic side chains display higher basicities as well as stability constants with Cu(2+). In the same way, basicities and stability constants tend to increase when decreasing the steric hindrance caused by the corresponding side-chain. FT-IR, UV-vis and ESI-MS were used for analyzing the complex species detected in the speciation diagram. UV-vis studies showed the presence of different coordination environments for the copper(II) complexes. Complexes with different stoichiometries can be formed in some instances. This was clearly highlighted with the help of ESI-MS experiments.

  15. Relation between change in exercise capacity and change in blood amino acids in patients with chronic heart failure.

    Science.gov (United States)

    Morotomi, Nobuo; Saitoh, Masakazu; Ishii, Noriko; Ohno, Kayoko; Nagayama, Masatoshi; Kawate, Nobuyuki; Mizuma, Masazumi

    2017-03-01

    [Purpose] Although cardiac rehabilitation (CR) is recommended for patients with chronic heart failure (CHF), adequate exercise effect cannot be obtained in elderly patients. Administration of amino acids (AA) to CHF patients has been reported to improve exercise capacity, but the changes in AA composition in plasma before and after CR had not been reported. This study aimed to measure plasma levels of AA in CHF patients and compare with values of normal range. In addition the relationship between the change of exercise capacity and AA were examined. [Subjects and Methods] Twelve CHF patients (60% males, aged 68 ± 12 years) were studied. The correction between the rates of changes in exercise capacity parameters and in plasma AA levels was investigated. [Results] Anaerobic threshold (AT) and peak oxygen uptake (VO2) improved significantly after CR. The AA profile showed no specific pattern, and citrulline (Cit) was the amino acid showing a significant positive correlation with exercise capacity (∆Cit vs. ∆AT: r=0.602, ∆Cit vs. ∆AT-work rate (WR): r=0.681, ∆Cit vs. ∆VO2/WR: r=0.635). A tendency of positive correlation was observed between ∆Cit and ∆peak VO2 (r=0.456). [Conclusion] The AA profile showed no specific pattern, but a relationship between change in exercise capacity and Cit were found.

  16. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  17. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  18. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity

    Directory of Open Access Journals (Sweden)

    Todd Bradley

    2016-10-01

    Full Text Available Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly sensitive (tier-1 viruses or rare cases of vaccine-matched neutralization-resistant (tier-2 viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we isolated antibodies from an HIV-1-infected individual that targeted the gp41 membrane-proximal external region (MPER that may have selected single-residue changes in viral variants in the MPER that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV-1 Env. Similarly, a single change in the MPER in a second virus from another infected-individual also conferred enhanced neutralization sensitivity. These gp41 single-residue changes thus transformed tier-2 viruses into tier-1 viruses that were sensitive to vaccine-elicited tier-1 neutralizing antibodies. These data demonstrate that Env amino acid changes within the MPER bnAb epitope of naturally-selected escape viruses can increase neutralization sensitivity to multiple types of neutralizing antibodies, and underscore the critical importance of the MPER for maintaining the integrity of the tier-2 HIV-1 trimer.

  19. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    Science.gov (United States)

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  20. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer

    Directory of Open Access Journals (Sweden)

    Villiard Éric

    2007-09-01

    Full Text Available Abstract Background Urodele amphibians like the axolotl are unique among vertebrates in their ability to regenerate and their resistance to develop cancers. It is unknown whether these traits are linked at the molecular level. Results Blocking p53 signaling in axolotls using the p53 inhibitor, pifithrin-α, inhibited limb regeneration and the expression of p53 target genes such as Mdm2 and Gadd45, suggesting a link between tumor suppression and regeneration. To understand this relationship we cloned the p53 gene from axolotl. When comparing its sequence with p53 from other organisms, and more specifically human we observed multiple amino acids changes found in human tumors. Phylogenetic analysis of p53 protein sequences from various species is in general agreement with standard vertebrate phylogeny; however, both mice-like rodents and teleost fishes are fast evolving. This leads to long branch attraction resulting in an artefactual basal emergence of these groups in the phylogenetic tree. It is tempting to assume a correlation between certain life style traits (e.g. lifespan and the evolutionary rate of the corresponding p53 sequences. Functional assays of the axolotl p53 in human or axolotl cells using p53 promoter reporters demonstrated a temperature sensitivity (ts, which was further confirmed by performing colony assays at 37°C. In addition, axolotl p53 was capable of efficient transactivation at the Hmd2 promoter but has moderate activity at the p21 promoter. Endogenous axolotl p53 was activated following UV irradiation (100 j/m2 or treatment with an alkylating agent as measured using serine 15 phosphorylation and the expression of the endogenous p53 target Gadd45. Conclusion Urodele p53 may play a role in regeneration and has evolved to contain multiple amino acid changes predicted to render the human protein defective in tumor suppression. Some of these mutations were probably selected to maintain p53 activity at low temperature. However

  1. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats.

    Science.gov (United States)

    Malmberg, Annika B; O'Connor, William T; Glennon, Jeffery C; Ceseña, Rose; Calcutt, Nigel A

    2006-10-18

    To investigate mechanisms by which diabetes alters sensory processing, we measured levels of amino acid neurotransmitters in spinal dialysates from awake, unrestrained control and diabetic rats under resting conditions and following hind paw formalin injection. Under resting conditions, glutamate concentrations in spinal dialysates were significantly (Phyperalgesia in diabetic rats does not appear to be secondary to enhanced glutamatergic input to the spinal cord.

  2. Effect of domoic acid on brain amino acid levels.

    Science.gov (United States)

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  3. Plasma amino acid relationships during parenteral nutrition.

    Science.gov (United States)

    Wells, F E; Smits, B J

    1980-01-01

    The plasma amino acidfs of 17 patients were studied before and during total parenteral nutrition (TPN). The amino acid (AA) pattern changed similarly for all patients. The AA concentration changes relative to preinfusion (PAER) were the most informative index of change. Two groups of AA were defined, the "branched chain" group (five amino acids) and the "hepatic" group (four amino acids) based on the correlation of PAER values. Comparison of PAER values with the ratio of AA intake to requirement indicated that the requirements of the sick patients were more similar to those of children than those of healthy adults.

  4. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding.

  5. Monthly Changes of Glycogen, Lipid and Free Amino Acid of Oyster

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhicui; XUE Changhu; GAO Xin; LI Zhaojie; WANG Qi

    2006-01-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed.The components analyzed included glycogen, fatty acid and free amino acid (FAA).The content of glycogen was high in January and March (2.89 and 2.82 g(100 g)- 1 on average, respectively) and low in October (2.07 g(100 g)- 1 on average).The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g) -1 on average).The main fatty acids of oyster were palmitic acid(16:0),oleic acid(18:1),eicosapentaenoic acid (EPA,20:5w-3) and docosahexaenoic acid(DHA,22:6w-3).The major FAAs of oyster were Taurine,Glutamicacid,Glycin,Alanine, Arginine and Proline.Taurine was the most abundant FAA with its content ranging from 603 mg(100 g)- 1 to 1139 mg(100 g) -1.The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  6. Effects of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass.

    Science.gov (United States)

    Winters, A L; Cockburn, J E; Dhanoa, M S; Merry, R J

    2000-09-01

    A study was carried out on the changes occurring in the amino acid fraction of a hybrid ryegrass during ensilage in laboratory-scale silos to help to establish the relative roles of plant and microbial proteases on protein degradation in the silo. Herbage treatments included (i) normal grass without treatment (ii) lambda-irradiated grass (sterile) without treatment (iii) sterile, inoculated with a strain of Lactobacillus plantarum and (iv) sterile, inoculated with a strain of Lactobacillus paracasei subsp. paracasei. These treatments had a significant effect on silage amino acid profiles. Concentrations of free amino acids and the extent of amino acid catabolism varied with treatment. However, levels were notably higher in control silages after 90 days (free amino acid nitrogen constituting 54% of total amino acid nitrogen compared with 37, 32 and 22% for treatments i, ii and iv, respectively). These results indicate that the extent of protein hydrolysis during ensilage is influenced by factors other than rate of pH decline and plant protease activity, and that microbial proteases play a role.

  7. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.

    Directory of Open Access Journals (Sweden)

    Laura Bianchi

    Full Text Available BACKGROUND: Sodium-glucose cotransporter proteins (SGLT belong to the SLC5A family, characterized by the cotransport of Na(+ with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT proteins was to transport sugar with Na(+. However, human SGLT3 (hSGLT3 does not transport sugar but causes depolarization of the plasma membrane when expressed in Xenopus oocytes. For this reason SGLT3 was suggested to be a sugar sensor rather than a transporter. Despite 70% amino acid identity between hSGLT3 and hSGLT1, their sugar transport, apparent sugar affinities, and sugar specificity differ greatly. Residue 457 is important for the function of SGLT1 and mutation at this position in hSGLT1 causes glucose-galactose malabsorption. Moreover, the crystal structure of vibrio SGLT reveals that the residue corresponding to 457 interacts directly with the sugar molecule. We thus wondered if this residue could account for some of the functional differences between SGLT1 and SGLT3. METHODOLOGY/PRINCIPAL FINDINGS: We mutated the glutamate at position 457 in hSGLT3 to glutamine, the amino acid present in all SGLT1 proteins, and characterized the mutant. Surprisingly, we found that E457Q-hSGLT3 transported sugar, had the same stoichiometry as SGLT1, and that the sugar specificity and apparent affinities for most sugars were similar to hSGLT1. We also show that SGLT3 functions as a sugar sensor in a living organism. We expressed hSGLT3 and E457Q-hSGLT3 in C. elegans sensory neurons and found that animals sensed glucose in an hSGLT3-dependent manner. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrate that hSGLT3 functions as a sugar sensor in vivo and that mutating a single amino acid converts this sugar sensor into a sugar transporter similar to SGLT1.

  8. New amino acid changes in drug resistance sites and HBsAg in hepatitis B virus genotype H.

    Science.gov (United States)

    Fernández-Galindo, D A; Sánchez-Ávila, F; Bobadilla-Morales, L; Gómez-Quiróz, P; Bueno-Topete, M; Armendáriz-Borunda, J; Sánchez-Orozco, L V

    2015-06-01

    Long-term treatment with retrotranscriptase (RT) inhibitors eventually leads to the development of drug resistance. Drug-related mutations occur naturally and these can be found in hepatitis B virus (HBV) carriers who have never received antiviral therapy. HBsAg are overlapped with RT domain, thus nucleot(s)ide analogues (NAs) resistance mutations and naturally-occurring mutations can cause amino acid changes in the HBsAg. Twenty-two patients with chronic hepatitis B were enrolled; three of them were previously treated with NAs and 19 were NAs-naïve treated. HBV reverse transcriptase region was sequenced; genotyping and analysis of missense mutations were performed in both RT domain and HBsAg. There was predominance of genotype H. Drug mutations were present in 18.2% of patients. Classical lamivudine resistance mutations (rtM204V/rtL180M) were present in one naïve-treatment patient infected with genotype G. New amino acid changes were identified in drug resistance sites in HBV strains from patients infected with genotype H; rtQ215E was present in two naïve-NAs treatment patients and rtI169M was identified in a patient previously treated with lamivudine. Mutations at sites rt169, rt204, and rt215 resulted in the Y161C, I195M, and C206W mutations at HBsAg. Also, new amino acid changes were identified in B-cell and T-cell epitopes and were more frequent in HBsAg compared to RT domain. In conclusion, new amino acid changes at antiviral resistance sites, B-cell and T-cell epitopes in HBV genotype H were identified in Mexican patients.

  9. Differences in potential for amino acid change after mutation reveals distinct strategies for kappa and lambda light-chain variation.

    Science.gov (United States)

    Hershberg, Uri; Shlomchik, Mark J

    2006-10-24

    B cells generate varied yet functional clones under high rates of mutation of their V genes. It has been proposed that as a result of the opposing demands of diversification and preservation of integrity, the V genes of heavy and light chains have evolved to overexpress codons prone to amino acid change in their complementarity determining regions (CDR) compared with the framework (FW) regions. We have analyzed the germ-line V genes of heavy and light chains (both kappa and lambda), comparing codons of CDR and FW of the germ-line V regions both to each other and to control regions. We found that in both germ-line heavy chains and lambda chains, CDR codons are prone to replacement mutations, whereas in the FW, the opposite is true. Furthermore, the difference between CDR and FW in heavy chains and lambda chains is based on codons that are prone to nonconservative changes of amino acid. In contrast, in germ-line kappa chains, the codons in both CDR and FW are more prone to replacement mutations. We also demonstrated that negative selection during immune responses is more sensitive to nonconservative amino acid substitutions than overall amino acid change, demonstrating the applicability of our analysis to real-time process of selection in the immune system. The differences in germ-line kappa and lambda light chains' potential reaction to mutation suggests that via these two differently evolved light-chain types, the B cell repertoire encompasses two different strategies to balance diversity and stability in an immune response.

  10. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    Science.gov (United States)

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.

  11. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  12. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. (Neurochem. Labs, V.A. Med. Ctr. Sepulveda, CA (USA))

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  13. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Ppalmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all P<0.05) in the obese group. The postprandial metabolite of PA and BCAAs may play important role in the development and onset of insulin resistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity.

  14. Protein and amino acid nutrition

    Science.gov (United States)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  15. Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs.

    Science.gov (United States)

    Deutz, N E; Reijven, P L; Athanasas, G; Soeters, P B

    1992-11-01

    1. After operation, changes in nitrogen metabolism occur. Although increased flux of amino acids from peripheral to splanchnic organs after operation has been described, substrate utilization by the individual organs in the splanchnic area is less well characterized. We were specifically interested in substrate flux across the spleen as it is an organ with important immunological functions. 2. Therefore, hindquarter, gut, spleen and liver fluxes of amino acids, ammonia, glucose, lactate and blood gases were measured for 4 days after a standard operation in pigs. In a separate control group, fluxes were measured 2-3 weeks after this operation and these values were assumed to represent the normal situation. 3. One day after operation, the hindquarter effluxes of glutamine, alanine and several essential amino acids were increased (P > 0.001), but these normalized at the end of the observation period. In the same period, liver glutamine uptake increased (P ammonia production decreased, concomitant with decreased glutamine uptake (P ammonia increased sevenfold (P < 0.05) and that of lactate increased from -158 +/- 544 to 3294 +/- 642 nmol min-1 kg-1 body weight (P < 0.001). Glucose uptake increased from -964 +/- 632 to -3933 +/- 1524 nmol min-1 kg-1 body weight and glutamine efflux (391 +/- 143) reversed to uptake (-752 +/- 169 nmol min-1 kg-1 body weight) (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Racemization of Meteoritic Amino Acids

    Science.gov (United States)

    Cohen, Barbara A.; Chyba, Christopher F.

    2000-05-01

    Meteorites may have contributed amino acids to the prebiotic Earth, affecting the global ratio of right-handed to left-handed (D/L) molecules. We calculate D/L ratios for seven biological, α-hydrogen, protein amino acids over a variety of plausible parent body thermal histories, based on meteorite evidence and asteroid modeling. We show that amino acids in meteorites do not necessarily undergo complete racemization by the time they are recovered on Earth. If the mechanism of amino acid formation imposes some enantiomeric preference on the amino acids, a chiral signature can be retained through the entire history of the meteorite. Original enantiomeric excesses in meteorites such as Murchison, which have undergone apparently short and cool alteration scenarios, should have persisted to the present time. Of the seven amino acids for which relevant data are available, we expect glutamic acid, isoleucine, and valine, respectively, to be the most likely to retain an initial enantiomeric excess, and phenylalanine, aspartic acid, and alanine the least. Were the D/L ratio initially identical in each amino acid, final D/L ratios could be used to constrain the initial ratio and the thermal history experienced by the whole suite.

  17. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.

    Directory of Open Access Journals (Sweden)

    Enrique Marcos

    2011-09-01

    Full Text Available Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.

  18. Effects of Dietary Garlic Extracts on Whole Body Amino Acid and Fatty Acid Composition, Muscle Free Amino Acid Profiles and Blood Plasma Changes in Juvenile Sterlet Sturgeon, Acipenser ruthenus.

    Science.gov (United States)

    Lee, Dong-Hoon; Lim, Seong-Ryul; Ra, Chang-Six; Kim, Jeong-Dae

    2012-10-01

    A series of studies were carried out to investigate the supplemental effects of dietary garlic extracts (GE) on whole body amino acids, whole body and muscle free amino acids, fatty acid composition and blood plasma changes in 6 month old juvenile sterlet sturgeon (Acipenser ruthenus). In the first experiment, fish with an average body weight of 59.6 g were randomly allotted to each of 10 tanks (two groups of five replicates, 20 fish/tank) and fed diets with (0.5%) or without (control) GE respectively, at the level of 2% of fish body weight per day for 5 wks. Whole body amino acid composition between the GE and control groups were not different (p>0.05). Among free amino acids in muscle, L-glutamic acid, L-alanine, L-valine, L-leucine and L-phenylalanine were significantly (pexperiment, the effects of dietary garlic extracts on blood plasma changes were investigated using 6 month old juvenile sterlet sturgeon averaging 56.5 g. Fish were randomly allotted to each of 2 tanks (300 fish/tank) and fed diets with (0.5%) or without (control) GE respectively, at the rate of 2% of body weight per day for 23 d. At the end of the feeding trial, blood was taken from the tail vein (n = 5, per group) at 1, 12, and 24 h after feeding, respectively. Blood plasma glucose, insulin and the other serological characteristics were also measured to assess postprandial status of the fish. Plasma glucose concentrations (mg/dl) between two groups (GE vs control) were significantly (p0.05) were noticed at 12 h (74.6 vs 73.0). Plasma insulin concentrations (μIU/ml) between the two groups were significantly (p<0.05) different at 1 (10.56 vs 5.06) and 24 h (32.56 vs 2.96) after feeding. The present results suggested that dietary garlic extracts could increase dietary glucose utilization through the insulin secretion, which result in improved fish body quality and feed utilization by juvenile sterlet sturgeon.

  19. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  20. The IBO germination quantitative trait locus encodes a phosphatase 2C-related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling.

    Science.gov (United States)

    Amiguet-Vercher, Amélia; Santuari, Luca; Gonzalez-Guzman, Miguel; Depuydt, Stephen; Rodriguez, Pedro L; Hardtke, Christian S

    2015-02-01

    Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.

  1. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  2. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  3. Choline supplementation alters some amino acid concentrations with no change in homocysteine in children with cystic fibrosis and pancreatic insufficiency.

    Science.gov (United States)

    Alshaikh, Belal; Schall, Joan I; Maqbool, Asim; Mascarenhas, Maria; Bennett, Michael J; Stallings, Virginia A

    2016-05-01

    The present study determined the plasma amino acid status in children with cystic fibrosis (CF) and pancreatic insufficiency (PI) in the modern medical and nutritional care setting and investigated the effect of choline supplementation on amino acid status. A total of 110 children aged 5 to 18 years with CF and PI were randomized to receive choline-enriched structured lipid (LYM-X-SORB) or placebo with similar energy and fat content. Plasma amino acids were measured at baseline and 3 and 12 months. We hypothesized that choline supplementation would result in lower plasma homocysteine concentrations in children with CF. At baseline, dietary protein intake was high and the amino acid profile was within laboratory reference ranges in most participants. Alanine and cysteine were elevated in 24% and 36% of participants, respectively. Children with baseline alanine above reference range had improved weight, body mass index, and fat-free mass. Low homocysteine was found in 62% of children 11 years and older. After 3 and 12 months, there was no effect of choline supplementation on methionine or homocysteine status. Compared with placebo, choline supplementation resulted in increased glycine and decreased threonine, histidine, valine, and total branch chained amino acids at 12 months. In conclusion, daily choline supplementation with LYM-X-SORB did not alter methionine-homocysteine metabolism but did result in alterations in other amino acids in children with CF and PI.

  4. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    OpenAIRE

    Quentin L Sciascia; David Pacheco; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solut...

  5. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Science.gov (United States)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  6. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  7. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    Science.gov (United States)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  8. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    Science.gov (United States)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogeneis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. PMID:26529668

  9. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  10. Pulsed nitrogen supply induces dynamic changes in the amino acid compositionand microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    Van de Waal, D.B.; Ferreruela, G.; Tonk, L.; Van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine (R)

  11. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    van de Waal, D.B.; Ferreruela, G.; Tonk, L.; van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine (R)

  12. Changes in free amino acid and monoamine concentrations in the chick brain associated with feeding behavior

    OpenAIRE

    Tran, Phuong V; Chowdhury, Vishwajit S.; Nagasawa, Mao; Furuse, Mitsuhiro

    2015-01-01

    Domesticated chicks are precocial and therefore have relatively well-developed feeding behavior. The role of hypothalamic neuropeptides in food-intake regulation in chicks has been reported for decades. However, we hypothesized that nutrients and their metabolites in the brain may be involved in food intake in chicks because these animals exhibit a very frequent feeding pattern. Therefore, the purpose of this study was to examine the feeding behavior of chicks as well as the associated change...

  13. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  14. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism.

    Science.gov (United States)

    Gurley, Jami M; Ilkayeva, Olga; Jackson, Robert M; Griesel, Beth A; White, Phillip; Matsuzaki, Satochi; Qaisar, Rizwan; Van Remmen, Holly; Humphries, Kenneth M; Newgard, Christopher B; Olson, Ann Louise

    2016-12-01

    Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.

  15. Protein engineering of alcohol dehydrogenase--1. Effects of two amino acid changes in the active site of yeast ADH-1.

    Science.gov (United States)

    Murali, C; Creaser, E H

    1986-01-01

    One of the promises held out by protein engineering is the ability to alter predictably the properties of an enzyme to enable it to find new substrates or catalyse existing substrates more efficiently, such manipulations being of interest both enzymologically and, potentially, industrially. It has been postulated that in yeast alcohol dehydrogenase (YADH-1) certain amino acids such as Trp 93 and Thr 48 constrict the active site due to their bulky side chains and thus impede catalysis of molecules larger than ethanol. To study effects of enlarging the active site we have made two changes into YADH-1, replacing Trp 93 with Phe and Thr 48 with Ser. Kinetic experiments showed that this enzyme had marked increases in reaction velocity for the n-alcohols propanol, butanol, pentanol, hexanol, heptanol, octanol and cinnamyl alcohol compared to the parent, agreeing with the prediction that expanding the active site should facilitate the oxidation of larger alcohols. The substrate affinities were slightly reduced in the altered enzyme, possibly due to its having reduced hydrophobicity at Phe 93.

  16. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  19. Intrauterine growth restriction leads to changes in sulfur amino acid metabolism, but not global DNA methylation, in Yucatan miniature piglets.

    Science.gov (United States)

    MacKay, Dylan S; Brophy, Julie D; McBreairty, Laura E; McGowan, Ross A; Bertolo, Robert F

    2012-09-01

    Intrauterine growth restriction (IUGR), in both animals and humans, has been linked to metabolic syndrome later in life. There has been recent evidence that perturbations in sulfur amino acid metabolism may be involved in this early programming phenomenon. Methionine is the precursor for cellular methylation reactions and for the synthesis of cysteine. It has been suggested that the mechanism behind the "fetal origins" of adult diseases may be epigenetic, involving DNA methylation. Because we have recently demonstrated the fetal origins phenomenon in Yucatan miniature swine, we hypothesized that sulfur amino acid metabolism is altered in IUGR piglets. In this study, metabolites and the activities of sulfur amino acid cycle enzymes were analyzed in liver samples of 3- to 5-day-old runt (IUGR: 0.85±0.13 kg) and large (1.36±0.21 kg) Yucatan miniature pig littermates (n=6 pairs). The IUGR piglets had significantly lower specific and total activities of betaine-homocysteine methyltransferase (BHMT) and cystathionine γ-lyase (CGL) than larger littermates (PYucatan miniature piglets impairs their remethylation capacity as well as their ability to remove cystathionine and synthesize cysteine and taurine, which could have important implications on long-term health outcomes of IUGR neonates.

  20. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  1. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    Science.gov (United States)

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  2. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  3. Excitatory amino acid changes in the brains of rhesus monkeys following selective cerebral deep hypothermia and blood flow occlusion

    Institute of Scientific and Technical Information of China (English)

    Jun Pu; Xiaoqun Niu; Jizong Zhao

    2013-01-01

    Selective cerebral deep hypothermia and blood flow occlusion can enhance brain tolerance to ischemia and hypoxia and reduce cardiopulmonary complications in monkeys. Excitotoxicity induced by the release of a large amount of excitatory amino acids after cerebral ischemia is the major mechanism underlying ischemic brain injury and nerve cell death. In the present study, we used selective cerebral deep hypothermia and blood flow occlusion to block the bilateral common carotid arteries and/or bilateral vertebral arteries in rhesus monkey, followed by reperfusion using Ringer's solution at 4°C. Microdialysis and transmission electron microscope results showed that selective cerebral deep hypothermia and blood flow occlusion inhibited the release of glutamic acid into the extracellular fluid in the brain frontal lobe and relieved pathological injury in terms of the ultrastructure of brain tissues after severe cerebral ischemia. These findings indicate that cerebral deep hypothermia and blood flow occlusion can inhibit cytotoxic effects and attenuate ischemic/ hypoxic brain injury through decreasing the release of excitatory amino acids, such as glutamic acid.

  4. Microbial production of amino acids in Japan.

    Science.gov (United States)

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  5. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  6. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides.

    Science.gov (United States)

    Nobusawa, E; Ishihara, H; Morishita, T; Sato, K; Nakajima, K

    2000-12-20

    Human H3N2 influenza A viruses were known to preferentially bind to sialic acid (SA) in alpha2,6Gal linkage on red blood cells (RBC). However, H3N2 viruses isolated in MDCK cells after 1992 did not agglutinate chicken RBC (CRBC). Experiments with point-mutated hemagglutinin (HA) of A/Aichi/51/92, one of these viruses, revealed that an amino acid change from Glu to Asp at position 190 (E190D) was responsible for the loss of ability to bind to CRBC. A/Aichi/51/92 did not agglutinate CRBC treated with alpha2, 3-sialidase, suggesting that SAalpha2,3Gal on CRBC might not inhibit the binding of the virus to SAalpha2,6Gal on CRBC. However, the virus agglutinated derivatized CRBC resialylated with SAalpha2, 6Galbeta1,4GlcNAc. These findings suggested that the E190D change might have rendered the HA able to distinguish sialyloligosaccharides on the derivatized CRBC containing the SAalpha2,6Galbeta1,4GlcNAc sequence from those on the native CRBC.

  7. Diversity of amino acids in a typical chernozem of Moldova

    Science.gov (United States)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  8. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  9. Preference for and learning of amino acids in larval Drosophila.

    Science.gov (United States)

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  10. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  11. Effect of betaine supplementation on changes in hepatic metabolism of sulfur-containing amino acids and experimental cholestasis induced by alpha-naphthylisothiocyanate.

    Science.gov (United States)

    Kim, Young C; Jung, Young S; Kim, Sang K

    2005-05-01

    Alterations in the hepatic metabolism of sulfur amino acids in experimental cholestasis induced by alpha-naphthylisothiocyanate (ANIT) (100 mg/kg, po) were monitored in male mice for 1 week. We also examined the effects of betaine supplementation (1% in drinking water) for 2 weeks on the hepatotoxicity and changes in the sulfur amino acid metabolism induced by ANIT treatment. Acute ANIT challenge elevated the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and total bilirubin contents from 5 h after the treatment, reaching a peak at t = 48-72 h. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were decreased significantly in a manner almost inversely proportional to the changes in serum parameters measured to determine the ANIT-induced toxicity. Hepatic glutathione and cysteine levels were elevated at t = 120 h after the treatment. Betaine supplementation blocked or significantly attenuated induction of the hepatotoxicity by ANIT. The decrease in SAM and SAH levels was also inhibited by betaine intake. The results indicate that betaine supplementation may antagonize the induction of experimental cholestasis and changes in the metabolism of sulfur amino acids associated with ANIT treatment. The underlying mechanism and pharmacological significance of its action are discussed.

  12. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  13. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment.

    Science.gov (United States)

    Iwasa, Motoh; Ishihara, Tomoaki; Mifuji-Moroka, Rumi; Fujita, Naoki; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Iwata, Kazuko; Kaito, Masahiko; Takei, Yoshiyuki

    2015-01-01

    Diabetes mellitus (DM), non-alcoholic fatty liver (NAFL), and obesity are associated with elevated branched-chain amino acid (BCAA) levels, but the mechanism and significance of this has not been elucidated. Eighty-four subjects were enrolled including 43 with DM. Serum BCAA levels were positively correlated with waist-hip ratio and ALT. Serum BCAA levels in subjects with DM were higher than non-DM and those in subjects with NAFL were also higher than non-NAFL. Treatment with pioglitazone and alogliptin (19 of 43 DM subjects) improved serum haemoglobin A1c and decreased BCAA levels. The decrease in BCAAs with improved glucose metabolism suggests that abnormal glucose metabolism is also a factor in elevated BCAA levels.

  14. Metabolic changes in deafferented central neurons of an insect, Acheta domesticus. I. Effects upon amino acid uptake and incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.R.; Edwards, J.S.

    1982-11-01

    Chronic cercal deafferentation of the terminal ganglion in developing crickets (Acheta domesticus), which is known to suppress normal development of giant interneuron dendritic arborizations is shown here to reduce (/sup 3/H)leucine uptake and incorporation into ganglion proteins. Short term deafferentation of adult crickets, in contrast, does not depress amino acid uptake and incorporation significantly. Following unilateral long term deafferentation of the terminal ganglion, a comparison was made of the (/sup 3/H)leucine incorporation into primary dendritic processes and somata of deafferented and normally innervated medial giant interneurons (MGIs) within the same ganglion by means of quantitative autoradiography. Grain densities within dendrites of deafferented MGIs were significantly lower than in paired control MGIs' grain densities within somata of deafferented MGIs also were reduced, although the effects of deafferentation were less pronounced in somata than in target dendrites. These results imply a specific influence of afferent innervation on protein metabolism during growth and development of target postsynaptic elements.

  15. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  16. Intermolecular Vibrations of Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  17. Nutritional value of D-amino acids, D-peptides, and amino acid derivatives in mice.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-01-01

    This paper describes a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L -phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino acid for such determinations may be preferable to protein-based diets.

  18. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  19. The Apollo Program and Amino Acids

    Science.gov (United States)

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  20. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  1. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  2. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  3. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  4. Differential distribution of amino acids in plants.

    Science.gov (United States)

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-03-15

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  5. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  6. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  7. Excretion of amino acids by humans during space flight

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (pvaline on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  8. Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids.

    Science.gov (United States)

    Shikata, Nahoko; Maki, Yukihiro; Nakatsui, Masahiko; Mori, Masato; Noguchi, Yasushi; Yoshida, Shintaro; Takahashi, Michio; Kondo, Nobuo; Okamoto, Masahiro

    2010-01-01

    The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.

  9. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  10. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  11. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  12. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  13. Amino Acids in the Martian Meteorite Nakhla

    Science.gov (United States)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  14. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    Science.gov (United States)

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  15. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity.

    Science.gov (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi

    2012-11-01

    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  16. Nitrogen Isotopic Composition of Proteinaceous Coral Skeletal Amino Acids Records Change in Source Nitrate to the Euphotic Zone in the Western Tropical Pacific

    Science.gov (United States)

    Williams, B.; Thibodeau, B.; Chikaraishi, Y.; Ohkouchi, N.; Grottoli, A. G.

    2014-12-01

    Instrumental and proxy data and global climate model experiments indicate a multi-decadal shoaling of the western tropical Pacific (WTP) thermocline potentially related to a shift in ENSO frequency. In the WTP, the nutricline coincides with the thermocline, and a shoaling of the nutricline brings more nitrate-rich seawater higher in the water column and within the sunlit euphotic zone. In the nutrient-poor WTP, this incursion of nitrate-rich water at the bottom of the euphotic zone may stimulate productivity in the water column. However, there is a general paucity of measurements below the surface with which to investigate recent changes in seawater chemistry. Nitrogen isotope (δ15N) measurements of particulate organic matter (POM) can elucidate the source of nitrogen to the WTP and related trophic dynamics. This POM is the food source to the long-lived proteinaceous corals, and drives the nitrogen isotopic composition of their skeleton. Here, we report time series δ15N values from the banded skeletons of proteinaceous corals from offshore Palau in the WTP that provide proxy information about past changes in euphotic zone nitrogen dynamics. Bulk skeletal δ15N values declined between 1977 and 2010 suggesting a progressively increasing contribution of deep water with isotopically-light nitrate to the euphotic zone and/or a shortening of the planktonic food web. Since only some amino acids are enriched in δ15N with each trophic transfer in a food web, we measured the δ15N composition of seven individual amino acids in the same coral skeleton. The δ15N time series of the individual amino acids also declined over time, mirroring the bulk values. These new data indicate that the changes in the source nitrogen to the base of the euphotic zone drives a decline in coral skeletal δ15N values, consistent with the shoaling nutricline, with no coinciding alteration of the trophic structure in the WTP.

  17. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  18. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  19. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  20. New insight into quinoa seed quality under salinity: changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts

    Directory of Open Access Journals (Sweden)

    Iris eAloisi

    2016-05-01

    Full Text Available Quinoa (Chenopodium quinoa Willd is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa seeds. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49 and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR, exposed to two levels of salinity (100 and 300 mM NaCl were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC and flavonoid (TFC contents, and antioxidant activity (AA of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace

  1. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  2. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts.

    Science.gov (United States)

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  3. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  4. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  5. Amino acids in the Martian meteorite Nakhla.

    Science.gov (United States)

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  6. Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia.

    Science.gov (United States)

    Houin, Satya S; Rozance, Paul J; Brown, Laura D; Hay, William W; Wilkening, Randall B; Thorn, Stephanie R

    2015-02-15

    Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 (P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-¹³C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 (P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia (P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.

  7. An astrophysically-relevant mechanism for amino acid enantiomer enrichment

    NARCIS (Netherlands)

    P. Fletcher, S.; B. C. Jagt, R.; Feringa, B.L.

    2007-01-01

    The sublimation of low ee amino acids was examined while exploring simple mechanisms by which high ee amino acids can be generated under conditions that exist in space; significant enantioenrichment of a variety of amino acids by sublimation was achieved.

  8. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  9. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  10. AMINO ACID BLOOD POOL OF CHILDREN WITH ALLERGIC DISEASES

    Directory of Open Access Journals (Sweden)

    Shmulich O. V.

    2014-01-01

    Full Text Available The amino acid blood pool of children with atopic dermatitis, bronchial asthma, urticaria, angioedema was investigated. The variability of blood plasma amino acid content (tryptophan, histidine, tyrosine, cysteine, methionine was observed. The changes of histidine and tryptophan levels might be connected with the formation of biogenic amines, such as histamine, serotonine, with take part in the development of allergic reactions and inflammatory processes in organism.

  11. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  12. Genetically encoded fluorescent coumarin amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangyun [San Diego, CA; Xie, Jianming [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  13. Conformational properties of oxazoline-amino acids

    Science.gov (United States)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  14. Evaluation of amino acids as turfgrass nematicides.

    Science.gov (United States)

    Zhang, Yun; Luc, John E; Crow, William T

    2010-12-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.

  15. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  16. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  17. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    Science.gov (United States)

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.

  18. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins

    OpenAIRE

    Linares de la Morena, María Lourdes; Agejas Chicharro, Francisco Javier; Alajarín Ferrández, Ramón; Vaquero López, Juan José; Álvarez-Builla Gómez, Julio

    2001-01-01

    The synthesis Of L-2-amino-8-oxodecanoic acid (Aoda) is described. This is a rare amino acid component of apicidins, a family of new cyclic tetrapeptides, inhibitors of histone deacetylase. Aoda was synthesised in seven steps from L-glutamic acid along with some derivatives. Universidad de Alcalá Fundación General de la Universidad de Alcalá FEDER

  19. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  20. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  1. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  2. Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine.

    Science.gov (United States)

    Norkrans, B; Tunblad-Johansson, I

    1981-01-01

    This study concerns inter- and intraspecific differences between yeasts at assimilation of different nitrogen sources. Alterations in the content of free amino acids in cells and media as well as in the related enzyme activities during growth were studied. The hydroxylamine (HA)-tolerant Endomycopsis lipolytica was examined and compared with the nitrate-reducing Cryptococcus albidus, and Saccharomyces cerevisiae, requiring fully reduced nitrogen for growth. Special attention was paid to alanine, aspartic acid, and glutamic acid, the amino acids closely related to the Krebs cycle keto acids. The amino acids were analyzed as their n-propyl N-acetyl esters by gas-liquid chromatography (GLC). The composition of the amino acid pool was similar for the three yeasts. Glutamic acid was predominant; in early log-phase cells of E. lipolytica contents of 200-234 micromol . g(-1) dry weight were found. A positive correlation between the specific growth rate and the size of the amino acid pool was observed. The assimilation of ammonia was mediated by glutamate dehydrogenase (GDH). The NADP-GDH was the dominating enzyme in all three yeasts showing the highest specific activity in Cr. albidus grown on nitrate (6980 nmol . (min(-1)).(mg protein(-1)). Glutamine synthetase (GS) displayed a high specific activity in S. cerevisiae, which also had a high amount of glutamine. The assimilation of HA did not differ greatly from the assimilation of ammonium in E. lipolytica. The existing differences could rather be explained as provoked by the concentration of available nitrogen.

  3. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  4. The interaction of amino acids, peptides, and proteins with DNA.

    Science.gov (United States)

    Solovyev, Andrey Y; Tarnovskaya, Svetlana I; Chernova, Irina A; Shataeva, Larisa K; Skorik, Yury A

    2015-01-01

    Amino acids that carry charges on their side groups can bind to double stranded DNA (dsDNA) and change the strength of the double helix. Measurement of the DNA melting temperature (Tm) confirmed that acidic amino acids (Glu, Asp) weaken the H-bonds between DNA strands, whereas basic amino acids (Arg, Lys) strengthen the interaction between the strands. A rank correlation exists between the amino acid isoelectric points and the observed changes in Tm. A similar dependence of the hyperchromic effect on the isoelectric point of a protein (pepsin, insulin, cortexin, and protamine) was observed for DNA-protein complexes at room temperature. Short peptides (KE, AEDG, and KEDP) containing a mixture of acidic and basic amino acid residues also affect Tm and the stability of the double helix. A model for binding Glu and Lys to dsDNA was explored by a docking simulation. The model shows that Glu, in an untwisted shape, binds to dsDNA in its major groove and disrupts three H-bonds between the strands, thereby destabilizing the double helix. Lys, in an untwisted shape, binds to the external side of the dsDNA and forms two bonds with O atoms of neighboring phosphodiester groups, thereby strengthening the DNA helix.

  5. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  6. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  7. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  8. RESEARCH ON THE POLYCONDENSATION KINETICS OF ω-AMINO-ACIDS

    Institute of Scientific and Technical Information of China (English)

    WANG Baoren; SHI Manli; QIAN Chunqing

    1983-01-01

    In our previous report, it was discovered that the polycondensation of 9-amino-nonanoic acid follows second order from the beginning up to the extent of reaction, p, around 99%, and after which the reaction changes rapidly to third order. In this paper, we wish to report that this change of the reaction order from second to third occurred also in the polycondensation of 6aminocaproic acid and 11-amino-undecanoic acid. The transition region lay again at p around 99%.It may be concluded that this is a general rule in the polycondensation of the ω-amino-acids (monomers of the A-B type), and the controversial results that appeared in the literature may be cleared up by our experiments.

  9. Computational protein design quantifies structural constraints on amino acid covariation.

    Directory of Open Access Journals (Sweden)

    Noah Ollikainen

    Full Text Available Amino acid covariation, where the identities of amino acids at different sequence positions are correlated, is a hallmark of naturally occurring proteins. This covariation can arise from multiple factors, including selective pressures for maintaining protein structure, requirements imposed by a specific function, or from phylogenetic sampling bias. Here we employed flexible backbone computational protein design to quantify the extent to which protein structure has constrained amino acid covariation for 40 diverse protein domains. We find significant similarities between the amino acid covariation in alignments of natural protein sequences and sequences optimized for their structures by computational protein design methods. These results indicate that the structural constraints imposed by protein architecture play a dominant role in shaping amino acid covariation and that computational protein design methods can capture these effects. We also find that the similarity between natural and designed covariation is sensitive to the magnitude and mechanism of backbone flexibility used in computational protein design. Our results thus highlight the necessity of including backbone flexibility to correctly model precise details of correlated amino acid changes and give insights into the pressures underlying these correlations.

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  11. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  12. Copper—Induced Changes in the Urea Uptake and Urease Activity in the Cyanobacteria Anabaena doliolum and Anacystis Nidulans:Interaction With Sulphur Containing Amino Acids

    Institute of Scientific and Technical Information of China (English)

    S.SINGH; B.B.SINGH; 等

    1995-01-01

    Copper-induced changes in the urea uptake and urease activity have been investigated in the cyanobacteria Anabaena doliolum and Anacystis nidulans.Copper,at and above 5μmol/L concentration,inhibited urea uptake and urease activity systems in both the cyanobacteria in a concentration dependent manner,However,the urea uptake and urease activity systems in A.nidulans apeared slightly more tolerant to copper than that of A.doliolum.The inhibitory effect of copeer on urea uptake and urease activity was mitigated by sulphur containing amino acids(cystine and cysteine),however,methionine could not do so,indicating the involvement of sulfhydryl(-SH) groups in the assimilation of urea in cyanobacteria.

  13. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  14. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    At the Kennedy Centre for Phenylketonuria, Denmark, large neutral amino acids (LNAAs) are being used to treat adult and adolescent patients who are nonadherent to dietary treatment for phenylketonuria (PKU). At the start of treatment, a patient must undergo dietary analysis and regular blood...... sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  15. Microbial degradation of poly(amino acid)s.

    Science.gov (United States)

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  16. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...

  17. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    Science.gov (United States)

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  18. Amino Acid Formation on Interstellar Dust Particles

    Science.gov (United States)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  19. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  20. Dietary Supplements and Sports Performance: Amino Acids

    Directory of Open Access Journals (Sweden)

    Williams Melvin

    2005-12-01

    Full Text Available Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations. The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  1. [Sublicons containing amino acids and nucleotides].

    Science.gov (United States)

    Kaĭmakov, E A

    1979-01-01

    Sublicons have been obtained. Sublicons are threadlike structures appearing during sublimation of frozen solutions of small concentrations, containing racemate mixture of amino acids and nucleotides. It is suggested that close location of chains and their zonal distribution by the section of helix spire forming sublicon wall, should provide the formation of stereohomogenous and complementary successions of biomonomers of different clases.

  2. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  3. 21 CFR 172.320 - Amino acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives §...

  4. Amino acid quality indices of the leaves of Clerodendrum volubile

    Directory of Open Access Journals (Sweden)

    Ochuko Lucky Erukainure

    2016-04-01

    Full Text Available Objective: To evaluate the amino acid profile and quality indices of Clerodendrum volubile (C. volubile leaves. Methods: Dried leaves of C. volubile were blended, defatted and subjected to amino acid analysis using the technicon sequential multi-sample amino acid analyzer. The amino acid quality indices which covers for chemical score, essential amino acid index, nutritional index, true digestibility, protein digestibility corrected amino acid score, and digestible indispensable amino acid score were evaluated using standard formulas. Results: Amino acid analysis revealed glutamic acid to have the highest concentration, with cysteine having the least. Aspartic acid had the highest chemical score, this was followed by glycine, histidine and arginine, respectively. The least scores were observed in serine and methionine. Glutamic acid had the highest value for true digestibility and protein digestibility corrected amino acid score, with the least observed in cysteine. Digestible indispensable amino acid score evaluation showed histidine to have the highest value for infants (birth to 6 months, threonine for children (6 months to 3 years, while isoleucine was observed to have the highest value for older children, adolescents and adults. The essential amino acid index value was less than 4, while nutritional index value was less than 0.5. Conclusions: These results indicated the leaves of C. volubile as a potential source of amino acids in the human diet as portrayed by its amino acids profile and qualities.

  5. Biosynthesis of natural products containing β-amino acids.

    Science.gov (United States)

    Kudo, Fumitaka; Miyanaga, Akimasa; Eguchi, Tadashi

    2014-08-01

    Covering: up to January, 2014. We focus here on β-amino acids as components of complex natural products because the presence of β-amino acids produces structural diversity in natural products and provides characteristic architectures beyond those of ordinary α-L-amino acids, thus generating significant and unique biological functions in nature. In this review, we first survey the known bioactive β-amino acid-containing natural products including nonribosomal peptides, macrolactam polyketides, and nucleoside-β-amino acid hybrids. Next, the biosynthetic enzymes that form β-amino acids from α-amino acids and the de novo synthesis of β-amino acids are summarized. Then, the mechanisms of β-amino acid incorporation into natural products are reviewed. Because it is anticipated that the rational swapping of the β-amino acid moieties with various side chains and stereochemistries by biosynthetic engineering should lead to the creation of novel architectures and bioactive compounds, the accumulation of knowledge regarding β-amino acid-containing natural product biosynthetic machinery could have a significant impact in this field. In addition, genome mining of characteristic β-amino acid biosynthetic genes and unique β-amino acid incorporation machinery could lead to the discovery of new β-amino acid-containing natural products.

  6. Major liver resection results in a changed plasma amino acid pattern as reflected by a decreased Fischer ratio which improves by bactericidal/permeability increasing protein

    NARCIS (Netherlands)

    Nijveldt, RJ; Wiezer, MJ; Meijer, C; Prins, HA; Muller, MGS; Gouma, DJ; Teerlink, T; van Gulik, TM; Rinkes, IHMB; Tilanus, HW; van de Velde, CJH; Wiggers, T; Zoetmulder, FAN; Scotte, M; Cuesta, MA; Meijer, S; van Leeuwen, PAM

    2001-01-01

    Background/Aims: Major liver resection results in a high morbidity and mortality, and endotoxin plays a role in post-resection hepatic failure. Severe hepatic failure as seen in hepatitis and cirrhosis may be accompanied by hepatic encephalopathy and is characterized by a typical plasma amino acid p

  7. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten;

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...

  8. Microbial Production of Amino Acid-Related Compounds.

    Science.gov (United States)

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  9. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2016-09-01

    Protein modifications of meat cooked by typical dry-heat methods (e.g., roasting) are currently not well understood. The present study utilised a shotgun proteomic approach to examine the molecular-level effect of roasting on thin lamb longissimus thoracis et lumborum patties, in terms of changes to both the protein profile and amino acid residue side-chain modifications. Cooking caused aggregation of actin, myosin heavy chains and sarcoplasmic proteins. Longer roasting time resulted in significantly reduced protein extractability as well as protein truncation involving particularly a number of myofibrillar and sarcoplasmic proteins, e.g., 6-phosphofructokinase, beta-enolase, l-lactate dehydrogenase A chain, alpha-actinin-3, actin and possibly myosin heavy chains. Modifications that have potential influence on nutritional properties, including carboxyethyllysine and a potentially glucose-derived N-terminal Amadori compound, were observed in actin and myoglobin after roasting. This study provided new insights into molecular changes resulting from the dry-heat treatment of meat, such as commonly used in food preparation.

  10. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    Science.gov (United States)

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  11. Recent advances in amino acid production by microbial cells.

    Science.gov (United States)

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  12. Biosynthesis of 'essential' amino acids by scleractinian corals.

    Science.gov (United States)

    Fitzgerald, L M; Szmant, A M

    1997-02-15

    Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa.

  13. AMINO ACID METABOLISM IN COWS DURING THE TRANSITION PERIOD IN BALANCING DIET ON THE EXCHANGE PROTEIN AND DIGESTIBLE AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Ryadchikov V. G.

    2014-02-01

    Full Text Available Application of a factorial method for determining the needs in metabolic protein and essential amino acids, helps to deepen knowledge on physiology of protein and amino acid supply and allow to improve the standards for dairy cows during the transition period; in insufficient of metabolic protein and essential amino acids increased coefficients of their transformation into net protein and absorptive amino acids as a result of mobilization of body of cows; with an optimal protein nutrition their transformation in net milk protein, lysine and methionine accordingly amounted to 0.67, 0,83 and 0,82. The most significant changes in the concentration of methionine, proline, glutamate, glutamine, glycine were observed in cows before calving and immediately after birth, stabilization of their level starts with a 24 lactation day, that is connected with the peculiarities of the feeding behavior of the cows and the gradual intensification of the processes of metabolism and milk production. To control the status of protein metabolism we have offered benchmarks compositions of free amino acids in cows’ blood plasma phases: 21-0 days before calving, 0-21 and 22-120 days after calving

  14. Direct amino acid analyses of mozzarella cheese.

    Science.gov (United States)

    Hoskins, M N

    1985-12-01

    The amino acid content of mozzarella (low moisture, part skim milk) and asadero cheeses was determined by the column chromatographic method. Data from the direct analyses of the mozzarella cheeses were compared with the calculated amino acid composition reported in tables in Agriculture Handbook No. 8-1. Phenylalanine and tyrosine contents were found to be higher in the direct analyses than in the calculated data in Handbook No. 8-1 (1.390 gm and 1.127 gm for phenylalanine, and 1.493 gm and 1.249 gm for tyrosine per 100 gm edible portion, respectively). That is of particular concern in the dietary management of phenylketonuria, in which accuracy in computing levels of phenylalanine and tyrosine is essential.

  15. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  16. [Amino acid composition of the body of rats after a flight on the Kosmos-1129 biosatellite].

    Science.gov (United States)

    Vlasova, T F; Miroshnikova, E B; Smirnova, T A; Dmitrieva, I A

    1981-01-01

    The paper presents data concerning the amino acid pool of rats flown on board Cosmos-1129 and exposed to the ground-based synchronous experiment. Certain changes in the amino acid pool of flight and synchronous rats have been found. The changes seem to be associated with the selective rate of incorporation of free amino acids into the biosynthetic processes during acute adaptation and with alterations in the protein synthesis rate.

  17. Alimentary proteins, amino acids and cholesterolemia.

    Science.gov (United States)

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  18. A Green Synthesis of Diisopropyl Phosphoryl Amino Acid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.

  19. Effect of Different Temperatures on the Free Amino Acids, Physico-Chemical and Microbial Changes during Storage of Barramundi (Lates calcarifer Fillets

    Directory of Open Access Journals (Sweden)

    Ali Yassoralipour

    2013-07-01

    Full Text Available The effects of storage days and temperature on free amino acids, TVB-N, pH and microbial changes in Barramundi (Lates calcarifer fillets kept at 0°C and 8°C were investigated for 20 days. At the end of the storage, significant differences were observed (p0.05 between two temperatures during the storage period were observed. Among two temperatures, the psychrophiles were initially 4.07 log CFU/g and exceeded the acceptable limit of 7 log CFU/g on the 12th and 8th day at 0°C and 8°C, respectively. Although, Total Plate Count (TPC were initially 3.7 log CFU/g and exceeded the acceptable limit of 6 log CFU/g on the 12th day in the both storage temperatures. Histamine Forming Bacteria (HFB was significantly (p<0.05 lower in Barramundi fillets storage at 0°C compared to the 8°C. Significant differences (p<0.05 between the concentrations of Total Volatile Base-Nitrogen (TVB-N in fillets kept at 0°C and 8°C were observed.

  20. Correlation Study on Sweetness of Amino Acid with Different Configurations and Quantum Chemical Parameters

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Ling; GU Jun; QIU Guang-Min

    2006-01-01

    Quantum chemical parameters of 10 amino acids with D- and L-configurations were firstly calculated with semi-empirical AM1 method. Furthermore, the relationship between mole- cular structures of D-, L-amino acids and their sweetness were observed. The results show that upon different configurations of amino acids, the sweetness is relative with their formation heat, dipole moment, energy gap of frontier orbital and other parameters. The formation heats of the same amino acids possessing D- and L-configurations are different except glycine. The algebraic value of D- amino acid is generally larger than that of corresponding L-configuration with only one except of tyrosine. The dipole moment of D-amino acid is generally larger than that of corresponding L-amino acid except tyrosine and lysine. The lowest unoccupied orbital energy (ELUMO) of D-amino acid is higher than that of corresponding L-configuration except phenylalanine. △E of D-amino acid is larger than that of L-amino acid except histidine, phenylalanine and lysine. The larger gap will have advantage for its matching with frontier orbital energy of human protein acceptor, which strengthens the interaction between D-amino acid and sweet taste acceptor. Besides, the changing rules of these parameters are generally identical.

  1. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  2. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  3. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    NARCIS (Netherlands)

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  4. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    Science.gov (United States)

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  5. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  6. Effects of running the Bostom Marathon on plasma concentrations of large neutral amino acids

    Science.gov (United States)

    Conlay, L. A.; Wurtman, R. J.; Lopez G-Coviella, I.; Blusztajn, J. K.; Vacanti, C. A.; Logue, M.; During, M.; Caballero, B.; Maher, T. J.; Evoniuk, G.

    1989-01-01

    Plasma large neutral amino acid concentrations were measured in thirty-seven subjects before and after completing the Boston Marathon. Concentrations of tyrosine, phenylalanine, and methionine increased, as did their 'plasma ratios' (i.e., the ratio of each amino acid's concentration to the summed plasma concentrations of the other large neutral amino acids which compete with it for brain uptake). No changes were noted in the plasma concentrations of tryptophan, leucine, isoleucine, nor valine; however, the 'plasma ratios' of valine, leucine, and isoleucine all decreased. These changes in plasma amino acid patterns may influence neurotransmitter synthesis.

  7. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  8. 肝癌病人血浆氨基酸变化与肝功能的相关性分析%Plasma amino acid changes in patients with liver cancer and liver function in correlation analysis

    Institute of Scientific and Technical Information of China (English)

    范志娟; 刘树业

    2011-01-01

    目的 探讨肝癌病人血浆氨基酸谱变化与肝功能的相关性.方法 对100例肝癌病人进行血浆氨基酸的检测和肝功能的检测,并做两者的相关性分析.结果 氨基酸谱变化显示肝癌患者中有9种氨基酸发生变化,其中6种氨基酸升高,3种氨基酸降低.氨基酸谱与肝功能相关性分析显示:1.苏氨酸(THR)、蛋氨酸(MET)与谷丙转氨酶(ALT)成正相关;2.谷氨酸(GLU)、蛋氨酸、酪氨酸(TYR)、苯丙氨酸(PHE)、赖氨酸(LYS)与总胆红素(TBIL)、结合胆红素(DBIL)、游离胆红素(IBIL)成正相关,且蛋氨酸、酪氨酸与其三者成中度正相关;3、缬氨酸(VAL)和亮氨酸(LEU)与白蛋白(ALB)、前白蛋白(PALB)成正相关,且亮氨酸与总蛋白(TP), 白蛋白、白球比(A/G),胆碱酯酶(CHE), 前白蛋白均成正相关;4、支芳比与ALB,A/G,CHE,PALB成正相关,与TBIL,DBIL,IBIL成负相关.结论 肝癌病人血浆氨基酸谱变化广泛,可直接反映机体的代谢及营养状况;氨基酸变化水平与肝功能密切相关,可间接反映肝细胞破坏及坏死程度,氨基酸与肝功能的联合检测对肝癌患者的诊断,治疗及预后具有重要意义.%Objective To study the spectrum of plasma amino acid changes in patients with liver cancer and liver function correlation.Methods We use 100 cases of liver cancer patients make plasma amino acid testing and liver function testing ,and do analysis of the correlation between the two.Results amino acid changes in liver cancer patients in 9 kinds of amino acids changes ,including six kinds of amino acids increased three kinds of amino acids reduced.Amino acids and liver function correlation analysis showed that :1 ,threonine ,methionine was positively correlated with ALT ;2, glutamic acid ,methionine -tyrosine, phenylalanine, lysine and total bilirubin bilirubin ,free bilirubin was positively correlated ,and methionine ,tyrosine into a moderate positive correlation with the three;3 ,VAL ,and LET with

  9. Neighbor preferences of amino acids and context-dependent effects of amino acid substitutions in human, mouse, and dog.

    Science.gov (United States)

    Fu, Mingchuan; Huang, Zhuoran; Mao, Yuanhui; Tao, Shiheng

    2014-09-10

    Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  10. Neighbor Preferences of Amino Acids and Context-Dependent Effects of Amino Acid Substitutions in Human, Mouse, and Dog

    Directory of Open Access Journals (Sweden)

    Mingchuan Fu

    2014-09-01

    Full Text Available Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.

  11. [Bound amino acids in local strains of Trichomonas vaginalis].

    Science.gov (United States)

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  12. Mated Drosophila melanogaster females consume more amino acids during the dark phase.

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.

  13. Mated Drosophila melanogaster females consume more amino acids during the dark phase

    Science.gov (United States)

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073

  14. Photostability of amino acids: photodissociation dynamics of phenylalanine chromophores.

    Science.gov (United States)

    Tseng, Chien-Ming; Lin, Ming-Fu; Yang, Yi Lin; Ho, Yu Chieh; Ni, Chi-Kung; Chang, Jia-Lin

    2010-05-21

    The theoretical prediction of H atom elimination on the excited state of phenol, imidazole and indole, the respective chromophores for the amino acids tyrosine, histidine and tryptophan, and the confirmation of theoretical prediction by experimental observations have a great impact on the explanation of photostability of amino acids upon irradiation with UV photons. On the other hand, no theoretical prediction of the excited state photodissociation dynamics has been made on the other aromatic amino acid, phenylalanine. In this work, photodissociation dynamics for various phenylalanine chromophores, including, phenylethylamine, N-methyl-phenylethylamine, and N-acetyl phenylalanine methyl ester was investigated in a molecular beam at 248 and 193 nm using multimass ion imaging techniques. The major dissociation channel for these compounds is the C-C bond cleavage. However, the photofragment translational energy distribution of phenylethylamine contains two components. The slow component corresponds to the dissociation on the ground state surface after internal conversion, and the fast component represents the dissociation from an excited state with a large exit barrier. The competition between the dissociation on the ground state and on the excited state changes as the size of chromophores increases. Internal conversion to the ground state prior to dissociation becomes the major nonradiative process for large chromophores. This study reveals the size-dependent photostability for these amino acid chromophores.

  15. Characterization of amino acids using Raman spectroscopy

    Science.gov (United States)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  16. Photoinduced dynamics in protonated aromatic amino acid

    CERN Document Server

    Grégoire, Gilles; Barat, Michel; Fayeton, Jacqueline; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2008-01-01

    UV photoinduced fragmentation of protonated aromatics amino acids have emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  17. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling.

    Directory of Open Access Journals (Sweden)

    Satoko Uraki

    Full Text Available It has been suggested that amino acid (aa substitution at position 70 from arginine (70R to glutamine (70Q in the genotype 1b hepatitis C virus (HCV core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes.The influence of treatment with HCV core protein (70R or 70Q on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA, and triglyceride content was also analyzed. The effects of toll-like receptor (TLR2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined.IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%.Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.

  18. Changes in composition and amino acid profile during dry grind ethanol processing from corn and estimation of yeast contribution toward DDGS proteins.

    Science.gov (United States)

    Han, Jianchun; Liu, Keshun

    2010-03-24

    Three sets of samples, consisting of ground corn, yeast, intermediate products, and DDGS, were provided by three commercial dry grind ethanol plants in Iowa and freeze dried before chemical analysis. On average, ground corn contained 70.23% starch, 7.65% protein, 3.26% oil, 1.29% ash, 87.79% total carbohydrate (CHO), and 17.57% total nonstarch CHO, dry matter basis. Results from Plant 1 samples showed that compared to ground corn, there was a slight but significant increase in the contents of protein, amino acids (AA), oil, and ash before fermentation, although starch/dextrin decreased sharply upon saccharification. After fermentation, starch content further decreased to about 6.0%, while protein, oil, and ash contents increased over 3-fold. AA increased 2.0-3.5-fold. Total CHO content decreased by 40%, and the content of total nonstarch CHO increased over 2.5-fold. Concentrations of these attributes fluctuated slightly in the remaining downstream products, but oil and ash were concentrated in thin stillage, while protein was concentrated in distiller grains upon centrifugation. When AA composition is expressed in relative % (protein basis), its changes did not follow that of protein concentration, but the influence of yeast AA profiles on those of downstream products became apparent. Accordingly, a multiple linear regression model for the AA profile of a downstream product as a function of AA profiles of ground corn and yeast was proposed. Regression results indicated that, with an r(2) = 0.95, yeast contributed about 20% toward DDGS proteins, and the rest came from corn. Data from Plants 2 and 3 confirmed those found with Plant 1 samples.

  19. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis.

    Science.gov (United States)

    Porter, Emily; Tasker, Séverine; Day, Michael J; Harley, Ross; Kipar, Anja; Siddell, Stuart G; Helps, Christopher R

    2014-04-25

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP.

  20. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  1. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions.

  2. Effect of whey protein on plasma amino acids in diabetic mice.

    Science.gov (United States)

    Han, Ting; Cai, Donglian; Geng, Shanshan; Wang, Ying; Zhen, Hui; Wu, Peiying

    2013-12-01

    The aim of this study was to investigate the effect of whey protein on plasma amino acid levels in a mouse model of type II diabetes, using high-performance liquid chromatography (HPLC). The composition and content of amino acids in the whey proteins were analyzed using HPLC. Type I and type II diabetic mouse models were prepared using streptozotocin (STZ) and normal mice were used as a control. The ICR mice in each group were then randomly divided into four subgroups, to which 0, 10, 20 and 40% whey protein, respectively, was administered for four weeks. Changes in the plasma amino acid levels were observed in each group. The proportions of leucine, isoleucine and valine in the whey proteins were 14.40, 5.93 and 5.32% of the total amino acids, respectively, that is, the branched-chain amino acid content was 25.65%. The levels of branched-chain amino acids increased in the plasma of the normal and model mice following the administration of whey proteins by gavage and the amino acid levels increased as the concentration of the administered protein increased. In addition, the branched-chain amino acid levels in the blood of the model mice were higher than those in the normal mice. The levels of plasma amino acids in diabetic mice increased following gavage with whey protein, which is rich in branched-chain amino acids.

  3. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    OpenAIRE

    Csilla Albert; Gabriella Pohn; Katalin Lóki; Szidónia Salamon; Beáta Albert; P. Sára; Z. Mándoki; Jánosné Csapó; Csapó, J.

    2007-01-01

    Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particula...

  4. Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations.

    Science.gov (United States)

    Thureen, P J; Anderson, S M; Hay, W W

    2000-09-01

    We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].

  5. Modulating the electronic structure of amino acids: interaction of model lewis acids with anthranilic acid

    Directory of Open Access Journals (Sweden)

    Tareq Irshaidat

    2014-01-01

    Full Text Available On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293 illustrated that beryllium ions are capable of significantly modulating (changing the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+, AlF2+, and Al3+ were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H, and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577 and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.

  6. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  7. Defective intestinal amino acid absorption in Ace2 null mice.

    Science.gov (United States)

    Singer, Dustin; Camargo, Simone M R; Ramadan, Tamara; Schäfer, Matthias; Mariotta, Luca; Herzog, Brigitte; Huggel, Katja; Wolfer, David; Werner, Sabine; Penninger, Josef M; Verrey, François

    2012-09-15

    Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestinal B(0)AT1 expression, we tested the impact of intestinal B(0)AT1 absence in ace2 null mice. Their weight gain following weaning was decreased, and Na(+)-dependent uptake of B(0)AT1 substrates measured in everted intestinal rings was defective. Additionally, high-affinity Na(+)-dependent transport of L-proline, presumably via SIT1 (Slc6a20), was absent, whereas glucose uptake via SGLT1 (Slc5a1) was not affected. Measurements of small intestine luminal amino acid content following gavage showed that more L-tryptophan than other B(0)AT1 substrates reach the ileum in wild-type mice, which is in line with its known lower apparent affinity. In ace2 null mice, the absorption defect was confirmed by a severalfold increase of L-tryptophan and of other neutral amino acids reaching the ileum lumen. Furthermore, plasma and muscle levels of glycine and L-tryptophan were significantly decreased in ace2 null mice, with other neutral amino acids displaying a similar trend. A low-protein/low-niacin diet challenge led to differential changes in plasma amino acid levels in both wild-type and ace2 null mice, but only in ace2 null mice to a stop in weight gain. Despite the combination of low-niacin with a low-protein diet, plasma niacin concentrations remained normal in ace2 null mice and no pellagra symptoms, such as photosensitive skin rash or ataxia, were observed. In summary, mice lacking Ace2-dependent intestinal amino acid transport display no total niacin deficiency nor clear pellagra symptoms, even under a low-protein and low-niacin diet, despite gross amino acid homeostasis alterations.

  8. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    Science.gov (United States)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  9. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    Science.gov (United States)

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  10. A Single Amino Acid Mutation (I1012F) of the RNA Polymerase of Marine Viral Hemorrhagic Septicemia Virus Changes In Vitro Virulence to Rainbow Trout Gill Epithelial Cells

    DEFF Research Database (Denmark)

    Kim, Sung-Hyun; Thu, Beate J.; Skall, Helle Frank

    2014-01-01

    Viral hemorrhagic septicemia virus (VHSV) is separated into four different genotypes (I to IV) with different sublineages (K. Einer-Jensen, P. Ahrens, R. Forsberg, and N. Lorenzen, J. Gen. Virol. 85: 1167-1179, 2004; K. Einer-Jensen, J. Winton, and N. Lorenzen, Vet. Microbiol. 106: 167-178, 2005...... was used in a gain-of-virulence approach based on the JF-09 backbone. Mutations were introduced into the G, NV, and L genes, and seven different virus clones were obtained. For the first time, we show that a single amino acid mutation in conserved region IV of the L protein, I1012F, rendered the virus able...

  11. The Identification of Histological Changes in Liver and the Evaluation of the Effect of Some Probiotics and Amino Acids on the Invasion of C. jejuni

    Directory of Open Access Journals (Sweden)

    Lavinia Stef

    2016-05-01

    Full Text Available Poultry meat represents a consumer food worldwide and can be a source of pathogen agents (Salmonella enterica spp., Escherichia coli, and Campylobacter jejuni. Therefore, the identification of the best methods to reduce the infections of these pathogens from poultry meat represents a critical aspect for producers. The purpose of this study was to identify the histological changes in the liver and to evaluate the influence of some probiotic strains and of some amino acids in the invasion of Campylobacter jejuni. The biological material was represented by poultry broilers, the hybrid ROSS 308, which were allocated randomly in seven experimental groupss, of 10 individuals/group that were treated as follows: G0 (control; G1 - L. paracasei CMGB 18 and L. rhamnosus CMGB 34 (0-42 days; G2 - L. paracasei CMGB 18, L. rhamnosus CMGB 34, L. lactis CMGB 31 and L. lactis CMGB 32 (0-42 days; G3 - L. paracasei CMGB 18 and L. rhamnosus CMGB 34 (35-42 days; G4 - L. paracasei CMGB 18, L. rhamnosus CMGB 34, L. lactis CMGB 31 and L. lactis CMGB 32 (35-42 days; G5 - L. paracasei CMGB 18, L. rhamnosus CMGB 34, L Treonine and DL Methionine (0-42 days; G6 - L. paracasei CMGB 18, L. rhamnosus CMGB 34, L. lactis CMGB 31, L. lactis CMGB 32, L Treonine and DL Methionine (35-42 days. The microscopic aspects pointed out by us in this study suggest the pathogenicity of C. jejuni, marked by the appearance of  inflammatory areas, with the presence of a perivascular and diffuse leukocytes infiltration and, also, presence of pyknotic nuclei. Moreover, the results show the beneficial effect of the probiotic strains L. paracasei CMGB 18, L. rhamnosus CMGB 34, L. lactis CMGB 31 and L. lactis CMGB 32, with the reduction of the changes caused by C.jejuni and the production of toxins, thus preventing the damage of the hepatic cells. The most powerful effect was noticed when all the four probiotic strains were administrated, throughout the experiment 0-42days.

  12. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  13. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    Science.gov (United States)

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  14. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C.M., E-mail: cmromeroi@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: jccadena@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: ingolf.lamprecht@t-online.de [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)

    2011-10-15

    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  15. [Amino acid composition of the rat quadriceps femoris muscle after a flight on the Kosmos-936 biosatellite].

    Science.gov (United States)

    Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P

    1982-01-01

    The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle.

  16. A Modified Amino Acid Analysis Using PITC Derivatization for Soybeans with Accurate Determination of Cysteine and Half-Cystine

    Science.gov (United States)

    Breeding efforts to change amino acid profile of seed protein and the assessment of genetic variation for amino acid composition among soybean germplasm resources have been hampered by lack of a rapid and inexpensive method for amino acid determination. A modified procedure presented here is based p...

  17. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  18. Chiral morphology of calcite through selective binding of amino acids

    Science.gov (United States)

    Orme, Christine

    2002-03-01

    Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals. Peptides and proteins play an important role in achieving this control. Using in situ AFM we find that site-specific binding of amino acid residues to surface steps changes the step-edge free energies, giving rise to direction-specific binding energies unique to individual amino acid enantiomers and leading to chiral modifications that propagate from atomic length scales to macroscopic length scales. Molecular modeling studies support an energetic basis for the differences in binding. Our results emphasize that the mechanism under-lying crystal modification through organic molecules is best understood by considering both stereochemical recognition as well as the effects of binding on the interfacial energies of the growing crystal.

  19. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  20. Twenty natural amino acids identification by a photochromic sensor chip.

    Science.gov (United States)

    Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin

    2015-01-20

    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.

  1. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  2. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  3. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  4. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  5. PHARMACOLOGICAL EFFECTS OF SNAKE VENOM L- AMINO ACID OXIDASES

    OpenAIRE

    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha

    2011-01-01

    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  6. A new synthetic protocol for coumarin amino acid

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2013-02-01

    Full Text Available The hydrochloride of the racemic amino acid (2-(7-hydroxycoumarin-4-ylethylglycine, which can serve as a fluorescent probe in proteins, and two halogen derivatives of it, were synthesized by using a new synthetic protocol in five steps. It is less costly and relatively easy to prepare this kind of fluorescent amino acid with the new synthetic method. Furthermore, it can be applied to synthesize other derivatives of the coumarin amino acid with some specific properties.

  7. A Novel Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Hui; LI Shuo; XU Pen-gFei

    2003-01-01

    @@ β-hydroxy-α-amino acids constitute an important class of compounds as naturally occurring amino acids and as components of many complex natural products possessing a wide range of biological activities. [1] As a consequence of the essential role played by these amino acids in the biological systems and their utility as synthetic building blocks, a number of useful strategies have been devised for their preparation. [2

  8. A new theoretical model for the origin of amino acid homochirality

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid -5'-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the stability of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemical/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further experiments in this area.

  9. Amino Acid transport in protoplasts isolated from soybean leaves.

    Science.gov (United States)

    Vernooy, C D; Lin, W

    1986-05-01

    We isolated large quantities of mesophyll protoplasts from source and sink leaves of soybean plants and examined them for amino acid uptake. Accumulation of amino acids in isolated protoplasts was linear for at least 40 minutes. Uptake kinetics revealed the presence of both saturable and linear components. Increasing external pH decreases the uptake. The uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone at 15 micromolar inhibited and fusicoccin at 10 micromolar stimulated amino acid uptake. Our data are consistent with a proton-cotransport mechanism for the uptake of l-glutamine and alpha-amino isobutyric acid into soybean mesophyll cells.

  10. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  11. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  12. Synthesis of novel fullerene α-amino acid conjugates

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Yan Xia Wang; Feng Kang; Ying Ya Shao; Zong Jie Li; Xin Lin Yang

    2008-01-01

    Aspartie acid and glutamic acid with protected α-amino and α-carboxyl groups had been used to react with the activated hydroxyl group of N-substituted 3,4-fuUero pyrrolidine.The products were deprotected,affording two monofullerene α-amino acids,monofullerene aspartic acid(mFas)and monofullerene glutamic acid(mFgu).Then a bifullerene glutamic acid conjugate (bFguC)was synthesized by reaction of mFgu containing protected amino group with N-subsfimted 3,4-fullero pyrrolidine.

  13. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  14. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  15. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    Directory of Open Access Journals (Sweden)

    E. Barbaro

    2015-01-01

    Full Text Available To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols, particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m−3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m−3 and the coarse particles were found to be enriched with amino acids compared to the coastal site. The amino acid composition had also changed suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V talica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material in the sample.

  16. Serum level changes of insulin-like growth factor-1 and amino acids in children with cerebral palsy following functional exercise plus head acupuncture therapy

    Institute of Scientific and Technical Information of China (English)

    Lihua Zhang; Jiaojiao Du; Xiaojie Li; Zhimei Jiang

    2006-01-01

    BACKGROUND:In the past few years,there were many studies about the pathophysiology of insulin-like growth factor-1(Lgf-1), as well as glutamic acid (GLU) and γ-aminobutydc acid(GABA)in hypoxic-ischemic brain damage (HIBD).IGF-1 plays a protective role in brain damage.The over release of excitatory amino acids (EAA) plays an important role in acute neuronal death,which delays neuronal death.The disproportion of increasing of excitatory and inhibitory amino acids can cause different extent HIBD.However,there is rare report about the change of IGF-1 and neurotransmitter Ievelin serum of cerebral palsy (CP) children.OBJECTIVE:To observe the levels of serum IGF-1.GABA and GLU before and after functional exercise plus head acupuncture therapy and single functional exercise,then study the effective mechanism of IGF-1.GABA and GLU in the occurrence and development of CP,and compare those with normal control group.DESIGN:Case-control study.SETTING:College of Rehabilitation Medicine,Jiamusi University,Prevention and Treatment Center of Child Cerebral Palsy in Heilongjiang Province.PARTICIPANTS:CP group:Sixty CP children came from Prevention and Treatment Center of Child Cerebral Palsy in Heilongjiang Province between April 2005 and March 2006 were selected in this study.All the cases were consistent with the diagnostic criteria and the type of cerebral palsy and finally diagnosed with CT and MRI examinations.There were 35 males and 25 females aged from 8 months to 4 years with the mean age of (2.0±0.5)years.And then,they were randomly divided into two groups.Twenty-six cases were received functional exercise,and the other 34 cases were treated with functional exercise and head acupuncture.Control group: Thirty healthy children were from kindergarten and community for health examination in June 2005.There were 15 males and 15 females aged from 8 month to 4 years with the mean age of(2.0±0.5)years.All guardians agreed with the participation of this experiment.METHODS:

  17. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing.

    Science.gov (United States)

    Bell, Luke; Yahya, Hanis Nadia; Oloyede, Omobolanle Oluwadamilola; Methven, Lisa; Wagstaff, Carol

    2017-04-15

    Five cultivars of Eruca sativa and a commercial variety of Diplotaxis tenuifolia were grown in the UK (summer) and subjected to commercial growth, harvesting and processing, with subsequent shelf life storage. Glucosinolates (GSL), isothiocyanates (ITC), amino acids (AA), free sugars, and bacterial loads were analysed throughout the supply chain to determine the effects on phytochemical compositions. Bacterial load of leaves increased significantly over time and peaked during shelf life storage. Significant correlations were observed with GSL and AA concentrations, suggesting a previously unknown relationship between plants and endemic leaf bacteria. GSLs, ITCs and AAs increased significantly after processing and during shelf life. The supply chain did not significantly affect glucoraphanin concentrations, and its ITC sulforaphane significantly increased during shelf life in E. sativa cultivars. We hypothesise that commercial processing may increase the nutritional value of the crop, and have added health benefits for the consumer.

  18. Some effects of indole on the interaction of amino acids with tryptophanase.

    Science.gov (United States)

    Kazarinoff, M N; Snell, E E

    1980-07-10

    Although indole is a potent inhibitor (KI = 0.01 mM) of pyruvate formation from substrates of tryptophanase (EC 4.1.99.1, from Escherichia coli), we could not detect binding of indole to free tryptophanase (KD greater than 1.0 mM). However, indole, skatole, and toluene increased the affinity of tryptophanase for certain inhibitory amino acids. Binding of amino acids with small side chains (e.g. Ala, Gly) was increased, but there was little or no effect on the binding of amino acids with bulky side chains (e.g. norvaline, ethionine). These effects were quantitated by using changes in the absorption spectra of the enzyme . amino acid complexes. Indole decreases the absorbance obtainable at 500 nm for amino acids with small hydrophobic side chains (L-Ala, Gly), increases this absorbance for amino acids with small polar side chains (beta-cyano-L-alanine), and does not change the spectra of tryptophanase complexes with amino acids with bulky side chains, i.e. amino acids whose binding affinities are unaffected by indole. These spectral differences are interpreted in terms of an effect of bound indole (or side chain binding) on the partitioning of the bound amino acid between catalytic forms of the enzyme. The data indicate that substrate-induced conformational changes occur at the enzyme active site that generate a high affinity indole-binding site during catalytic turnover of tryptophanase and are important in the catalytic functioning of the enzyme. These changes also explain reproducible differences in KI values observed previously for amino acids in different assay systems used for steady state kinetic inhibition studies. The optimal conditions for the growth of E. coli for tryptophanase production are outlined, together with a procedure for purification of holotryptophanase.

  19. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, Robert F [ORNL; Park, Dr Seung Bum [Seoul National University

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  20. EFFECT OF MICROORGANISMS ON FREE AMINO ACID AND FREE D-AMINO ACID CONTENTS OF VARIOUS DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Csilla Albert

    2007-06-01

    Full Text Available Free amino acid and free D-amino acid contents of milk samples with different microorganism numbers and composition of dairy products produced from them were examined. Total microorganism number of milk samples examined varied from 1.25x106 to 2.95x106. It was established that concentration of both free D-amino acids and free L-amino acids increased with an increase in microorganism number. However, increase in D-amino acid contents was higher considering its proportion. There was a particularly significant growth in the microorganism number range from 1.5x106 to 2.9x106. Based on analysis of curds and cheese samples produced using different technologies we have come to the conclusion that for fresh dairy products and for those matured over a short time there was a close relation between total microorganism number and free D-amino acid and free L-amino acid contents. At the same time it was found that the ratio of the enantiomers was not affected by the total microorganism number. For dairy products, however, where amino acid production capability of the microbial cultures considerably exceeds, production of microorganisms originally present in the milk raw material, free amino acid contents of the milk product (both D- and L-enantiomers seem to be independent of the composition of milk raw material.

  1. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  2. Vibrational and photoionization spectroscopy of biomolecules: aliphatic amino acid structures.

    Science.gov (United States)

    Hu, Yongjun; Bernstein, Elliot R

    2008-04-28

    The aliphatic amino acids glycine, valine, leucine, and isoleucine are thermally placed into the gas phase and expanded into a vacuum system for access by time of flight mass spectroscopy and infrared (IR) spectroscopy in the energy range of 2500-4000 cm(-1) (CH, NH, OH, and stretching vibrations). The isolated neutral amino acids are ionized by a single photon of 10.5 eV energy (118 nm), which exceeds by less than 2 eV their reported ionization thresholds. As has been reported for many hydrogen bonded acid-base systems (e.g., water, ammonia, alcohol, acid clusters, and acid molecules), the amino acids undergo a structural rearrangement in the ion state (e.g., in simplest form, a proton transfer) that imparts sufficient excess vibrational energy to the ion to completely fragment it. No parent ions are observed. If the neutral ground state amino acids are exposed to IR radiation prior to ionization, an IR spectrum of the individual isomers for each amino acid can be determined by observation of the ion intensity of the different fragment mass channels. Both the IR spectrum and fragmentation patterns for individual isomers can be qualitatively identified and related to a particular isomer in each instance. Thus, each fragment ion detected presents an IR spectrum of its particular parent amino acid isomer. In some instances, the absorption of IR radiation by the neutral amino acid parent isomer increases a particular fragmentation mass channel intensity, while other fragmentation mass channel intensities decrease. This phenomenon can be rationalized by considering that with added energy in the molecule, the fragmentation channel populations can be modulated by the added vibrational energy in the rearranged ions. This observation also suggests that the IR absorption does not induce isomerization in the ground electronic state of these amino acids. These data are consistent with theoretical predictions for isolated amino acid secondary structures and can be related to

  3. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  4. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.

    Science.gov (United States)

    Gao, Qiang; Xu, Wujun; Xu, Yao; Wu, Dong; Sun, Yuhan; Deng, Feng; Shen, Wanling

    2008-02-21

    In order to disclose the dominant interfacial interaction between amino acids and ordered mesoporous materials, the adsorption behaviors of five amino acids on four mesoporous materials were investigated in aqueous solutions with adjustable amino acid concentration, ion strength, and pH. The selected amino acids were acidic amino acid glutamic acid (Glu), basic amino acid arginine (Arg), and neutral amino acids phenylalanine (Phe), leucine (Leu), and alanine (Ala), and the selected mesoporous materials were SBA-15, Al-SBA-15, CH3(10%)-SBA-15, and CH3(20%)-SBA-15. The adsorption capacities of Glu and Arg were strongly dependent on pH and surface charge of the mesoporous adsorbent. The adsorption of Phe showed pH insensitivity but depended on the surface organic functionalization of mesoporous adsorbent. On the basis of the theoretical analysis about the interaction between amino acid and adsorbent, such a remarkable difference was attributed to the different nature of the interaction between amino acid and adsorbent. Arg could be readily adsorbed on the surface of SBA-15, especially Al-SBA-15, under appropriate pH in which the electrostatic interaction was predominant. The driving force of Phe adsorption on mesoporous adsorbent mainly came from the hydrophobic interaction. Therefore, the adsorption capability of Arg decreased with increasing ion strength of solution, while the adsorption capability of Phe increased with the increasing degree of CH3 functionalization on SBA-15. For neutral amino acid Phe, Ala, and Leu, the adsorption capability increased with the increase of the length of their side chains, which was another evidence of hydrophobic effect. Thus, all the adsorption of amino acids on mesoporous silica materials can be decided by the combined influence of two fundamental interactions: electrostatic attraction and hydrophobic effect.

  5. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    Science.gov (United States)

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  6. Synthesis of gold nanoparticles using various amino acids.

    Science.gov (United States)

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  7. Free amino acids in botanicals and botanical preparations.

    Science.gov (United States)

    Carratù, B; Boniglia, C; Giammarioli, S; Mosca, M; Sanzini, E

    2008-06-01

    Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.

  8. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.

    Science.gov (United States)

    Owczarek, Alina; Safro, Mark; Wolfson, Alexey D

    2008-01-08

    Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.

  9. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  10. The Path of Carbon in Photosynthesis II. Amino Acids

    Science.gov (United States)

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  11. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid models.

    Directory of Open Access Journals (Sweden)

    Andreas Zwick

    Full Text Available BACKGROUND: In a previous study of higher-level arthropod phylogeny, analyses of nucleotide sequences from 62 protein-coding nuclear genes for 80 panarthopod species yielded significantly higher bootstrap support for selected nodes than did amino acids. This study investigates the cause of that discrepancy. METHODOLOGY/PRINCIPAL FINDINGS: The hypothesis is tested that failure to distinguish the serine residues encoded by two disjunct clusters of codons (TCN, AGY in amino acid analyses leads to this discrepancy. In one test, the two clusters of serine codons (Ser1, Ser2 are conceptually translated as separate amino acids. Analysis of the resulting 21-amino-acid data matrix shows striking increases in bootstrap support, in some cases matching that in nucleotide analyses. In a second approach, nucleotide and 20-amino-acid data sets are artificially altered through targeted deletions, modifications, and replacements, revealing the pivotal contributions of distinct Ser1 and Ser2 codons. We confirm that previous methods of coding nonsynonymous nucleotide change are robust and computationally efficient by introducing two new degeneracy coding methods. We demonstrate for degeneracy coding that neither compositional heterogeneity at the level of nucleotides nor codon usage bias between Ser1 and Ser2 clusters of codons (or their separately coded amino acids is a major source of non-phylogenetic signal. CONCLUSIONS: The incongruity in support between amino-acid and nucleotide analyses of the forementioned arthropod data set is resolved by showing that "standard" 20-amino-acid analyses yield lower node support specifically when serine provides crucial signal. Separate coding of Ser1 and Ser2 residues yields support commensurate with that found by degenerated nucleotides, without introducing phylogenetic artifacts. While exclusion of all serine data leads to reduced support for serine-sensitive nodes, these nodes are still recovered in the ML topology

  12. THE D-AMINO ACID CONTENT OF FOODSTUFFS SUBJECTED TO VARIOUS TECHNOLOGICAL PROCEDURES

    Directory of Open Access Journals (Sweden)

    János Csapó

    2000-06-01

    Full Text Available D-amino acids occurring in dietary proteins originate as a consequence of technological intervention while basic materials are being prepared for consumption. Foodstuffs are the most significant sources of D-amino acids, as in the process of cooking or during the various processing procedures used in the food industry dietary proteins undergo racemisation to a greater or lesser degree. Food stores are now selling increasing quantities of foods (such as breakfast cereals, baked potatoes, liquid and powdered infant foods, meat substitutes and other supplements which in some cases contain substantial quantities of D-amino acids, which in turn possess characteristics harmful with respect to digestion and health. Alkali treatment catalyses the racemisation of optically active amino acids. The degree of racemisation undergone varies from protein to protein, but the relative order of the degree of racemisation of the individual amino acids within proteins shows a high level of similarity. The principal factors influencing racemisation are the pH of the medium, heat treatment, the duration of the application of alkaline treatment and the structure of the respective amino acids. D-amino acids formed in the course of treatment with alkalis or heat give rise to a deterioration in quality and reduce the extent to which food thus treated can be used safely. The presence of D-amino acids in proteins leads to a decrease in digestibility and the availability of the other amino acids. This results in a reduction in the quantities of the L-enantiomers of the essential amino acids, as the peptide bonds cannot split in the normal way. Some D-amino acids can exert an isomer-toxic effect and have the capacity to give rise to changes in the biological effect of lysinoalanine.

  13. Capillary electrophoresis combined with microdialysis in the human spinal cord: a new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn.

    Science.gov (United States)

    Parrot, Sandrine; Sauvinet, Valérie; Xavier, Jean-Michel; Chavagnac, Delphine; Mouly-Badina, Laurence; Garcia-Larrea, Luis; Mertens, Patrick; Renaud, Bernard

    2004-06-01

    A method originally developed for the separation of the three neurotransmitters gamma-aminobutyric acid (GABA), glutamate (Glu) and L-aspartate (L-Asp) in microdialysis samples from rat brain (Sauvinet et al., Electrophoresis 2003, 24, 3187-3196) was applied to human spinal dialysates obtained during peroperative microdialysis from patients undergoing surgery against chronic pain. Molecules were tagged on their primary amine function with the fluorogene agent, naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by capillary electrophoresis (CE, 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L sodium dodecyl sulfate and 10 mmol/L hydroxypropyl-beta-cyclodextrin, + 25 kV voltage), were detected by laser-induced fluorescence detection (LIFD) using a 442 nm helium-cadmium laser. The complete method, including microdialysis sampling and analysis by CE-LIFD, has been validated for the analysis of human spinal microdialysates. The analytical detection limits were 1, 3.7 and 17 nmol/L for GABA, Glu and L-Asp respectively. This method allows an accurate measurement of the three amino acid neurotransmitters during an in vivo monitoring performed as rapidly as every minute in the human spinal dorsal horn. In addition, the effect of a brief peroperative electrical stimulation of the dorsal rootlets was investigated. The results obtained illustrate the advantages of combining microdialysis with CE-LIFD for studying neurotransmitters with such a high sampling rate.

  14. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  15. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  16. Representation of protein-sequence information by amino acid subalphabets

    DEFF Research Database (Denmark)

    Andersen, C.A.F.; Brunak, Søren

    2004-01-01

    -sequence information, using machine learning strategies, where the primary goal is the discovery of novel powerful representations for use in AI techniques. In the case of proteins and the 20 different amino acids they typically contain, it is also a secondary goal to discover how the current selection of amino acids...

  17. Origin of Homochirality of Amino Acids in the Biosphere

    Directory of Open Access Journals (Sweden)

    Shosuke Kojo

    2010-05-01

    Full Text Available Discussions are made concerning realistic mechanisms for the origin of L-amino acids in the biosphere. As the most plausible mechanism, it is proposed that a mixture of racemic amino acids in the prebiotic sea caused spontaneous and effective optical resolution through self crystallization, even if asymmetric synthesis of a single amino acid has never occurred without the aid of an optically active molecule. This hypothesis is based on recrystallization of a mixture of D,L-amino acids in the presence of excess of D,L-asparagine (Asn. The enantiomeric excess (ee of each amino acid in the resulting crystals indicates that crystallization of co-existing amino acids with the configuration same as that of Asn took place, although it was incidental whether the enrichment occurred in L- or D-amino acids. In addition, the resulting ee was sufficiently high (up to 100% to account for the predominance of L-amino acids on the earth.

  18. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  19. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  20. Amino acid determination in some edible Mexican insects.

    Science.gov (United States)

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  1. A plasma membrane association module in yeast amino acid transporters

    NARCIS (Netherlands)

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in sili

  2. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  3. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA)

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Site specific incorporation of keto amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  5. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    Science.gov (United States)

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  6. Amino acids: metabolism, functions, and nutrition.

    Science.gov (United States)

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  7. Functional amino acids in nutrition and health.

    Science.gov (United States)

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  8. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  9. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    Science.gov (United States)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  10. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  11. Adaptive amino acid composition in collagens of parasitic nematodes.

    Science.gov (United States)

    Hughes, Austin L

    2015-04-01

    Amino acid composition was analyzed in the glycine-rich repeat region of 306 collagens belonging to three major families of collagens from both parasitic and free-living nematodes. The collagens of parasitic species showed a tendency toward decreased usage of the hydrophilic residues A, D, and Q and increased usage of the hydrophobic resides I, L, and M; and this trend was seen in parasitic species of both the order Rhabdita and the order Spirurida. The amino acid composition of collagens of parasitic Rhabdita thus tended to resemble those of Spirurida more than that of free-living Rhabdita, suggesting an association between amino acid composition and a parasitic lifestyle. Computer predictions suggested that the more hydrophobic amino acid composition was associated with a reduction of the propensity towards B-cell epitope formation, suggesting that evasion of host immune responses may be a major selective factor responsible for the parasite-specific trend in collagen amino acid composition.

  12. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  13. Independence divergence-generated binary trees of amino acids.

    Science.gov (United States)

    Tusnády, G E; Tusnády, G; Simon, I

    1995-05-01

    The discovery of the relationship between amino acids is important in terms of the replacement ability, as used in protein engineering homology studies, and gaining a better understanding of the roles which various properties of the residues play in the creation of a unique, stable, 3-D protein structure. Amino acid sequences of proteins edited by evolution are anything but random. The measure of nonrandomness, i.e. the level of editing, can be characterized by an independence divergence value. This parameter is used to generate binary tree relationships between amino acids. The relationships of residues presented in this paper are based on protein building features and not on the physico-chemical characteristics of amino acids. This approach is not biased by the tautology present in all sequence similarity-based relationship studies. The roles which various physico-chemical characteristics play in the determination of the relationships between amino acids are also discussed.

  14. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  15. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  16. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  17. Amino Acid Profile of Some New Vartieties of Oil Seeds

    Directory of Open Access Journals (Sweden)

    Satish Ingale and S.K. Shrivastava

    2011-04-01

    Full Text Available There are large varieties of oil seeds and legumes in India, which are part of traditional food system but whose nutritional and economic values have not been completely determine and are far less exploited for both human and livestock utilization. The objective of this study was to evaluate Sunflower (Helianths annuus LSF-11, Sunflower (Helianths annuus LSF-8, Safflower (Carthamus tinctorius PBNS-12, Safflower (Carthamus tinctorius PBNS-40, and Ground nut (Arachis hypogaea JL-24 seeds with the aim of qualifying and quantifying chemical information that might serve as a guide to exploit its potentials and benefits for human and animal nutrition. The amino acid profile of these oil seed were carried out using standard methods. Amino acid analysis using technical sequential multisampling amino acid analyzer detected all essential and non essential amino acids. The seeds are rich in four amino acids (EAA and NEAA (g/16g N Glutamic acid (5.083, Aspartic acid (3.459, Proline (6.412 and Methionine (3.001%, respectively. The other amino acids compared well with the FAO reference protein, Serine appeared to be the most limiting amino acid percent. Based on results of this study, the lesser known and under-utilized oil seeds, they can be a potential source and energy supplements in livestock feed.

  18. Elevated amniotic fluid amino acid levels in fetuses with gastroschisis

    Directory of Open Access Journals (Sweden)

    A. Kale

    2006-08-01

    Full Text Available Our objective was to measure maternal plasma and amniotic fluid amino acid concentrations in pregnant women diagnosed as having fetuses with gastroschisis in the second trimester of pregnancy. Twenty-one pregnant women who had fetuses with gastroschisis detected by ultrasonography (gastroschisis group in the second trimester and 32 women who had abnormal triple screenings indicating an increased risk for Down syndrome but had healthy fetuses (control group were enrolled in the study. Amniotic fluid was obtained by amniocentesis, and maternal plasma samples were taken simultaneously. The chromosomal analysis of the study and control groups was normal. Levels of free amino acids and non-essential amino acids were measured in plasma and amniotic fluid samples using EZ:fast kits (EZ:fast GC/FID free (physiological amino acid kit by gas chromatography (Focus GC AI 3000 Thermo Finnigan analyzer. The mean levels of essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine and non-essential amino acids (alanine, glycine, proline, and tyrosine in amniotic fluid were found to be significantly higher in fetuses with gastroschisis than in the control group (P < 0.05. A significant positive correlation between maternal plasma and amniotic fluid concentrations of essential and nonessential amino acids was found only in the gastroschisis group (P < 0.05. The detection of significantly higher amino acid concentrations in the amniotic fluid of fetuses with a gastroschisis defect than in healthy fetuses suggests the occurrence of amino acid malabsorption or of amino acid leakage from the fetus into amniotic fluid.

  19. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  20. Amino Acid Composition of Breast Milk from Urban Chinese Mothers

    Science.gov (United States)

    Garcia-Rodenas, Clara L.; Affolter, Michael; Vinyes-Pares, Gerard; De Castro, Carlos A.; Karagounis, Leonidas G.; Zhang, Yumei; Wang, Peiyu; Thakkar, Sagar K.

    2016-01-01

    Human breast milk (BM) amino acid (AA) composition may be impacted by lactation stage or factors related to geographical location. The present cross-sectional study is aimed at assessing the temporal changes of BMAA over lactation stages in a large cohort of urban mothers in China. Four hundred fifty BM samples, collected in three Chinese cities covering eight months of lactation were analyzed for free (FAA) and total (TAA) AA by o-phthalaldehyde/ fluorenylmethylchloroformate (OPA/FMOC) derivatization. Concentrations and changes over lactation were aligned with previous reports. Both the sum and the individual TAA values significantly decreased during the first periods of lactation and then generally leveled off. Leucine and methionine were respectively the most and the least abundant indispensable amino acids across all the lactation stages, whereas glutamic acid + glutamine (Glx) was the most and cystine the least abundant dispensable AA. The contribution of FAA to TAA levels was less than 2%, except for free Glx, which was the most abundant FAA. In conclusion, the AA composition of the milk from our cohort of urban Chinese mothers was comparable to previous studies conducted in other parts of the world, suggesting that this is an evolutionary conserved trait largely independent of geographical, ethnic, or dietary factors. PMID:27690094

  1. Amino Acid Composition of Breast Milk from Urban Chinese Mothers

    Directory of Open Access Journals (Sweden)

    Clara L. Garcia-Rodenas

    2016-09-01

    Full Text Available Human breast milk (BM amino acid (AA composition may be impacted by lactation stage or factors related to geographical location. The present cross-sectional study is aimed at assessing the temporal changes of BMAA over lactation stages in a large cohort of urban mothers in China. Four hundred fifty BM samples, collected in three Chinese cities covering eight months of lactation were analyzed for free (FAA and total (TAA AA by o-phthalaldehyde/ fluorenylmethylchloroformate (OPA/FMOC derivatization. Concentrations and changes over lactation were aligned with previous reports. Both the sum and the individual TAA values significantly decreased during the first periods of lactation and then generally leveled off. Leucine and methionine were respectively the most and the least abundant indispensable amino acids across all the lactation stages, whereas glutamic acid + glutamine (Glx was the most and cystine the least abundant dispensable AA. The contribution of FAA to TAA levels was less than 2%, except for free Glx, which was the most abundant FAA. In conclusion, the AA composition of the milk from our cohort of urban Chinese mothers was comparable to previous studies conducted in other parts of the world, suggesting that this is an evolutionary conserved trait largely independent of geographical, ethnic, or dietary factors.

  2. PROFIL ASAM LEMAK DAN ASAM AMINO SUSU KAMBING SEGAR DAN TERFERMENTASI [Fatty Acid and Amino Acid Profile of Fresh and Fermented Goat Milk

    Directory of Open Access Journals (Sweden)

    Maria Erna Kustyawati*

    2012-06-01

    Full Text Available This research aimed to investigate the composition of fatty acids and amino acids in fresh and fermented goa-milk. The milk was in oculated with 4% (v/v of L. casei and fermented at 37°C for 48 h. Analysis of fatty acids of fresh and fermented goat and cow’s milk was done by HPLC method, where as amino acid composition was analyzed by GC method. Twenty five semi-trained panelists evaluated the sensory characteristics of fermented milk. Results showed that the fermentation process changed fatty acid profile in goat milk. The saturated fatty acids found in fermented goat-milk were lauric, misristic, and palmitic acid while the unsaturated fatty acids were oleic, linoleic, and linolenic acid. The total amount of saturated fatty acid of fermented goat-milk was higher while unsaturated fatty acid was lower than those in fresh goat milk. The aroma of goaty flavor, strong and musky or “prengus”, was slightly detected in fermented goat milk. Linoleic acid was not detected in fermented goat milk and therefore it was less susceptible from oxidativedeterioration. On the other hand, the fermentation process did not change the profile of amino acids in goat milk. Fermented dairy product made from whole goat milkand cow’s milk was accepted by the panelist as it hadslightly sour taste, yellowish color, and slightly goaty flavor, yet it had high amount of saturated fatty acids.

  3. Amino acid isotope incorporation and enrichment factors in Pacific bluefin tuna, Thunnus orientalis.

    Directory of Open Access Journals (Sweden)

    Christina J Bradley

    Full Text Available Compound specific isotopic analysis (CSIA of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT, a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ(15N∼11.5‰ were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC where they were fed a controlled diet with high δ(15N values relative to PBFT white muscle (diet δ(15N∼13.9‰. Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ(15N values of amino acids across trophic levels are the underlying drivers of the trophic (15N enrichment. Nearly all amino acid δ(15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of (15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies.

  4. Plasmon resonance enhancement of nonlinear properties of amino acids

    Science.gov (United States)

    de Araujo, Renato E.; Rativa, Diego; Gomes, Anderson S. L.

    2007-02-01

    Here we analyze the influence of 9 nm (mean diameter) silver particles on the nonlinear properties of intrinsic cell molecules. A novel high sensitivity thermal managed eclipse Z-scan technique with a femtosecond laser system was used to analyze the nonlinear susceptibility of water solution of fluorescent and non-fluorescent amino acids (Tryptophan, Tyrosine, Phenylalanine, Proline and Histidine) with different concentration of silver nanoparticles. The generalized Maxwell Garnett model is used to explain the behavior of the measured nonlinear refractive index with the change of the nanoparticles concentration in the sample.

  5. Non-protein amino acids in peptide design

    Indian Academy of Sciences (India)

    S Aravinda; N Shamala; Rituparna S Roy; P Balaram

    2003-10-01

    An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the use -aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments and DPro-Xxx segments for nucleating of -hairpin structures. - and -amino acid residues have been used to expand the range of designed polypeptide structures.

  6. Enantioseparation of Amino Acids by Micelle-Enhanced Ultrafiltration : Experimental and Theoretical Studies of Copper(II) Amino Acid Interactions

    NARCIS (Netherlands)

    Bruin, de T.J.M.

    2000-01-01

    A micelle-enhanced ultrafiltration system, which can potentially be used for large scale separations, has been used to investigate the resolution of amino acid enantiomers. For this purpose amino acid derivatives were synthesized, which in combination with copper(II) ions were used as chiral selecto

  7. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution.

    Science.gov (United States)

    Zeng, Yihang; Cai, Wensheng; Shao, Xueguang

    2015-06-01

    A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion-exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non-negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62-108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.

  8. Novel membrane concept of internal pH control in electrodiaylis of amino acids using a segmented bipolar membrane (sBPM)

    NARCIS (Netherlands)

    Kattan-Readi, O.M.; Kuenen, H.J.; Zwijnenberg, H.J.; Nijmeijer, D.C.

    2013-01-01

    In electrodialysis of amino acids, pH-changes play an important role in terms of the efficiency of the process. Due to the zwitterionic character of amino acids, small pH changes may result in significant changes in the charge of the amino acids. This decreases either the recovery of the target ions

  9. Organometallic and Bioorganometallic Chemistry – Ferrocene Amino Acids

    Directory of Open Access Journals (Sweden)

    Barišić, L.

    2012-01-01

    Full Text Available This article is the second part of a series dealing with organometallic and bioorganometallic chemistry. In the first part of this series a short review on the history and development of these disciplines was given, emphasizing the importance and scope of bioorganometallic chemistry as a new field dealing with conjugates of organometallics and biomolecules (DNA, PNA, amino acids, peptides.... From the variety of biorganometallics, syntheses and properties of simple conjugates of ferrocene with natural amino acids/peptides were elaborated inter alia. This material is the basis for the second part in which ferrocene amino acids are described. The introduction presents nonproteinogenic alicyclic and aromatic amino acids as the models for the title compounds. Naturally occurring amino acids labelled with ferrocene moiety mostly retain properties of the biomolecules included. Contrary to these ω-ferrocenylamino acids, one could imagine specific amino acids with inserted ferrocene core belonging to either homo- or heterodisubstituted type. The central part of this article is devoted to our investigations of the second type - H2N-(CH2m-Fn-(CH2n-COOH. The general rational procedure for synthesis of these compounds and of their N- and/or C-protected derivatives via the azide intermediates N3-CO-(CH2m- Fn-(CH2n-COOMe has been described. In the solid state derivatives of ferrocene amino acids contain intermolecular hydrogen bonds giving dimeric structures, three-dimensional networks or endless helical chains. The solutions of homologues Ac-NH-(CH2m-Fn-(CH2n-COOMe in nonpolar solvents are dominated by open form conformers. Compounds containing 2–3 ferrocene cores connected by amide, imide and oxalamide spacers were prepared by oligomerization of 1'-aminoferrocene-1-carboxylic acid (Fca or by its condensation with the appropriate reagents. Similar to natural amino acids, ferrocene amino acids are water-soluble substances with high melting points

  10. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  11. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    Science.gov (United States)

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables.

  12. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  13. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    Directory of Open Access Journals (Sweden)

    Akiyoshi Hoshino

    2009-06-01

    Full Text Available Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1 system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source and keto acids (oxylic acid sources. In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin.

  14. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  15. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  16. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    Science.gov (United States)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    amino fatty acid, but decreased with increasing surfactant loading. This suggested that the amino fatty acid may be tethered to the clay structure via ionic interaction and/or ion-dipole attraction. Significant changes in the clay morphology, particle size and surface charge were observed after organo-modification. Scanning electron microscopy (SEM) revealed that the organo-clays have a disordered and flaky morphology, while the unmodified MMT appeared to be dispersed spherical grains. The effective (Z) diameter of Na+-MMT was found to be ~520 nm, but increased up to ~937 nm upon intercalation of 12-ALA. The zeta potential (ξ) of the clay materials, on the other hand, ranged from -33 mV for undmodified MMT to -16 mv (200CEC-AMMT clay). The possible occupational hazards of working with nanoclays should also be explored. Presently, the MTT-dye reduction assay was performed to determine cell viability of mouse monocyte-macrophages (J774A.1) after direct exposure to the clays. The cytotoxicity of the clays exhibited a chemistry and dose dependent response, with unmodified Na+-MMT as the most cytotoxic while the organo-clays exhibited low toxicity. These results demonstrated the successful intercalation of the surfactant for the production of organophilic clay materials for a wide range of applications.

  17. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    Science.gov (United States)

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  18. Changes in plasma amino acid profiles, growth performance and intestinal antioxidant capacity of piglets following increased consumption of methionine as its hydroxy analogue

    CERN Document Server

    Li, Hao; Mercier, Yves; Zhang, Xiaoling; Wu, Caimei; Wu, Xiuqun; Tang, Li; Che, Lianqiang; Lin, Yan; Xu, Shengyu; Tian, Gang; Wu, De; Fang, Zhengfeng

    2014-01-01

    The aim of the present study was to determine whether early weaning-induced growth retardation could be attenuated by increased consumption of methionine as DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutyrate (HMTBA) in both lactating sows and weaned piglets. Therefore, diets containing DLM and HMTBA at 25\\% of the total sulphur-containing amino acids (AA) present in the control (CON) diet were fed to lactating sows and weaned piglets and their responses were evaluated. Compared with the CON diet-fed sows, the HMTBA diet-fed sows exhibited a tendency (P<0.10) towards higher plasma taurine concentrations and the DLM diet-fed sows had higher (P<0.05) plasma taurine concentrations, but lower (P<0.05) isoleucine concentrations. Suckling piglets in the HMTBA treatment group had higher (P<0.05) intestinal reduced glutathione (GSH) content, lower (P<0.05) oxidised glutathione (GSSG): GSH ratio, and higher (P<0.05) plasma cysteine and glutathione peroxidase (GPx) activity than those in the CON ...

  19. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  20. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Science.gov (United States)

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  1. Distribution of soluble amino acids in maize endosperm mutants

    Directory of Open Access Journals (Sweden)

    Toro Alejandro Alberto

    2003-01-01

    Full Text Available For human nutrition the main source of vegetable proteins are cereal and legume seeds. The content of total soluble amino acids in mature endosperm of wild-type, opaque and floury maize (Zea mays L. mutants were determined by HPLC. The total absolute concentration of soluble amino acids among the mutants varied depending on the mutant. The o11 and o13 mutants exhibited the highest average content, whereas o10, fl3 and fl1 exhibited the lowest average content. In general, the mutants exhibited similar concentrations of total soluble amino acids when compared to the wild-type lines, with the clear exception of mutants o11 and fl1, with the o11 mutant exhibiting a higher concentration of total soluble amino acids when compared to its wild-type counterpart W22 and the fl1 mutant a lower concentration when compared to its wild-type counterpart Oh43. For methionine, the mutants o2 and o11 and wild-type Oh43 exhibited the highest concentrations of this amino acid. Significant differences were not observed between mutants for other amino acids such as lysine and threonine. The high lysine concentrations obtained originally for these mutants may be due to the amino acids incorporated into storage proteins, but not those present in the soluble form.

  2. Microbial contributions to C and N dynamics in decaying litter elucidated by amino acid and amino sugar analyses

    Science.gov (United States)

    Hobara, S.; Osono, T.; Noro, K.; Hirota, M.; Benner, R. H.

    2011-12-01

    There is still much to be revealed about carbon (C) and nitrogen (N) dynamics in terrestrial soil systems. The objectives of this study were to identify molecular changes in composition during plant litter decomposition and gain insights about microbial contributions to C and N dynamics in decaying litter. Litter bag experiments with three plant species, Miscanthus sinensis, Pinus densiflora and Quercus crispula, were conducted for three years, and the concentrations of C, N, amino acids and amino sugars were determined at various times during the experiments. Mass loss (AFDW) ranged from 66-90% for the plant tissues. The weight %C remained fairly constant, whereas the weight %N increased throughout the study indicating N immobilization was occurring. The percentages of C as amino acids and amino sugars also increased throughout the study suggesting these biomolecules were largely of microbial origin. The increasing yields of amino acids and amino sugars were inversely related to overall C loss from the litter material. As microorganisms degraded the plant litter they left behind molecular signatures that were useful predictors of the extent of overall degradation. The C/N ratio of litter decreased throughout the study and was inversely related to galactosamine yields. The glucosamine/galactosamine (GlcN/GalN) ratio gradually declined to values near 2 by the end of the study. Galactoasamine is more abundant in bacteria than fungi, and the declining GlcN/GalN ratio suggest the relative contributions of bacterial to litter C and N increased relative to contributions from fungi. A cluster analysis of 0- and 36-month litters based on amino acid and amino sugar composition showed that 0-month litters of three plant species were separated from 36-month litters, suggesting common diagenetic pathways during decomposition irrespective of plant species. The microbial decomposers contribute to N immobilization and their contributions to the C and N content of litter increases

  3. The origin of amino acids in lunar regolith samples

    Science.gov (United States)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  4. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, Philip Douglas [ORNL; Pan, Chongle [ORNL

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  5. A common periodic table of codons and amino acids.

    Science.gov (United States)

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  6. PROTEINS, PEPTIDES AND AMINO ACIDS AS MARKERS OF BRONCHOPULMONARY DISEASES

    Directory of Open Access Journals (Sweden)

    V. I. Fyodorov

    2013-01-01

    Full Text Available The article is a review of current literature on a content of proteins, peptides and amino acids in human exhaled breath. The results of proteomics and metabolomics applying for selective detection of individual proteins, peptides and amino acids are described. The study of exhaled breath condensate and exhaled endogenous particles contained lung proteins are considered. The peculiarities of protein, peptide and amino acid content in exhaled breath at various respiratory diseases are described. It is shown that the detectable substances may be specific markers of individual diseases.

  7. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  8. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  9. Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, northeastern Pacific Ocean.

    Science.gov (United States)

    Andersson, E; Simoneit, B R; Holm, N G

    2000-09-01

    The Juan de Fuca Ridge is a hydrothermally active, sediment covered, spreading ridge situated a few hundred kilometres off the west coast of North America in the northeastern Pacific Ocean. Sediments from seven sites drilled during the Ocean Drilling Program (ODP) Legs 139 and 168 were analyzed for total hydrolyzable amino acids (THAA), individual amino acid distributions, total organic C (TOC) and total N (TN) contents. The aim was to evaluate the effects of hydrothermal stress on the decomposition and transformation of sedimentary amino acids. Hydrolyzable amino acids account for up to 3.3% of the total organic C content and up to 12% of the total N content of the upper sediments. The total amounts of amino acids decrease significantly with depth in all drilled holes. This trend is particularly pronounced in holes with a thermal gradient of around 0.6 degrees C/m or higher. The most abundant amino acids in shallow sediments are glycine, alanine, lysine, glutamic acid, valine and histidine. The changes in amino acid distributions in low temperature holes are characterized by increased relative abundances of non-protein beta-alanine and gamma-aminobutyric acid. In high temperature holes the amino acid compositions are characterized by high abundances of glycine, alanine, serine, ornithine and histidine at depth. D/L ratios of samples with amino acid distributions similar to those found in acid hydrolysates of kerogen, indicate that racemization rates of amino acids bound by condensation reactions may be diminished.

  10. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente;

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  11. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  12. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility.

    Science.gov (United States)

    Garcia-Effron, Guillermo; Katiyar, Santosh K; Park, Steven; Edlind, Thomas D; Perlin, David S

    2008-07-01

    Candida parapsilosis has emerged as a common cause of invasive fungal infection, especially in Latin America and in the neonatal setting. C. parapsilosis is part of a closely related group of organisms that includes the species Candida orthopsilosis and Candida metapsilosis. All three species show elevated MICs for the new echinocandin class drugs caspofungin, micafungin, and anidulafungin relative to other Candida species. Despite potential impacts on therapy, the mechanism behind this reduced echinocandin susceptibility has not been determined. In this report, we investigated the role of a naturally occurring Pro-to-Ala substitution at amino acid position 660 (P660A), immediately distal to the highly conserved hot spot 1 region of Fks1p, in the reduced-echinocandin-susceptibility phenotype. Kinetic inhibition studies demonstrated that glucan synthase from the C. parapsilosis group was 1 to 2 logs less sensitive to echinocandin drugs than the reference enzyme from C. albicans. Furthermore, clinical isolates of C. albicans and C. glabrata which harbor mutations at this equivalent position also showed comparable 2-log decreases in target enzyme sensitivity, which correlated with increased MICs. These mutations also resulted in 2.4- to 18.8-fold-reduced V(max) values relative to those for the wild-type enzyme, consistent with kinetic parameters obtained for C. parapsilosis group enzymes. Finally, the importance of the P660A substitution for intrinsic resistance was confirmed by engineering an equivalent P647A mutation into Fks1p of Saccharomyces cerevisiae. The mutant glucan synthase displayed characteristic 2-log decreases in sensitivity to the echinocandin drugs. Overall, these data firmly indicate that a naturally occurring P660A substitution in Fks1p from the C. parapsilosis group accounts for the reduced susceptibility phenotype.

  13. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants--it is time to change the composition of the early parenteral nutrition.

    Directory of Open Access Journals (Sweden)

    Francesco Bonsante

    Full Text Available BACKGROUND: Early aggressive parenteral nutrition (PN, consisting of caloric and nitrogen intake soon after birth, is currently proposed for the premature baby. Some electrolyte disturbances, such as hypophosphatemia and hypercalcemia, considered unusual in early life, were recently described while using this PN approach. We hypothesize that, due to its impact on cell metabolism, the initial amino acid (AA amount may specifically influence the metabolism of phosphorus, and consequently of calcium. We aim to evaluate the influence of AA intake on calcium-phosphorus metabolism, and to create a calculation tool to estimate phosphorus needs. METHODS: Prospective observational study. Phosphate and calcium plasma concentrations and calcium balance were evaluated daily during the first week of life in very preterm infants, and their relationship with nutrition was studied. For this purpose, infants were divided into three groups: high, medium and low AA intake (HAA, MAA, LAA. A calculation formula to assess phosphorus needs was elaborated, with a theoretical model based on AA and calcium intake, and the cumulative deficit of phosphate intake was estimated. RESULTS: 154 infants were included. Hypophosphatemia (12.5% and hypercalcemia (9.8% were more frequent in the HAA than in the MAA (4.6% and 4.8% and in the LAA group (0% and 1.9%; both p<0.001. DISCUSSION: Calcium-phosphorus homeostasis was influenced by the early AA intake. We propose to consider phosphorus and calcium imbalances as being part of a syndrome, related to incomplete provision of nutrients after the abrupt discontinuation of the placental nutrition at birth (PI-ReFeeding syndrome. We provide a simple tool to calculate the optimal phosphate intake. The early introduction of AA in the PN soon after birth might be completed by an early intake of phosphorus, since AA and phosphorus are (along with potassium the main determinants of cellular growth.

  14. Initial Amino Acid Intake Influences Phosphorus and Calcium Homeostasis in Preterm Infants – It Is Time to Change the Composition of the Early Parenteral Nutrition

    Science.gov (United States)

    Bonsante, Francesco; Iacobelli, Silvia; Latorre, Giuseppe; Rigo, Jacques; De Felice, Claudio; Robillard, Pierre Yves; Gouyon, Jean Bernard

    2013-01-01

    Background Early aggressive parenteral nutrition (PN), consisting of caloric and nitrogen intake soon after birth, is currently proposed for the premature baby. Some electrolyte disturbances, such as hypophosphatemia and hypercalcemia, considered unusual in early life, were recently described while using this PN approach. We hypothesize that, due to its impact on cell metabolism, the initial amino acid (AA) amount may specifically influence the metabolism of phosphorus, and consequently of calcium. We aim to evaluate the influence of AA intake on calcium-phosphorus metabolism, and to create a calculation tool to estimate phosphorus needs. Methods Prospective observational study. Phosphate and calcium plasma concentrations and calcium balance were evaluated daily during the first week of life in very preterm infants, and their relationship with nutrition was studied. For this purpose, infants were divided into three groups: high, medium and low AA intake (HAA, MAA, LAA). A calculation formula to assess phosphorus needs was elaborated, with a theoretical model based on AA and calcium intake, and the cumulative deficit of phosphate intake was estimated. Results 154 infants were included. Hypophosphatemia (12.5%) and hypercalcemia (9.8%) were more frequent in the HAA than in the MAA (4.6% and 4.8%) and in the LAA group (0% and 1.9%); both pnutrition at birth (PI-ReFeeding syndrome). We provide a simple tool to calculate the optimal phosphate intake. The early introduction of AA in the PN soon after birth might be completed by an early intake of phosphorus, since AA and phosphorus are (along with potassium) the main determinants of cellular growth. PMID:23977367

  15. Bolus ingestion of individual branched-chain amino acids alters plasma amino acid profiles in young healthy men.

    Science.gov (United States)

    Matsumoto, Takuya; Nakamura, Koichi; Matsumoto, Hideki; Sakai, Ryosei; Kuwahara, Tomomi; Kadota, Yoshihiro; Kitaura, Yasuyuki; Sato, Juichi; Shimomura, Yoshiharu

    2014-01-01

    Physiological conditions in humans affect plasma amino acid profiles that might have potential for medical use. Because the branched-chain amino acids (BCAAs) leucine, isoleucine and valine are used as medicines and supplements, we investigated the acute effects of individual BCAAs (10-90 mg/kg body weight) or mixed BCAAs ingested as a bolus on plasma amino acid profiles in young healthy men. Plasma leucine levels rapidly increased and peaked around 30 min after leucine ingestion. Concentrations of plasma isoleucine, valine and phenylalanine subsequently decreased after ingestion, and those of methionine and tyrosine tended to decrease. The effects of ingested leucine on other plasma amino acids were biphasic, being higher at lower doses (10-20 mg/kg body weight). Isoleucine or valine intake also caused corresponding plasma amino acid concentrations to rapidly elevate, and peaks at 30-40 min after ingestion were much higher than that of plasma leucine after leucine ingestion. However, the increase in plasma isoleucine and valine concentrations essentially did not affect those of other plasma amino acids. The rate of decline among peak plasma BCAA concentrations was the highest for leucine, followed by isoleucine and valine. Oral mixed BCAAs promoted the decline in plasma isoleucine and valine concentrations. These results suggest that plasma leucine is a regulator of the plasma concentrations of BCAAs, methionine and aromatic amino acids.

  16. 0~15岁儿童血中氨基酸浓度变化调查%Changes of blood amino acids in children aged 0 - 15 years

    Institute of Scientific and Technical Information of China (English)

    龚振华; 田国力; 王燕敏

    2011-01-01

    Objective To investigate the blood levels of amino acids in children aged 0-15 year, with an attempt to provide evidence for evaluating amino acid status and diagnosing metabolic diseases of amino acid.Methods The blood levels of eleven amino acids in 1900 children aged 0-15 years were determined by tandem mass spectrometry (MS/MS). Results The blood levels of leucine & isoleucine, valine, phenylalanine tyrosine,glycine, proline, ornithine, and alanine gradually decreased after birth, reaching the lowest levels at the ages of 4-6 months, and then gradually increased, reaching the normal range at the ages of 7 months-1 year. The blood levels of alanine and glycine reach the second peaks on the ages of 9 years in girls and on 11 years in boys. The blood levels of methionine and arginine were lowest in the first week of age, became highest in 1-3 months, decreased to the normal ranges after 4-6 months, and kept the level afterwards. The ratios between prosomatic amino acid and productive amino acid, between ornithine and arginine, between citrulline and arginine, and between ornithin and citrulline were highest in the first week of age and decreased to normal values after 3 to 12 months. The concentrations of amino acids in group of 7 months-15 years were significantly different from the group of 1 day-1 month and group of 2-6 months (P <0. 05 or P <0. 01 ). The concentrations of amino acids were significantly higher in females than in males in the group of 1 day-1 month and in all age groups (P <0. 05 or P <0. 01 ) . Conclusions The concentrations and profiles of amino acids change remarkably during the first year of age. Age should be carefully considered when evaluating the nutritional status of amino acid and diagnosing metabolic diseases of amino acids.%目的 调查0~15岁儿童血中氨基酸浓度的变化情况,为评价氨基酸营养状态和诊断氨基酸代谢病提供帮助.方法 以1900名0~15岁儿童为研究对象,采用非衍生法前

  17. Studies related to primitive chemistry. A proton and nitrogen-14 nuclear magnetic resonance amino acid and nucleic acid constituents and a and their possible relation to prebiotic

    Science.gov (United States)

    Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.

    1973-01-01

    Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.

  18. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  19. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Jacobsen, Siv H; Dirksen, Carsten;

    2015-01-01

    . CONCLUSIONS: RYGB accelerates caseinate digestion and amino acid absorption, resulting in faster and higher but more transient postprandial elevation of plasma amino acids. Changes are likely mediated by accelerated intestinal nutrient entry and clearly demonstrate that protein digestion is not impaired after......BACKGROUND: Roux-en-Y gastric bypass (RYGB) involves exclusion of major parts of the stomach and changes in admixture of gastro-pancreatic enzymes, which could have a major impact on protein digestion and amino acid absorption. OBJECTIVE: We investigated the effect of RYGB on amino acid appearance...... in the systemic circulation from orally ingested protein and from endogenous release. DESIGN: Nine obese glucose-tolerant subjects, with a mean body mass index (in kg/m(2)) of 39.2 (95% CI: 35.2, 43.3) and mean glycated hemoglobin of 5.3% (95% CI: 4.9%, 5.6%), were studied before and 3 mo after RYGB. Leucine...

  20. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  1. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    Science.gov (United States)

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  2. Covalently functionalized graphene sheets with biocompatible natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Borandeh, Sedigheh [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-07-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  3. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  4. Sugar amino acids and related molecules: Some recent developments

    Indian Academy of Sciences (India)

    Tushar Kanti Chakraborty; Pothukanuri Srinivasu; Subhasish Tapadar; Bajjuri Krishna Mohan

    2004-06-01

    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create `nature-like’ and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature’s molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solidphase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies.

  5. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat;

    2010-01-01

    BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP...

  6. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  7. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  8. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7...... and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  9. Synthesis and catalytic application of amino acid based dendritic macromolecules

    NARCIS (Netherlands)

    Koten, G. van; Gossage, R.A.; Jastrzebski, J.T.B.H.; Ameijde, J. van; Mulders, S.J.E.; Brouwer, Arwin J.; Liskamp, R.M.J.

    1999-01-01

    The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active organometallic Ni ''pincer'' complexes, via a urea functionality, is described; the dendrimer catalysts have comparable activity to their mononuclear (NCN)NiX analogues.

  10. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  11. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  12. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    Science.gov (United States)

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures.

  13. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  14. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  15. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    Science.gov (United States)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  16. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  17. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  18. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice.

    Science.gov (United States)

    Cerrillo, I; Fernández-Pachón, M S; Collado-González, J; Escudero-López, B; Berná, G; Herrero-Martín, G; Martín, F; Ferreres, F; Gil-Izquierdo, A

    2015-06-01

    The fermentation of fruit produces significant changes in their nutritional composition. An orange beverage has been obtained from the controlled alcoholic fermentation and thermal pasteurization of orange juice. A study was performed to determine the influence of both processes on its amino acid profile. UHPLC-QqQ-MS/MS was used for the first time for analysis of orange juice samples. Out of 29 amino acids and derivatives identified, eight (ethanolamine, ornithine, phosphoethanolamine, α-amino-n-butyric acid, hydroxyproline, methylhistidine, citrulline, and cystathionine) have not previously been detected in orange juice. The amino acid profile of the orange juice was not modified by its processing, but total amino acid content of the juice (8194 mg/L) was significantly increased at 9 days of fermentation (13,324 mg/L). Although the pasteurization process produced partial amino acid degradation, the total amino acid content was higher in the final product (9265 mg/L) than in the original juice, enhancing its nutritional value.

  19. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    Science.gov (United States)

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  20. Amino acids of the fungus Helminthosporium gramineum Rabenh. and of the infested barley grain

    Directory of Open Access Journals (Sweden)

    Elena PERSECA

    1967-08-01

    Full Text Available The present study was carried out in order to determine by chromatographic analysis the amino acids contents of the fungus Helminthosporium gramineum Rabenh., which was found to be relatively high. Even the level of the free and proteic amino acids in the seeds infested by Helminthosporium was higher in comparison with the healthy seeds. In this case some qualitative changes was observed.

  1. Expression of heteromeric amino acid transporters along the murine intestine.

    Science.gov (United States)

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  2. Co2 chemosorption by functionalized amino acid derivatives

    DEFF Research Database (Denmark)

    2015-01-01

    The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid.......The absorption and desorption behaviour of carbon dioxide (CO2) using a composition comprising an ionic compound comprising a cation [A+] and an anion [B-] is described, wherein the anion [B-] is a mono-amine functionalized amino acid....

  3. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  4. Amino acid modifiers in guayule rubber compounds

    Science.gov (United States)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  5. Amino acids change liver growth factors gene expression in malnourished rats Los aminoácidos alteran la expresión genética de factores de crecimiento hepático en ratas macho desnutridas

    Directory of Open Access Journals (Sweden)

    R. Passos de Jesus

    2010-06-01

    Full Text Available Background: Glutamine and proline are metabolized the liver and may collaborate on its regeneration. Parenteral nutrition (PN containing either glutamine or proline was given to partially hepatectomized rats. The total RNA content and growth factor gene expression in hepatic remnants was measured, to determine the effects of these amino acid supplementation on the expression ofgrowth factors during liver regeneration. Methods: Wistar rats nourished (HN and malnourished (HM were hepatectomized and divided in two groups: 20 receiving PN enriched with Alanyl-Glutamine (HN-Gln and HM-Gln and 20 PN enriched with proline+alanine (HN-Pro and HM-Pro. The control groups comprised 7 nourished (CN and 7 malnourished (CM rats that didn't undergo surgery. Growth factor and thymidine kinase mRNA levels were measured by RT-PCR. Results: In nourished rats, total hepatic RNA levels were lower in the HN-Gln and HN-Pro groups (0.75 and 0.63 μg/mg tissue, respectively than in control group (1.67 μg/mg tissue (P Introducción: La glutamina y la prolina de metabolizan en el hígado y pueden contribuir a la regeneración de este. Se administró nutrición parenteral con glutamina o prolina a ratas sometidas a hepatectomía parcial. Se midieron el contenido de ARN total así como la expresión genética del factor de crecimiento en el tejido hepático remanente, con el objetivo de determinar los efectos que provocaban estos aminoácidos en la expresión genética de factores de crecimiento durante el proceso de regeneración del hígado. Métodos: ratas macho Wistar nutridas (HN y desnutridas (HM se sometieron a hepatectomía parcial y se dividieron en dos grupos: 20 recibieron nutrición parenteral enriquecida con Alanil-Glutamina (HN-Gln y HM-Gln y 20 nutrición parenteral enriquecida con prolina+alanina (HNPro y HM-Pro. Los grupos de control estaban formados por 7 ratas nutridas (CN y 7 desnutridas (CM que no se sometieron a la cirugía. Los niveles de factor de

  6. Renal amino acid transport systems and essential hypertension.

    Science.gov (United States)

    Pinto, Vanda; Pinho, Maria João; Soares-da-Silva, Patrício

    2013-08-01

    Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.

  7. Release of selected amino acids from zinc carriers

    Directory of Open Access Journals (Sweden)

    Dyja Renata

    2016-06-01

    Full Text Available The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2 of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol is limited by the tyrosine low solubility in water.

  8. D-Amino Acids in the Nervous and Endocrine Systems

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Kiriyama

    2016-01-01

    Full Text Available Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS, such as Alzheimer’s disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems.

  9. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    Science.gov (United States)

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  10. The preferences of orientations between the Pairs of amino acids

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Wang Jun; Wang Wei

    2007-01-01

    In this work,we make an investigation on the preferences of orientations between amino acids using the orientation defined based on the local geometry of the amino acids concerned.It is found that there are common preferences of orientations (70°,30°,140°) and (110°,340°,100°) for various pairs of amino acids.Different side chains may strengthen or weaken the common preferences,which is related to the effect of packing.Some amino acids having specific local flexibility may possess some preferences of orientations besides the common ones,such as (10°,280°,210°) .Another analysis on the pairs of the amino acids with different secondary-structure preferences shows that the directional interaction may affect the distribution of orientation more effectively than the packing or local flexibility.All these results provide us some insight of the organization of amino acids in protein,and their relation with some related interactions.

  11. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    Science.gov (United States)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  12. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Science.gov (United States)

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid...

  13. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  14. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    OpenAIRE

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research...

  15. Abiotic Racemization Kinetics of Amino Acids in Marine Sediments

    OpenAIRE

    Steen, Andrew D.; Bo Barker Jørgensen; Bente Aa Lomstein

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth be...

  16. Digestible indispensable amino acid score and digestible amino acids in eight cereal grains.

    Science.gov (United States)

    Cervantes-Pahm, Sarah K; Liu, Yanhong; Stein, Hans H

    2014-05-01

    To determine values for the digestible indispensable amino acid score (DIAAS), it is recommended that ileal amino acid (AA) digestibility values obtained in growing pigs are used to characterise protein quality in different foods. Therefore, an experiment was conducted to determine the standardised ileal digestibility (SID) of AA in eight cereal grains (yellow dent maize, Nutridense maize, dehulled barley, dehulled oats, polished white rice, rye, sorghum and wheat) fed to pigs, where SID values in pigs can be used to calculate approximate DIAAS values in humans. In the present experiment, twenty-four barrows with a T-cannula inserted in the distal ileum were allotted to eight diets and fed for three periods to give a total of nine replicate pigs per diet. Each period lasted 14 d, and ileal digesta samples were collected on days 13 and 14. Among the SID values obtained for all cereal grains, values for total indispensable AA were greatest (P< 0·05) in rice and lowest (P< 0·05) in rye and sorghum. The concentrations of SID indispensable AA in rice were less (P< 0·05) than in dehulled oats, but greater (P< 0·05) than in the other cereal grains, and the concentrations of SID indispensable AA in Nutridense maize were greater (P< 0·05) than in yellow dent maize and sorghum, but less (P< 0·05) than in the other cereal grains, except rye. In conclusion, results indicate that to meet dietary requirements for AA in humans, diets based on yellow dent maize or sorghum require more AA supplementation than diets based on other cereal grains.

  17. Oral branched-chain amino acids decrease whole-body proteolysis

    Science.gov (United States)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  18. Abiotic racemization kinetics of amino acids in marine sediments.

    Science.gov (United States)

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  19. Raman spectra of amino acids and their aqueous solutions

    Science.gov (United States)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  20. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  1. In situ measurements of the radiation stability of amino acids at 15-140 K

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Moore, Marla H.; Bell, Jan-Luca

    2012-08-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with 0.8-MeV protons, and amino-acid decay was followed at each temperature with and without H2O present. Observed radiation products included CO2 and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH2sbnd CH2(R)sbnd COOH at 15 K to the zwitterion structure +NH3sbnd CH2(R)sbnd COO- at 140 K for each amino acid studied.

  2. In-Situ Measurements of the Radiation Stability of Amino Acids at 15-140 K

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Moore, Marla H.; Bell, Jan-Luca

    2012-01-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with D.8-MeV protons, and amino-acid decay was followed at each temperature with and without H2O present. Observed radiation products included CO2 and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH2-CH2(R)-COOH at 15 K to the zwitterion structure +NH3-CH2(R)-COO- at 140 K for each amino acid studied.

  3. Effects of insulin and glucagon on serum amino acid concentrations in liver disease.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1982-12-01

    Full Text Available The effects of insulin and glucagon administration on serum amino acid levels were investigated in patients with severe liver disease, since simultaneous injection of pancreatic hormones has been recently introduced as a therapeutic approach. The changes in serum amino acid concentrations, as observed 3 h after ceasing a 3 h infusion of insulin and glucagon in 500 ml glucose solution, were an elevation of serum branched chain amino acid (BACA levels and of the molar ratio of BCAA/aromatic amino acid (AAA levels in patients with liver cirrhosis. Similar increases of serum BCAA levels during the infusion were also observed in patients with fulminant hepatitis. The results suggest that insulin-glucagon therapy for severe liver disease has no harmful side effects at least with respect to alterations in the serum aminogram.

  4. In-situ measurements of the radiation stability of amino acids at 15-140 K

    CERN Document Server

    Gerakines, P A; Moore, M H; Bell, J -L

    2015-01-01

    We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with 0.8-MeV protons, and amino-acid decay was followed at each temperature with and without H$_2$O present. Observed radiation products included CO$_2$ and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH$_2$-CH$_2$(R)-COOH at 15 K to the zwitterion structure $^+$NH$_3$-CH$_2$(R)-COO$^-$ at 140 K for each amino acid studied.

  5. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  6. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  7. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    Science.gov (United States)

    Kitadai, Norio

    2016-06-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  8. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  9. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites.

    NARCIS (Netherlands)

    Costas, B.; Aragao, C.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arjona, F.J.; Mancera, J.M.; Dinis, M.T.; Conceicao, L.E.

    2012-01-01

    Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26 degrees C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino aci

  10. Amino acids in dew - origin and seasonal variation

    Science.gov (United States)

    Scheller, Edwin

    At two sites in the Armenhof district, 10 km east of Fulda, Germany, dew samples were collected from June 1996 to June 1997 and investigated for free and protein-bound amino acids. On account of the high pollen content, at the beginning of June 1996 and in May 1997 total amino acid concentrations were 53-390 μmol l -1, in one sample 922 μmol l -1. At other times the concentration in dew was 8-164 μmol l -1. On 4 and 5 June 1996 the diluted free amino acid fraction (DFAA) of the total hydrolysed amino acids (THAA) at both sites amounted to 35-44% and was predominantly arginine, proline and glutamine/glutamate. Likewise on 11 March 1997 the fraction of DFAA was found to be 39.5% with extremely high arginine and proline fractions. At other times the DFAA-fraction was in the range 14-26%. From July 1996 to June 1997 the amino acid concentrations in the vapours rising from a meadow were also measured and it ranged from 8 to 51 μmol l -1. From July to October 1996 the amino acid composition in the hydrolysates of dew samples and meadow vapours collected overnight were almost identical. The DFAA fraction in the condensation water collected overnight from the meadow varied from 18 to 40%. From 4 to 6 June 1996, on 11 and 13 March 1997 and in the period 16-20 May 1997, the amino acid distribution in dew showed much variation. The percentage fraction of arginine and proline in the hydrolysate increased greatly, whereas that of glycine and serine decreased. The large increase in proline and arginine in hydrolysate is attributable solely to the large amounts of free arginine and proline. This effect occurred in both 1996 and 1997 over several days at both sites at any one time and therefore appears confirmed.

  11. Alterations in amino acid status in cats with feline dysautonomia

    Science.gov (United States)

    Symonds, Herb W.; Knottenbelt, Clare; Cave, Tom A.; MacDonald, Susan J.; Stratton, Joanna; Leon, Irene; Turner, Judith A.; Pirie, R. Scott

    2017-01-01

    Feline dysautonomia (FD) is a multiple system neuropathy of unknown aetiology. An apparently identical disease occurs in horses (equine grass sickness, EGS), dogs, rabbits, hares, sheep, alpacas and llamas. Horses with acute EGS have a marked reduction in plasma concentrations of the sulphur amino acids (SAA) cyst(e)ine and methionine, which may reflect exposure to a neurotoxic xenobiotic. The aim of this study was to determine whether FD cats have alterations in amino acid profiles similar to those of EGS horses. Amino acids were quantified in plasma/serum from 14 FD cats, 5 healthy in-contact cats which shared housing and diet with the FD cats, and 6 healthy control cats which were housed separately from FD cats and which received a different diet. The adequacy of amino acids in the cats’ diet was assessed by determining the amino acid content of tinned and dry pelleted foods collected immediately after occurrences of FD. Compared with controls, FD cats had increased concentrations of many essential amino acids, with the exception of methionine which was significantly reduced, and reductions in most non-essential amino acids. In-contact cats also had inadequate methionine status. Artefactual loss of cysteine during analysis precluded assessment of the cyst(e)ine status. Food analysis indicated that the low methionine status was unlikely to be attributable to dietary inadequacy of methionine or cystine. Multi-mycotoxin screening identified low concentrations of several mycotoxins in dry food from all 3 premises. While this indicates fungal contamination of the food, none of these mycotoxins appears to induce the specific clinico-pathologic features which characterise FD and equivalent multiple system neuropathies in other species. Instead, we hypothesise that ingestion of another, as yet unidentified, dietary neurotoxic mycotoxin or xenobiotic, may cause both the characteristic disease pathology and the plasma SAA depletion. PMID:28333983

  12. Evaluating rare amino acid substitutions (RGC_CAMs in a yeast model clade.

    Directory of Open Access Journals (Sweden)

    Kenneth Polzin

    Full Text Available When inferring phylogenetic relationships, not all sites in a sequence alignment are equally informative. One recently proposed approach that takes advantage of this inequality relies on sites that contain amino acids whose replacement requires multiple substitutions. Identifying these so-called RGC_CAM substitutions (after Rare Genomic Changes as Conserved Amino acids-Multiple substitutions requires that, first, at any given site in the amino acid sequence alignment, there must be a minimum of two different amino acids; second, each amino acid must be present in at least two taxa; and third, the amino acids must require a minimum of two nucleotide substitutions to replace each other. Although theory suggests that RGC_CAM substitutions are expected to be rare and less likely to be homoplastic, the informativeness of RGC_CAM substitutions has not been extensively evaluated in biological data sets. We investigated the quality of RGC_CAM substitutions by examining their degree of homoplasy and internode certainty in nearly 2.7 million aligned amino acid sites from 5,261 proteins from five species belonging to the yeast Saccharomyces sensu stricto clade whose phylogeny is well-established. We identified 2,647 sites containing RGC_CAM substitutions, a number that contrasts sharply with the 100,887 sites containing RGC_non-CAM substitutions (i.e., changes between amino acids that require only a single nucleotide substitution. We found that RGC_CAM substitutions had significantly lower homoplasy than RGC_non-CAM ones; specifically RGC_CAM substitutions showed a per-site average homoplasy index of 0.100, whereas RGC_non-CAM substitutions had a homoplasy index of 0.215. Internode certainty values were also higher for sites containing RGC_CAM substitutions than for RGC_non-CAM ones. These results suggest that RGC_CAM substitutions possess a strong phylogenetic signal and are useful markers for phylogenetic inference despite their rarity.

  13. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  14. A set of amino acids found to occur more frequently in human and fly than in plant and yeast proteomes consists of non-essential amino acids

    OpenAIRE

    2007-01-01

    We investigated the hypothesis that essential amino acids are being replaced in proteins by non-essential amino acids.We compared the amino acid composition in human, worm and fly proteomes, organisms that cannot synthesize all amino acids, with the amino acids of the proteomes of plant, bakers yeast and budding yeast, which are capable of synthesizing them. The analysis covered 460,737 proteins (212,197,907 amino acids). The data suggest a bias towards the usage of non-essential ami...

  15. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    Science.gov (United States)

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  16. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    Science.gov (United States)

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P;

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  18. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  19. Valuable biomolecules from nine North Atlantic red macroalgae: Amino acids, fatty acids, carotenoids, minerals and metals

    DEFF Research Database (Denmark)

    Razi Parjikolaei, Behnaz; Bruhn, Annette; Eybye, Karin Loft

    2016-01-01

    , glutamic acid, and arginine, respectively. The amino acid score of the nine algae varied from 44% to 92%, the most commonly first limiting amino acid being histidine. Lutein, β-carotene, and zeaxanthin were the identified carotenoids. Contents of all macro and trace minerals, with the exception...

  20. Effects of amino acid additives during hemodialysis of children.

    Science.gov (United States)

    Abitbol, C L; Mrozinska, K; Mandel, S; McVicar, M; Wapnir, R A

    1984-01-01

    The intradialytic losses into the dialysate of free amino acids (AA) and alpha-amino nitrogen were determined during the dialysis of three children. Variations in plasma AA were determined pre- and postdialysis. The effect of these losses with the addition of an Abbott General Amino Acid Mixture to the dialysate in concentrations of 8.5, 17, and 34 mg/100 ml was studied. The major determinant of AA losses was the plasma concentration of the AA before beginning the dialysis treatment. Dialysance of individual AA varied inversely with their molecular weights. A zero flux of alpha-amino nitrogen occurred at a derived concentration of 22 mg/100 ml of the AA additive in the dialysate. Plasma concentrations of nonessential amino acids were little affected by the dialysate additive. In contrast, total essential amino acid nitrogen which fell during baseline dialyses showed significant improvement when the AA solution was added to the dialysate. This study suggests that the addition of AA to the dialysate bath may be effective in decreasing AA nitrogen losses during dialysis.

  1. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    according to the ideal protein profile that is compatible with the animal AA demand for normal body function. During the past decades, it has been tried to understand and characterize branched chain amino acids (BCAA) requirements, biological importance, and mode of actions. This is interesting for two...... reasons: first, BCAA share the same enzymes in their catabolic pathways, and there is an interaction among them in a way that excess Leu for example increases the catabolism of them all and changes the requirements. Second, BCAA are not only building blocks of protein biosynthesis, but are also involved...... in important regulatory mechanisms and biological functions, e.g. muscle protein synthesis, chronic diseases, neurotransmitter biosynthesis, and so on. Identifying biomarkers of the BCAA status may help to understand their biological effects. The objectives of the current study were first to estimate Ile, Val...

  2. Photoinduced conductivity in mycosporine-like amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Atul; Lee, Jeong Hun; Seo, Hyo Hyun; Kim, Hyoung-Shik; Cho, Moon Jin; Shin, Dong Sun [Antiaging Research Institute of BIO-FD and C Co. Ltd., Incheon 406-840 (Korea, Republic of); Kim, Taesung [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Moh, Sang Hyun, E-mail: shmoh@biofdnc.com [Antiaging Research Institute of BIO-FD and C Co. Ltd., Incheon 406-840 (Korea, Republic of)

    2015-02-01

    Mycosporine-like amino acids (MAAs) are an important group of novel bioactive compounds having immense biotechnological potentials due to their UV screening properties and antioxidant activities. However, their photoelectric properties were not evaluated yet. In the present work two types of MAAs Shinorine and Porphyra-334, were extracted from algae; Chlamydomonas hedlyei and Porphyra yezoensis respectively and its electrical transport properties were investigated upon illumination of UV light. The combination of optical absorption and electron transport measurement of MAAs in a field effect transistor device reveals that these changes are mainly due to the carboxyl group present in MAAs. This study reports a platform technology for the development of novel biochemical–electrical devices. - Highlights: • MAAs FET shows photoelectric effect upon UV illumination. • Enhancement in photo conductance is due to the hydroxyl ethyl group. • Potential as bio-opto-electrical devices applications.

  3. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  4. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  5. Complete amino acid sequence of the Aspergillus cytotoxin mitogillin

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Luna, J.L.; Lopez-Otin, C.; Soriano, F.; Mendez, E.

    1985-02-12

    The complete amino acid sequence of the cytotoxin mitogillin has been determined by sequencing the intact chain and peptide fragments produced by cleavage at methionyl, arginyl, lysyl, and tryptophanyl residues and at one aspartic acid-proline bond. The protein consists of 149 amino acid residues with alanine at the NH/sub 2/ terminus and histidine at the COOH terminus. The calculated Mr of the native mitogillin was 16,867. The native molecule presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and another one between cysteine residues at positions 75 and 131. The amino acid sequence of mitogillin shows 86% homology with another cytotoxic protein called alpha-sarcin.

  6. Amino acid analogs IV:4-fluoroisoleucine.

    Science.gov (United States)

    Gershon, H; Shanks, L; Clarke, D D

    1978-05-01

    4-Fluoroisoleucine was produced by ammonolysis of 2-bromo-4-fluoro-3-methylpentanoic acid, which resulted from the bromofluorination of 4-methyl-2-pentenoic acid. It did not inhibit Plasmodium berghei in mice at 640 mg/kg and was not toxic to the animals. The fluoroamino acid inhibited Aspergillus niger, Trichoderma viride, Myrothecium verrucaria, Trichophyton mentagrophytes, and Mucor mucedo in Czapek solution agar at a concentration between 10(4) and 10(3) microgram/ml. Growth of Escherichia coli was inhibited 25% at 900 microgram/ml in a defined medium.

  7. Protein and amino acid quality of meat and bone meal.

    Science.gov (United States)

    Parsons, C M; Castanon, F; Han, Y

    1997-02-01

    The in vivo protein quality of 14 meat and bone meals (MBM) was evaluated in three chick growth assays and a 48-h excreta collection assay using conventional and cecectomized roosters. In addition, in vitro evaluation of protein quality was assessed using pepsin N digestibility (0.2, 0.002, or 0.0002% pepsin), KOH protein solubility, and multi-enzyme pH change. Crude protein, lysine, and SAA in the MBM varied from 48 to 56, 2.32 to 3.01, and 1.0 to 2.13%, respectively. Protein efficiency ratio (weight gain:protein intake) estimated from feeding chicks diets containing 9% protein from a MBM ranged from 0.61 to 2.89 and averaged 1.78. Lysine bioavailability determined by slope-ratio chick assay ranged from 43 to 89%. True amino acid digestibility and TMEn values determined in cecectomized roosters were generally lower (P < 0.05) than those determined in conventional roosters. True digestibility of amino acids (percentage) also varied among MBM, with the mean (and range) for lysine, methionine, and cystine in cecectomized birds being 81 (73 to 88), 85 (77 to 91), and 58% (37 to 72%), respectively. Pepsin N digestibility values determined using 0.002 or 0.0002% pepsin were positively correlated (P < 0.05) with lysine digestibility. Pepsin N digestibility determined using 0.2% pepsin, KOH protein solubility, and multi-enzyme pH change were not significantly correlated with in vivo protein quality. Ash content was negatively correlated (-0.80, P < 0.05) with protein efficiency ratio. These results indicated that there is substantial variation in protein quality among commercial MBM and that pepsin N digestibility and ash content are correlated with some in vivo protein quality measurements.

  8. How Amino Acids and Peptides Shaped the RNA World

    Directory of Open Access Journals (Sweden)

    Peter T.S. van der Gulik

    2015-01-01

    Full Text Available The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.

  9. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    Science.gov (United States)

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  10. Amino acid containing glass-ionomer cement for orthopedic applications

    Science.gov (United States)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  11. Impact of dietary aromatic amino acids on osteoclastic activity.

    Science.gov (United States)

    Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-Ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Chutkan, Norman; Robbins, Richard; Nadeau, Hugh; Johnson, Maribeth; Hamrick, Mark W; Isales, Carlos M

    2014-08-01

    We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.

  12. Detection of COL III in parchment by amino acid analysis.

    Science.gov (United States)

    Sommer, Dorte V P; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences, we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7 and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL III content and the degree of deterioration, our results show that this question must be taken into consideration in future studies of the chemical and physical deterioration of parchment measured by amino acid analysis and other analytical methods.

  13. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    Science.gov (United States)

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  14. Industrial production of amino acids by coryneform bacteria.

    Science.gov (United States)

    Hermann, Thomas

    2003-09-04

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.

  15. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  16. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  17. [Research progress and application prospect of near-infrared spectroscopy in analysis of food amino acid].

    Science.gov (United States)

    Yu, Xiao-Lan; Xu, Ning; He, Yong

    2014-09-01

    To investigate the progress and application of near infrared spectroscopy (NIR) used to detect amino acids in the growth of crops and food processing process. With online searching databases including ISI (Web of Knowledge), CNKI (China Knowledge Network), summarize the detection of chemical value using high performance liquid chromatography (HPLC) and chemometric methods involved in the application of NIR used to analyze amino acids in food, meanwhile summarize the data, materials and main topics in relevant original literature. Overview the methods of chemical value detection using HPLC and chemometric analysis, their applications in detecting the quality of crops, determining the content of water, amino acids and polyphenol in green tea, detecting the quality of feed and determining the content of amino acids in cheese, ham and meat products, We forecasted the application of NIR in determining the content of amino acids in food and analyzed its merits and drawbacks. The development of NIR's application in amino acids detection should be based on the HPLC detection, and the problem of model transfer mainly restricts its large-scale promotion currently. Online analysis can monitor the entire reaction and change process from raw materials to products and thus meets the needs of real-time monitoring food quality from production to sales, and it will be an important direction for future.

  18. Proteinous amino acids in hearts' muscle cytosol of rats pretreated with digoxin, caffeine or isoproterenol.

    Science.gov (United States)

    Gabrys, Janusz; Konecki, Janusz; Głowacka, Maria; Durczok, Katarzyna; Nowak, Przemysław; Bielaczyc, Grzegorz; Brus, Ryszard; Shani, Jashovam

    2004-01-01

    Levels of the 19 proteinous amino acids and total free amino acids were assayed by gas-liquid chromatography in cytosols of rat atrial and ventricular muscle cardiomyocytes. The tissues were assayed after the rats had been exposed to the cardioactive drugs digoxin, caffeine, and isoproterenol, each having different mechanisms of action. We demonstrated that, in the atrial and ventricular cardiac muscle cytosol of control (untreated) rats, arginine, glutamine, and cysteine existed in their highest levels: 35.1% and 17.6%; 14.8% and 51.6%; 9.9% and 0.25% of the total free amino acids, respectively. The levels of the other amino acids in the atrial and ventricular cardiac muscle cytosols ranged between 0.1% and 10.0% of the total free amino acids. Digoxin, caffeine, and isoproterenol significantly reduced the total amount of cytosolic free amino acids in the atrial heart muscle cytosol to 7.6%, 9.0%, and 9.2% of the control value (100%), and in the ventricular heart muscle cytosol to 31.1%, 43.2%, and 28.3% of the control. The three drugs tested changed the cytosols' levels of arginine, cysteine, tryptophane, asparagine, and tyrosine in atrial and ventricular heart muscle cytosol, as compared to the control groups (calculated as a percent of the total free amino acids in the experimental groups). The role of proteinous amino acids in the function of the heart muscle and in the mechanism of action of these drugs on the mammalian heart is discussed.

  19. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  20. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44 ± 1% peak oxygen consumption (mean ± SE) until exhaustion (exhaustion...... peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced ( 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P

  1. Hidden thermodynamic information in protein amino acid mutation tables

    Science.gov (United States)

    Phillips, J. C.

    2017-03-01

    We combine the standard 1992 20 × 20 substitution matrix based on block alignment, BLOSUM62, with the standard 1982 amino acid hydropathicity scale KD as well as the modern 2007 hydropathicity scale MZ, and compare the results. The 20-parameter KD and MZ hydropathicity scales have different thermodynamic character, corresponding to first- and second-order transitions. The KD and MZ comparisons show that the mutation rates reflect quantitative iteration of qualitative amino acid-phobic and -philic binary 2 × 10 properties that define quaternary 4 × 5 subgroups (but not quinary 5 × 4 subgroups), with the modern MZ bioinformatic scale giving much better results. The quaternary 5-mer MZ 4 × 5 subgroups are called mutons (Mu5). Among all hydropathicity scales, the MZ scale uniquely exhibits a smooth, deep mutational minimum at its center associated with alanine, glycine, the smallest amino acid, and histidine.

  2. Amino acid sequences of proteins from Leptospira serovar pomona

    Directory of Open Access Journals (Sweden)

    Alves Selmo F

    2000-01-01

    Full Text Available This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  3. Thermochemical study of amino acid imprinted polymer films.

    Science.gov (United States)

    Chai, Ziyi; BelBruno, Joseph J

    2015-11-01

    Molecularly imprinted polymers provide an alternative to traditional methods of amino acid analysis. The imprinted polymers are more robust and significantly less expensive than, for example, ELISA analysis. Amino acid imprinted nylon-6 thin films were studied by differential scanning calorimetry and scanning electron microscopy. Endothermic peaks were observed for imprinted films at temperatures higher than that for pure nylon, indicating the formation of a more-ordered, hydrogen bonded polymer. Removal of the amino acid from the imprinted film resulted in reversion to the peak observed for pure nylon-6. Additives, β-cyclodextrin and multiwalled carbon nanotubes, were added to the imprinted polymer solutions as a means to increase the porosity of the films. These studies resulted in alternative morphologies and calorimetric results that provide additional functionalities and applications for imprinted polymers.

  4. THz time-domain spectroscopy of amino acids

    Institute of Scientific and Technical Information of China (English)

    WANG Weining; YUE Weiwei; YAN Haitao; ZHANG Cunlin; ZHAO Guozhong

    2005-01-01

    The optical characteristics of four kinds of amino acids (tyrosine, arginine, histidine and glutamine) filled with nitrogen at room temperature were studied by THz time-domain spectroscopy (THz-TDS). Well-resolved absorption and refractive spectrums between 0.1 and 2.8 THz were obtained based on the physical model for extracting the optical parameters of materials in THz range. The results not only fill up the spectra gap of amino acids in far-infrared range, supply data for amino acid molecular identification and conformation analysis, but also demonstrate significantly potential to promote the research and application of biological materials in bio-chemical and medical fields by THz-TDS.

  5. Supernovae and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2010-01-01

    A mechanism for creating amino acid enantiomerism that always selects the same global chirality is identified, and subsequent chemical replication and galactic mixing that would populate the galaxy with the predominant species is described. This involves: (1) the spin of the 14N in the amino acids, or in precursor molecules from which amino acids might be formed, coupling to the chirality of the molecules; 2) the neutrinos emitted from the supernova, together with magnetic field from the nascent neutron star or black hole formed from the supernova selectively destroying one orientation of the 14N, and thus selecting the chirality associated with the other 14N orientation; (3) chemical evolution, by which the molecules replicate and evolve to more complex forms of a single chirality on a relatively short timescale; and (4) galactic mixing on a longer timescale mixing the selected molecules throughout the galaxy.

  6. The Studies of the Reactions of 2, 4, 6-Triphenylpyrylium Tetrafluoroborate with Amino Acids

    Institute of Scientific and Technical Information of China (English)

    Shrong Shi LIN; Xian Jing KONG; Jing Yuan LIU; Cheng Yong LI

    2003-01-01

    The reactions of triphenylpyrylium salt 1 with various amino acids were explored andcompared. The reactions with most α-amino acids yielded decarboxylation products 2 viadecarboxylation. The reactions with glutamic acid, lysine and ACC (1-aminocyclopropyl-carboxylic acid) gave triphenylpyridine 8, dimer 9 and acid 5a-acc, respectively. The reactionswith β and γ-amino acids yielded triphenylpyridine by intramolecular elimination.

  7. Detection of Elevated Signaling Amino Acids in Human Diabetic Vitreous by Rapid Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Miao-Jen Lu

    2007-01-01

    Full Text Available Elevated glutamate is implicated in the pathology of PDR. The ability to rapidly assess the glutamate and amino acid content of vitreous provides a more complete picture of the chemical changes occurring at the diabetic retina and may lead to a better understanding of the pathology of PDR. Vitreous humor was collected following vitrectomies of patients with PDR and control conditions of macular hole or epiretinal membrane. A capillary electrophoresis method was developed to quantify glutamate and arginine. The analysis is relatively fast (<6 minutes and utilizes a poly(ethyleneoxide and sodium dodecylsulfate run buffer. Both amino acid levels show significant increases in PDR patients versus controls and are comparable to other reports. The levels of vitreal glutamate vary inversely with the degree of observed hemorrhage. The results demonstrate a rapid method for assessment of a number of amino acids to characterize the chemical changes at the diabetic retina to better understand tissue changes and potentially identify new treatments.

  8. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  9. Analysis of amino acids and carbohydrates in green coffee.

    Science.gov (United States)

    Murkovic, Michael; Derler, Karin

    2006-11-30

    The analysis of carbohydrates and amino acids in green coffee is of the utmost importance since these two classes of compounds act as precursors of the Maillard reaction during which the colour and aroma are formed. During the course of the Maillard reaction potentially harmful substances like acrylamide or 5-hydroxymethyl-furfural accrue as well. The carbohydrates were analysed by anion-exchange chromatography with pulsed amperometric detection and the amino acids by reversed phase chromatography after derivatization with 6-amino-quinolyl-N-hydroxysuccinimidyl carbamate and fluorescence detection. Both methods had to be optimized to obtain a sufficient resolution of the analytes for identification and quantification. Sucrose is the dominant carbohydrate in green coffee with a concentration of up to 90 mg/g (mean = 73 mg/g) in arabica beans and significantly lower amounts in robusta beans (mean=45 mg/g). Alanine is the amino acid with the highest concentration (mean = 1200 microg/g) followed by asparagine (mean = 680 microg/g) in robusta and 800 microg/g and 360 microg/g in arabica respectively. In general, the concentration of amino acids is higher in robusta than in arabica.

  10. Solid state radiolysis of amino acids in an astrochemical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Istituto Nazionale di Astrofisica-Osservatorio Astrofisica di Catania, Via S. Sofia 78, 95123 Catania (Italy); Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Angelini, Giancarlo [Istituto di Metodologie Chimiche, CNR, Via Salaria Km 29300, 00016 Monterotondo Stazione, Rome (Italy); Iglesias-Groth, Susana [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain) and CSIC (Spain)

    2011-01-15

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T{sub 1/2} for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6x10{sup 9} years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6x10{sup 9} years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant k{sub rac}.

  11. Solid state radiolysis of amino acids in an astrochemical perspective

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6×109 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6×109 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant krac.

  12. Changes to Extractable Soil Amino Compounds Under Elevated CO2 and Ozone in an Aspen Plantation

    Science.gov (United States)

    Top, S. M.; Filley, T. R.; Zhang, X.

    2011-12-01

    Forests growing under elevated concentrations of atmospheric CO2 and ozone exhibit changes to root and foliar chemistry and quality that are related to changes in physiology, N limitation, and leaf damage. Additionally, there are documented changes to the activity of some understory invertebrate populations, and a variety of responses to soil organic matter ranging from accrual in the upper few centimeters to loss of soil C and N over the upper 20 cm. Under such conditions, however, the cycling of specific amino compounds is poorly understood. Knowledge of the role that new plant N plays in supporting soil microbial populations and soil C and N dynamics is important to fully understand relationships between N limitation under elevated CO2-induced productivity increases and available organic N pools in soil. We investigated the composition and concentration of hydrolysable amino compounds (amino acids and amino sugars) in litter, roots, soil, and earthworm fecal matter from the free-air CO2 enrichment (FACE) sites at Rhinelander, WI. Under elevated CO2 amino acids, when normalized to total N, exhibited change in both amount (decrease) and composition among roots (amino acids showed only minor changes with depth in the ambient and ozone treatments. Ozonated rings exhibited a lower release of amino compounds (with respect to total N) compared to ambient and elevated CO2, which may suggest poorer quality input. For soil organic matter extractable amino acids (normalized to total soil N) exhibited changes similar to roots among the treatment. These results indicate that CO2 and ozone significantly influence amino compound dynamics in both soil and input which should impact the overall ability to decompose and preserve soils in such environments.

  13. [Spectrophotometric determination of aromatic amino compounds with J-acid].

    Science.gov (United States)

    Yin, Xiao-hang; Shi, Wen-jian; Shen, Xin; Ma, Jun-tao; Li, Liang

    2015-01-01

    The problems such as chromogenic reaction selectivity, reaction rate, sensitivity and water-solubility of azo compounds were considered. The molecular structures of coupling components were theoretically designed and screened in the present research The reaction conditions and methods of chromogenic reaction were investigated. J-Acid (2-amino-5-naphthol-7-sulfonic acid) as a coupling reagent to determine aromatic amino compounds was established. In the presence of potassium bromide, at room temperature, nitrite reacted with aromatic amino compounds in the medium of thin hydrochloric acid. Then diazonium salt reacted with J-Acid in the aqueous solution of sodium carbonate, forming coloured azo dye, which had a maximum adsorption at 480 nm. The molar adsorption coeffcients of aniline, 4-aminobenzene sulfonic acid and 1-naphthylamine were 3. 95 X 10(4), 3. 24 X 10(4) and 3. 91 X 10(4) L . mol-1 . cm-1 , respectively. Experimental results showed that common coexisting ions on the surface water did not affect the results of determination. J-Acid of spectrophotometry was used to determine the samples of Shanghai Fu Xing Dao canal. Meanwhile, recovery experiments by standard addition method were done. Experiment results showed that the recoveries of aniline were in the range of 98. 5%-102. 1%, and RSD was 2. 08%. J-Acid is a common organic reagent. It is soluble in water and low volatile, and its toxicity is much lower than N-ethylenediamine. spectrophotometric determination of aromatic amino compounds by J-Acid has the advantage of high sensitivity, good selectivity, simple rapid operation and accurate results, and thus it can be used for the determination of trace aromatic amino compounds in the environmental water.

  14. Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes

    DEFF Research Database (Denmark)

    Bohlin, Jon; Brynildsrud, Ola Brønstad; Vesth, Tammi Camilla;

    2013-01-01

    Introduction: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon...

  15. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall;

    2016-01-01

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find...

  16. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  17. Regulation of intestinal mucosal growth by amino acids.

    Science.gov (United States)

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  18. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    Science.gov (United States)

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  19. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs.

    Science.gov (United States)

    García-Villalobos, Héctor; Morales-Trejo, Adriana; Araiza-Piña, Benedicto A; Htoo, John K; Cervantes-Ramírez, Miguel

    2012-08-01

    The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.

  20. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    Science.gov (United States)

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    .66; p<0.05). Fasting blood glucose levels were significantly correlated to serum alanine levels (r=0.70; p<0.05). Although Homa-R was significantly correlated to BMI in active patients (r=0.74 p<0.05), it was not correlated to amino acid levels. In conclusion, the results of the current study demonstrate that patients with CD have significant changes in serum and urinary concentration of several amino acids and changes in renal clearance of some specific amino acids. Normalization of cortisol levels restored the amino acid profile.

  1. Genetic analysis of amino acid content in wheat grain

    Indian Academy of Sciences (India)

    Xiaoling Jiang; Peng Wu; Jichun Tian

    2014-08-01

    Complete diallel crosses with five parents of common wheat (Triticum aestivum L.) were conducted to analyse inheritance of 17 amino acid contents by using the genetic model including seed, cytoplasmic, maternal and environment interaction effects on quantitative traits of seeds in cereal crops. The results showed that inheritance of 17 amino acid contents, except tyrosine, was controlled by several genetic systems including seed, cytoplasmic, and maternal effects, and by significant gene × environment interaction effects. Seed-direct additive and maternal effects constituted a major part of genetic effects for lysine, tyrosine, arginine, methionine, and glutamic acid content. Seed-direct additive effect formed main part in inheritance of isoleucine and serine contents. Threonine content was mainly governed by maternal additive effect. The other nine amino acid contents were almost entirely controlled by dominance effects. High general heritability of tyrosine (36.3%), arginine (45.8%), lysine (24.7%) and threonine (21.4%) contents, revealed that it could be effective to improve them by direct selection in progenies from appropriate crosses. Interaction heritability for phenylalanine, proline, and histidine content, which was 36.1%, 39.5% and 25.7%, respectively, was higher than for the other amino acids.

  2. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    OpenAIRE

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-01-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with C-13-enriched glucose and N-15-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and C-13- and N-15 content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholip...

  3. 3-{[(Benzyloxycarbonyl]amino}butanoic acid

    Directory of Open Access Journals (Sweden)

    Isao Fujii

    2011-10-01

    Full Text Available In the title compound, C12H15NO4, the butyric acid group has a stretched trans conformation. The dihedral angle between the phenyl ring and the oxycarboxyamino N—(C=O—O—C plane is 56.6 (2°. In the crystal, an inversion dimer is formed by a pair of O—H...O hydrogen bonds. The dimers are further linked by N—H...O hydrogen bonds between amide groups, forming a tape along the b axis.

  4. Unique roles of acidic amino acids in phase transformation of calcium phosphates.

    Science.gov (United States)

    Chu, Xiaobin; Jiang, Wenge; Zhang, Zhisen; Yan, Yang; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2011-02-10

    Although phase transformation is suggested as a key step in biomineralization, the chemical scenario about how organic molecules mediate inorganic phase transformations is still unclear. The inhibitory effect of amino acids on hydroxyapatite (HAP, the main inorganic component of biological hard tissues such as bone and enamel) formation was concluded by the previous biomimetic modeling based upon direct solution crystallization. Here we demonstrate that acidic amino acids, Asp and Glu, could promote HAP crystallization from its precursor crystal, brushite (DCPD). However, such a promotion effect could not be observed when the nonacidic amino acids were applied in the transformation-based HAP formation. We found that the specific modification of acidic amino acid on crystal-solution interfaces played a key role in the phase transition. The distinct properties between DCPD and HAP in the solution resulted in an interfacial energy barrier to suppress the spontaneous formation of HAP phase on DCPD phase. Different from the other amino acids, the carboxylate-rich amino acids, Asp and Glu, could modify the interfacial characteristics of these two calcium phosphate crystals to make them similar to each other. The experiments confirmed that the involvement of Asp or Glu reduced the interfacial energy barrier between DCPD and HAP, leading to a trigger effect on the phase transformation. An in-depth understanding about the unique roles of acidic amino acids may contribute to understanding phase transformation controls druing biomineralization.

  5. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens.

    Science.gov (United States)

    Cowieson, A J; Ravindran, V; Selle, P H

    2008-11-01

    The effects of phytic acid and 2 sources of exogenous phytase (bacterial vs. fungal) on the flow of endogenous amino acids at the terminal ileum of broilers were assessed using the enzyme-hydrolyzed casein method. Phytic acid (as the sodium salt) was included in a purified diet at 8.5 and 14.5 g/kg, and each diet was fed without or with a fungal (Aspergillus niger-derived) or a bacterial (Escherichia coli-derived) microbial phytase at 500 phytase units/kg of diet. Increasing the concentration of phytic acid in the diet from 8.5 to 14.5 g/kg increased (P acids by an average of 68%, with a range from 17% for proline to 145% for phenylalanine. The flow of endogenous aspartic acid, serine, glutamic acid, glycine, leucine, tyrosine, phenylalanine, and histidine were increased by more than the mean, indicating changes in the composition of endogenous protein in response to the presence of higher concentrations of phytic acid. Supplementation of both phytases reduced (P acids, but the reduction (P = 0.06) was greater for the bacterial phytase compared with the fungal phytase. These data suggest that a substantial part of the amino acid and energy responses observed following phytase supplementation in broiler chickens stems from reduced endogenous amino acid flows and that the capacity of different phytases to counteract the antinutritive properties of phytic acid vary.

  6. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Pedersen, Anders Gorm

    2007-01-01

    ABSTRACT: BACKGROUND: Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues - coevolution. Our goal is to find these coevolving residues. RESULTS: We present six new methods for detecting coevolving...... residues. Among other things, we suggest measures that are variants of Mutual Information, and measures that use a multidimensional representation of each residue in order to capture the physico-chemical similarities between amino acids. We created a benchmarking system, in silico, able to evaluate...

  7. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  8. Altered amino acid excretion in children with autism.

    Science.gov (United States)

    Evans, Craig; Dunstan, R Hugh; Rothkirch, Tony; Roberts, Tim K; Reichelt, Karl L; Cosford, Robyn; Deed, Gary; Ellis, Libby B; Sparkes, Diane L

    2008-02-01

    Autism is a complex and life-long behavioural disorder of unknown aetiology. Recent reports have indicated the involvement of digestive tract dysfunction and possible complications from inadequate nutrition. In this study, 34 autistic children (12 untreated and 22 receiving therapeutic treatments related to digestive function and nutritional uptake) and 29 control subjects (all 5-15 years of age) were investigated to determine whether there were any anomalies in the urinary excretion of amino acids, glucose, sucrose, arabinose and tartaric acid using GC/FID and GC/MS analysis techniques. Significantly lower relative urinary levels of essential amino acids were revealed for both the untreated (mean +/- SEM, 32.53 +/- 3.09%) and treated (31.98 +/- 2.87%) autistic children compared with the controls (37.87 +/- 1.50%). There were no significant differences in measured excretions of sugars or tartaric acid. It was concluded that the untreated autistic children had evidence of altered metabolic homeostasis.

  9. Chiral Recognition of Amino Acids by Magnetoelectrodeposited Cu Film Electrodes

    Directory of Open Access Journals (Sweden)

    Iwao Mogi

    2011-01-01

    Full Text Available Chiral behavior of magnetoelectrodeposited (MED Cu film electrodes was investigated for the electrochemical reactions of amino acids. The Cu films were electrodeposited under a magnetic field of 5 T perpendicular to the electrode surface. Such MED Cu films were employed as an electrode, and cyclic voltammograms were measured for the electrochemical reactions of several kinds of amino acids. Chiral behavior was clearly observed as oxidation current difference between the enantiomers of alanine, aspartic acid, and glutamic acid. The MED film electrodes with the thickness of 50~500 nm exhibited such chiral behavior, and their surface morphologies had network structures, which could be induced by the micro-MHD effect.

  10. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  11. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    Science.gov (United States)

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  12. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  13. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids.

    Science.gov (United States)

    Mutaguchi, Yuta; Ohmori, Taketo; Akano, Hirofumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

  14. The Synthesis and Evaluation of Arctigenin Amino Acid Ester Derivatives.

    Science.gov (United States)

    Cai, En-Bo; Yang, Li-Min; Jia, Cai-Xia; Zhang, Wei-Yuan; Zhao, Yan; Li, Wei; Song, Xing-Zhuo; Zheng, Man-Ling

    2016-10-01

    The use of arctigenin (ARG), a traditional medicine with many pharmacological activities, has been restricted due to its poor solubility in water. Five amino acid derivatives of ARG have been synthesized using glycine, o-alanine, valine, leucine, and isoleucine, which have t-butyloxy carbonyl (BOC) as a protective group. In this study, we examined the effects of removing these protective groups. The results showed that the amino acid derivatives have better solubility and nitrite-clearing ability than ARG. Among the compounds tested, the amino acid derivatives without protective group were the best. Based on these results, ARG and its two amino acid derivatives without protective group (ARG8, ARG10) were selected to evaluate their anti-tumor activity in vivo at a dosage of 40 mg/kg. The results indicated that ARG8 and ARG10 both exhibit more anti-tumor activity than ARG in H22 tumor-bearing mice. The tumor inhibition rates of ARG8 and ARG10 were 69.27 and 43.58%, which was much higher than ARG. Furthermore, the mice treated with these compounds exhibited less damage to the liver, kidney and immune organs compared with the positive group. Furthermore, ARG8 and ARG10 improved the serum cytokine levels significantly compared to ARG. In brief, this study provides a method to improve the water solubility of drugs, and we also provide a reference basis for new drug development.

  15. One-Pot Synthesis of N-Phosphoryl Amino Acids

    Institute of Scientific and Technical Information of China (English)

    GUO Xin; FU Hua; LIN Chang-Xue; ZHAO Yu-Fen

    2003-01-01

    @@ Phosphoramidates have been considered as an important class of rationally designed therapeutics especially asoligonucleotide analogs employed as antisene and antigene agents. [1] N-Phosphoryl amino acids are of biological andpharmaceutical interest, [2] and can be used as the building blocks in synthesis of polypeptides. [3

  16. tRNAs: cellular barcodes for amino acids

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Chen, Shawn; Dare, Kiley

    2010-01-01

    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has a...

  17. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  18. Integrated Micro-Chip Amino Acid Chirality Detector for MOD

    Science.gov (United States)

    Glavin, D. P.; Bada, J. L.; Botta, O.; Kminek, G.; Grunthaner, F.; Mathies, R.

    2001-01-01

    Integration of a micro-chip capillary electrophoresis analyzer with a sublimation-based extraction technique, as used in the Mars Organic Detector (MOD), for the in-situ detection of amino acids and their enantiomers on solar system bodies. Additional information is contained in the original extended abstract.

  19. Stereoselective synthesis of amino acid derivatives using carbohydrates as templates

    OpenAIRE

    Kunz, Horst; Sager, Wilfried; Pfrengle, Waldemar; Laschat, Sabine; Schanzenbach, Dirk

    1993-01-01

    Glycosylamines contain the easily cleavable semi-aminal-type N-glycosidic bond. O-Protected glycosylamines, therefore, can advantageously be used as a form of "asymmetric ammonia", for instance, in Strecker syntheses and in Ugi reactions to give amino acid amides as well as in modifications of the Mannich reaction.

  20. Syntrophic degradation of amino acids by thermophilic methanogenic consortia

    NARCIS (Netherlands)

    Plugge, C.M.

    2001-01-01

    Waste water usually contains large amounts of different organic compounds. A variety of microbial processes are involved in the anaerobic methanogenic treatment of waste water, such as hydrolysis of lipids, polysaccharides and proteins, fermentation of sugars and amino acids, acetogenic conversion o

  1. Amino acid salt solutions for carbon dioxide capture

    NARCIS (Netherlands)

    Majchrowicz, Magdalena Elzbieta

    2014-01-01

    Reactive absorption is a common process in the chemical industry and is used, among others, in the treatment of CO2 containing industrial gas streams. The current work was a part of a project with the aim to assess new reactive solvents based on amino acid salts for CO2 removal from industrial gas s

  2. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes

    Directory of Open Access Journals (Sweden)

    ANDREEA STĂNILĂ

    2011-11-01

    Full Text Available The antibacterial properties of differently copper and cobalt amino acids complexes on agar plates was investigated in the present study. The antibacterial activity of amino acid complexes was evaluated against on three bacteria strains (Escherichia coli, Bacillus cereus, Micrococcus luteus. Generally, the amino acids complexes were mainly active against gram-positive organisms, species like Micrococcus luteus being the most susceptible strain tested. It was registered a moderate antibacterial activity against Bacillus cereus. The microorganisms Escherichia coli, which are already known to be multi-resistant to drugs, were also resistant to the amino acids complexes but also to the free salts tested. Escherichia coli were susceptible only to the CoCl2 and copper complex with phenylalanine. The complexes with leucine and histidine seem to be more active than the parent free ligand against one or more bacterial species. Moderate activity was registered in the case of complexes with methionine and phenylalanine. From the complexes tested less efficient antibacterial activity was noted in the case of complexes with lysine and valine. These results show that cobalt and copper complexes have an antibacterial activity and suggest their potential application as antibacterial agents.

  3. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall;

    2016-01-01

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable ...

  4. Association Analysis of the Amino Acid Contents in Rice

    Institute of Scientific and Technical Information of China (English)

    Weiguo Zhao; Eun-Jin Park; Jong-Wook Chung; Yong-Jin Park; III-Min Chung; Joung-Kuk Ahn; Gwang-Ho Kim

    2009-01-01

    The main objective of the present study was to identify simple sequence repeat (SSR) markers associated with the amino acid content of rice (Oryza sativa L.). SSR markers were selected by prescreening for the relationship to amino acid content. Eighty-four rice landrace accessions from Korea were evaluated for 16 kinds of amino acids in brown rice and genotyped with 25 SSR markers. Analysis of population structure revealed four subgroups in the population. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide mapping associations. The mean r2 value for all intrachromosomal loci pairs was 0.033. LD between linked markers decreased with distance. Marker-trait associations were investigated using the unified mixed-model approach, considering both population structure (Q) and kinship (K). A total of 42 marker-trait associations with amino acids (P < 0.05) were identified using 15 different SSR markers covering three chromosomes and explaining more than 40% of the total variation. These results suggest that association analysis In rice is a viable alternative to quantitative trait loci mapping and should help rice breeders develop strategies for improving rice quality.

  5. Chlorine dioxide reaction with selected amino acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Navalon, Sergio; Alvaro, Mercedes [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain); Garcia, Hermenegildo, E-mail: hgarcia@qim.upv.es [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain)

    2009-05-30

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO{sub 2} with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO{sub 2} were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO{sub 2} creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO{sub 2} with ubiquitous amino acids present in natural waters.

  6. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  7. Third generation capture system: precipitating amino acid solvent systems

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Misiak, K.; Ham, L. van der; Goetheer, E.L.V.

    2013-01-01

    This work summarises the results of the design of novel separation processes for CO2 removal from flue gas based on precipitating amino acid solvents. The processes here described (DECAB, DECAB Plus and pH-swing) use a combination of enhanced CO2 absorption (based on the Le Chatelier’s principle) an

  8. Progress Toward an Enceladus Amino Acid Sampler Astrobiology Instrument

    Science.gov (United States)

    Kirby, J. P.; Willis, P. A.; Blacksberg, J.

    2012-12-01

    The development of a new astrobiolgoy instrument for exploring the trace chemical composition of the Enceladus jets and plume, and the e-ring of Saturn is presented. The Enceladus amino acid sampler (EAAS) allows for detection of amino acids using optical Raman spectroscopy integrated with a sample pre-concentration system. The pre-concentration process facilitates the delivery of a sample to a mass spectrometer for detection of specific amino acids. The initial EAAS design utilizes lab-on-a-breadboard components where a sample inlet, sample outlet, reagents, controllers, pumps, valves and pre-concentration column for the EAAS prototype are all assembled on a 5" x 7" breadboard. The pre-concentration process is controlled using automation scripts and software. An optical window allows a Raman spectrometer to directly monitor the pre-concentration of amino acids in a filter/column loaded with of a strong cation exchange resin. Initial samples to demonstrate EAAS simulate the conditions of Don Juan Pond, one of the coldest and saltiest bodies of liquid water on Earth, located in the Wright Valley of Antarctica. This EAAS development is an important step toward a new type of astrobiology science instrument that is capable of operating on a spacecraft in flight or in orbit.

  9. Formation mechanism of coamorphous drug−amino acid mixtures

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Larsen, Flemming Hofmann; Cornett, Claus

    2015-01-01

    Two coamorphous drug−amino acid systems, indomethacin−tryptophan (Ind−Trp) and furosemide−tryptophan Fur−Trp), were analyzed toward their ease of amorphization and mechanism of coamorphization during ball milling. The two mixtures were compared to the corresponding amorphization of the pure drug...

  10. Branched-chain amino acids for people with hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gluud, Lise Lotte; Dam, Gitte; Les, Iñigo;

    2015-01-01

    -chain amino acids (BCAA) versus control interventions has evaluated if BCAA may benefit people with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of BCAA versus any control intervention for people with hepatic encephalopathy. SEARCH METHODS: We identified trials through...

  11. Chiroptical Properties of Amino Acids: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Martine Adrian-Scotto

    2010-04-01

    Full Text Available Amino acids are involved in many scientific theories elucidating possible origins of life on Earth. One of the challenges when discussing the evolutionary origin of biopolymers such as proteins and oligonucleotides in living organisms is the phenomenon that these polymers implement monomers of exclusively one handedness, a feature called biomolecular homochirality. Many attempts have been made to understand this process of racemic symmetry breaking. Assuming an extraterrestrial origin of the molecular building blocks of living organisms, their susceptibility to asymmetric photolysis by the absorption of circularly polarized electromagnetic radiation in interstellar space was proposed. In order to predict whether the interaction of circularly polarized light with various racemic amino acids can induce an enantiomeric excess, we investigated the electronic and chiroptical properties of the amino acids valine and isovaline by a molecular modelling approach based on quantum chemistry (Density Functional Theory. The average spectra of both L-valine and L-isovaline have been produced on the basis of Boltzmann population analysis using computed spectra for the various conformations of each amino acid.

  12. Adsorption of aromatic amino acids in a fixed bed column

    Directory of Open Access Journals (Sweden)

    M.A. Cremasco

    2003-09-01

    Full Text Available Phenylalanine (Phe and tyrosine (Tyr are two of the twenty amino acids in proteins; they are classified as aromatic amino acids, because both have a benzene ring in their structures. These amino acids are important in the synthesis of several biologically active amines, such as beta-endorphin, a neurotransmitter. Amino acids can be separated by ion-exchange chromatography. In this case, it is important that fixed-bed adsorber design adequately predict the breakthrough curve. This work presents a mathematical model for both fluid and porous phases. In the solution proposed for this model the liquid-phase concentration inside the particles is solved analytically and is related to the liquid-phase concentration in the bed using Duhamel's theorem. The solution for liquid-phase concentration in the bed is then solved numerically instead of analytically. The basic mass transfer parameters are from the literature. The results from the model are compared with those obtained experimentally using Phe and Tyr diluted in aqueous solutions in a fixed bed of PVP (poly-4-vinylpyridine resin.

  13. Single amino acid supplementation in aminoacidopathies : a systematic review

    NARCIS (Netherlands)

    van Vliet, Danique; Derks, Terry G. J.; van Rijn, Margreet; de Groot, Martijn J.; MacDonald, Anita; Heiner-Fokkema, M. Rebecca; van Spronsen, Francjan J.

    2014-01-01

    Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with

  14. Induction of DNA damage by oxidised amino acids and proteins

    DEFF Research Database (Denmark)

    Luxford, Catherine; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Exposure of amino acids, peptides and proteins to radicals in the presence of O2 generates hydroperoxides in a dose-dependent manner. These hydroperoxides are stable in the absence of exogenous catalysts (e.g. heat, light, redox-active transition metal ions), but decompose rapidly in the presence...

  15. Child stunting is associated with low circulating essential amino acids

    Science.gov (United States)

    Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of childr...

  16. CSF Amino Acids, Pterins and Mechanism of the Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic.

  17. Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Jing Fan

    2012-01-01

    Full Text Available Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n=15, early gastric cancer inpatients in group B (n=7, and advanced gastric cancer inpatients in group C (n=16; in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n=5 to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC of receiver-operating characteristic (ROC curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P<0.05, but the levels of histidine and methionine decreased (P<0.05, and aspartate decreased significantly (P<0.01. The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P<0.05. A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by

  18. What makes ribosome-mediated transcriptional attenuation sensitive to amino Acid limitation?

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with "regulatory" codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal determines the expression of the amino acid biosynthetic operon (response. The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the

  19. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation?

    Directory of Open Access Journals (Sweden)

    Johan Elf

    2005-06-01

    Full Text Available Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with "regulatory" codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal determines the expression of the amino acid biosynthetic operon (response. The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the

  20. What Makes Ribosome-Mediated Transcriptional Attenuation Sensitive to Amino Acid Limitation?

    Science.gov (United States)

    Elf, Johan; Ehrenberg, Måns

    2005-01-01

    Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with “regulatory” codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal) determines the expression of the amino acid biosynthetic operon (response). The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated) can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the same amino acid

  1. Diagenetic alterations of amino acids and organic matter in the upper Pearl River Estuary surface sediments

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2011-03-01

    Full Text Available The objective of this study was to investigate the sources, diagenetic alterations of, and bacterial contributions to sediment organic matter (OM in the upper Pearl River Estuary. Sediment analyses were conducted for three size fractions of OM, including coarse particulate OM (CPOM, fine particulate OM (FPOM, and ultrafiltered dissolved OM (UDOM. Results showed that the highest and lowest carbon (C: nitrogen (N ratios were in CPOM and UDOM, respectively, indicating CPOM was relatively enriched in organic C, whereas FPOM was enriched in N-containing molecules. Distributions of amino acids and their D-isomers among the sediment fractions indicated that the percentage of total N represented by total hydrolysable amino acids, C- and N-normalized yields of total D-amino acids, and C- and N-normalized yields of D-alanine, D-glutamic acid, D-serine could be used as diagenetic indicators of sediment OM. Correlations between the N yields in total D-amino acids and total hydrolysable amino acids, and total N yields suggested that the bacterial N in general reflected the bulk N changes in CPOM, FPOM, and UDOM. Our results demonstrate the crucial role of bacteria as a N source in the terrestrial (soil and vascular plant debris OM transported by the river.

  2. Profiles of Amino Acids and Acylcarnitines Related with Insecticide Exposure in Culex quinquefasciatus (Say)

    Science.gov (United States)

    Martin-Park, Abdiel; Gomez-Govea, Mayra A.; Lopez-Monroy, Beatriz; Treviño-Alvarado, Víctor Manuel; Torres-Sepúlveda, María del Rosario; López-Uriarte, Graciela Arelí; Villanueva-Segura, Olga Karina; Ruiz-Herrera, María del Consuelo; Martinez-Fierro, Margarita de la Luz; Delgado-Enciso, Ivan; Flores-Suárez, Adriana E.; White, Gregory S.; Martínez de Villarreal, Laura E.; Ponce-Garcia, Gustavo; Black, William C.; Rodríguez-Sanchez, Irám Pablo

    2017-01-01

    Culex quinquefasciatus Say is a vector of many pathogens of humans, and both domestic and wild animals. Personal protection, reduction of larval habitats, and chemical control are the best ways to reduce mosquito bites and, therefore, the transmission of mosquito-borne pathogens. Currently, to reduce the risk of transmission, the pyrethroids, and other insecticide groups have been extensively used to control both larvae and adult mosquitoes. In this context, amino acids and acylcarnitines have never been associated with insecticide exposure and or insecticide resistance. It has been suggested that changes in acylcarnitines and amino acids profiles could be a powerful diagnostic tool for metabolic alterations. Monitoring these changes could help to better understand the mechanisms involved in insecticide resistance, complementing the strategies for managing this phenomenon in the integrated resistance management. The purpose of the study was to determine the amino acids and acylcarnitines profiles in larvae of Cx. quinquefasciatus after the exposure to different insecticides. Bioassays were performed on Cx. quinquefasciatus larvae exposed to the diagnostic doses (DD) of the insecticides chlorpyrifos (0.001 μg/mL), temephos (0.002 μg/mL) and permethrin (0.01 μg/mL). In each sample, we analyzed the profile of 12 amino acids and 31 acylcarnitines by LC-MS/MS. A t-test was used to determine statistically significant differences between groups and corrections of q-values. Results indicates three changes, the amino acids arginine (ARG), free carnitine (C0) and acetyl-carnitine (C2) that could be involved in energy production and insecticide detoxification. We confirmed that concentrations of amino acids and acylcarnitines in Cx. quinquefasciatus vary with respect to different insecticides. The information generated contributes to understand the possible mechanisms and metabolic changes occurring during insecticide exposure. PMID:28085898

  3. Preparation and Characterization of Amino Acids-Based Trimethoprim Salts

    Directory of Open Access Journals (Sweden)

    Afzal R. Mohammed

    2012-02-01

    Full Text Available Trimethoprim (TMP is a dihydrofolate reductase (DHFR inhibitor which prevents the conversion of dihydrofolic acid into tetrahydrofolic acid, resulting in the depletion of the latter and leading to bacterial death. Oral bioavailability of TMP is hindered by both its low solubility and low permeability. This study aims to prepare novel salts of TMP using anionic amino acids; aspartic and glutamic acid as counter ions in order to improve solubility and dissolution. TMP salts were prepared by lyophilisation and characterized using FT-IR spectroscopy, proton nuclear magnetic resonance (1HNMR, Differential Scanning Calorimetry (DSC and Thermogravimetric analysis (TGA. Both the amino acids formed salts with TMP in a 1:1 molar ratio and showed a 280 fold improvement in solubility. Investigation of the microbiological activity of the prepared salts against TMP sensitive Escherichia coli showed that the new salts not only retained antibacterial activity but also exhibited higher zone of inhibition which was attributed to improved physicochemical characters such as higher solubility and dissolution. The results are an important finding that could potentially impact on faster onset of antibacterial activity and reduced therapeutic dose when administered to patients. Studies are underway investigating the effect of ion-pairing TMP with amino acids on the permeability profile of the drug.

  4. Predictable conformational diversity in foldamers of sugar amino acids.

    Science.gov (United States)

    Menyhard, Dora K; Hudaky, Ilona; Jákli, Imre; Juhász, György; Perczel, András

    2017-03-27

    Systematic conformational search was carried out for monomers and homohexamers of furanoid β-amino acids: cis-(S,R) and trans-(S,S) stereoisomers of aminocyclopentane carboxylic acid (ACPC), two different aminofuranuronic-acids (AFU(α) and AFU(β)), their isopropylidene derivatives (AFU(ip)) as well as the key intermediate β-aminotetrahydrofurancarboxylic acid (ATFC). Stereochemistry of the building blocks was chosen to match with that of natural sugar amino acid (xylose and ribose) precursors. Results show that hexamers of cis furanoid β-amino acids show great variability: while hydrophobic cyclopentane (cis(ACPC)6), and hydrophilic (cisXylAFU(α/β))6 foldamers favor two different zigzagged conformation as hexamers, the backbone fold turns into a helix in case of (cisATFC)6 (10-helix) and (cisAFU(ip))6 (14-helix). Trans stereochemistry resulted in hexamers exclusively of right-handed helix conformation, (H12(P))6, regardless of their polarity. We found that the preferred oligomeric structure of cis/(S,R)AFU(α/β) is conformationally compatible with β-pleated sheets, while that of the trans/(S,S) units match with α-helices of α-proteins.

  5. Quantitative measurement of endogenous amino acid absorption in unanaesthetized pigs.

    Science.gov (United States)

    Rerat, A; Vaissade, P; Vaugelade, P

    1988-06-01

    The present experiment was carried out with 11 pigs (mean body weight: 53.9 +/- 1.3 kg) fitted with permanent catheters in the portal vein and carotid artery and with an electromagnetic flow probe around the portal vein. They were each subjected to 2 or 3 trials at 3 to 4-day intervals. During each trial the animals received after a previous fasting of 20 h a given amount of a protein-free diet (200 to 1200 g). The blood was collected either continuously for a quantitative determination of amino nitrogen, reducing sugars, urea and ammonia (number of meals 12, mean intake: 727 +/- 60 g) or discontinuously every 30 min between 0 and 8 h after the meal for amino acid analysis (number of meals 8; mean intake 709 +/- 105 g). A rather constant appearance (2 g/h) of amino acids in the portal blood was observed throughout the postprandial period. The intestinal absorption of each amino acid was however variable and represented between 10 and 50% of the daily requirements of the animal during the measuring period (8 h). Glutamine and to a less extent glutamic acid were exceptions as they were taken up by the gut wall from the arterial blood. There was also a marked synthesis of ornithine and citrulline by the latter. Because of the low blood level of urea, there were no apparent exchanges of urea between the blood and the intestine; in contrast, the ammonia absorption represented about 70% of that observed after ingestion of normal protein diets. Most amino acids are largely taken up by the liver and peripheral tissues, but in the case of alanine the syntheses exceed the uptake.

  6. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, T; Nakajima, K; Uno, Y; Sakano, A; Murakami, M; Narahara, Y; Fujii, T [Department of Food Sci., Niigata University Pharm. Appl. Life Sci. (NUPALS), Niigata, Niigata, 956-8603 (Japan); Hayashi, M [Niigata Industrial Creation Organization (NICO), Niigata, Niigata, 950-0078 (Japan); Ueno, S, E-mail: shige@nupals.ac.j [Grad. School of Agric. Sci., Tohoku University, Sendai, Miyagi, 981-8555 (Japan)

    2010-03-01

    High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25{sup 0}C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of {gamma}-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.

  7. Utilization of milk amino acids for body gain in suckling mink (Mustela vison) kits

    DEFF Research Database (Denmark)

    Tauson, Anne-Helene; Fink, Rikke; Hansen, Niels E;

    2005-01-01

    The efficiency of utilization of milk amino acids for body gain in suckling mink kits from small (n = 3), medium (n = 6) and large litters (n = 9) was investigated by using 36 mink dams and their litters for measurements during lactation weeks 1 through 4. Measurements on each dam and litter were...... performed once, hence three dams per litter size each week (n = 9). Individual milk intake of kits was determined, milk samples were collected and kits were killed for determination of amino acid composition. The most abundant amino acids in milk were glutamate, leucine and aspartate making up about 40......% of total amino acids. Branched chained amino acids made up slightly more than 20% and sulphur containing amino acids less than 5% of total milk amino acids. In kit bodies the sum of glutamate, aspartate and leucine made up about 32% of amino acids, branched chain amino acids about 16% and sulphur...

  8. Amino acid quality indices of the leaves ofClerodendrum volubile

    Institute of Scientific and Technical Information of China (English)

    Ochuko Lucky Erukainure; Folashade Oluwayemisi Owolabi; Temiloluwa Adebola Adesioye; Deborah Olabisi Akinyele; Grace Ijeoma Okonrokwo

    2016-01-01

    Objective: To evaluate the amino acid profile and quality indices ofClerodendrumvolubile (C. volubile) leaves. Methods:Dried leaves ofC. volubile were blended, defatted and subjected to amino acid analysis using the technicon sequential multi-sample amino acid analyzer. The amino acid quality indices which covers for chemical score, essential amino acid index, nutritional index, true digestibility, protein digestibility corrected amino acid score, and digestible indispensable amino acid score were evaluated using standard formulas. Results: Amino acid analysis revealed glutamic acid to have the highest concentration, with cysteine having the least. Aspartic acid had the highest chemical score, this was followed by glycine, histidine and arginine, respectively. The least scores were observed in serine and methionine. Glutamic acid had the highest value for true digestibility and protein digestibility corrected amino acid score, with the least observed in cysteine. Digestible indispensable amino acid score evaluation showed histidine to have the highest value for infants (birth to 6 months), threonine for children (6 months to 3 years), while isoleucine was observed to have the highest value for older children, adolescents and adults. The essential amino acid index value was less than 4, while nutritional index value was less than 0.5. Conclusions:These results indicated the leaves ofC. volubile as a potential source of amino acids in the human diet as portrayed by its amino acids profile and qualities.

  9. Evolutionary anatomies of positions and types of disease-associated and neutral amino acid mutations in the human genome

    Directory of Open Access Journals (Sweden)

    Subramanian Sankar

    2006-12-01

    Full Text Available Abstract Background Amino acid mutations in a large number of human proteins are known to be associated with heritable genetic disease. These disease-associated mutations (DAMs are known to occur predominantly in positions essential to the structure and function of the proteins. Here, we examine how the relative perpetuation and conservation of amino acid positions modulate the genome-wide patterns of 8,627 human disease-associated mutations (DAMs reported in 541 genes. We compare these patterns with 5,308 non-synonymous Single Nucleotide Polymorphisms (nSNPs in 2,592 genes from primary SNP resources. Results The abundance of DAMs shows a negative relationship with the evolutionary rate of the amino acid positions harboring them. An opposite trend describes the distribution of nSNPs. DAMs are also preferentially found in the amino acid positions that are retained (or present in multiple vertebrate species, whereas the nSNPs are over-abundant in the positions that have been lost (or absent in the non-human vertebrates. These observations are consistent with the effect of purifying selection on natural variation, which also explains the existence of lower minor nSNP allele frequencies at highly-conserved amino acid positions. The biochemical severity of the inter-specific amino acid changes is also modulated by natural selection, with the fast-evolving positions containing more radical amino acid differences among species. Similarly, DAMs associated with early-onset diseases are more radical than those associated with the late-onset diseases. A small fraction of DAMs (10% overlap with the amino acid differences between species within the same position, but are biochemically the most conservative group of amino acid differences in our datasets. Overlapping DAMs are found disproportionately in fast-evolving amino acid positions, which, along with the conservative nature of the amino acid changes, may have allowed some of them to escape natural

  10. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Science.gov (United States)

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  11. Conversion of the bifunctional 8-oxoguanine/beta-delta apurinic/apyrimidinic DNA repair activities of Drosophila ribosomal protein S3 into the human S3 monofunctional beta-elimination catalyst through a single amino acid change.

    Science.gov (United States)

    Hegde, V; Kelley, M R; Xu, Y; Mian, I S; Deutsch, W A

    2001-07-20

    The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a beta-elimination reaction that cleaves phosphodiester bonds 3' and adjacent to an AP lesion in DNA. In certain situations, this is followed by a delta-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5'- and 3'-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a beta-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a delta-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the delta-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophila wild-type S3 and its ability to protect a bacterial mutant from the harmful effects of

  12. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    Science.gov (United States)

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  13. Abiotic racemization kinetics of amino acids in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrew D Steen

    Full Text Available The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5-11×10(-5 yr(-1. These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  14. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  15. Stability of ranitidine hydrochloride and amino acids in parenteral nutrient solutions.

    Science.gov (United States)

    Bullock, L; Parks, R B; Lampasona, V; Mullins, R E

    1985-12-01

    The stability of ranitidine hydrochloride in parenteral nutrient (PN) solutions and the effect of ranitidine hydrochloride on the amino acids in the PN solutions were studied. Six PN solutions (three each with amino acid contents of 2.125 and 4.25%) were prepared. Each PN solution also contained dextrose 25%, electrolytes, trace elements, vitamins, and heparin sodium. Ranitidine hydrochloride injection was added to four of the PN samples. Of the final samples, two contained no ranitidine, two contained ranitidine hydrochloride 50 micrograms/mL, and two contained ranitidine hydrochloride 100 micrograms/mL. Admixtures of ranitidine hydrochloride at the two concentrations in 0.9% sodium chloride injection were also prepared. Samples were observed for color change and tested for pH during storage at room temperature. Concentrations of amino acids were measured after 24 hours in samples without ranitidine and in samples containing ranitidine hydrochloride 100 micrograms/mL. Ranitidine hydrochloride content was determined by high-performance liquid chromatography at 12, 24, and 48 hours. No visual changes or pH changes occurred by 24 hours. All PN solutions became darker by 48 hours. The presence of ranitidine hydrochloride did not substantially affect amino acid concentrations. At 24 hours, at least 90% of the initial ranitidine concentrations remained in all samples. In three of the four PN samples at 48 hours, less than 90% of initial ranitidine concentrations remained. Ranitidine hydrochloride in concentrations of 50 and 100 micrograms/mL in parenteral nutrient solutions containing 4.25 and 2.125% crystalline amino acids is stable for 24 hours at room temperature. Under these conditions, concentrations of the amino acids contained in the PN solutions were not affected by the addition of ranitidine hydrochloride.

  16. Tuning hardness in calcite by incorporation of amino acids

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  17. A preliminary study on the changes in some potential markers of muscle-cell degradation in sub-maximally exercised horses supplemented with a protein and amino acid mixture.

    Science.gov (United States)

    van den Hoven, R; Bauer, A; Hackl, S; Zickl, M; Spona, J; Zentek, J

    2011-10-01

    In this preliminary study, time-dependent changes in plasma CK and AST activity, tyrosine (Tyr), 3-methyl-histidine (3mHis), glucose and lactate concentrations were analysed in nine horses under two different conditions. Furthermore, intramuscular concentrations of Tyr, 3mHis and activities of cathepsin B, acid phosphatase (ACP), glucose-6-phosphate dehydrogenase (G6PDH) and mRNA expression of ubiquitin were determined at the same time. After studying the effects of exercise alone, the effects of exercise and feeding of an experimental protein/amino acid (AA) supplement were analysed. Horses were submitted to a total of four standardised exercise tests (SETs) of high intensity. Potential markers of muscle break down were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period, two SETs were performed. In the second period, horses were fed with the protein/AA supplement within 1 h after exercise. Significant changes in plasma, intramuscular Tyr levels and mRNA expression of ubiquitin were caused both by time in relation to exercise and by treatment with the protein/AA supplement. The experimental supplement significantly decreased the 4-h post-exercise expression of ubiquitin mRNA in muscle. Only a borderline increase of markers of lysosomal involvement was seen and CK and AST activity generally showed their normal post-exercise patterns. A clear post-exercise reduction of this CK activity, however, was not observed after supplementation with the protein/AA mixture. The current findings indicate that horses might benefit from protein and AA supplementation directly after training by decreasing post-exercise proteolysis. The results support that further studies should be performed to characterize changes in equine protein metabolism caused by exercise including underlying molecular mechanisms.

  18. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    Energy Technology Data Exchange (ETDEWEB)

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  19. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  20. Study of Complexes of Lanthanum with Amino Acids by Titration Calorimeter

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stability constants and thermodynamic functions for complexes of lanthanum with eight kind of amino acids according to 1:1 and 1:2 in proportion have been determined by titration calorimeter at 298. 15 K. The enthalpy change makes a predominant contribution to the stability of these complexes. The ring in amino acid associated with lanthanum ion helps to enhance the stability of complexes. Steric effectsbetween rings in complexes leads to that the equilibrium constants of reaction of the complexes (1:2) ismuch less than that of the complexes (l:1).

  1. Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning.

    Science.gov (United States)

    Fletcher, Timothy L; Davie, Stuart J; Popelier, Paul L A

    2014-09-09

    Present computing power enables novel ways of modeling polarization. Here we show that the machine learning method kriging accurately captures the way the electron density of a topological atom responds to a change in the positions of the surrounding atoms. The success of this method is demonstrated on the four aromatic amino acids histidine, phenylalanine, tryptophan, and tyrosine. A new technique of varying training set sizes to vastly reduce training times while maintaining accuracy is described and applied to each amino acid. Each amino acid has its geometry distorted via normal modes of vibration over all local energy minima in the Ramachandran map. These geometries are then used to train the kriging models. Total electrostatic energies predicted by the kriging models for previously unseen geometries are compared to the true energies, yielding mean absolute errors of 2.9, 5.1, 4.2, and 2.8 kJ mol(-1) for histidine, phenylalanine, tryptophan, and tyrosine, respectively.

  2. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    Science.gov (United States)

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate.

  3. Interference from alpha-amino acid and protein on determination of formaldehyde in food

    Science.gov (United States)

    Lu, Xiumin; Zhang, Xiaofeng; Fu, Yujie; Xiang, Jinxin

    2005-12-01

    The disturbance of alpha-amino acids and proteins on the analysis of formaldehyde content in food was investigated by electrochemical assay. Results show that the pH decreases gradually from 9.91 to 4.36 with increasing aspartic acid concentration. The recovery rate changes from 8% to 100% after different amounts of formaldehyde were added into protein solutions. For edible bamboo shoots, the recovery rate of formaldehyde is 80% to 100%. For shrimp kernel, however, the recovery rate of formaldehyde is 8% to 60%. These results indicate that the consumed quantity of formaldehyde is correlative with the protein concentration in foods. Therefore, the determinate formaldehyde content in food is actually not the totally applied amount, but just the residue after its reaction with the alpha-amino acids or free amino groups on the protein surface.

  4. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.;

    2010-01-01

    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  5. The cysteine, total sulfur amino acid, tyrosine, phenylalanine + tyrosine, and non-essential amino acid maintenance requirements of broiler breeders.

    Science.gov (United States)

    Ekmay, R D; Mei, S J; Sakomura, N K; Coon, C N

    2016-06-01

    Two hundred and fifty Cobb-Vantress broiler breeders were used to determine the maintenance requirement and efficiency of utilization of dietary Cys, Tyr, and non-essential amino acids (AA) in a 21-day experiment. The breeders were fed crystalline amino acid diets containing graded levels of Cys or Tyr representing 0, 10, 20, 30, and 40% of their suggested requirement level with all other amino acids maintained at 40% of their suggested requirement level. To determine the non-essential AA maintenance requirement, graded levels of non-essential AA were provided by glutamic acid to represent 12, 19, 26, 33, and 40% of the ideal level of glutamic acid with all other amino acids maintained at their maintenance requirement level. The total sulfur amino acid