WorldWideScience

Sample records for amine-reactive fluorene probes

  1. Convenient solvatochromic probes for the determination of solvent properties: {beta}-carotene and 2-chloro-7-nitro-9H-fluorene

    Energy Technology Data Exchange (ETDEWEB)

    Seoud, Omar A. El; Pires, Paulo A.R.; Loffredo, Carina; Imran, Muhammad; Pulcini, Paolo D.; Correa, Michelle F.; Mustafa, Rizwana, E-mail: elseoud@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-15

    Solvent dipolarity/polarizability (SDP) has been previously calculated from the UV-Vis spectra of 2-(N,N-dimethylamino)-7-nitro-9H-fluorene and 2-fluoro-7-nitro-9H- fluorene. Based on theoretical calculations (23 solvents) and experimental data (56 solvents), it is shown that 2-chloro-7-nitro-9H-fluorene (commercially available) can be conveniently employed for the calculation of this property, instead of its 2-fluoro-7-nitro counterpart. The splitting of SDP into its components (solvent dipolarity (SD) and polarizability (SP)) requires the use of a synthetic polyene compound whose synthesis is laborious, involving 15 steps. Our research group has recently shown that the natural dye {beta}-carotene can be conveniently employed for the determination of SP, allowing the calculation of SD. Using these solvatochromic probes, SDP, SP and SD for a series of 1-bromo alkanes were calculated. For several homologous series, the dependence of solvent SDP (SD and SP for one series) on the number of carbon atoms in the 1-alkyl- or acyl-group was calculated and discussed. (author)

  2. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    Science.gov (United States)

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  3. Novel soluble fluorene-thienothiadiazole and fluorene-carbazole copolymers for optoelectronics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Výprachtický, Drahomír

    2010-01-01

    Roč. 295, č. 1 (2010), s. 65-70 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : fluorene – thienothiadiazole copolymers * photovoltaics * fluorene-carbazole copolymers Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering

  4. Fluorene biodegradation potentials of Bacillus strains isolated from ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... coal and oil gasification sites. It is found as constituent of refined coal derivatives such as creosotes as well as in vehicle exhausts. It is classified by the United States .... Lagos-Ibadan Highway in Nigeria. Extraction of residual fluorene. Residual fluorene was extracted by liquid-liquid extraction. Briefly,.

  5. Electronic transitions of fluorene, dibenzofuran, carbazole, and dibenzothiophene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Trunk, John; Nakhimovsky, Lina

    2010-01-01

    A comparative study of the electronic transitions of fluorene and its hetero-analogues dibenzofuran, carbazole, and dibenzothiophene was performed in a wide energy range. Gas phase, crystal phase, and linear dichroism electronic transmittance spectra were measured with synchrotron radiation...

  6. Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole

    Energy Technology Data Exchange (ETDEWEB)

    Bressier, D. C.; Fedorak, P. M. [Alberta Univ., Dept. of biological Sciences, Edmonton, AB (Canada)

    2000-05-01

    Fluorene and its analogs, dibenzofuran, dibenzothiophene and carbazole are environmental contaminants in areas impacted by spills of creosote. These compounds are susceptible to to three different modes of initial oxidation, namely (1) the naphthalene-like attack, (2) an angular dioxygenase attack and (3) the five-membered ring attack. This paper reviews the bacterial degradation of fluorene and its analogs by summarizing the metabolites, enzymology, and the genetics of these of these transformations. Data from the literature is presented, indicating that the electronegativity of the atom connecting the two aromatic rings influences the attack of the angular dioxygenase. In dibenzofuran and carbazole the connecting atoms have high electronegativities, whereas in dibenzothiopene and fluorene the two atoms, sulphur and carbon, have lower negativities, requiring oxidisation before the angular dioxygenases attack these compounds. These observations demonstrate the similarities among the microbial mechanisms to oxidize fluorene and its analogs found in coal tar. 87 refs., 1 tab., 9 figs.

  7. Fluorene biodegradation potentials of Bacillus strains isolated from ...

    African Journals Online (AJOL)

    Shared resistance to ceftriazone and cotrimozaxole were exhibited by both strains while only strain BM1 was resistant to both amoxycilin and streptomycin. The rate of degradation of fluorene (50 mg/L) by the two isolates, after 30 days of incubation were 0.09 and 0.08 mg/L/h for strains BM1 and BR1, respectively.

  8. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  9. New fluorene-based conjugated copolymers bearing carboxylic groups

    Czech Academy of Sciences Publication Activity Database

    Kukla, Stanislav; Pavlačková, Petra; Cimrová, Věra; Výprachtický, Drahomír

    2008-01-01

    Roč. 268, č. 1 (2008), s. 53-56 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA AV ČR IAA4050409; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : aggregation * conjugated polymers * fluorene * luminescence * Suzuki coupling Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

    OpenAIRE

    X. Vecino; J. M. Cruz; A. Moldes

    2015-01-01

    The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484...

  11. Thermal high pressure hydrogenolysis II. The thermal high pressure hydrocracking of fluorene

    NARCIS (Netherlands)

    Oltay, Ernst; Penninger, Johannes M.L.; Konter, Willem A.N.

    1973-01-01

    The thermal hydrocracking of fluorene was investigated in the temperature range of 400 to 480 °C and hydrogen pressures of up to 375 atm. As main reaction products were found 2-methylbiphenyl, biphenyl, toluene and benzene. They account for about 90% of the converted fluorene. Only very low

  12. The coordination chemistry of two symmetric fluorene-based organic ligands with cuprous chloride.

    Science.gov (United States)

    Liu, Yan-Fei; Zhao, Chao-Wei; Ma, Jian-Ping; Liu, Qi-Kui; Dong, Yu-Bin

    2013-12-15

    Two novel symmetric fluorene-based ligands, namely, 2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene [L1 or (I), C21H18N4] and 2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene (L2), have been used to construct the coordination polymers catena-poly[[dichloridodicopper(I)(Cu-Cu)]-μ-2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene], [Cu2Cl2(C21H18N4)]n, (II), and catena-poly[[tetra-μ2-chlorido-tetracopper(I)]-bis[μ-2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene

  13. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons

    International Nuclear Information System (INIS)

    Flores de Jesus, I.

    2003-01-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  14. Poly(styrene/oligo(fluorene-intercalated fluoromica hybrids: synthesis, characterization and self-assembly

    Directory of Open Access Journals (Sweden)

    Giuseppe Leone

    2014-12-01

    Full Text Available We report on the intercalation of a cationic fluorescent oligo(fluorene in between the 2D interlayer region of a fluoromica type silicate. The formation of intercalated structures with different fluorophore contents is observed in powders by synchrotron radiation XRD. Successively, the hybrids are dispersed in poly(styrene through in situ polymerization. Such a procedure allows us to synthesize the materials from solution, to achieve solid films, and to characterize them by optical and morphologic techniques. The polymeric films with homogeneous distribution of the hybrids exhibit ultraviolet–blue photoluminescence with a significantly enhanced photostability compared to the bare oligo(fluorenes. Finally, under specific conditions, the polymer hybrid with higher oligo(fluorene content spontaneously assembles into highly ordered microporous films.

  15. Neurobehavioral toxicity of a repeated exposure (14 days to the airborne polycyclic aromatic hydrocarbon fluorene in adult Wistar male rats.

    Directory of Open Access Journals (Sweden)

    Julie Peiffer

    Full Text Available Fluorene is one of the most abundant polycyclic aromatic hydrocarbons in air and may contribute to the neurobehavioral alterations induced by the environmental exposure of humans to PAHs. Since no data are available on fluorene neurotoxicity, this study was conducted in adult rats to assess the behavioral toxicity of repeated fluorene inhalation exposure. Male rats (n = 18/group were exposed nose-only to 1.5 or 150 ppb of fluorene 6 hours/day for 14 consecutive days, whereas the control animals were exposed to non-contaminated air. At the end of the exposure, animals were tested for activity and anxiety in an open-field and in an elevated-plus maze, for short-term memory in a Y-maze, and for spatial learning in an eight-arm maze. The results showed that the locomotor activity and the learning performances of the animals were unaffected by fluorene. In parallel, the fluorene-exposed rats showed a lower level of anxiety than controls in the open-field, but not in the elevated-plus maze, which is probably due to a possible difference in the aversive feature of the two mazes. In the same animals, increasing blood and brain levels of fluorene monohydroxylated metabolites (especially the 2-OH fluorene were detected at both concentrations (1.5 and 150 ppb, demonstrating the exposure of the animals to the pollutant and showing the ability of this compound to be metabolized and to reach the cerebral compartment. The present study highlights the possibility for a 14-day fluorene exposure to induce some specific anxiety-related behavioral disturbances, and argues in favor of the susceptibility of the adult brain when exposed to volatile fluorene.

  16. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022.

    Science.gov (United States)

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-06-01

    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.

  17. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil.

    Science.gov (United States)

    Salehi-Lisar, Seyed Yahya; Deljoo, Somaye; Harzandi, Ahmad Mosen

    2015-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are diverse organic contaminants released into the environment by both natural and anthropogenic activities. These compounds have negative impacts on plants growth and development. Although there are many reports on their existence in different parts of plant, their uptake and translocation pathways and mechanisms are not well understood yet. This paper highlights the uptake, translocation and accumulation of PAHs by wheat, sunflower and alfalfa through an experimental study under controlled conditions. Seeds were cultivated in a soil containing 50 mg/kg of phenanthrene and fluorene and their concentrations in plants roots and shoots were determined using a gas chromatograph after 7 and 14 days. The results showed that phenanthrene and fluorene concentrations in the treated plants were increased over the time. PAHs bioavailability was time and species dependent and generally, phenanthrene uptake and translocation was faster than that of fluorene, probably due to their higher Kow. Fluorene tended to accumulate in roots, but phenanthrene was transported to aerial parts of plants.

  18. Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions

    Czech Academy of Sciences Publication Activity Database

    Dziuba, Dmytro; Pospíšil, Petr; Matyašovský, Ján; Brynda, Jiří; Nachtigallová, Dana; Rulíšek, Lubomír; Pohl, Radek; Hof, Martin; Hocek, Michal

    2016-01-01

    Roč. 7, č. 9 (2016), s. 5775-5785 ISSN 2041-6520 R&D Projects: GA ČR GBP206/12/G151; GA ČR(CZ) GC14-03141J; GA ČR(CZ) GA14-31419S; GA MŠk(CZ) LO1304 EU Projects: European Commission(XE) 642023 - ClickGene Institutional support: RVO:61388963 ; RVO:61388955 Keywords : environmentally sensitive fluorescent * molecular dynamics simulations * oligonucleotides Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 8.668, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/sc/c6sc02548j

  19. Effects of Conjugation in Length and Dimension on Spectroscopic Properties of Fluorene-Based Chromophores from Experiment and Theory (Postprint)

    National Research Council Canada - National Science Library

    Tan, Loon-Seng; Fleitz, Paul A; Patchter, Ruth; Nguyen, Kiet A; Rogers, Joy E; Slagle, Jonathan E; Day, Paul N; Kannan, Ramamurthi

    2006-01-01

    A series of one-photon absorption spectra for fluorene-based donor-pi;-acceptor molecules is presented and spectroscopically assigned, based upon the results obtained from time-dependent density functional theory...

  20. Novel fluorene-based supramolecular sensor for selective detection of amoxicillin in water and blood.

    Science.gov (United States)

    Shah, Kiramat; Hassan, Erum; Ahmed, Farid; Anis, Itrat; Rabnawaz, Muhammad; Shah, Muhammad Raza

    2017-07-01

    Synthesis, characterization and molecular recognition properties of fluorene based supramolecular cleft 1 is reported. The cleft molecule 1 was prepared in a single-step with good yield (85% yield), by linking Fluorene with 1-ethyl piperazine. The cleft molecule 1 was carefully characterized using various spectroscopic techniques such as NMR and mass spectrometry. The supramolecular interaction of cleft 1 with amoxicillin, 6APA, aspirin, captopril, cefotaxime, ceftriaxone, cefuroxime, diclofenac, penicillin, and cephradine was evaluated by fluorescent spectroscopy. The molecular recognition studies showed that amoxicillin selectively binds with cleft 1 in the presence of other drugs. The analytical method developed for the supramolecular interaction of molecular cleft 1 and amoxicillin was validated at varying pH, concentration and temperature during recognition process. Job's plots indicated that the stochiometry of the interactions between the cleft 1 and the amoxicillin was 1:1. Copyright © 2017. Published by Elsevier Inc.

  1. Multidisciplinary synthetic approach for rapid combinatorial library synthesis of triaza-fluorenes.

    Science.gov (United States)

    Hsiao, Ya-Shan; Yellol, Gorakh S; Chen, Li-Hsun; Sun, Chung-Ming

    2010-09-13

    A new multidisciplinary synthetic approach comprising polymer-support synthesis, microwave-assisted synthesis, and multicomponent condensation facilitates synthesis of triaza-fluorenes library with a set of advantages such as rapid process, simple purification, and structural diversity in one shot. Microwave-assisted multistep synthetic protocol was used to construct the benzimidazole ring on soluble polymer support using activated aryl-fluorides. The PEG anchored aryl fluoride was condensed with selective primary amines via an ipso-fluoro displacement reaction followed by reduction of nitro group. The subsequent cyclization with cyanogen bromide is used as a key step to furnish immobilized benzimidazoles. Finally multicomponent condensation of resulted polymer bound benzimidazoles with various aldehydes and 1,3-diones under microwave irradiations provides rapid access for triaza-fluorenes with high purity and excellent yields. Microwave irradiation greatly accelerates the rate of all reactions while polymer support facilitates purifications by simple precipitation technique. This strategy dramatically increases efficiency of overall multistep synthesis.

  2. Characterization of fluorene – thiophene copolymer layers by the surface photovoltage method

    Czech Academy of Sciences Publication Activity Database

    Toušek, J.; Pavlačková, Petra; Cimrová, Věra; Toušková, J.

    2008-01-01

    Roč. 268, č. 1 (2008), s. 96-99 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA AV ČR IAA4050409; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * diffusion length * fluorene-thiophene * surface photovoltage * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. N-(Fluoren-9-ylmethoxycarbonyl-l-aspartic acid 4-tert-butyl ester

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamada

    2009-11-01

    Full Text Available The bond distances and bond angles of the title compound, C23H25NO6, are consistent with values typically found for fluoren-9-ylmethoxycarbonyl-protected amino acids. The conformations of the backbone and the side chain are slightly different from those of l-aspartic acid. The crystal structure exhibits two intermolecular hydrogen bonds, forming a two-dimensional sheet structure parallel to the ab plane.

  4. Mechanistic Studies on the Dibenzofuran Formation from Phenanthrene, Fluorene and 9–Fluorenone

    Directory of Open Access Journals (Sweden)

    Shanqing Li

    2015-03-01

    Full Text Available We carried out molecular orbital theory calculations for the homogeneous gas‑phase formation of dibenzofuran from phenanthrene, fluorene, 9-methylfluorene and 9-fluorenone. Dibenzofuran will be formed if ∙OH adds to C8a, and the order of reactivity follows as 9-fluorenone > 9-methylfluorene > fluorene > phenanthrene. The oxidations initiated by ClO∙ are more favorable processes, considering that the standard reaction Gibbs energies are at least 21.63 kcal/mol lower than those of the equivalent reactions initiated by ∙OH. The adding of ∙OH and then O2 to phenanthrene is a more favorable route than adding ∙OH to C8a of phenanthrene, when considering the greater reaction extent. The reaction channel from fluorene and O2 to 9-fluorenone and H2O seems very important, not only because it contains only three elementary reactions, but because the standard reaction Gibbs energies are lower than −80.07 kcal/mol.

  5. Synthesis, spectral studies, antimicrobial, antioxidant and insect antifeedant activities of some 9 H-fluorene-2-yl keto-oxiranes

    Science.gov (United States)

    Thirunarayanan, G.; Vanangamudi, G.

    2011-10-01

    Thirteen ee (α S, β R) 9 H-fluorene-2-yl keto-oxiranes (2-(9 H)-fluorene-4-yl[3-(substituted phenyl)oxiran-2-yl]methanones) have been synthesized by phase transfer catalysed epoxidation of 9 H-fluorene-2-yl chalcones. The yields of oxiranes are more than 95%. The synthesized oxiranes have been characterized by IR, 1H, 13C and GC-MS spectral data. The spectral data are correlated with Hammett substituent constants and Swain-Lupton parameters. From the regression analysis, the effect of substituents on the group frequencies has been predicted. The antimicrobial, antioxidant and insect antifeedant activities of all the synthesized oxiranes have been studied.

  6. 6,12-Diarylindeno[1,2-b]fluorenes: syntheses, photophysics, and ambipolar OFETs.

    Science.gov (United States)

    Chase, Daniel T; Fix, Aaron G; Kang, Seok Ju; Rose, Bradley D; Weber, Christopher D; Zhong, Yu; Zakharov, Lev N; Lonergan, Mark C; Nuckolls, Colin; Haley, Michael M

    2012-06-27

    Herein we report the synthesis and characterization of a series of 6,12-diarylindeno[1,2-b]fluorenes (IFs). Functionalization with electron donor and acceptor groups influences the ability of the IF scaffold to undergo two-electron oxidation and reduction to yield the corresponding 18- and 22-π-electron species, respectively. A single crystal of the pentafluorophenyl-substituted IF can serve as an active layer in an organic field-effect transistor (OFET). The important finding is that the single-crystal OFET yields an ambipolar device that is able to transport holes and electrons.

  7. Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene

    Directory of Open Access Journals (Sweden)

    Zainab Mat Lazim

    Full Text Available ABSTRACT This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443 U/L followed by mixed surfactant (1766 U/L and Brij 35 (1655 U/L. UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0 min and m/z 254 and protocatechuic acid (λmax 260, tR 11.3 min and m/z 370, were identified in the treated medium.

  8. Valence one-electron and shake-up ionization bands of fluorene, carbazole and dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Reza Shojaei, S.H.; Morini, Filippo; Deleuze, Michael S., E-mail: michael.deleuze@uhasselt.be

    2013-05-16

    Highlights: • The photoelectron spectra of the title compounds are assigned in details. • Shake-up lines are found to severely contaminate both π- and σ-ionization bands. • σ-ionization onsets are subject to severe vibronic coupling complications. • We compare the results of OVGF, ADC(3) and TDDFT calculations. - Abstract: A comprehensive study of the He (I) ultra-violet photoelectron spectra of fluorene, carbazole and dibenzofuran is presented with the aid of one-particle Green’s Function calculations employing the outer-valence Green’s Function (OVGF) approach and the third-order algebraic diagrammatic construction [ADC(3)] scheme, along with Dunning’s correlation consistent basis sets of double and triple zeta quality (cc-pVDZ, cc-pVTZ). Extrapolations of the ADC(3) results for the outermost one-electron π-ionization energies to the cc-pVTZ basis set enable theoretical insights into He (I) measurements within ∼0.15 eV accuracy, up to the σ-ionization onset. The lower ionization energy of carbazole is the combined result of mesomeric and electronic relaxation effects. OVGF/cc-pVDZ or OVGF/cc-pVTZ pole strengths smaller than 0.85 systematically corroborate a breakdown of the orbital picture of ionization at the ADC(3) level. Comparison is made with calculations of the lowest doublet–doublet excitation energies of the radical cation of fluorene, by means of time-dependent density functional theory (TDDFT)

  9. Hybrid metal-organic conductive network with plasmonic nanoparticles and fluorene (Conference Presentation)

    Science.gov (United States)

    Fontana, Laura; Fratoddi, Ilaria; Matassa, Roberto; Familiari, Giuseppe; Venditti, Iole; Batocchio, Chiara; Magnano, Elena; Nappini, Silvia; Leahu, Grigore; Belardini, Alessandro; Li Voti, Roberto; Sibilia, Concita

    2017-05-01

    For the development of new generation portable electronic devices, the realization of thin and flexible electrodes have a crucial role. Conductive organic systems can address this issue in different ways. Indeed, conductance in organic molecules were studied in different papers starting from seminal papers in last 70's [1] up to recent ones [2]. Among organic species, conduction and electronic characteristics of Fluorene derivatives were studied in different configurations [3,4]. Unfortunately, the conductance of organic materials is limited by charge transport mechanism [5]. Hybrid system with organic conductive compounds covalently linked with metal centres can lead to enhanced conductivity [6]. Here we synthesized gold and silver nanoparticles (AuNPs and AgNPs) stabilized with a fluorene thiolate derivative, namely 9,9-Didodecyl-2,7-bis(acetylthio)fluorene (FL). In the synthesis process the metal nanoparticles (MNPs) size results to be around 5 nm in diameter [7]. When deposited on a planar substrate, the hybrid compound form a regular network of MNPs separated each other by fluorene spacers covalently linked by thiol groups [8]. We deposited the network on substrate with two interdigitated electrodes in order to measure conductive properties (I-V characteristics). In I-V measurements it results to be that AgNPs based network is 200 times more conductive than AuNPs one. Selective oxidation of AgNPs network close to positive electrodes gives rise to a Schottky diode behavior in the I-V characteristic that could find potential applications in nano-electronics devices. The fluorescence and extinction spectra of FL-AgNPs and FL-AuNPs where characterised. References [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977). [2] Hylke B. Akkerman, Paul W. M. Blom, Dago M. de Leeuw and Bert de Boer, Nature 441, 69 (2006). [3] Rajendra Prasad Kalakodimi, Aletha M. Nowak

  10. Solution-processed photovoltaics with a 3,6-bis(diarylamino)fluoren-9-ylidene malononitrile.

    Science.gov (United States)

    Karak, Supravat; Homnick, Paul J; Renna, Lawrence A; Venkataraman, D; Mague, Joel T; Lahti, Paul M

    2014-10-08

    3,6-Bis(N,N-dianisylamino)-fluoren-9-ylidene malononitrile (FMBDAA36) was used as an electron donor material in solution-processed organic photovoltaic devices with configuration ITO/PEDOT:PSS/(1:3[w/w] FMBDAA36:PC71BM)/LiF/Al to give power conversion efficiencies up to 4.1% with open circuit voltage VOC = 0.89 V, short circuit current JSC = 10.35 mA cm(-2), and fill factor FF = 44.8%. Conductive atomic force microscopy of the active layer showed granular separation of regions exhibiting easy versus difficult hole transport, consistent with bulk heterojunction type phase separation of FMBDAA36 and PC71BM, respectively. Single-crystal X-ray diffraction analysis showed pure FMBDAA36 to form columnar π-stacks with a 3.3 Å intermolecular spacing.

  11. Applications of fluorene moiety containing polymers for improved scintillation light yield

    Science.gov (United States)

    Kishpaugh, David; Hajagos, Tibor; Liu, Chao; Chen, Qi; Pei, Qibing

    2017-10-01

    A terfluorene compound, designed and synthesized for its photophysical and polymerizable properties, was employed as a host material in polymer scintillators to achieve a 31% increase in light yield versus a commercial standard viewed with a Silicon Photomultilier. Monomers of the compound were mixed with a solubility promoting vinyl toluene and either a commercial or custom designed fluor containing fluorene moiety structures. Fluors were chosen with overlapping energy levels to promote resonance energy transfer from the host material and improve light emission. The mixture was cured via bulk polymerization into cylindrical polymer monoliths which were coupled to either a photomultiplier tube or silicon photomultiplier to measure the scintillation light yield upon exposure to Cs-137 gamma. Samples emitted at longer wavelengths than commercial blue scintillators such as EJ-212 but outperformed this standard when accounting for the variability of photomultiplier tube sensitivity.

  12. On the nature of the fluorenone-based emission in oxidized poly(dialkyl-fluorene)s

    International Nuclear Information System (INIS)

    Ferenczi, T A M; Sims, M; Bradley, D D C

    2008-01-01

    This study examines the underlying nature of the green emission band observed as a result of oxidation in dialkyl-fluorene polymers. Specifically, we set out to further determine whether an inter- (excimeric) or intra-molecular fluorenone-based excited state is involved. The emission properties of poly(9,9-dihexylfluorene) dispersed at low concentration in a solid polystyrene matrix are carefully explored. In situ, time-resolved photoluminescence measurements are made during photo-oxidation of the blend and during subsequent exposure to an atmosphere saturated with the vapour of a good solvent. The polystyrene matrix suppresses the appearance of the green emission band during oxidation but the subsequent solvent vapour exposure then activates it. The same effect (activation of the green emission) can be achieved by thermally annealing the matrix above its glass transition temperature. Moreover, the activation of the green emission can be reversed by dissolving the film and re-casting. This behaviour is attributed to controlling the phase structure of the polyfluorene/polystyrene blend and is considered strong evidence for an origin of the green band emission in the formation of excimer-like states between co-facially arranged fluorenone moieties. The photoluminescence behaviour of 9-fluorenone and fluorene molecular mixtures in solution is also studied. This model system allows analysis of the green emission band independent of relative intra- and inter-molecular energy transfer effects since this system is affected only by inter-molecular energy transfer. These results provide further evidence for an excimeric origin of the green emission

  13. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    Science.gov (United States)

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  14. Scalable synthesis of 5,11-diethynylated indeno[1,2-b]fluorene-6,12-diones and exploration of their solid state packing

    Directory of Open Access Journals (Sweden)

    Bradley D. Rose

    2014-09-01

    Full Text Available We report a new synthetic route to 5,11-disubstituted indeno[1,2-b]fluorene-6,12-diones that is amenable to larger scale reactions, allowing for the preparation of gram amounts of material. With this new methodology, we explored the effects on crystal packing morphology for the indeno[1,2-b]fluorene-6,12-diones by varying the substituents on the silylethynyl groups.

  15. Investigation of synthesis, thermal properties and curing kinetics of fluorene diamine-based benzoxazine by using two curing kinetic methods

    International Nuclear Information System (INIS)

    He, Xuan-yu; Wang, Jun; Ramdani, Noureddine; Liu, Wen-bin; Liu, Li-jia; Yang, Lei

    2013-01-01

    Graphical abstract: - Highlights: • A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) is synthesized. • Kinetic parameters can be calculated by Starink-LSR method and direct LSR method. • Cure reaction could be successfully described with the autocatalytic model. • The poly(BEF-p) exhibits high T g and superior thermal stability. • Aryl ether linkages had little influence on the thermal stability. - Abstract: A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) was prepared from the reaction of 9,9-bis-[4-(p-aminophenoxy)-phenyl]fluorene with paraformaldehyde and phenol. The chemical structure of monomer was confirmed by Fourier-transform infrared (FTIR) and 1 H and 13 C nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR). The polymerization behavior of monomer was analyzed by differential scanning calorimetry (DSC) and FTIR. The curing kinetics was studied by non-isothermal DSC, and the kinetic parameters were determined. The autocatalytic model based on two kinetic methods (Starink-LSR method and direct LSR method) showed good agreement with experimental results. The thermal and mechanical properties of poly(BEF-p) were evaluated with DSC, dynamic mechanical thermal analysis (DMTA), and thermogravimetric analysis (TGA). The results showed that the cured polymer exhibited higher glass transition temperature (T g ) and better thermal stability compared with diaminodiphenylmethane-based benzoxazine(P-ddm), and was slightly lower than those of fluorene diamine-phenol-based polybenzoxazine (poly(BF-p))

  16. Highly Soluble p-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection.

    Science.gov (United States)

    Yemam, Henok A; Mahl, Adam; Tinkham, Jonathan S; Koubek, Joshua T; Greife, Uwe; Sellinger, Alan

    2017-07-03

    Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt %) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however, they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and tested as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. For example, select fluorene derivatives used as dopants produced scintillator samples with mechanical properties exceeding those of the commercial PPO-based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the final scintillator samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tunable properties of novel tetra-functional fluorene-based benzoxazines from mixed amines: Synthesis, characterization and curing kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tiantian [Polymer Materials Research Center, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 15001 (China); Wang, Jun, E-mail: wj6267@sina.com [Polymer Materials Research Center, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 15001 (China); Pan, Lan; Derradji, Mehdi; Ramdani, Noureddine [Polymer Materials Research Center, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 15001 (China); Liu, Wenbin, E-mail: wjlwb@163.com [Polymer Materials Research Center, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 15001 (China); Zhou, Haoran [Department of Polymer Materials and Engineering, College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China)

    2016-06-10

    Highlights: • Synthesis of tetra-functional fluorene-based benzoxazines with tunable properties. • Cure reaction could be successfully described with the autocatalytic model. • The benzoxazines show an excellent heat resistance with T{sub g} of 291–307 °C. • The benzoxazines exhibit good thermal stability with T{sub 5} over 340 °C. - Abstract: A series of tetra-functional fluorene-based benzoxazines containing both flexible linear aliphatic chain and rigid aromatic structure in their backbones were synthesized using mixed amines such as aniline and n-octylamine, 2,7-dihydroxy-9,9-bis-(4-hydroxyphenyl)fluorene (THPF) and paraformaldehyde as raw materials via Mannich reaction. The prepared benzoxazine monomers were identified by fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance ({sup 1}H NMR). In addition, the curing behavior, curing kinetics and rheological properties of these monomers as well as the thermal and mechanical properties of their cured resins were studied using a rheometer, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), and dynamic thermomechanical analyzer (DMA). The newly developed benzoxazines show good processibility, excellent thermal stability and high glass transition temperature (T{sub g}) values ranging from 291 to 307 °C. By varying the proportion of n-octylamine to aniline, the properties of these resins are tuned.

  18. Recognition and repair of 2-aminofluorene- and 2-(acetylamino)fluorene-DNA adducts by UVRABC nuclease

    International Nuclear Information System (INIS)

    Pierce, J.R.; Case, R.; Tang, Moonshong

    1989-01-01

    Recognition of damage induced by N-hydroxy-2-aminofluorene (N-OH-AF) and N-acetoxy-2-(acetylamino)fluorene (NAAAF) in both φX174 RFI supercoiled DNA and a linear DNA fragment by purified UVRA, UVRB, and UVRC proteins was investigated. The authors have previously demonstrated that N-OH-AF and NAAAF treatments produce N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene (dG-C8-AAF), respectively, in DNA. Using a piperidine cleavage method and DNA sequence analysis, they have found that all guanine residues can be modified by N-OH-AF and NAAAF. These two kinds of adducts have different impacts on the DNA helix structure; while dG-C8-AF maintains the anti configuration, dG-C8-AAF is in the syn form. φX174 RF DNA-Escherichia coli transfection results indicate that while the uvrA, uvrB, and uvrC gene products are needed to repair dG-C8-AAF, the uvrC, but not the uvrA or uvrB gene products, is needed for repair of dG-C8-Af. However, they have found that in vitro the UVRA, UVRB, and UVRC proteins must work in concert to nick both dG-C8-AF and dG-C8-AAF. In general, the reactions of UVRABC nuclease toward dG-C8-AF are similar to those toward dG-C8-AAF; it incises seven to eight nucleotides from the 5' side and three to four nucleotides from the 3' side of the DNA adduct. Evidence is presented to suggest that hydrolysis on the 3' and 5' sides of the damaged base by UVRABC nuclease is not simultaneous and that at least occasionally hydrolysis occurs only on the 3' side or on the 5' side of the damage site. The possible mechanisms of UVRABC nuclease incision for AF-DNA are discussed

  19. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  20. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  1. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  2. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih

    2016-12-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  3. Study of the electronic structure at the interface between fluorene-1-carboxylic acid molecules and Cu(110)

    International Nuclear Information System (INIS)

    Song Fei; Mao Hongying; Guan Dandan; Dou Weidong; Zhang Hanjie; Li Haiyang; He Pimo; Bao Shining; Hofmann, Philip

    2009-01-01

    The interface electronic properties of fluorene-1-carboxylic acid (FC-1) adsorbed on Cu(110) have been studied by ultraviolet photoemission spectroscopy (UPS) and first-principles calculations. Both the molecular orbitals and the Cu valence band are significantly modified upon adsorption. FC-1 is chemically bonded to Cu(110) through charge donation and back donation involving the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) of the molecule. An observed reduction of the work function can be attributed to the adsorption induced charge redistribution, and the positive interface dipole.

  4. Bioremediation of polycyclic aromatic hydrocarbon (PAH compounds: (acenaphthene and fluorene in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Oluwadara Oluwaseun Alegbeleye

    Full Text Available Abstract This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25 °C, 30 °C, 35 °C, 37 °C, 38 °C, 40 °C and 45 °C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37 °C, 37 °C, 30 °C and 35 °C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.

  5. Hybrids of copolymers of fluorene and C60 -carrying-carbazole with semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Ozawa, Hiroaki; Nakashima, Naotoshi

    2015-02-16

    Three different copolymers of C60 -carrying-carbazole and fluorene units with different copolymer composition ratios were designed and synthesized. On the basis of photoluminescence, atomic force microscopy, and Vis-NIR and Raman spectroscopic analysis, we found that these copolymers solubilize only semiconducting single-walled carbon nanotubes (sem-SWNTs) to form copolymer/sem-SWNT hybrids, in which energy transfer from the copolymer/C60 moieties to the SWNTs was revealed. By comparing two possible hybrid structures with molecular-mechanics simulations, the greatest stabilization was found when the C60 moieties lay on the sem-SWNT surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    Science.gov (United States)

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes.

  7. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  8. Linear and nonlinear photophysics and bioimaging of an integrin-targeting water-soluble fluorenyl probe.

    Science.gov (United States)

    Morales, Alma R; Luchita, Gheorghe; Yanez, Ciceron O; Bondar, Mykhailo V; Przhonska, Olga V; Belfield, Kevin D

    2010-06-07

    Linear photophysical characterization and two-photon absorption (2PA) properties of a new water-soluble fluorene derivative, 3-(9-(2-(2-methoxyethoxy)ethyl)-2,7-bis{3-[2-(polyethyleneglycol-550-monomethylether-1-yl)]-4-(benzo[d]thiazol-2-yl)styryl}-9H-fluoren-9-yl)propanoic acid (1), were investigated in several organic solvents and water at room temperature. A comprehensive analysis of the steady-state absorption, emission and excitation anisotropy spectra revealed electronic structures of 1, including mutual orientation of the transition dipoles, relatively weak solvatochromic effects, high fluorescence quantum yield (approximately 0.5-1.0), and strong aggregation in water. The 2PA spectra of 1 were obtained in the 600-900 nm spectral range by two-photon induced fluorescence (2PF) and open aperture Z-scan methods using femtosecond laser sources. No discrete 2PA bands were apparent and values of the corresponding 2PA cross sections monotonically increased in the short wavelength range up to 3000 GM in organic solvents and approximately 6000 GM in aqueous solution, reflecting relatively high two-photon absorptivity. The 2PA efficiency of in water increased 2-3 times relative to aprotic solvents and can be explained by cooperative electronic effects of molecular aggregates of 1 produced in aqueous media. The carboxylic acid fluorenyl probe 1 was conjugated with the cyclic peptide RGDfK. Two-photon fluorescence microscopy (2PFM) imaging of U87MG cells (and MCF-7 as control), incubated with fluorene-RGD peptide conjugate 2, demonstrated high alpha(v)beta(3) integrin selectivity, making this probe particularly attractive for integrin imaging.

  9. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  10. Spectroscopic studies of energy transfer in fluorene co-polymer blend nanoparticles

    Science.gov (United States)

    Gao, Jian; Grey, John K.

    2012-01-01

    Nanoparticles of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) [PFB] and poly(9,9-dioctylfluorene-co-benzothiadiazole) [F8BT] (1:1 w/w) were studied using scanned probe and single particle spectroscopy techniques. Photoluminescence (PL spectra of ∼58 and ∼100 nm PFB/F8BT nanoparticles show efficient energy transfer from the PFB (donor) component to the F8BT (acceptor) component that is independent of particle size. We propose that nanoparticles are phase segregated into discrete PFB/F8BT nanodomains on the order of ∼20-40 nm for both particle sizes. Pressure-dependent nanoparticle PL spectra support this assignment where lineshape maxima of each component red-shift in a similar manner due to increased interchain packing within the single nanodomains.

  11. Characterization of Conjugated Polymer Poly(fluorene-co-thiophene and Its Application as Photosensitizer of TiO2

    Directory of Open Access Journals (Sweden)

    Rongliang Qiu

    2008-01-01

    Full Text Available The copolymer poly(fluorene-co-thiophene (PFT has strong absorption in the visible light region. In this paper, PFTs with four different thiophene contents were evaluated for their suitability as photosensitizers of TiO2. All four of the PFTs were capable of being excited by light with wavelengths above 455 nm, and all had reductive potentials more negative than the conduction band potential of TiO2. Consequently, it was deemed that transfer of electrons from the excited PFTs to the conduction band of TiO2 was thermodynamically possible. PFTs with higher thiophene content had more electron transitions in the excited state, resulting in increased photocatalytic activity of PFT-sensitized TiO2. The method used to prepare the combined PFT/TiO2 photocatalyst affected its photocatalytic activity. Best results in this study were achieved by dropwise addition of a tetrahydrofuran solution of PFT to a stirred TiO2/ethanol suspension.

  12. Synthesis and electro-optical properties of fluorene containing blue luminescent rod-coil homopolymers with pendant pyridine

    Directory of Open Access Journals (Sweden)

    Sahu Duryodhan

    2017-02-01

    Full Text Available Two well defined, blue luminescent homopolymers containing 9,9-diethylfluorene core with electron withdrawing pendant pyridine, Suzuki-coupled with the corresponding borolane of decoxy phenyl (PFPA and naphthalene (PFNA have been designed and synthesized efficiently. The obtained rod-coil polymers have the average molecular weight of 15212 (PFPA and 15130 (PFNA with polydispersity indices (PDIs 1.07 and 1.3, respectively. The polymers have good solubility and high thermal stability with the decomposition temperature of 362 °C (PFPA and 367 °C (PFNA correspondingly. Furthermore the optical and electrochemical properties of the polymers have been investigated. The polymers exhibited photoluminescence (PL maxima at 410 nm (PFPA and 414 nm (PFNA excited at 340 nm, as stable blue luminescence polymers at low concentration of 10−6 M with a quantum yield of 0.64 and 0.62, respectively. In addition the annealed (150 °C polymer films showed better stability of its photoluminescence spectra. Absorbance and fluorescence emission spectra of PFPA and PFNA were compared in order to evaluate the effects of substituent, phenyl and naphthalene in pyridine pendant fluorene moieties.

  13. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  14. Mobile probes

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Jørgensen, Anna Neustrup; Noesgaard, Signe Schack

    2016-01-01

    to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...... level. This paper is an initial investigation of how the mobile probes process proved to engage teachers in their efforts to improve teaching. It also highlights some of the barriers emerging when applying mobile probes as a scaffold for learning.......A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed...

  15. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  16. Symmetry- and solvent-dependent photophysics of fluorenes containing donor and acceptor groups.

    Science.gov (United States)

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Fore, Jennifer L; Walker, Mark A; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2014-07-17

    Three two-photon absorption (2PA) dyes (donor-π-donor (DPA2F), donor-π-acceptor (AF240), and acceptor-π-acceptor (BT2F); specifically, D is Ph2N-, A is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) are examined in a variety of aprotic solvents. Because the 2PA cross section is sensitive to the polarity of the local environment, this report examines the solvent-dependent linear photophysics of the dyes, which are important to understand before probing more complex solid-state systems. The symmetrical dyes show little solvent dependence; however, AF240 has significant solvatochromism observed in the fluorescence spectra and lifetimes and also the transient absorption spectra. A 114 nm bathochromic shift is observed in the fluorescence maximum when going from n-hexane to acetonitrile, whereas the lifetimes increase from 1.25 to 3.12 ns. The excited-state dipole moment for AF240 is found to be 20.1 D using the Lippert equation, with smaller values observed for the symmetrical dyes. Additionally, the femtosecond transient absorption (TA) spectra at time zero show little solvent dependence for DPA2F or BT2F, but AF240 shows a 52 nm hypsochromic shift from n-hexane to acetonitrile. Coupled with the solvatochromism in the fluorescence and large excited-state dipole moment, this is attributed to formation of an intramolecular charge-transfer (ICT) state in polar solvents. By 10 ps in AF240, the maximum TA in acetonitrile has shifted 30 nm, providing direct evidence of a solvent-stabilized ICT state, whose formation occurs in 0.85-2.71 ps, depending on solvent. However, AF240 in nonpolar solvents and the symmetrical dyes in all solvents show essentially no shifts due to a predominantly locally excited (LE) state. Preliminary temperature-dependent fluorescence using frozen glass media supports significant solvent reorganization around the AF240 excited state in polar solvents, and may also support a twisted intramolecular charge-transfer (TICT

  17. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  18. Conformation of amine-modified DNA: 2-aminofluorene- and 2-(acetylamino)fluorene-modified deoxydinucleoside monophosphates with all possible nearest neighbors. A comparison of search and optimization methods.

    Science.gov (United States)

    Shapiro, R; Sidawi, D; Miao, Y S; Hingerty, B E; Schmidt, K E; Moskowitz, J; Broyde, S

    1994-01-01

    Although a significant part of the replication fork exists as single-stranded DNA, little is known about the effect of carcinogens and mutagens on single-strand conformation. Large-scale conformational searches with potential energy minimization, using the torsion angle space molecular mechanics program DUPLEX, were employed to explore the conformation of all 16 deoxydinucleoside monophosphates bearing 2-aminofluorene (AF) or 2-(acetylamino)fluorene (AAF) modification on guanine. We have thus examined the effect of 3' versus 5' modification, the presence or absence of the acetyl group, and the effect of four different neighbors in each case. The principal effect of the acetyl group appeared to be the destabilization of anti (and, to a lesser degree, borderline anti) conformations for modified guanine. This mattered little in the 5'-substituted dimers, where one conformational type predominated in the low-energy structures for the adducts of both AAF and AF: It was right-handed, with syn-guanine, imperfect base-base stacking, and fluorene to 3'-sugar contacts. Greater divergence was seen in the 3'-substituted series. The AAF-substituted 3'-adducts primarily displayed good base-fluorene stacking, with syn-guanine in contact with the 5'-sugar. The AF-substituted 3'-adducts displayed a variety of structures which included base-base and carcinogen-base stacked forms. Two novel forms were encountered [global minima for d(ApG-AF) and d(GpG-AF)], whose unusual structures suggest mutagenic capability. In order to address the multiple minimum problem, we conducted our searches of conformation space using two alternative optimization methods that also employ differing search strategies. We used the Powell algorithm, BOTM, with starting conformations that are selected combinations of rotamers, and the method of simulated annealing (SA), with random or arbitrary starting conformations. While both approaches were effective in defining the most important structures, SA was more

  19. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors.

    Science.gov (United States)

    Hoye, Robert L Z; Chua, Matthew R; Musselman, Kevin P; Li, Guangru; Lai, May-Ling; Tan, Zhi-Kuang; Greenham, Neil C; MacManus-Driscoll, Judith L; Friend, Richard H; Credgington, Dan

    2015-02-25

    Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Pollution Probe.

    Science.gov (United States)

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  2. Probe specificity

    International Nuclear Information System (INIS)

    Laget, J.M.

    1986-11-01

    Specificity and complementarity of hadron and electron probes must be systematically developed to answer three questions currently asked in intermediate energy nuclear physics: what is nucleus structure at short distances, what is nature of short range correlations, what is three body force nature [fr

  3. Conjugated Polymers Containing BODIPY and Fluorene Units for Sensitive Detection of CN− Ions: Site-Selective Synthesis, Photo-Physical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Tian He

    2017-10-01

    Full Text Available Conjugated polymers containing distinct molecular units are expected to be very interesting because of their unique properties endowed by these units and the formed conjugated polymers. Herein, four new conjugated copolymers based on fluorene and 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY have been designed and synthesized via Sonogashira polymerization. The fluorene unit was attached to the 3,5- or 2,6-positions of BODIPY by ethynylenes or p-diacetylenebenzene. The obtained polymers show good thermal stability and broad absorption in the wavelength range from 300 to 750 nm. The effects of site-selective copolymerization and conjugation length along the polymer backbone on the optoelectronic and electrochemical properties of these copolymers were systematically studied by UV-Vis spectroscopy, photoluminescence (PL and cyclic voltammetry. Besides, it is found that the BODIPY-based copolymers exhibit selectively sensitive responses to cyanide anions, resulting in obvious change of UV-Vis absorption spectra and significant fluorescence quenching of the polymers among various common anions.

  4. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    Science.gov (United States)

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  5. Characterization and tunneling conductance spectra of N,N'-bis (9H-fluoren-9-ylidene)benzene-1,4-diamine thin films on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xin Hongliang; Li Zhuomin; He Tianxian; Miao Xinrui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Deng Wenli, E-mail: wldeng@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-06-01

    N,N'-bis(9H-fluoren-9-ylidene)benzene-1,4-diamine was synthesized via the acetic acid-assisted Schiff base reaction between 9-fluorenone and p-phenylenediamine. The thin films were deposited from solution and characterized by contact angle measurements (CAM), X-ray photoelectron spectroscopy (XPS) and tunneling conductance spectroscopy (TCS). The tunneling conductance spectra, related to the potential and distance between the tip and substrate, were acquired at different tip-substrate separations and depicted significant trend under the action of electric field. Systematic analysis shows more information about electron transport through medium layers. The electric field plays an important role in tunneling conductance spectra. The tunneling conductance spectra data indicate the electric field dependence of electron transport.

  6. Crystal structure and DFT studies of N1,N6-Di(9H-fluoren-9-ylidene)hexane-1,6-diamine

    Science.gov (United States)

    Yuan, Meirong; Li, Zhuomin

    2013-01-01

    N1,N6-Di(9H-fluoren-9-ylidene)hexane-1,6-diamine (DFHD) was conveniently synthesized and characterized, the crystal structure was determined from X-ray single crystal diffraction. The optimized molecular geometry, harmonic vibration frequencies and NMR spectra of DFHD in the ground state have been calculated by using the density functional B3LYP method with 6-31G(d) as basis set. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) complemented with the experimental findings. The calculated HOMO and LUMO energies showed that charge transfer occurs within the molecule. Finally the calculation results showed good agreement with the experimental ones.

  7. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  8. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    Science.gov (United States)

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  9. Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II Complex-Influence on Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available A new high molar extinction coefficient ruthenium(II bipyridyl complex “cis-Ru(4,4-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl-9H-fluoren-2-yl-2,2-bipyridine(2,2-bipyridine-4,4-dicarboxylic acid(NCS2, BPFC” has been synthesized and characterized by FT-IR, 1H-NMR, and ESI-MASS spectroscopes. The sensitizer showed molar extinction coefficient of 18.5×103 M−1cm−1, larger as compared to the reference N719, which showed 14.4×103 M−1cm−1. The test cells fabricated using BPFC sensitizer employing high performance volatile electrolyte, (E01 containing 0.05 M I2, 0.1 M LiI, 0.6 M 1,2-dimethyl-3-n-propylimidazolium iodide, 0.5 M 4-tert-butylpyridine in acetonitrile solvent, exhibited solar-to-electric energy conversion efficiency (η of 4.65% (short-circuit current density (SC = 11.52 mA/cm2, open-circuit voltage (OC = 566 mV, fill factor = 0.72 under Air Mass 1.5 sunlight, lower as compared to the reference N719 sensitized solar cell, fabricated under similar conditions, which exhibited η-value of 6.5% (SC = 14.3 mA/cm2, OC = 640 mV, fill factor = 0.71. UV-Vis measurements conducted on TiO2 films showed decreased film absorption ratios for BPFC as compared to those of reference N719. Staining TiO2 electrodes immediately after sonication of dye solutions enhanced film absorption ratios of BPFC relative to those of N719. Time-dependent density functional theory (TD-DFT calculations show higher oscillation strengths for 4,4-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl-9H-fluoren-2-yl-2,2-bipyridine relative to 2,2-bipyridine-4,4-dicarboxylic acid and increased spectral response for the corresponding BPFC complex.

  10. Benzo[4,5]cyclohepta[1,2-b]fluorene: an isomeric motif for pentacene containing linearly fused five-, six- and seven-membered rings

    KAUST Repository

    Yang, Xuejin

    2016-06-07

    Benzo[4,5]cyclohepta[1,2-b]fluorene (5a), a new π-conjugated polycyclic hydrocarbon containing linearly fused six-, five-, six-, seven- and six-membered rings (C6-C5-C6-C7-C6), was designed and its stable derivatives 5b and 5c were synthesized. With 22 π electrons, 5a is an isomer of pentacene with quinoidal, dipolar ionic and diradical resonance forms. Molecules 5b and 5c were experimentally investigated with cyclic voltammetry, electronic absorption spectroscopy and X-ray crystallographic analysis, and theoretically studied by calculating the NICS value, diradical character and dipole moment. A comparison of 5a–c with pentacene and other pentacene analogues containing linearly fused five- or seven- membered rings was also conducted and discussed. It was found that 5b behaved as a p-type organic semiconductor in solution-processed thin film transistors with field effect mobility of up to 0.025 cm2/Vs.

  11. THE ORNL ATOM PROBE

    OpenAIRE

    Miller, M.

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  12. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  13. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  14. Synthesis of elastomeric polypropylene in bulk using C1-symmetric ansa-metallocenes. New aspects of the synthesis of 1-(fluoren-9-yl)-2-(2-methyl-5,6-dihydrocyclopenta[f]-1H-inden-1-yl)ethane and complexes of zirconium and hafnium with this ligand

    International Nuclear Information System (INIS)

    Nedorezova, P.M.; Veksler, Eh.N.; Novikova, E.S.; Optov, V.A.; Baranov, A.O.; Aladyshev, A.M.; Tsvetkova, V.I.; Shklyaruk, B.F.; Krut'ko, D.P.; Churakov, A.V.; Kuz'mina, L.G.; Howard, J.A.K.

    2005-01-01

    Isomeric 1-(fluoren-9-yl)-2-(2-methyl-5,6-dihydrocyclopenta[f]-1H-indenyl)ethanes (1a,b) and C 1 -symmetric metallocenes, viz., rac-{1-(η 5 -fluoren-9-yl)-2-(2-methyl-5,6-dihydrocyclopenta[f]- η 5 -inden-1-yl)ethane}zirconium dichloride (2) and rac-{1-(η 5 -fluoren-9-yl)- 2-(2-methyl-5,6-dihydrocyclopenta[f]-η 5 -inden-1-yl)ethane}hafnium dichloride (3), with these ligands were synthesized by modified procedures. The structures of compounds 1b (two crystalline modifications) and 3 were established by X-ray diffraction analysis. The synthesis of polypropylene in bulk was studied in the presence of polymethylalumoxane-activated metallocenes 2 and 3 in the temperature range of 30-70 deg C

  15. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    Science.gov (United States)

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  16. High temperature probe

    Science.gov (United States)

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  17. Microneurosurgical water probe.

    Science.gov (United States)

    Pogády, P; Wurm, G

    2005-04-01

    When constructing the micro-neurosurgical water ball probe, the authors have simply combined the properties of a ball probe with an irrigational function and the supportive role of water current to form a new irrigating ball dissector. The micro-instrument has an outlet mechanism with which the surgeon can regulate the flow of physiological solution into the operational field. Its point has the properties of a ball probe, and the overall bayonet shape facilitates surgical interventions in deep tissues under microscopic control. The water probe therefore enables the surgeon to perform precise mechanical preparation supported by a regulated current of water and a targeted irrigation in the operational field. The physiological solution in the pressure infusion cuff is under minimal pressure and directly connected to the probe. Due to the fact that one device can be used for various purposes the water ball probe represents an advantageous alternative to conventional micro-neurosurgical preparation.

  18. Novel poly(triphenylamine-alt-fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation

    KAUST Repository

    Wang, Po-I.

    2016-01-13

    © The Royal Society of Chemistry 2016. In this study, a new triphenylamine-alt-fluorene conjugated copolymer, HPBPYFL6, with hexaphenylbenzene (HPB) and pyrene as asymmetrical pendant groups was synthesized via Suzuki coupling polymerization. The conjugated polymer had a weight-average molecular weight of 5.8 × 104 g mol-1 with a polydispersity index of 2.5 characterized by gel permeation chromatography (GPC). HPBPYFL6 showed good solubility in common organic solvents such as NMP, THF, toluene and dichloromethane at 25°C. In addition, HPBPYFL6 possessed a high glass transition temperature of 260°C and a 10% weight-loss temperature of 503°C in nitrogen. HPBPYFL6 bearing a pyrene moiety had a solvatochromic fluorescence shift from a green to an orange emission as the polarity of the solvent increased. Cyclic voltammetry of HPBPYFL6 films cast onto indium-tin oxide-coated glass (ITO-glass) exhibited two oxidation redox couples at an E1/2 value of 0.82 and 1.17 V versus Ag/Ag+ in an acetonitrile solution. The HPBPYFL6 film on graphene-coated PET had an E1/2 value of 0.24 and 1.12 V. Conjugated polymer films exhibited reversible electrochromic behaviour with a colour change from pale yellow to deep blue upon electrochemical oxidation and high absorbance in the near-infrared (NIR) region. The switching and bleaching times were 5.16 s and 3.12 s for 1231 nm and were 3.30 s and 3.74 s for 1030 nm of HPBPYFL6 on ITO-glass. The strong NIR electrochromic absorbance of HPBPYFL6 was attributed to intervalence charge transfer by the incorporation of the HPB moiety. This phenomenon was confirmed by chemical oxidation as the oxidant contents increased in the solution state. Furthermore, the electrochromic mechanism was interpreted by DFT calculation and the simulated NIR electrochromic spectra of model compound HPBPYFL are in good agreement with the experimental data.

  19. Probe tests microweld strength

    Science.gov (United States)

    1965-01-01

    Probe is developed to test strength of soldered, brazed or microwelded joints. It consists of a spring which may be adjusted to the desired test pressure by means of a threaded probe head, and an indicator lamp. Device may be used for electronic equipment testing.

  20. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  1. Noninvasive ultrasonic probes

    International Nuclear Information System (INIS)

    Barnes, S.R.; Galer, D.R.; Leard, R.S.

    1987-01-01

    An ultrasonic probe is described for insonifying the ascending aorta of a supine or reclining human patient from a location within the suprasternal notch of the patient. The probe comprises: a transducer head and an elongated handle; housing propagates ultrasonic energy and for intercept-frequency-shifted, reflected radiant energy; the handle has a proximate portion and a distal portion and a non-circular cross-sectional configuration with at least one longitudinal edge which furnishes a gripping surface; this facilitates tactile positioning of the probe; the transducer head is integral with the handle of the probe at the exposed end of the proximate portion; the transducer head has a generally arcuate cross-sectional configuration and a generally trapezoidal profile; the transducer head is oriented at right angles to the proximate portion of the handle and has an exposed, patient contacting end in which the transducer means are located; this facilitates the orientation of the transducer means housed in the head relative to the ascending aorta of the patient; and the distal end portion of the elongated probe handle is integral with and immovably oriented at a severe angle relative to the proximate end of that handle, and lies in the same plane as the proximate end of the handle; the transducer head of the probe is placed with facility within the suprasternal notch of the patient by an operator positioned behind the head of the patient

  2. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  3. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  4. Multispectral imaging probe

    Science.gov (United States)

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  5. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General ... Author Affiliations. Ashok Ambastha1. Joint In-Charge Udaipur Solar Observatory Physical Research laboratory P.O. Box No. 198 Udaipur 313 001, India ...

  6. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General Article Volume 3 Issue 3 March 1998 pp 18-31. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  8. One-Probe Search

    DEFF Research Database (Denmark)

    Östlin, Anna; Pagh, Rasmus

    2002-01-01

    We consider dictionaries that perform lookups by probing a single word of memory, knowing only the size of the data structure. We describe a randomized dictionary where a lookup returns the correct answer with probability 1 - e, and otherwise returns don't know. The lookup procedure uses an expan...

  9. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  10. Thermal conductivity probe

    Science.gov (United States)

    Navickas, J.

    1969-01-01

    Low-mass probe accurately measures the thermal conductivity of polyurethane foam /and other thermal insulating materials/ while exposed to either hydrogen of helium permeation in temperature ranges from ambient to cryogenic. The thermal conductivity of a specimen is determined from an experimentally determined increase in temperature.

  11. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  12. Heavy ion beam probing

    Energy Technology Data Exchange (ETDEWEB)

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  13. Heavy ion beam probing

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included

  14. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  15. Novel Eddycurrent Probe Development.

    Science.gov (United States)

    1981-12-01

    oVCut MVc AVu inc F C -- -(1)(-jlOOO AZC (23)0 --2--M F1 (23) If the Thevenin source voltages, V0, are adjusted so that Vinc is the same for both the...as small as 1.2 cm. The differential probe assembly was spring loaded about a pivot post (see Figure 12) so it could scan noncircular or eccentric

  16. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  17. Atom probe crystallography

    OpenAIRE

    Gault, Baptiste; Moody, Michael P.; Cairney, Julie M.; Ringer, Simon P.

    2012-01-01

    This review addresses new developments in the emerging area of “atom probe crystallography”, a materials characterization tool with the unique capacity to reveal both composition and crystallographic structure at the atomic scale. This information is crucial for the manipulation of microstructure for the design of both structural and functional materials with optimized mechanical, electric, optoelectronic, magnetic, or superconducting properties that will find application in, for example, nan...

  18. Probing gravitation with pulsars

    Science.gov (United States)

    Kramer, Michael

    2013-03-01

    Radio pulsars are fascinating and extremely useful objects. Despite our on-going difficulties in understanding the details of their emission physics, they can be used as precise cosmic clocks in a wide-range of experiments - in particular for probing gravitational physics. While the reader should consult the contributions to these proceedings to learn more about this exciting field of discovering, exploiting and understanding pulsars, we will concentrate here on on the usage of pulsars as gravity labs.

  19. Nanoscale thermal probing

    Directory of Open Access Journals (Sweden)

    Yanan Yue

    2012-03-01

    Full Text Available Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem.

  20. Einstein Inflationary Probe (EIP)

    Science.gov (United States)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  1. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  2. Development of Mackintosh Probe Extractor

    Science.gov (United States)

    Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd

    2016-11-01

    Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.

  3. Purification and partial characterization of the extradiol dioxygenase, 2'-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from Rhodococcus sp. strain DFA3.

    Science.gov (United States)

    Kotake, Tatsuro; Matsuzawa, Jun; Suzuki-Minakuchi, Chiho; Okada, Kazunori; Nojiri, Hideaki; Iwata, Kenichi

    2016-01-01

    Type II extradiol dioxygenase, 2'-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase (FlnD1D2) involved in the fluorene degradation pathway of Rhodococcus sp. DFA3 was purified to homogeneity from a heterologously expressing Escherichia coli. Gel filtration chromatography and SDS-PAGE suggested that FlnD1D2 is an α4β4 heterooctamer and that the molecular masses of these subunits are 30 and 9.9 kDa, respectively. The optimum pH and temperature for enzyme activity were 8.0 and 30 °C, respectively. Assessment of metal ion effects suggested that exogenously supplied Fe(2+) increases enzyme activity 3.2-fold. FlnD1D2 catalyzed meta-cleavage of 2'-carboxy-2,3-dihydroxybiphenyl homologous compounds, but not single-ring catecholic compounds. The Km and kcat/Km values of FlnD1D2 for 2,3-dihidroxybiphenyl were 97.2 μM and 1.5 × 10(-2) μM(-1)sec(-1), and for 2,2',3-trihydroxybiphenyl, they were 168.0 μM and 0.5 × 10(-2) μM(-1)sec(-1), respectively. A phylogenetic tree of the large and small subunits of type II extradiol dioxygenases suggested that FlnD1D2 constitutes a novel subgroup among heterooligomeric type II extradiol dioxygenases.

  4. Star-Shaped Macromolecules with the Core of Hexakis-(fluoren-2-yl)benzene and the Periphery of Pyridine: Synthesis and Application as Solution-Processable Electron-Transport Materials.

    Science.gov (United States)

    Yin, Xiaojun; Miao, Jingsheng; Xiang, Yepeng; Wu, Hongbing; Cao, Yong; Yang, Chuluo

    2015-09-01

    Three new star-shaped macromolecules with hexakis(fluoren-2-yl)benzene as the core and pyridine as the periphery (2Py-HFB, 3Py-HFB, and 4Py-HFB) are synthesized and characterized. The synthetic conditions of octacarbonyldicobat-catalyzed cycloaddition reaction for different alkyne precursors are investigated. The coordination interaction between the pyridine ring of alkyne precursor and the cobalt catalyst may result in very low yield of the cyclotrimerization product. However, with the increase of the catalyst loading, the yields of the intermediates of cyclopentadienone are enhanced. Then, the desired cyclotrimerization products can be obtained by the Diels-Alder reactions of cyclopentadienone with acetylene in good yield. These new compounds exhibit good thermal stability and favorable electron affinity. By using the new compounds as electron-transporting materials, all-solution-processed phosphorescent organic light-emitting devices (OLEDs) show good performance with a maximum current efficiency of 5.6 cd A(-1) and maximum external quantum efficiency of 4.68%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystal structure of poly[aqua[μ-1,1′-(9,9-dimethyl-9H-fluoren-2,7-diyldi-1H-imidazole](μ-naphthalene-1,4-dicarboxylatonickel(II

    Directory of Open Access Journals (Sweden)

    Hengye Zou

    2014-09-01

    Full Text Available In the title compound, [Ni(C12H6O4(C21H18N4(H2O]n, the NiII cation is coordinated by three carboxylate O atoms of two naphthalene-1,4-dicarboxylate anions, one water molecule and two N atoms of two 1,1′-(9,9-dimethyl-9H-fluoren-2,7-diyldi-1H-imidazole (DFDI ligands, giving rise to a slightly distorted octahedral geometry. The NiII ions are linked by the DFDI ligands into chains, which are further connected by the carboxylate anions into double chains that elongate in the the b-axis direction. These double chains are linked by centrosymmetric pairs of O—H...O hydrogen bonds into layers parallel to (10-1. The asymmetric unit consists of one crystallographically independent NiII cation, one carboxylate and one DFDI ligand, as well as of one water molecule, all of them located in general positions.

  6. Mobile Probing Kit

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Sørensen, Lene Tolstrup; Sørensen, J.K.

    2007-01-01

    Mobile Probing Kit is a low tech and low cost methodology for obtaining inspiration and insights into user needs, requirements and ideas in the early phases of a system's development process. The methodology is developed to identify user needs, requirements and ideas among knowledge workers...... characterized as being highly nomadic and thus potential users of mobile and ubiquitous technologies. The methodology has been applied in the 1ST MAGNET Beyond project in order to obtain user needs and requirements in the process of developing pilot services. We report on the initial findings from applying...... this methodology in the early phases of this large scale research and development process....

  7. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  8. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  9. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  10. Convex probe endobronchial ultrasound.

    Science.gov (United States)

    Bade, Brett; Furukawa, Brian; Tanner, Nichole T

    2014-12-01

    Convex probe endobronchial ultrasound (EBUS) is a minimally invasive diagnostic technique that allows real-time sampling of mediastinal and hilar lymph nodes and central pulmonary lesions. Its utility in diagnosing both malignant and nonmalignant diseases has led to an increased uptake and use by pulmonologists over the past decade. Because of the robust evidence supporting its safety and diagnostic yield, EBUS is now the first guideline recommended test for staging in non-small cell lung cancer (NSCLC). It has also a role in providing tissue for molecular analysis, thereby guiding in the selection of agents in the new era of personalized chemotherapies in the treatment of NSCLC. The following review highlights the evidence for EBUS in diagnosing mediastinal pathology and addresses technique, training, and competency and future directions for this technology. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Non-inductive current probe

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl

    1977-01-01

    The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is......The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is...

  12. Gene probes: principles and protocols

    National Research Council Canada - National Science Library

    Aquino de Muro, Marilena; Rapley, Ralph

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  13. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard...... or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application....... silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear...

  14. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  15. Electrophoresis-mass spectrometry probe

    Science.gov (United States)

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  16. Mobile Probes in Mobile Learning

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Blomhøj, Ulla; Duvaa, Uffe

    In this paper experiences from using mobile probes in educational design of a mobile learning application is presented. The probing process stems from the cultural probe method, and was influenced by qualitative interview and inquiry approaches. In the project, the mobile phone was not only acting...... as an agent for acquiring empirical data (as the situation in hitherto mobile probe settings) but was also the technological medium for which data should say something about (mobile learning). Consequently, not only the content of the data but also the ways in which data was delivered and handled, provided...... a valuable dimension for investigating mobile use. The data was collected at the same time as design activities took place and the collective data was analysed based on user experience goals and cognitive processes from interaction design and mobile learning. The mobile probe increased the knowledge base...

  17. Wearable probes for service design

    DEFF Research Database (Denmark)

    Mullane, Aaron; Laaksolahti, Jarmo Matti; Svanæs, Dag

    2014-01-01

    by service employees in reflecting on the delivery of a service. In this paper, we present the ‘wearable probe’, a probe concept that captures sensor data without distracting service employees. Data captured by the probe can be used by the service employees to reflect and co-reflect on the service journey......Probes are used as a design method in user-centred design to allow end-users to inform design by collecting data from their lives. Probes are potentially useful in service innovation, but current probing methods require users to interrupt their activity and are consequently not ideal for use......, helping to identify opportunities for service evolution and innovation....

  18. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan; Transient Astrophysics Probe Team

    2018-01-01

    The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.

  19. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  20. Probing the Probes: Fitness Factors For Small Molecule Tools

    OpenAIRE

    Workman, Paul; Collins, Ian

    2010-01-01

    Chemical probes for interrogating biological processes are of considerable current interest. Cell permeable small molecule tools have a major role in facilitating the functional annotation of the human genome, understanding both physiological and pathological processes, and validating new molecular targets. To be valuable, chemical tools must satisfy necessary criteria and recent publications have suggested objective guidelines for what makes a useful chemical probe. Although recognizing that...

  1. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  2. A three dimensional probe positioner

    International Nuclear Information System (INIS)

    Intrator, T.; Sun, X.; Furno, I.; Dorf, L.; Lapenta, G.

    2008-01-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a 'wobbly' probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  3. Pneumatic probe with laser interferometer

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    Improvements to upgrade the accuracy of Rotacon probes by a complete redesign of probe to include a Michelson interferometer to replace the existing long-range capacity transducer are described. This has resulted in a compact and interchangeable probe cartridge with a 3 μin. resolution and accuracy; the cartridge can be installed and replaced in the Rotacon gauge with the minimum of realignment, which should reduce our dependence on operator skill. In addition, the stylus contact force can be reduced to 750 mg for the contacting types, but an alternative feature, which we are still developing, will use a gas jet cushion in place of the stylus to provide a noncontacting version of the same basic probe cartridge. This device is very sensitive to external vibration effects because it is virtually frictionless

  4. DNA probe for lactobacillus delbrueckii

    Energy Technology Data Exchange (ETDEWEB)

    Delley, M.; Mollet, B.; Hottinger, H. (Nestle Research Centre, Lausanne (Switzerland))

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  5. DNA probe for lactobacillus delbrueckii

    International Nuclear Information System (INIS)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α- 32 P-labeled probe

  6. DIGITAL CONTACT POTENTIAL DIFFERENCE PROBE

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2016-01-01

    Full Text Available Nowadays the technique of analog contact potential difference probes well developed. Due to the influence of various parasitic factors, analog probes has substantial errors. The integration time for automatic CPD compensation should be at least several seconds to achieve high accuracy measurements. The speed and the accuracy are essential, for example, for Scanning Kelvin Probes. The purpose of this paper is to develop a digital contact potential difference probe, with a higher accuracy and speed of measurements as compared to analog probe. The digital probe made on base of 32-bit microprocessor with a Cortex M4 core. Measuring cycle consists of at least two successive determinations of the output signal amplitude at different compensation voltage generated by the microcontroller. It allows synchronizing of the generated oscillations and reading of the measuring signals. Data arrays processed in real time of the Digital Signal Processing by microprocessor. In this case is possible computation of the root mean square value or determination of the desired spectral line of the signal after fast Fourier transformation. Both methods permit eliminate of random noise and spurious harmonics. The method provides the digital contact potential difference probe operation in large signal mode and with a large signal/noise ratio. This eliminates the error associated with the zero signal finding. Also the integration time for automatic CPD compensation of the measured value is not necessary, which significantly reduces the measurement time and eliminates errors of compensation and DAC. In addition, the microcontroller could control the movement of the probe during scanning and transfer data to the host computer on interface USB, etc.

  7. IVVS probe mechanical concept design

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it; Neri, Carlo; De Collibus, Mario Ferri; Mugnaini, Giampiero; Pollastrone, Fabio; Crescenzi, Fabio

    2015-10-15

    Highlights: • ENEA designed, developed and tested a laser based In Vessel Viewing System (IVVS). • IVVS mechanical design has been revised from 2011 to 2013 to meet ITER requirements. • Main improvements are piezoceramic actuators and a step focus system. • Successful qualification activities validated the concept design for ITER environment. - Abstract: ENEA has been deeply involved in the design, development and testing of a laser based In Vessel Viewing System (IVVS) required for the inspection of ITER plasma-facing components. The IVVS probe shall be deployed into the vacuum vessel, providing high resolution images and metrology measurements to detect damages and possible erosion. ENEA already designed and manufactured an IVVS probe prototype based on a rad-hard concept and driven by commercial micro-step motors, which demonstrated satisfying viewing and metrology performances at room conditions. The probe sends a laser beam through a reflective rotating prism. By rotating the axes of the prism, the probe can scan all the environment points except those present in a shadow cone and the backscattered light signal is then processed to measure the intensity level (viewing) and the distance from the probe (metrology). During the last years, in order to meet all the ITER environmental conditions, such as high vacuum, gamma radiation lifetime dose up to 5 MGy, cumulative neutron fluence of about 2.3 × 10{sup 17} n/cm{sup 2}, temperature of 120 °C and magnetic field of 8 T, the probe mechanical design was significantly revised introducing a new actuating system based on piezo-ceramic actuators and improved with a new step focus system. The optical and mechanical schemes have been then modified and refined to meet also the geometrical constraints. The paper describes the mechanical concept design solutions adopted in order to fulfill IVVS probe functional performance requirements considering ITER working environment and geometrical constraints.

  8. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    to perform real-time measurements with little or no sample preparation, Raman spectroscopy is now considered an invaluable analytical tool, finding application in several fields including medicine, defense and process control. When combined with fiber optics technology, Raman spectroscopy allows......The design and development of an all-in-fiber probe for Raman spectroscopy are presented in this Thesis. Raman spectroscopy is an optical technique able to probe a sample based on the inelastic scattering of monochromatic light. Due to its high specificity and reliability and to the possibility...... for the realization of flexible and minimally-invasive devices, able to reach remote or hardly accessible samples, and to perform in-situ analyses in hazardous environments. The work behind this Thesis focuses on the proof-of-principle demonstration of a truly in-fiber Raman probe, where all parts are realized...

  9. Gamma-ray imaging probes

    International Nuclear Information System (INIS)

    Wild, W.J.

    1988-01-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work

  10. Spaser as a biological probe

    Science.gov (United States)

    Galanzha, Ekaterina I.; Weingold, Robert; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Nolan, Jacqueline; Harrington, Walter; Kuchyanov, Alexander S.; Parkhomenko, Roman G.; Watanabe, Fumiya; Nima, Zeid; Biris, Alexandru S.; Plekhanov, Alexander I.; Stockman, Mark I.; Zharov, Vladimir P.

    2017-06-01

    Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.

  11. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  12. Probing nuclear matter with dileptons

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-06-01

    Dileptons are shown to be of interest in helping probe extreme conditions of temperature and density in nuclear matter. The current state of experimental knowledge about dileptons is briefly described, and their use in upcoming experiments with light ions at CERN SPS are reviewed, including possible signatures of quark matter formation. Use of dileptons in an upcoming experiment with a new spectrometer at Berkeley is also discussed. This experiment will probe the nuclear matter equation of state at high temperature and density. 16 refs., 8 figs

  13. SUB-SLAB PROBE INSTALLATION

    Science.gov (United States)

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  14. Resolution analysis by random probing

    NARCIS (Netherlands)

    Fichtner, Andreas; van Leeuwen, T.

    2015-01-01

    We develop and apply methods for resolution analysis in tomography, based on stochastic probing of the Hessian or resolution operators. Key properties of our methods are (i) low algorithmic complexity and easy implementation, (ii) applicability to any tomographic technique, including full‐waveform

  15. Seismic probing of Fennoscandian lithosphere

    Czech Academy of Sciences Publication Activity Database

    Bock, G.; Achauer, U.; Alinaghi, A.; Ansorge, J.; Bruneton, M.; Friederich, W.; Grad, M.; Guterch, A.; Hjelt, S. E.; Plomerová, Jaroslava

    2001-01-01

    Roč. 82, č. 50 (2001), s. 621, 628-629 ISSN 0096-3941 R&D Projects: GA AV ČR IAA3012908 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismic probing * lithosphere * Fennoscandia * SVEKALAPKO * Europrobe Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  16. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  17. Cantilevered probe detector with piezoelectric element

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. Where do pulse oximeter probes break?

    Science.gov (United States)

    Crede, S; Van der Merwe, G; Hutchinson, J; Woods, D; Karlen, W; Lawn, J

    2014-06-01

    Pulse oximetry, a non-invasive method for accurate assessment of blood oxygen saturation (SPO2), is an important monitoring tool in health care facilities. However, it is often not available in many low-resource settings, due to expense, overly sophisticated design, a lack of organised procurement systems and inadequate medical device management and maintenance structures. Furthermore medical devices are often fragile and not designed to withstand the conditions of low-resource settings. In order to design a probe, better suited to the needs of health care facilities in low-resource settings this study aimed to document the site and nature of pulse oximeter probe breakages in a range of different probe designs in a low to middle income country. A retrospective review of job cards relating to the assessment and repair of damaged or faulty pulse oximeter probes was conducted at a medical device repair company based in Cape Town, South Africa, specializing in pulse oximeter probe repairs. 1,840 job cards relating to the assessment and repair of pulse oximeter probes were reviewed. 60.2 % of probes sent for assessment were finger-clip probes. For all probes, excluding the neonatal wrap probes, the most common point of failure was the probe wiring (>50 %). The neonatal wrap most commonly failed at the strap (51.5 %). The total cost for quoting on the broken pulse oximeter probes and for the subsequent repair of devices, excluding replacement components, amounted to an estimated ZAR 738,810 (USD $98,508). Improving the probe wiring would increase the life span of pulse oximeter probes. Increasing the life span of probes will make pulse oximetry more affordable and accessible. This is of high priority in low-resource settings where frequent repair or replacement of probes is unaffordable or impossible.

  19. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  20. Distance probes of dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D’Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; Eisenstein, D. J.; Finley, D. A.; Freedman, W. L.; Ho, S.; Holz, D. E.; Kasen, D.; Kent, S. M.; Kessler, R.; Kuhlmann, S.; Linder, E. V.; Martini, P.; Nugent, P. E.; Perlmutter, S.; Peterson, B. M.; Riess, A. G.; Rubin, D.; Sako, M.; Suntzeff, N. V.; Suzuki, N.; Thomas, R. C.; Wood-Vasey, W. M.; Woosley, S. E.

    2015-03-01

    This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  1. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  2. A computerized Langmuir probe system

    Science.gov (United States)

    Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.

    2003-07-01

    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.

  3. Influence of probe geometry on the response of an electrostatic probe

    DEFF Research Database (Denmark)

    Johansson, Torben; Crichton, George C; McAllister, Iain Wilson

    1999-01-01

    The response of an electrostatic probe is examined with reference to the probe geometry. The study involves the evaluation of the probe lambda function, from which response-related characteristic parameters can be derived. These parameters enable the probe detection sensitivity Se and spatial...

  4. Project Prometheus and Future Entry Probe Missions

    Science.gov (United States)

    Spilker, Thomas R.

    2005-01-01

    A viewgraph presentation on project Prometheus and future entry probe missions is shown. The topics include: 1) What Is Project Prometheus?; 2) What Capabilities Can Project Prometheus Offer? What Mission Types Are Being Considered?; 3) Jupiter Icy Moons Orbiter (JIMO); 4) How Are Mission Opportunities Changing?; 5) Missions Of Interest a Year Ago; 6) Missions Now Being Considered For Further Study; 7) Galileo-Style (Conventional) Probe Delivery; 8) Galileo-Style Probe Support; 9) Conventional Delivery and Support of Multiple Probes; 10) How Entry Probe Delivery From an NEP Vehicle Is Different; and 11) Concluding Remarks.

  5. [HPV contamination of endocavity vaginal ultrasound probes].

    Science.gov (United States)

    Heard, I; Favre, M

    2015-02-01

    While the use of endovaginal ultrasound probes is increasing, the risk of contamination of women with endocavity vaginal probes was not assessed. In particular, the clinical significance of detection of human papillomavirus (HPV) infection, the most common sexually transmitted viral infection, on endovaginal ultrasound probes is uncertain. The recommendations of good practice for decontamination of these probes developed by the High Council for Public Health and the Academy of Medicine have not been evaluated. The objective of this article was to review recent publications concluding to the detection of HPV and human cellular DNA after gynecological examination and disinfection of vaginal ultrasound probes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Probe Selection in Multiprobe OTA Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Sun, Fan; Nielsen, Jesper Ødum

    2014-01-01

    is costly, so finding ways to limit the number of probes while still reproducing the target channels accurately could make the test system both cheaper and simpler to implement. Several probe selection algorithms are presented in this paper to address this issue. The proposed techniques provide a probe...... selection framework for the channel emulation techniques published in the literature. Simulation results show that good channel emulation accuracy can be achieved with the selected subset of probes for the considered target channel models. The probe selection algorithm is further supported by measurement...... results in a practical multiprobe setup...

  7. Zero voltage mass spectrometry probes and systems

    Science.gov (United States)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  8. Soft QGP probes with ALICE

    CERN Document Server

    Graczykowski, Łukasz Kamil

    2016-01-01

    In heavy-ion collisions at the LHC a hot and dense medium of deconfided partons, the Quark-Gluon Plasma (QGP), is created. Its global properties can be characterized by the measurements of particles in the low transverse momentum (or "soft") regime, which represent the majority of created particles. In this report we outline a selection of measurements of the soft probes by the ALICE experiment in pp, p--Pb, and Pb--Pb collisions. The paper focuses on recent flow measurements via angular correlations and femtoscopic studies. The first ever preliminary analysis of $\\mathrm{K}^0_{\\rm S}\\mathrm{K}^{\\pm}$ femtoscopy is also presented.

  9. Soil moisture calibration of TDR multilevel probes

    Directory of Open Access Journals (Sweden)

    Serrarens Daniel

    2000-01-01

    Full Text Available Time domain reflectometry (TDR probes are increasingly used for field estimation of soil water content. The objective of this study was to evaluate the accuracy of the multilevel TDR probe under field conditions. For this purpose, eight such TDR probes were installed in small plots that were seeded with beans and sorghum. Data collection from the probes was such that soil moisture readings were automated and logged using a standalone field unit. Neutron probe measurements were used to calibrate the TDR probes. Soil-probe contact and soil compaction were critical to the accuracy of the TDR, especially when a number of TDR probes are combined for a single calibration curve. If each probe is calibrated individually, approximate measurement errors were between 0.005 and 0.015 m³ m-3. However, measurement errors doubled to approximately 0.025 to 0.03 m³ m-3, when TDR probes were combined to yield a single calibration curve.

  10. Eddy current flaw detecting probe

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Harada, Yutaka; Shimone, Junri; Maeda, Kotaro

    1998-01-01

    The present invention provides an eddy current-flaw detection probe facilitating quantitative evaluation, which is used for maintenance and inspection of metal fine tubes of a heat exchanger of a nuclear power plant. Namely, the probe comprises a substantially cylindrical or columnar flow detection main body to be inserted to a metal tube. Wires are wound on the circumferential surface of the flaw detection main body substantially uniformly and in parallel to form a solenoid portion having a predetermined width. Magnetic sensors are disposed on the lateral center of the solenoid portion. With such a constitution, the solenoid portion forms eddy current in the circumferential direction. The eddy current is substantially in parallel having the same intensity at the lateral central portion of the solenoid. Accordingly, the quantitative evaluation for the shape and the size of cracks in the axial direction of the tube can be conducted by the magnetic sensors disposed to the portion. In addition, since the eddy current is substantially uniform, parameters upon reverse analysis can be reduced upon determination of the shape of flaws. (I.S.)

  11. The Gravity Probe B Experiment

    Science.gov (United States)

    Kolodziejczak, Jeffrey

    2008-01-01

    This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.

  12. Portal monitor incorporating smart probes

    International Nuclear Information System (INIS)

    Bartos, D.; Constantin, F.; Guta, T.

    2003-01-01

    Portal monitors are intended for detection of radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for prevention of illegal traffic of radioactive sources. Monitors provide audio and visual alarms when radioactive and/or special nuclear materials are detected. They can be recommended to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments or nuclear research or energetic facilities. The portal monitor developed by us consists in a portal frame, which sustains five intelligent probes having long plastic scintillator (0.5 liters each). The probes communicate, by serial transmission, with a Central Unit constructed on the basis of the 80552 microcontroller. This one manages the handshake, calculates the background, establishes the measuring time, starts and stops each measurement and makes all the other decisions. Sound signals and an infrared sensor monitor the passing through the portal and the measuring procedure. For each measurement the result is displayed on a LCD device contaminated/uncontaminated; for the contaminated case a loud and long sound signal is also issued. An RS 232 serial interface is provided in order to further developments or custom made devices. As a result, the portal monitor detects 1 μ Ci 137 Cs, spread all over a human body, in a 20 μR/h gamma background for a measuring time of 1.5 or 10 seconds giving a 99% confidence factor. (authors)

  13. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Directional neutronometric probe; Kierunkowa sonda neutronometryczna

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecki, M.; Owczarczyk, A.; Wieclaw, B.; Szpilowwski, S.

    1991-11-04

    The neutronometric probe for direction and rate of groundwater flow measurements has been designed. The probe consists in collimated proportional neutron counter and also collimated and shielded neutron source. The neutron source can be disconnected from the detection part of the probe and transported separately in especially designed container. In the place of measurement the source can be easily joined to the detection part. 1 fig.

  15. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  16. Gravity Probe B orbit determination

    International Nuclear Information System (INIS)

    Shestople, P; Ndili, A; Parkinson, B W; Small, H; Hanuschak, G

    2015-01-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s −1 . Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements. (paper)

  17. Nuclear probes of fundamental symmetries

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1983-01-01

    Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode

  18. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  19. Pitfalls in Kelvin probe measurements

    International Nuclear Information System (INIS)

    Ottinger, Oliver M.; Melzer, Christian; Seggern, Heinz von

    2009-01-01

    We report on the interpretation of thickness-dependent surface potential profiles in insulators on metal substrates measured by Kelvin probe method. The electrical potentials are calculated within a self-consistent model taking both the conductive substrate and the insulator into account. It is shown that interpreting the Kelvin potentials for different layer thicknesses as the prevailing potential profile of a thick insulator film is generally wrong. Even more controversially, the reconstruction of the potential profile in a thick insulator layer on the basis of layer-thickness-dependent Kelvin measurements alone is per se impossible. This will be demonstrated exemplarily on the basis of doped and undoped organic films on conductive substrates.

  20. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    International Nuclear Information System (INIS)

    Hall, B F; Povey, T

    2017-01-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design. (paper)

  1. The TORE SUPRA fast reciprocating RF probe

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.; Harris, J.H.; Haste, G.R.

    1994-01-01

    A fast reciprocating ICRF (Ion Cyclotron Range of Frequencies) probe was installed and operated on TORE SUPRA during 1992/1993. The body of the probe was originally used on the ATF experiment at ORNL. The probe was adapted for use on TORE SUPRA, and mounted on one of the two fast reciprocating probe mounts. The probe consists of two orthogonal single-turn wire loops, mounted so that one loop senses toroidal RF magnetic fields and the other senses poloidal RF magnetic fields. The probe began operation in June, 1993. The probe active area is approximately 5 cm long by 2 cm, and the reciprocating mount has a slow stroke (5 cm/sec) of 30 cm by 2 cm, and the reciprocating mount has a slow stroke (5 cm/sec) of 30 cm and a fast stroke (1.5 m/sec) of about 10 cm. The probe was operated at distances from the plasma edge ranging from 30 cm to -5 cm (i.e., inside the last closed flux surface). The probe design, electronics, calibration, data acquisition and data processing are discussed. First data from the probe are presented as a function of ICRF power, distance from the plasma, loop orientation, and other plasma parameters. Initial data shows parametric instabilities do not play an important role for ICRF in the TORE SUPRA edge and scrape-off-layer (SOL) plasmas. Additionally it is observed that the probe signal has little or no dependence on position in the SOL/plasma edge

  2. A probe for Eddy current inspection devices

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a surface probe for Eddy current inspection devices. According to the invention, said probe comprises two magnetic core windings, with their axes in parallel relationship and at right angles to the surface of the part to be inspected. This can be applied to the nondestructive inspection of reactor components [fr

  3. Inspecting Friction Stir Welding using Electromagnetic Probes

    Science.gov (United States)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  4. Automatic kelvin probe compatible with ultrahigh vacuum

    NARCIS (Netherlands)

    Baikie, I.D.; van der Werf, Kees; Oerbekke, H.; Broeze, J.; van Silfhout, Arend

    1989-01-01

    This article describes a new type of in situ ultrahigh‐vacuum compatible kelvin probe based on a voice‐coil driving mechanism. This design exhibits several advantages over conventional mechanical feed‐through and (in situ) piezoelectric devices in regard to the possibility of multiple probe

  5. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  6. Quality of the neutron probe calibration curve

    International Nuclear Information System (INIS)

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira

    1997-01-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube

  7. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  8. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  9. Recent status of the Kiev nuclear probe

    Science.gov (United States)

    Lebed, S.; Tolmachov, M.; Kukharenko, O.; Veselov, O.

    2009-06-01

    The modified Van de Graaff accelerator with proton beam energy W ⩽ 3 MeV has been installed and put into operation at the TMM laboratory in Kiev. The laboratory incorporates the nuclear probe (NP) beam line, coupled to this accelerator. A short version of an optimized probe-forming system (PFS) has been developed for the Kiev NP. The system is based on divided triplet of the magnetic quadrupole lenses (MQLs). This PFS has two working regimes for the probe operations. The results of numerical calculations of the geometrical and ion-optical parameters of the PFS are presented. It is shown that this versatile PFS is a promising design for a modern nuclear nano-probe. A new precision adjustable MQL has been designed. Three lenses, the slit systems and target chamber are manufactured and installed at the Kiev probe beam line. Also a new data acquisition system for the Kiev NP is being developed.

  10. Recent status of the Kiev nuclear probe

    Energy Technology Data Exchange (ETDEWEB)

    Lebed, S. [Research Laboratory ' Spectra' , TMM Ltd., ul. Chaadaeva 2b, 03148, Kiev (Ukraine)], E-mail: salmp1@ukr.net; Tolmachov, M.; Kukharenko, O.; Veselov, O. [Research Laboratory ' Spectra' , TMM Ltd., ul. Chaadaeva 2b, 03148, Kiev (Ukraine)

    2009-06-15

    The modified Van de Graaff accelerator with proton beam energy W {<=} 3 MeV has been installed and put into operation at the TMM laboratory in Kiev. The laboratory incorporates the nuclear probe (NP) beam line, coupled to this accelerator. A short version of an optimized probe-forming system (PFS) has been developed for the Kiev NP. The system is based on divided triplet of the magnetic quadrupole lenses (MQLs). This PFS has two working regimes for the probe operations. The results of numerical calculations of the geometrical and ion-optical parameters of the PFS are presented. It is shown that this versatile PFS is a promising design for a modern nuclear nano-probe. A new precision adjustable MQL has been designed. Three lenses, the slit systems and target chamber are manufactured and installed at the Kiev probe beam line. Also a new data acquisition system for the Kiev NP is being developed.

  11. Imaging probe for tumor malignancy

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Hasahiro

    2009-02-01

    Solid tumors possess unique microenvironments that are exposed to chronic hypoxic conditions ("tumor hypoxia"). Although more than half a century has passed since it was suggested that tumor hypoxia correlated with poor treatment outcomes and contributed to cancer recurrence, a fundamental solution to this problem has yet to be found. Hypoxia-inducible factor (HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes whose functions are strongly associated with malignant alteration of the entire tumor. The cellular changes induced by HIF-1 are extremely important targets of cancer therapy, particularly in therapy against refractory cancers. Imaging of the HIF-1-active microenvironment is therefore important for cancer therapy. To image HIF-1activity in vivo, we developed a PTD-ODD fusion protein, POHA, which was uniquely labeled with near-infrared fluorescent dye at the C-terminal. POHA has two functional domains: protein transduction domain (PTD) and VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of the alpha subunit of HIF-1 (HIF-1α). It can therefore be delivered to the entire body and remain stabilized in the HIF-1-active cells. When it was intravenously injected into tumor-bearing mice, a tumor-specific fluorescence signal was detected in the tumor 6 h after the injection. These results suggest that POHA can be used an imaging probe for tumor malignancy.

  12. The Gravity Probe B gyroscope

    International Nuclear Information System (INIS)

    Buchman, S; Lipa, J A; Keiser, G M; Muhlfelder, B; Turneaure, J P

    2015-01-01

    The Gravity Probe B (GP-B) gyroscope, a unique cryogenically operated mechanical sensor, was used on-orbit to independently test two predictions of general relativity (GR). Here, we describe the development and performance of the GP-B gyroscope, its geometry and fabrication, spin-up and vacuum approach, magnetic considerations, and static charge management. The history of electrically suspended gyroscopes puts the current work in context. Fabrication and ground testing of the GP-B gyroscope are detailed, followed by a review of on-orbit initialization, calibration, operation, and performance. We find that the performance was degraded relative to the mission goals, but was still sufficient to provide excellent new tests of GR. The degradation is partially due to the existence of gyroscope torques due to an unanticipated interaction between patch potentials on the rotor and the housing. We discuss these patch potentials and describe the effect of related torques on gyro drift. It was essential to include models for the effects due to the patch potentials in the complete data analysis model to yield determinations of the two GR effects. (paper)

  13. Probing the string winding sector

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo; Mayo, Martín [G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Instituto Balseiro, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Nuñez, Carmen [Instituto de Astronomía y Física del Espacio (CONICET-UBA),C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2017-03-17

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O(n,n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  14. Probing Light Stops with Stoponium

    CERN Document Server

    Batell, Brian

    2015-01-01

    We derive new limits on light stops from diboson resonance searches in the $\\gamma\\gamma$, $Z \\gamma$, $ZZ$, $WW$ and $hh$ channels from the first run of the LHC. If the two-body decays of the light stop are mildly suppressed or kinematically forbidden, stoponium bound states will form in $pp$ collisions and subsequently decay via the pair annihilation of the constituent stops to diboson final states, yielding striking resonance signatures. Remarkably, we find that stoponium searches are highly complementary to direct collider searches and indirect probes of light stops such as Higgs coupling measurements. Using an empirical quarkonia potential model and including the first two $S$-wave stoponium states, we find that in the decoupling limit $m_{\\widetilde t_1} \\lesssim 130$ GeV is excluded for any value of the stop mixing angle and heavy stop mass by the combination of the latest resonance searches and the indirect constraints. The $\\gamma \\gamma$ searches are the most complementary to the indirect constraint...

  15. Integrated cosmological probes: concordance quantified

    Energy Technology Data Exchange (ETDEWEB)

    Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)

    2017-10-01

    Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT and ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.

  16. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  17. Development and application of DNA molecular probes

    Directory of Open Access Journals (Sweden)

    Priya Vizzini

    2017-02-01

    Full Text Available The development of DNA probes started from 1950's for diagnostic purposes and it is still growing. DNA probes are applied in several fields such as food, medical, veterinary, environment and security, with the aim of prevention, diagnosis and treatment. The use of DNA probes permits microorganism identification, including pathogen detection, and their quantification when used in specific systems. Various techniques obtained success by the utilization of specific DNA probes, that allowed the obtainment of rapid and specific results. From PCR, qPCR and blotting techniques that were first used in well equipped laboratories to biosensors such as fiber optic, surface plasmon resonance (SPR, electrochemical, and quartz crystal microbalance (QCM biosensors that use different transduction systems. This review describes i the design and production of primers and probes, and their utilization from the traditional techniques to the new emerging techniques like biosensors used in current applications; ii the possibility to use labelled-free probes and probes labelled with an enzyme/fluorophore, etc.; iii the different sensitivity obtained by using specific systems; and iv the advantage obtained by using biosensors.

  18. Overview of Key Saturn Probe Mission Trades

    Science.gov (United States)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  19. Transmit-receive eddy current probes

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.

    1997-01-01

    In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)

  20. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Korsbech, U.; Gynther Nielsen, K.; Oelgaard, P.L.

    1985-06-01

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  1. Molecular Dynamics Study of Self-Assembly of Aqueous Solutions of Poly[9,9-bis(4-Sulfonylbutoxyphenylphenyl Fluorene-2,7-diyl-2,2’-Bithiophene] (PBS-PF2T in the Presence of Pentaethylene Glycol Monododecyl Ether (C12E5

    Directory of Open Access Journals (Sweden)

    Beverly Stewart

    2016-05-01

    Full Text Available Results are presented using molecular dynamics (MD of the self-assembly of the conjugated polyelectrolyte poly[9,9-bis(4-sulfonylbutoxyphenylphenyl fluorene-2,7-diyl-2,2’-bithiophene] (PBS-PF2T with 680 mM pentaethylene glycol monododecyl ether (C12E5 in water. Simulations are used to examine the interaction between PBS-PF2T and C12E5 and suggest a break-up of PBS-PF2T aggregates in solution. These systems are dominated by the formation of cylindrical phases at temperatures between 0 °C and 20 °C and also between 45 °C and 90 °C. More diffuse phases are seen to occur between 20 °C and 45 °C and also above 90 °C. Simulations are related to previous computational and experimental studies on PBS-PF2T aggregation in the presence of tetraethylene glycol monododecyl ether (C12E4 in bulk and thin films.

  2. Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] as Electron Transport Layer.

    Science.gov (United States)

    Han, Changfeng; Cheng, Yuanyuan; Chen, Ling; Qian, Lei; Yang, Ziyan; Xue, Wei; Zhang, Ting; Yang, Yixing; Cao, Weiran

    2016-02-10

    A highly efficient inverted polymer solar cell (PSC) has been successfully demonstrated by using a ZnO nanoparticle (NP) and poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] (PFN) bilayer structure as an effective electron collecting layer. This ZnO/PFN bilayer structure is designed to combine the advantages of both ZnO and PFN, based on the performance comparison of ZnO-only, PFN-only, and ZnO/PFN bilayer devices in our work. ZnO NPs can serve as an efficient electron transport and buffer layer for reduced series resistance, while the PFN interlayer can improve the energy level alignment of devices through the formation of an interfacial dipole. With the enhanced electron extraction induced by the ZnO/PFN bilayer structure and PTB7:ICBA:PC71BM ternary system, the corresponding inverted PSC device shows a high PCE of 9.3%, which is more than a 15% improvement compared to the ZnO- or PFN-only devices.

  3. Cone penetrometer moisture probe acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.A.

    1996-04-23

    This Acceptance Test Report (ATR) documents the results of WHC-SD-WM-ATP-146 (Prototype Cone Penetrometer Moisture Probe Acceptance Test Procedure) and WHC-SD-WM-ATP-145 (Cone Penetrometer Moisture Probe Acceptance Test Procedure). The master copy of WHC-SD-WM-ATP-145 can be found in Appendix A and the master copy of WHC-SD-WM-ATP-146 can be found in Appendix B. Also included with this report is a matrix showing design criteria of the cone penetrometer moisture probe and the verification method used (Appendix C).

  4. Advanced ultrasound probes for medical imaging

    Science.gov (United States)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  5. Electrostatic Probe with Shielded Probe Insulator Tube for Low Disturbing Plasma Measurements in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Electrostatic probes are widely used to measure spatial plasma parameters of the quasi-neutral plasma in Hall thrusters and similar ExB electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In Hall thrusters, probe-induced perturbations can produce changes in the discharge current and plasma parameters on the order of their steady state values. These perturbations are explored by varying the material, penetration distance, and residence time of various probe designs. A possible cause of these perturbations appears to be the secondary electron emission, induced by energetic plasma electrons, from insulator ceramic tubes in which the probe wire is inserted. A new probe in which a low secondary electron emission material, such as metal, shields the probe ceramic tube, is shown to function without producing such large perturbations. A segmentation of this shield further prevents probe -induced perturbations, by not shortening the plasma through the conductive shield. In a set of experiments with a segmented shield probe, the thruster was operated in the input power range of 500-2.5 kW and discharge voltages of 200-500 V, while the probe-induced perturbations of the discharge current were below 4% of its steady state value in the region in which 90% of the voltage drop takes place

  6. Full information acquisition in scanning probe microscopy and spectroscopy

    Science.gov (United States)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  7. Peptide nucleic acid probes with charged photocleavable mass markers

    Science.gov (United States)

    Ball, Rachel J; Green, Philip S; Gale, Nittaya; Langley, G John

    2010-01-01

    Halogen-labelled peptide organic acid (HPOA) monomers have been synthesised and incorporated into sequence-specific peptide nucleic acid (PNA) probes. Three different types of probe have been prepared; the unmodified PNA probe, the PNA probe with a mass marker, and the PNA probe with photocleavable mass marker. All three types of probe have been used in model studies to develop a mass spectrometry-based hybridisation assay for detection of point mutations in DNA. PMID:21687524

  8. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  9. Intrauterine photoacoustic and ultrasound imaging probe.

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Pneumatic Proboscis Heat Flow Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The heat flow probe directly answers requirements in the topic: S1.11 Lunar Science Instruments and Technology: "Geophysical Measurements: Systems, subsystems, and...

  11. Development of DNA probes for Candida albicans

    International Nuclear Information System (INIS)

    Cheung, L.L.; Hudson, J.B.

    1988-01-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both 32 P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis

  12. Flow cytometry, fluorescent probes, and flashing bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.

    2002-01-01


    Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk,

  13. Software Risk Identification for Interplanetary Probes

    Science.gov (United States)

    Dougherty, Robert J.; Papadopoulos, Periklis E.

    2005-01-01

    The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.

  14. Tools for Ultraspecific Probe/Primer Design

    National Research Council Canada - National Science Library

    Fofanov, Yurly

    2006-01-01

    .... Our approach will deliver DNA probes and PCR primers that have an unprecedentedly low probability of false positives or confusion by environmental background, and which resist evasion by threat agent engineering...

  15. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...... and robust. Repeated conductivity measurements on polythiophene films in the same surface area are reproduced within an accuracy of 3%. Automated nanoresolution position control allows scanning across millimetre sized areas, in order to create high spatial resolution maps of the in-plane conductivity....

  16. Modulated microwave microscopy and probes used therewith

    Science.gov (United States)

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  17. Surface sampling concentration and reaction probe

    Science.gov (United States)

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  18. Calibration models for high enthalpy calorimetric probes.

    Science.gov (United States)

    Kannel, A

    1978-07-01

    The accuracy of gas-aspirated liquid-cooled calorimetric probes used for measuring the enthalpy of high-temperature gas streams is studied. The error in the differential temperature measurements caused by internal and external heat transfer interactions is considered and quantified by mathematical models. The analysis suggests calibration methods for the evaluation of dimensionless heat transfer parameters in the models, which then can give a more accurate value for the enthalpy of the sample. Calibration models for four types of calorimeters are applied to results from the literature and from our own experiments: a circular slit calorimeter developed by the author, single-cooling jacket probe, double-cooling jacket probe, and split-flow cooling jacket probe. The results show that the models are useful for describing and correcting the temperature measurements.

  19. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  20. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive...

  1. Urethral alarm probe for permanent prostate implants

    International Nuclear Information System (INIS)

    Cutajar, D.; Lerch, M.; Takacs, G.

    2008-01-01

    We have developed a urethral dosimetry system for real time dose verification along the urethra during permanent implant prostate brachytherapy. The urethral alarm uses 'spectroscopic dosimetry' to calculate the dose rate along the urethra in real time. The application of spectroscopic dosimetry for the urethral alarm probe was verified using Monte Carlo calculations. In phantom depth dose measurements as well as isotropy measurements were performed to verify the usefulness of the urethra alarm probe as an in vivo real time dosimeter. (author)

  2. Reactive Chemical Probes: Beyond the Kinase Cysteinome.

    Science.gov (United States)

    Jones, Lyn H

    2018-04-12

    The reaction of small molecule chemical probes with proteins has been harnessed to develop covalent inhibitor drugs and protein profiling technologies. This Essay discusses some of the recent enhancements to the chemical biology toolkit that are enabling the study of previously unchartered areas of chemoproteomic space. An analysis of the kinome is used to illustrate the potential for these approaches to pursue new targets using reactive chemical probes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plasma diagnostics by means of electric probes

    International Nuclear Information System (INIS)

    Colunga S, S.

    1991-04-01

    In this work a summary of the classical theoretical models to interpret the characteristic curve of a Langmuir electric probe placed in a plasma without magnetic field and with the one is made. The methodology for the electron temperature calculation and the density of the plasma in both cases is given, starting from the characteristic curve of the probe, as well as the approaches for the correct application of this diagnostic method of the plasma. (Author)

  4. Accuracy of micro four-point probe measurements on inhomogeneous samples: A probe spacing dependence study

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Østerberg, Frederik Westergaard

    2009-01-01

    In this paper, we discuss a probe spacing dependence study in order to estimate the accuracy of micro four-point probe measurements on inhomogeneous samples. Based on sensitivity calculations, both sheet resistance and Hall effect measurements are studied for samples (e.g. laser annealed samples...... the probe spacing is smaller than 1/40 of the variation wavelength, micro four-point probes can provide an accurate record of local properties with less than 1% measurement error. All the calculations agree well with previous experimental results.......) with periodic variations of sheet resistance, sheet carrier density, and carrier mobility. With a variation wavelength of ¿, probe spacings from 0.0012 to 1002 have been applied to characterize the local variations. The calculations show that the measurement error is highly dependent on the probe spacing. When...

  5. Characterization of coating probe with Ti-DLC for electrical scanning probe microscope

    International Nuclear Information System (INIS)

    Shia Xiaolei; Guo Liqiu; Bai Yang; Qiao Lijie

    2011-01-01

    In electrical scanning probe microscope (ESPM) applications, the wear and conductivity of the probe are undoubtedly serious concerns since they affect the integrity of the measurements. This study investigates the characterization of Ti doped diamond-like-carbon (DLC) as coating material on a silicon cantilever for ESPM. We deposited a layer of Ti-DLC thin film on the surface of Si cantilever by magnetron sputtering. The morphology and composition of the Ti-DLC films were characterized by scanning electron microscopy and Raman spectroscopy, respectively. We also compared the wear resistance, electric conductivity and scanning image quality of the Ti-DLC-coated probes with those of commercially available conductive probes. The results showed that the electric conductivity and the scanning image quality of the Ti-DLC-coated probes were the same as the commercial conductive probes, while the wear resistance and service life was significantly better.

  6. Characterization of coating probe with Ti-DLC for electrical scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Shia Xiaolei [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China); Guo Liqiu, E-mail: glq@mater.ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China); Bai Yang; Qiao Lijie [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (Ministry of Education), University of Science and Technology Beijing, Beijing 100083 (China)

    2011-06-01

    In electrical scanning probe microscope (ESPM) applications, the wear and conductivity of the probe are undoubtedly serious concerns since they affect the integrity of the measurements. This study investigates the characterization of Ti doped diamond-like-carbon (DLC) as coating material on a silicon cantilever for ESPM. We deposited a layer of Ti-DLC thin film on the surface of Si cantilever by magnetron sputtering. The morphology and composition of the Ti-DLC films were characterized by scanning electron microscopy and Raman spectroscopy, respectively. We also compared the wear resistance, electric conductivity and scanning image quality of the Ti-DLC-coated probes with those of commercially available conductive probes. The results showed that the electric conductivity and the scanning image quality of the Ti-DLC-coated probes were the same as the commercial conductive probes, while the wear resistance and service life was significantly better.

  7. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.

    Science.gov (United States)

    Polak, Leo; Wijngaarden, Rinke J

    2016-12-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bunker probe: A plasma potential probe almost insensitive to its orientation with the magnetic field.

    Science.gov (United States)

    Costea, S; Fonda, B; Kovačič, J; Gyergyek, T; Schneider, B S; Schrittwieser, R; Ionita, C

    2016-05-01

    Due to their ability to suppress a large part of the electron current and thus measuring directly the plasma potential, ion sensitive probes have begun to be widely tested and used in fusion devices. For these probes to work, almost perfect alignment with the total magnetic field is necessary. This condition cannot always be fulfilled due to the curvature of magnetic fields, complex magnetic structure, or magnetic field reconnection. In this perspective, we have developed a plasma potential probe (named Bunker probe) based on the principle of the ion sensitive probe but almost insensitive to its orientation with the total magnetic field. Therefore it can be used to measure the plasma potential inside fusion devices, especially in regions with complex magnetic field topology. Experimental results are presented and compared with Ball-Pen probe measurements taken under identical conditions. We have observed that the floating potential of the Bunker probe is indeed little affected by its orientation with the magnetic field for angles ranging from 90° to 30°, in contrast to the Ball-Pen probe whose floating potential decreases towards that of a Langmuir probe if not properly aligned with the magnetic field.

  9. Bunker probe: A plasma potential probe almost insensitive to its orientation with the magnetic field

    International Nuclear Information System (INIS)

    Costea, S.; Schneider, B. S.; Schrittwieser, R.; Ionita, C.; Fonda, B.; Kovačič, J.; Gyergyek, T.

    2016-01-01

    Due to their ability to suppress a large part of the electron current and thus measuring directly the plasma potential, ion sensitive probes have begun to be widely tested and used in fusion devices. For these probes to work, almost perfect alignment with the total magnetic field is necessary. This condition cannot always be fulfilled due to the curvature of magnetic fields, complex magnetic structure, or magnetic field reconnection. In this perspective, we have developed a plasma potential probe (named Bunker probe) based on the principle of the ion sensitive probe but almost insensitive to its orientation with the total magnetic field. Therefore it can be used to measure the plasma potential inside fusion devices, especially in regions with complex magnetic field topology. Experimental results are presented and compared with Ball-Pen probe measurements taken under identical conditions. We have observed that the floating potential of the Bunker probe is indeed little affected by its orientation with the magnetic field for angles ranging from 90° to 30°, in contrast to the Ball-Pen probe whose floating potential decreases towards that of a Langmuir probe if not properly aligned with the magnetic field.

  10. Soil Properties from Low-Velocity Probe Penetration

    Directory of Open Access Journals (Sweden)

    Jerome B. Johnson

    2008-01-01

    Full Text Available A physical model of low-velocity probe penetration is developed to characterize soil by type, strength, maximum compaction, and initial density using Newton's second law to describe the processes controlling probe momentum loss. The probe loses momentum by causing soil failure (strength, accelerating and compacting soil around the probe (inertia, and through frictional sliding at the probe/soil interface (friction. Probe geometry, mass, and impact velocity influences are incorporated into the model. Model predictions of probe deceleration history and depth of penetration agree well with experiments, without the need for free variables or complex numerical simulations.

  11. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules

    NARCIS (Netherlands)

    Hendriks, Frank C.; Schmidt, Joel E.; Rombouts, Jeroen A.; Lammertsma, Koop; Bruijnincx, Pieter C.A.; Weckhuysen, Bert M.

    2017-01-01

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent

  12. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy

    NARCIS (Netherlands)

    Polak, L.; Wijngaarden, Rinke J.

    2016-01-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a

  13. In-vitro accuracy and reproducibility evaluation of probing depth measurements of selected periodontal probes

    Directory of Open Access Journals (Sweden)

    K.N. Al Shayeb

    2014-01-01

    Conclusion: Depth measurements with the Chapple UB-CF-15 probe were more accurate and reproducible compared to measurements with the Vivacare TPS and Williams 14 W probes. This in vitro model may be useful for intra-examiner calibration or clinician training prior to the clinical evaluation of patients or in longitudinal studies involving periodontal evaluation.

  14. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  15. Donated chemical probes for open science.

    Science.gov (United States)

    Müller, Susanne; Ackloo, Suzanne; Arrowsmith, Cheryl H; Bauser, Marcus; Baryza, Jeremy L; Blagg, Julian; Böttcher, Jark; Bountra, Chas; Brown, Peter J; Bunnage, Mark E; Carter, Adrian J; Damerell, David; Dötsch, Volker; Drewry, David H; Edwards, Aled M; Edwards, James; Elkins, Jon M; Fischer, Christian; Frye, Stephen V; Gollner, Andreas; Grimshaw, Charles E; IJzerman, Adriaan; Hanke, Thomas; Hartung, Ingo V; Hitchcock, Steve; Howe, Trevor; Hughes, Terry V; Laufer, Stefan; Li, Volkhart Mj; Liras, Spiros; Marsden, Brian D; Matsui, Hisanori; Mathias, John; O'Hagan, Ronan C; Owen, Dafydd R; Pande, Vineet; Rauh, Daniel; Rosenberg, Saul H; Roth, Bryan L; Schneider, Natalie S; Scholten, Cora; Singh Saikatendu, Kumar; Simeonov, Anton; Takizawa, Masayuki; Tse, Chris; Thompson, Paul R; Treiber, Daniel K; Viana, Amélia Yi; Wells, Carrow I; Willson, Timothy M; Zuercher, William J; Knapp, Stefan; Mueller-Fahrnow, Anke

    2018-04-20

    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de">https://openscienceprobes.sgc-frankfurt.dehttps://openscienceprobes.sgc-frankfurt.de/">/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project. © 2018, Müller et al.

  16. Configurations of polymers attached to probes

    Science.gov (United States)

    Bubis, Roy; Kantor, Yacov; Kardar, Mehran

    2009-11-01

    We study polymers attached to spherical (circular) or paraboloidal (parabolic) probes in three (two) dimensions. Both self-avoiding and random walks are examined numerically. The behavior of a polymer of size R0 attached to the tip of a probe with radius of curvature R, differs qualitatively for large and small values of the ratio s=R0/R. We demonstrate that the scaled compliance (inverse force constant) S/R02, and scaled mean position of the polymer end-point langx⊥rang/R can be expressed as a function of s. Scaled compliance is anisotropic, and quite large in the direction parallel to the surface when R0~R. The exponent γ, characterizing the number of polymer configurations, crosses over from a value of γ1 - characteristic of a planar boundary - at small s to one reflecting the overall shape of the probe at large s. For a spherical probe the crossover is to an unencumbered polymer, while for a parabolic probe we cannot rule out a new exponent.

  17. Luminescent probes and sensors for temperature.

    Science.gov (United States)

    Wang, Xu-dong; Wolfbeis, Otto S; Meier, Robert J

    2013-10-07

    Temperature (T) is probably the most fundamental parameter in all kinds of science. Respective sensors are widely used in daily life. Besides conventional thermometers, optical sensors are considered to be attractive alternatives for sensing and on-line monitoring of T. This Review article focuses on all kinds of luminescent probes and sensors for measurement of T, and summarizes the recent progress in their design and application formats. The introduction covers the importance of optical probes for T, the origin of their T-dependent spectra, and the various detection modes. This is followed by a survey on (a) molecular probes, (b) nanomaterials, and (c) bulk materials for sensing T. This section will be completed by a discussion of (d) polymeric matrices for immobilizing T-sensitive probes and (e) an overview of the various application formats of T-sensors. The review ends with a discussion on the prospects, challenges, and new directions in the design of optical T-sensitive probes and sensors.

  18. Outsourced Probe Data Effectiveness on Signalized Arterials

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharifi, Elham [University of Maryland; Eshragh, Sepideh [University of Maryland; Hamedi, Masoud [University of Maryland; Juster, Reuben M. [University of Maryland; Kaushik, Kartik [University of Maryland

    2017-07-31

    This paper presents results of an I-95 Corridor Coalition sponsored project to assess the ability of outsourced vehicle probe data to provide accurate travel time on signalized roadways for the purposes of real-time operations as well as performance measures. The quality of outsourced probe data on freeways has led many departments of transportation to consider such data for arterial performance monitoring. From April 2013 through June of 2014, the University of Maryland Center for Advanced Transportation Technology gathered travel times from several arterial corridors within the mid-Atlantic region using Bluetooth traffic monitoring (BTM) equipment, and compared these travel times with the data reported to the I95 Vehicle Probe Project (VPP) from an outsourced probe data vendor. The analysis consisted of several methodologies: (1) a traditional analysis that used precision and bias speed metrics; (2) a slowdown analysis that quantified the percentage of significant traffic disruptions accurately captured in the VPP data; (3) a sampled distribution method that uses overlay methods to enhance and analyze recurring congestion patterns. (4) Last, the BTM and VPP data from each 24-hour period of data collection were reviewed by the research team to assess the extent to which VPP captured the nature of the traffic flow. Based on the analysis, probe data is recommended only on arterial roadways with signal densities (measured in signals per mile) up to one, and it should be tested and used with caution for signal densities between one and two, and is not recommended when signal density exceeds two.

  19. Gravity and On-Shell Probe Actions

    CERN Document Server

    Ferrari, Frank

    2016-08-08

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including \\alpha'-corrections.

  20. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    Invention of atomic force microscopy (AFM) pioneered a novel aspect for the surface metrology concept. A range of scanning probe methods have been developed over the years based on different sorts of tip-surface interaction: electrical, optical, thermal, force. Reproducible and fast fabrication...... miniaturisation requires the scanning probes to adapt into finer geometries to provide higher lateral resolution. To meet these needs critical dimension AFM (CD-AFM) and deep trench AFM (DT-AFM) were invented, which use different types of AFM tips: high-aspect-ratio tips for DT-AFM and CD tips for CD...... replacement could greatly increase the efficiency and adaptability of a CD system. In this PhD study, NanoBits – nano-sized customisable and exchangeable scanning probe tips – were developed to meet the demands of current AFM applications. Two different methods were followed for the fabrication of Nano...

  1. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  3. Redesign of a Low Energy Probe Head

    CERN Document Server

    Rao, Yi-Nong; Ries, Thomas

    2005-01-01

    The present situation of the low energy probe LE2 in TRIUMF cyclotron is that the thickness of the finger 5 is uniform over a radial length of 3.25 inch and its weight which amounts to ~447 g is affecting its re-circulating ball mechanism and causing it to fall below the median plane over its range of movement. We therefore re-design it in order to reduce its weight. First, we made simulations and determined the optimum thickness of the probe head vs its radial length. These simulation results are found to be in good agreement with experimental measurements made. Finally, we calculated the temperature rise caused by the beam power dumped on the probe, and figured out the maximum current of beam that can be dumped on the finger.

  4. The Next Generation of Planetary Atmospheric Probes

    Science.gov (United States)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  5. The Probe of Inflation and Cosmic Origins

    Science.gov (United States)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  6. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  7. Theory of dual probes on graphene structures

    DEFF Research Database (Denmark)

    Settnes, Mikkel

    . Here we investigate strained graphene bubbles ("pseudomagnetic dots") directly from tight binding, effectively going beyond the Dirac approximation. In this way, we study the local density of states of different pseudomagnetic dots in real space and show Friedel-type oscillations caused by the finite......This thesis concerns the development of theoretical and computational methods for multiprobe systems and their application to nanostructured graphene. Recent experimental advances emphasize the usefulness of multi-probe techniques when analyzing the electrical properties of nanoscale samples...... around the local probes. This necessitates a reformulation of the conventional calculation methods allowing for the description of non-periodic structures embedded within infinite samples. The two-dimensional material graphene, is a highly interesting system for multi- probe characterization as graphene...

  8. Reconstructing atom probe data: a review.

    Science.gov (United States)

    Vurpillot, Francois; Gault, Baptiste; Geiser, Brian P; Larson, D J

    2013-09-01

    Atom probe tomography stands out from other materials characterisation techniques mostly due to its capacity to map individual atoms in three-dimensions with high spatial resolution. The methods used to transform raw detector data into a three-dimensional reconstruction have, comparatively to other aspects of the technique, evolved relatively little since their inception more than 15 years ago. However, due to the importance of the fidelity of the data, this topic is currently attracting a lot of interest within the atom probe community. In this review we cover: (1) the main aspects of the image projection, (2) the methods used to build tomographic reconstructions, (3) the intrinsic limitations of these methods, and (4) future potential directions to improve the integrity of atom probe tomograms. © 2013 Elsevier B.V. All rights reserved.

  9. Distant polypharmacology among MLP chemical probes.

    Science.gov (United States)

    Antolín, Albert A; Mestres, Jordi

    2015-02-20

    Small molecules are essential tool compounds to probe the role of proteins in biology and advance toward more efficient therapeutics. However, they are used without a complete knowledge of their selectivity across the entire proteome, at risk of confounding their effects due to unknown off-target interactions. Current state-of-the-art computational approaches to predicting the affinity profile of small molecules offer a means to anticipate potential nonobvious selectivity liabilities of chemical probes. The application of in silico target profiling on the full set of chemical probes from the NIH Molecular Libraries Program (MLP) resulted in the identification of biologically relevant in vitro affinities for proteins distantly related to the primary targets of ML006, ML123, ML141, and ML204, helping to lower the risk of their further use in chemical biology.

  10. Saturn Probe: Revealing Solar System Origins

    Science.gov (United States)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  11. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of

  12. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  13. DESIGN OF THE CONTACT POTENTIALS DIFFERENCE PROBES

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2016-01-01

    Full Text Available The contact potential difference probes distinguished by great variety and produced mostly in the laboratory for specific experimental applications. As a rule, they consist of commercially available instrumentation, and have a number of disadvantages: large dimensions, complexity and high cost, small sensitivity, operating speed, noiseproof, etc. The purpose of this paper is to describe the basic approaches to design of the small dimension, complete contact potential difference probes, providing high sensitivity, operating speed, and noise immunity. In this paper the contact potential difference probe, which is a electrometer with dynamic capacitor plate at about 0.1–5 mm2 . These probes are could be used in scanning systems, such as a Scanning Kelvin Probe, as well as for controlling system of manufacturing processes, e.g. under friction. The design of such contact potential difference probes conducted using modern electronic components, unique circuitry and design solutions described in detail at paper. The electromechanical modulator applied for mechanical vibrations of the reference sample. To provide a high amplitude and phase stability the upgraded generator with Wien bridge was used instead traditional oscillation sensor. The preamplifier made on the base of modern operational amplifiers with femtoampere current input. The power of the preamplifier designed with «floating ground». It allows keeping the relation constant potential to the probe components when changing over a wide range the compensation voltage. The phase detector-integrator based on the electronic antiphase switches with the modulation frequency of the contact potential difference and the integrator. Fullwave phase detection would greatly increase the sensitivity of the probe. In addition, the application of the phase detection allows suppressing noise and crosstalk at frequencies different from the modulation frequency. The preamplifier and the reference sample

  14. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  15. Atmospheric trident production for probing new physics

    Directory of Open Access Journals (Sweden)

    Shao-Feng Ge

    2017-09-01

    Full Text Available We propose to use atmospheric neutrinos as a powerful probe of new physics beyond the Standard Model via neutrino trident production. The final state with double muon tracks simultaneously produced from the same vertex is a distinctive signal at large Cherenkov detectors. We calculate the expected event numbers of trident production in the Standard Model. To illustrate the potential of this process to probe new physics we obtain the sensitivity on new vector/scalar bosons with coupling to muon and tau neutrinos.

  16. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  17. Atom probe tomography analysis of WC powder.

    Science.gov (United States)

    Weidow, Jonathan

    2013-09-01

    A tantalum doped tungsten carbide powder, (W,Ta)C, was prepared with the purpose to maximise the amount of Ta in the hexagonal mixed crystal carbide. Atom probe tomography (APT) was considered to be the best technique to quantitatively measure the amount of Ta within this carbide. As the carbide powder consisted in the form of very small particles (WC-Co based cemented carbide specimen. With the use of a laser assisted atom probe, it was shown that the method is working and the Ta content of the (W,Ta)C could be measured quantitatively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  19. Antibody Fragments as Probe in Biosensor Development

    Directory of Open Access Journals (Sweden)

    Serge Muyldermans

    2008-08-01

    Full Text Available Today’s proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.

  20. Azaphthalocyanines: Red Fluorescent Probes for Cations

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Lochman, L.; Zajícová, I.; Kopecký, K.; Miletin, M.; Lang, Kamil; Kirakci, Kaplan; Zimcik, P.

    2013-01-01

    Roč. 19, č. 16 (2013), s. 5025-5028 ISSN 0947-6539 R&D Projects: GA ČR GAP208/10/1678 Institutional support: RVO:61388980 Keywords : crown compounds * fluorescent probes * phthalocyanine s * potassium * sodium Subject RIV: CA - Inorganic Chemistry Impact factor: 5.696, year: 2013

  1. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  2. Continuously tunable nucleic acid hybridization probes.

    Science.gov (United States)

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  3. Probing the pre-big bang universe

    International Nuclear Information System (INIS)

    Veneziano, G.

    2000-01-01

    Superstring theory suggests a new cosmology whereby a long inflationary phase preceded a non singular big bang-like event. After discussing how pre-big bang inflation naturally arises from an almost trivial initial state of the Universe, I will describe how present or near-future experiments can provide sensitive probes of how the Universe behaved in the pre-bang era

  4. Electrospray deposition from fountain pen AFM probes

    NARCIS (Netherlands)

    Geerlings, J.; Sarajlic, Edin; Berenschot, Johan W.; Abelmann, Leon; Tas, Niels Roelof

    2012-01-01

    In this paper we present for the first time electrospraying from fountain pen probes. By using electrospray contactless deposition in an AFM setup becomes possible. Experiments on a dedicated setup were carried out as first step towards this goal. Spraying from 8 and 2 µm apertures was observed. For

  5. Probing Students' Numerical Misconceptions in School Algebra

    Science.gov (United States)

    Akhtar, Zarina; Steinle, Vicki

    2013-01-01

    The study was designed to probe students' thinking about which numerical values can be assigned to algebraic letters. The data from students in Year 7 (n = 533), Year 8 (n = 377) and Year 9 (n = 172) was analysed using response patterns. The data confirmed that each year contained students with two misconceptions; "Different Letter means…

  6. Evaluating Metal Probe Meters for Soil Testing.

    Science.gov (United States)

    Hershey, David R.

    1992-01-01

    Inexpensive metal probe meters that are sold by garden stores can be evaluated by students for their accuracy in measuring soil pH, moisture, fertility, and salinity. The author concludes that the meters are inaccurate and cannot be calibrated in standard units. However, the student evaluations are useful in learning the methods of soil analysis…

  7. Manufacturing techniques for Gravity Probe B gyroscopes

    Science.gov (United States)

    Rasquin, J. R.

    1978-01-01

    Additional and improved techniques for the manufacture of Gravity Probe B gyroscopes are reported. Improvements discussed include the redesign of the housings, new techniques for indentation of the electrode surfaces, and a new rotor ball lapping machine. These three items represent a significant improvement in operation of the gyroscope and also make possible the fabrication of a gyroscope which will meet flight requirements.

  8. Probe and method for DNA detection

    Science.gov (United States)

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  9. Response time of electromagnetic field strength probes

    NARCIS (Netherlands)

    Vogt-Ardatjew, R.A.; Serra, Ramiro; Hiltz, L. Gregory; Leferink, Frank Bernardus Johannes

    2013-01-01

    Modern signals in for instance wireless communication systems and radars use very complex modulation with high peakto-average ratio. Other signals, such as in reverberation chambers with mode stirring, vary very fast with a high dynamic range. Conventional probes, using thermocouples or diode

  10. Probing echoic memory with different voices.

    Science.gov (United States)

    Madden, D J; Bastian, J

    1977-05-01

    Considerable evidence has indicated that some acoustical properties of spoken items are preserved in an "echoic" memory for approximately 2 sec. However, some of this evidence has also shown that changing the voice speaking the stimulus items has a disruptive effect on memory which persists longer than that of other acoustical variables. The present experiment examined the effect of voice changes on response bias as well as on accuracy in a recognition memory task. The task involved judging recognition probes as being present in or absent from sets of dichotically presented digits. Recognition of probes spoken in the same voice as that of the dichotic items was more accurate than recognition of different-voice probes at each of three retention intervals of up to 4 sec. Different-voice probes increased the likelihood of "absent" responses, but only up to a 1.4-sec delay. These shifts in response bias may represent a property of echoic memory which should be investigated further.

  11. Electromagnetic Probe Technique for Fluid Flow Measurements

    Science.gov (United States)

    Arndt, G. D.; Carl, J. R.; Nguyen, T. X.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constants of each fluid is possible, several or even many fluids can be measured in the same flow steam. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this industry, a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans and program to solve this problem will be discussed herein.

  12. Genetically encoded fluorescent probe to visualize phosphatidylinositol

    Czech Academy of Sciences Publication Activity Database

    Eisenreichová, Andrea; Humpolíčková, Jana; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 364-365 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : phosphatidylinositol * fluorescent probe Subject RIV: CE - Biochemistry

  13. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  14. Crack detection by mobile photothermal probe

    International Nuclear Information System (INIS)

    Besnard, R.; Le Blanc, A.; Sellier, J.Y.

    1993-01-01

    This paper deals with an industrial method for crack detection. The apparatus presented is based on a mobile photothermal probe. It can be used under different modes (sinusoidal, pulsed or scanned excitation). Moreover, the description of the device provided includes theoretical and experimental results. (TEC). 7 refs., 6 figs

  15. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  16. Probing ultrafast carrier dynamics, nonlinear absorption and ...

    Indian Academy of Sciences (India)

    physics pp. 471–481. Probing ultrafast carrier dynamics, nonlinear absorption and refraction in core–shell silicon nanowires. SUNIL KUMAR1,∗, M KHORASANINEJAD2, M M ADACHI2,. K S KARIM2, S S SAINI2 and A K SOOD1. 1Department of Physics and Centre for Ultrafast Laser Applications, Indian Institute of Science,.

  17. Evaluation of Flat Surface Temperature Probes

    Science.gov (United States)

    Beges, G.; Rudman, M.; Drnovsek, J.

    2011-01-01

    The objective of this paper is elaboration of elements related to metrological analysis in the field of surface temperature measurement. Surface temperature measurements are applicable in many fields. As examples, safety testing of electrical appliances and a pharmaceutical production line represent case studies for surface temperature measurements. In both cases correctness of the result of the surface temperature has an influence on final product safety and quality and thus conformity with specifications. This paper deals with the differences of flat surface temperature probes in measuring the surface temperature. For the purpose of safety testing of electrical appliances, surface temperature measurements are very important for safety of the user. General requirements are presented in European standards, which support requirements in European directives, e.g., European Low Voltage Directive 2006/95/EC and pharmaceutical requirements, which are introduced in official state legislation. This paper introduces a comparison of temperature measurements of an attached thermocouple on the measured surface and measurement with flat surface temperature probes. As a heat generator, a so called temperature artifact is used. It consists of an aluminum plate with an incorporated electrical heating element with very good temperature stability in the central part. The probes and thermocouple were applied with different forces to the surface in horizontal and vertical positions. The reference temperature was measured by a J-type fine-wire (0.2 mm) thermocouple. Two probes were homemade according to requirements in the European standard EN 60335-2-9/A12, one with a fine-wire (0.2 mm) thermocouple and one with 0.5mm of thermocouple wire diameter. Additional commercially available probes were compared. Differences between probes due to thermal conditions caused by application of the probe were found. Therefore, it can happen that measurements are performed with improper equipment or

  18. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  19. Data Communication PC/NaI-borehole probe (Hardware & Software)

    DEFF Research Database (Denmark)

    Madsen, Peter Buch

    Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor.......Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor....

  20. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  1. A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Moon-Keun Lee

    2014-01-01

    Full Text Available For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection.

  2. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Lih, Shyh-Shiuh (Inventor); Sherrit, Stewart (Inventor); Takano, Nobuyuki (Inventor); Ostlund, Patrick N. (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  3. Free radical scavenging properties of some wine probes

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    There are preliminary results of investigation of scavenging properties of 8 probes of Slovak wines (consisting of one reference, 3 probes of white wine and 4 probes of red wine). According to the literature so far, wine probes contain paramagnetic species (Mn 2+ , characterised with sextet spectrum, and a singlet line around g=2,00). In our probes we observed Mn 2+ signals, but no significant evidence for a single line of free radical was found. We can conclude that Mn 2+ content in the red wines is generally higher than in the white ones. Further, we investigated the scavenging activities of the probes adding solution of dinitropicryl hydrazyl (DPPH-stable radical) to them. Their ability to terminate free radicals resulted in the decrease of the final DPPH concentrations in the probes. The red wines have significantly higher capability to scavenge free radicals than the probes of white wines. (authors)

  4. Periodontal probing systems: a review of available equipment.

    Science.gov (United States)

    Ramachandra, Srinivas Sulugodu; Mehta, Dhoom Singh; Sandesh, Nagarajappa; Baliga, Vidya; Amarnath, Janardhan

    2011-03-01

    The periodontal pocket, one of the definitive signs of periodontal disease, is the most common parameter to be assessed by dental clinicians. Periodontal probes have been the instruments most commonly used to locate and measure these pockets. Regular use of periodontal probes in routine dental practice facilitates and increases the accuracy of the process of diagnosing the condition, formulating the treatment, and predicting the outcome of therapy. Advances in the field of periodontal probing have led to the development of probes that may help reduce errors in determining this parameter used to define the state of active periodontal disease. One such advance is the emergence of probes that purportedly assess periodontal disease activity noninvasively. The selection of periodontal probe depends on the type of dental practice: a general dental practitioner would require first- or second-generation probes, while third- through fifth-generation probes generally are used in academic and research institutions as well as specialty practices.

  5. Database architecture and query structures for probe data processing.

    Science.gov (United States)

    2012-03-01

    This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ch...

  6. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  7. Hand and shoe monitor using air ionization probes

    International Nuclear Information System (INIS)

    Fergus, R.W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes

  8. Characteristics of langmuir probe in low temperature, weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Wu Liqi; Liu Wandong; Xie Jinlin; Yu Zhi; Lan Tao; Ouyang Liang; Wang Yi; Zhao Kai

    2003-01-01

    The systematic Langmuir probe measurements for a weakly magnetized plasma have been carried out in the Linear Magnetized Plasma Device for different magnetic fields. By comparing the ion current density of probes with different sizes, the sheath thickness can be evaluated. It is found that while the ratio of cylindrical probe's dimension to ion Larmor radius is not more than 2, the model of probe for non-magnetized plasma is still applicable

  9. Micro- and nanodevices integrated with biomolecular probes.

    Science.gov (United States)

    Alapan, Yunus; Icoz, Kutay; Gurkan, Umut A

    2015-12-01

    Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  11. Mapping interfacial excess in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Scherrer, Barbara; Demeulemeester, Jelle; Vandervorst, Wilfried; Cairney, Julie M.

    2015-01-01

    Using modern wide-angle atom probes, it is possible to acquire atomic scale 3D data containing 1000 s of nm 2 of interfaces. It is therefore possible to probe the distribution of segregated species across these interfaces. Here, we present techniques that allow the production of models for interfacial excess (IE) mapping and discuss the underlying considerations and sampling statistics. We also show, how the same principles can be used to achieve thickness mapping of thin films. We demonstrate the effectiveness on example applications, including the analysis of segregation to a phase boundary in stainless steel, segregation to a metal–ceramic interface and the assessment of thickness variations of the gate oxide in a fin-FET. - Highlights: • Using computational geometry, interfacial excess can be mapped for various features in APT. • Suitable analysis models can be created by combining manual modelling and mesh generation algorithms. • Thin film thickness can be mapped with high accuracy using this technique.

  12. Modeling Atom Probe Tomography: A review.

    Science.gov (United States)

    Vurpillot, F; Oberdorfer, C

    2015-12-01

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A probe station for testing silicon sensors

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    A probe station for testing silicon sensors. The probe station is located inside a dark box that can keep away light during the measurement. The set-up is located in the DSF (Department Silicon Facility). The golden plate is the "chuck" where the sensor is usually placed on. With the help of "manipulators", thin needles can be precisely positioned that can contact the sensor surface. Using these needles and the golden chuck, a high voltage can be applied to the sensor to test its behaviour under high voltage. We will use the silicon sensors that we test here for building prototypes of a highly granular sandwich calorimeter, the CMS HGC (Highly granular Calorimeter) upgrade for High-Luminosity LHC.

  14. Labeled estrogens as mammary tumor probes

    International Nuclear Information System (INIS)

    Feenstra, A.

    1981-01-01

    In this thesis estrogens labeled with a gamma or positron emitting nuclide, called estrogen-receptor binding radiopharmaceuticals are investigated as mammary tumour probes. The requirements for estrogen-receptor binding radiopharmaceuticals are formulated and the literature on estrogens labeled for this purpose is reviewed. The potential of mercury-197/197m and of carbon-11 as label for estrogen-receptor binding radiopharmaceuticals is investigated. The synthesis of 197 Hg-labeled 4-mercury-estradiol and 2-mercury-estradiol and their properties in vitro and in vivo are described. It appears that though basically carbon-11 labeled compounds are very promising as mammary tumour probes, their achievable specific activity has to be increased. (Auth.)

  15. Optimal design of a touch trigger probe

    Science.gov (United States)

    Li, Rui-Jun; Xiang, Meng; Fan, Kuang-Chao; Zhou, Hao; Feng, Jian

    2015-02-01

    A tungsten stylus with a ruby ball tip was screwed into a floating plate, which was supported by four leaf springs. The displacement of the tip caused by the contact force in 3D could be transferred into the tilt or vertical displacement of a plane mirror mounted on the floating plate. A quadrant photo detector (QPD) based two dimensional angle sensor was used to detect the tilt or the vertical displacement of the plane mirror. The structural parameters of the probe are optimized for equal sensitivity and equal stiffness in a displacement range of +/-5 μm, and a restricted horizontal size of less than 40 mm. Simulation results indicated that the stiffness was less than 0.6 mN/μm and equal in 3D. Experimental results indicated that the probe could be used to achieve a resolution of 1 nm.

  16. Relativistic Current Dynamics Investigations By Proton Probing

    Science.gov (United States)

    Borghesi, M.; Quinn, K.; Wilson, P. A.; Cecchetti, C. A.; Ramakrishna, B.; Romagnani, L.; Sarri, G.; Lancia, L.; Fuchs, J.; Pipahl, A.; Toncian, T.; Willi, O.; Carroll, D. C.; Gallegos, P.; Quinn, M. N.; Yuan, X. H.; McKenna, P.; Clarke, R. J.; Evans, R. G.; Neely, D.; Notley, M.; Macchi, A.; Lyseikina, T. V.; Nazarov, W.

    2009-07-01

    The proton probing technique has been used to investigate the incidence of a mid-1019 W cm-2 pulse with metallic wire and laminar foam targets. Electric fields ˜1010 Vṡm-1 are measured on the surface of the 125 μm-diameter wire in the wake of the laser interaction as it charges and discharges within a 20 ps temporal window, whilst the employment of a novel experimental technique permits the observation of the propagation of a charging front at ˜c away from the point of interaction. In the foam shots, meanwhile, the behaviour of the hot electrons generated by the interaction pulse is probed inside the target. Evidence of electric inhibition effects and filamentation is found.

  17. Electronic system for Langmuir probe measurements

    Science.gov (United States)

    Mitov, M.; Bankova, A.; Dimitrova, M.; Ivanova, P.; Tutulkov, K.; Djermanova, N.; Dejarnac, R.; Stöckel, J.; Popov, Tsv K.

    2012-03-01

    A newly developed Langmuir probe system for measurements of current-voltage (IV) characteristics in the tokamak divertor area is presented and discussed. The system is partially controlled by a computer allowing simultaneous and independent feeding and registration of signals. The system is mounted in the COMPASS tokamak, Institute of Plasma Physics, Academy of Sciences of the Czech Republic. The new electronic circuit boards include also active low-pass filters which smooth the signal before recording by the data acquisition system (DAQ). The signal is thus less noisy and the data processing is much easier. We also designed and built a microcontroller-driven waveform generator with resolution of 1 Ms/s. The power supply is linear and uses a transformer. We avoided the use of a switching power supply because of the noise that it could generate. Examples of measurements of the IV characteristics by divertor probes in the COMPASS tokamak and evaluation of the EEDF are presented.

  18. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  19. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A.

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  20. Ultraspecific probes for high throughput HLA typing

    Directory of Open Access Journals (Sweden)

    Eggers Rick

    2009-02-01

    Full Text Available Abstract Background The variations within an individual's HLA (Human Leukocyte Antigen genes have been linked to many immunological events, e.g. susceptibility to disease, response to vaccines, and the success of blood, tissue, and organ transplants. Although the microarray format has the potential to achieve high-resolution typing, this has yet to be attained due to inefficiencies of current probe design strategies. Results We present a novel three-step approach for the design of high-throughput microarray assays for HLA typing. This approach first selects sequences containing the SNPs present in all alleles of the locus of interest and next calculates the number of base changes necessary to convert a candidate probe sequences to the closest subsequence within the set of sequences that are likely to be present in the sample including the remainder of the human genome in order to identify those candidate probes which are "ultraspecific" for the allele of interest. Due to the high specificity of these sequences, it is possible that preliminary steps such as PCR amplification are no longer necessary. Lastly, the minimum number of these ultraspecific probes is selected such that the highest resolution typing can be achieved for the minimal cost of production. As an example, an array was designed and in silico results were obtained for typing of the HLA-B locus. Conclusion The assay presented here provides a higher resolution than has previously been developed and includes more alleles than previously considered. Based upon the in silico and preliminary experimental results, we believe that the proposed approach can be readily applied to any highly polymorphic gene system.

  1. Electronic system for Langmuir probe measurements

    Czech Academy of Sciences Publication Activity Database

    Mitov, M.; Bankova, A.; Dimitrova, M.; Ivanova, P.; Tutulkov, K.; Djermanova, N.; Dejarnac, Renaud; Stöckel, Jan; Popov, Tsv.K.

    2012-01-01

    Roč. 356, č. 1 (2012), s. 012008 ISSN 1742-6588. [InternationalSummerSchoolonVacuum,Electron, and IonTechnologies(VEIT2011)/17./. Sunny Beach, 19.09.2011-23.09.2011] Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * tokamak * diagnostics * electric probe Subject RIV: BL - Plasma and Gas Discharge Physics http://iopscience.iop.org/1742-6596/356/1/012008/pdf/1742-6596_356_1_012008.pdf

  2. Probing the Higgs vacuum with general relativity

    Science.gov (United States)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1991-01-01

    It is shown that the structure of the Higgs vacuum can be revealed in gravitational experiments which probe the Schwarzschild geometry to only one order in MG/r beyond that needed for the classical tests of general relativity. The possibility that deviations from the conventional geometry are at least theoretically conceivable is explored. The deviations obtained provide a diagnostic test for searching for the existence of macroscopic scalar fields and open up the possiblity for further exploring the Higgs mechanism.

  3. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  4. Flow Cytometric Applicability of Fluorescent Vitality Probes on Phytoplankton

    NARCIS (Netherlands)

    Peperzak, L.; Brussaard, C.P.D.

    2011-01-01

    The applicability of six fluorescent probes (four esterase probes: acetoxymethyl ester of Calcein [Calcein-AM], 5-chloromethylfluorescein diacetate [CMFDA], fluorescein diacetate [FDA], and 2',7'-dichlorofluorescein diacetate [H(2)DCFDA]; and two membrane probes: bis-(1,3-dibutylbarbituric acid)

  5. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency lesion probe. 882.4725 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4725 Radiofrequency lesion probe. (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF...

  6. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    Science.gov (United States)

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  7. 21 CFR 886.1670 - Ophthalmic isotope uptake probe.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1670 Ophthalmic isotope uptake probe. (a) Identification. An ophthalmic isotope uptake probe is an AC-powered device intended to measure... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic isotope uptake probe. 886.1670 Section...

  8. Development of Raman-shifted probe laser beam for plasma ...

    Indian Academy of Sciences (India)

    Abstract. Optical diagnostics of laser-produced plasma requires a coherent, polarized probe beam synchronized with the pump beam. The probe beam should have energy above the background emission of plasma. Though the second harmonic probe beam satisfies most of the requirements, the plasma emission is larger ...

  9. The response of electrostatic probes via the λ-function

    DEFF Research Database (Denmark)

    Rerup, T.O.; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    The response of an electrostatic probe is examined with reference to a planar spacer. The study involves the numerical calculation of the probe λ-function, from which response-related characteristic parameters can be derived. These parameters enable the probe detection sensitivity and spatial...

  10. Response of electrostatic probes to eccentric charge distributions

    DEFF Research Database (Denmark)

    Johansson, Torben; McAllister, Iain Wilson

    2001-01-01

    The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity...

  11. Three-way flexible cantilever probes for static contact

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Jensen, Helle Vendelbo

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze...

  12. Modular design of AFM probe with sputtered silicon tip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, Jacob; Bouwstra, Siebe

    2001-01-01

    of the thin films constituting the cantilever. The AFM probe has an integrated tip made of a thick sputtered silicon layer, which is deposited after the probe has been defined and just before the cantilevers are released. The tips are so-called rocket tips made by reactive ion etching. We present probes...

  13. Thermal probe design for Europa sample acquisition

    Science.gov (United States)

    Horne, Mera F.

    2018-01-01

    The planned lander missions to the surface of Europa will access samples from the subsurface of the ice in a search for signs of life. A small thermal drill (probe) is proposed to meet the sample requirement of the Science Definition Team's (SDT) report for the Europa mission. The probe is 2 cm in diameter and 16 cm in length and is designed to access the subsurface to 10 cm deep and to collect five ice samples of 7 cm3 each, approximately. The energy required to penetrate the top 10 cm of ice in a vacuum is 26 Wh, approximately, and to melt 7 cm3 of ice is 1.2 Wh, approximately. The requirement stated in the SDT report of collecting samples from five different sites can be accommodated with repeated use of the same thermal drill. For smaller sample sizes, a smaller probe of 1.0 cm in diameter with the same length of 16 cm could be utilized that would require approximately 6.4 Wh to penetrate the top 10 cm of ice, and 0.02 Wh to collect 0.1 g of sample. The thermal drill has the advantage of simplicity of design and operations and the ability to penetrate ice over a range of densities and hardness while maintaining sample integrity.

  14. Eddy Current Flexible Probes for Complex Geometries

    Science.gov (United States)

    Gilles-Pascaud, C.; Decitre, J. M.; Vacher, F.; Fermon, C.; Pannetier, M.; Cattiaux, G.

    2006-03-01

    The inspection of materials used in aerospace, nuclear or transport industry is a critical issue for the safety of components exposed to stress or/and corrosion. The industry claims for faster, more sensitive, and more flexible techniques. Technologies based on Eddy Current (EC) flexible array probe and magnetic sensor with high sensitivity such as giant magneto-resistance (GMR) could be a good solution to detect surface-breaking flaws in complex shaped surfaces. The CEA has recently developed, with support from the French Institute for Radiological Protection and Nuclear Safety (IRSN), a flexible array probe based on micro-coils etched on Kapton. The probe's performances have been assessed for the inspection of reactor residual heat removal pipes, and for aeronautical applications within the framework of the European project VERDICT. The experimental results confirm the very good detection of narrow cracks on plane and curve shaped surfaces. This paper also describes the recent progresses concerning the application of GMR sensors to EC testing, and the results obtained for the detection of small surface breaking flaws.

  15. Mining information from atom probe data

    International Nuclear Information System (INIS)

    Cairney, Julie M.; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A.J.; Choi, Pyuck-Pa; Felfer, Peter J.; Ringer, Simon P.; Marceau, Ross K.W.; Moody, Michael P.

    2015-01-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial–chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or “mine” fundamental materials science information from that data. - Highlights: • Overview of the newest developments in techniques to extract information from atom probe data. • As well as reviewing existing approaches, improvements and new approaches are presented. • Techniques covered include tests for randomness, short range order and crystallography. • Methods for interfacial excess mapping and spectral decomposition are also covered.

  16. Imaging of neurosphere oxygenation with phosphorescent probes.

    Science.gov (United States)

    Dmitriev, Ruslan I; Zhdanov, Alexander V; Nolan, Yvonne M; Papkovsky, Dmitri B

    2013-12-01

    Multicellular spheroids are useful models of mammalian tissue for studies of cell proliferation, differentiation, replacement therapies and drug action. Having a size of 100-500 μm they mimic in vivo micro-environment and characteristic gradients of O2, pH and nutrients. We describe the use of cell-penetrating O2 probes based on phosphorescent Pt-porphyrins to perform high-resolution 2D and 3D mapping of O2 in spheroid structures by live cell fluorescence imaging technique. Optimised procedures for preparation of neurospheres from cortical neural cells isolated from embryonic rat brain, their staining with the phosphorescent O2 probes NanO2 and MM2 and subsequent analysis of oxygenation on different live cell imaging platforms, including widefield and confocal phosphorescence lifetime imaging microscopy (PLIM), conventional confocal and two-photon ratiometric intensity based O2 detection are presented. This is followed by a series of physiological experiments in which oxygenation patterns of the neurospheres are correlated with culturing conditions (atmospheric hypoxia and hyperoxia, size, growth factors), distribution of stem cells, mature neurons and astrocytes, HIF-2α stabilisation and responses to metabolic stimulation. The O2 imaging method allows multiplexing with many conventional fluorescent probes to perform multi-parametric imaging analysis of cells in 3D microenvironment. It can be applied to other types of spheroids and 3D tissue models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mining information from atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Cairney, Julie M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Rajan, Krishna [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Haley, Daniel [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf (Germany); Gault, Baptiste; Bagot, Paul A.J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, Pyuck-Pa [Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf (Germany); Felfer, Peter J.; Ringer, Simon P. [School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Marceau, Ross K.W. [Institute for Frontier Materials, Deakin University, Geelong Technology Precinct, 75 Pigdons Road, Waurn Ponds, Victoria 3216 (Australia); Moody, Michael P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial–chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or “mine” fundamental materials science information from that data. - Highlights: • Overview of the newest developments in techniques to extract information from atom probe data. • As well as reviewing existing approaches, improvements and new approaches are presented. • Techniques covered include tests for randomness, short range order and crystallography. • Methods for interfacial excess mapping and spectral decomposition are also covered.

  18. Highlighting cancer cells with macromolecular probes

    Science.gov (United States)

    Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Brown, Adrienne S.; Wilson, James N.; Raymo, Françisco M.

    2017-02-01

    Conventional fluorophore-ligand constructs for the detection of cancer cells generally produce relatively weak signals with modest contrast. The inherently low brightness accessible per biding event with the pairing of a single organic fluorophore to a single ligand as well as the contribution of unbound probes to background fluorescence are mainly responsible for these limitations. Our laboratories identified a viable structural design to improve both brightness and contrast. It is based on the integration of activatable fluorophores and targeting ligands within the same macromolecular construct. The chromophoric components are engineered to emit bright fluorescence exclusively in acidic environments. The targeting agents are designed to bind complementary receptors overexpressed on the surface of cancer cells and allow internalization of the macromolecules into acidic organelles. As a result of these properties, our macromolecular probes switch their intense emission on exclusively in the intracellular space of target cells with minimal background fluorescence from the extracellular matrix. In fact, these operating principles translate into a 170-fold enhancement in brightness, relative to equivalent but isolated chromophoric components, and a 3-fold increase in contrast, relative to model but non-activatable fluorophores. Thus, our macromolecular probes might ultimately evolve into valuable analytical tools to highlight cancer cells with optimal signal-to-noise ratios in a diversity of biomedical applications.

  19. Solar Probe ANalyzer for Ions - Laboratory Performance

    Science.gov (United States)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  20. MICROSCALE METROLOGY USING STANDING WAVE PROBES

    Energy Technology Data Exchange (ETDEWEB)

    Bauza, M B; Woody, S C; Smith, S T; Seugling, R M; Darnell, I; Florando, J N

    2008-08-04

    Miniaturization has been one of the driving forces in the development of new technologies leading to new products in a variety of industries. As a result, the integration of components over several orders of magnitude on the length scale poses enormous challenges for quality assurance and control. Therefore, new solutions are necessary to meet the growing need for more challenging metrology tasks and metrology requirements in nano- and micro-technology. However, with miniaturization, new challenges arise such as the increased influence of adhesion, electrostatic, Van der Waals and meniscus forces that affect the measurement process. Technical solutions to overcome these micro- and nano-metrology challenges will include the need for traceability, new calibration procedures and calibration artifacts. Over the past decade many new metrology tools have been proposed, however; for contact based measurements, adhesion between the measurement probe and the specimen still proves to be one of the more difficult challenges to overcome. To address this issue, a new class of tactile sensing probe referred to as standing wave sensor has been developed and was previously presented. Previous work introduced the principle of operation of the standing wave senor. This work presents new measurements showing applications of the standing wave probe as the sensing element in a microscale high aspect ratio profiling system.

  1. Atom probe tomography analysis of WC powder

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Wien (Austria)

    2013-09-15

    A tantalum doped tungsten carbide powder, (W,Ta)C, was prepared with the purpose to maximise the amount of Ta in the hexagonal mixed crystal carbide. Atom probe tomography (APT) was considered to be the best technique to quantitatively measure the amount of Ta within this carbide. As the carbide powder consisted in the form of very small particles (<1 μm), a method to produce APT specimens of such a powder was developed. The powder was at first embedded in copper and a FIB-SEM workstation was used to make an in-situ lift-out from a selected powder particle. The powder particle was then deposited on a post made from a WC-Co based cemented carbide specimen. With the use of a laser assisted atom probe, it was shown that the method is working and the Ta content of the (W,Ta)C could be measured quantitatively. - Highlights: ► Method for producing atom probe tomography specimens of powders was developed. ► Method was successfully implemented on (W,Ta)C powder. ► Method can possibly be implemented on completely other powders.

  2. Interaction of a ballistic probe with gaseous media

    International Nuclear Information System (INIS)

    Kucerovsky, Zden; Greason, William D

    2008-01-01

    Free-flying metal probes are used to determine charge densities in gaseous media containing free charge or low density plasma. The trajectory of the probe is ensured either by gravity or by propelling the probe to a certain velocity at the launch site. While travelling, the probe charge changes from its launch-site magnitude to that related to the space charge density existing along the trajectory. The degree to which the probe's arrival-site charge magnitude matches the space charge density in the area of interest depends on the probe shape and on the charge exchange processes between the probe body and the medium. The paper studies a probe acting as a free-flying charge carrier in air, and discusses the problems that may lead to an imbalance between the charge collected by the probe in the area of interest and the charge measured at the arrival site. The analysis and the described experiments are of the ballistic type: a small, triboelectrically pre-charged metal probe was propelled on a horizontal path, and the charge carried by the probe was measured at several points along the trajectory by means of contact-free induction rings; the initial and final charges were determined by static Faraday cups. A charge disparity was found under certain conditions, and its degree explained by the effects of the charge carrier potential. The studied probe charges ranged from 10 to 50 nF, and the fly-times needed to cross a one-meter path ranged from 20 to 40 ms. The probe to gas charge exchange experiments and their analysis yielded conditions under which the probe lost approximately 10 % of its charge. The results of our study may be of interest to those who intend to use the free-flying probe technique for the determination of space charge density.

  3. Application of the iterative probe correction technique for a high-order probe in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav

    2006-01-01

    An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....

  4. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    Science.gov (United States)

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. The Interstellar Ethics of Self-Replicating Probes

    Science.gov (United States)

    Cooper, K.

    Robotic spacecraft have been our primary means of exploring the Universe for over 50 years. Should interstellar travel become reality it seems unlikely that humankind will stop using robotic probes. These probes will be able to replicate themselves ad infinitum by extracting raw materials from the space resources around them and reconfiguring them into replicas of themselves, using technology such as 3D printing. This will create a colonising wave of probes across the Galaxy. However, such probes could have negative as well as positive consequences and it is incumbent upon us to factor self-replicating probes into our interstellar philosophies and to take responsibility for their actions.

  6. Probe design for expression arrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus

    2014-01-01

    Since all measurements from a DNA microarray is dependant on the probes used, a good choice of probes is of vital importa nce when designing custom micro-arrays. This chapter describes how to de sign expression arrays using the “ OligoWiz ” software suite. The general desired features of good...... probes and the issues which probe design must address are introduced and a conceptual (rather than mathematical) description of how OligoWiz scores the quality of th e potential probes is presented. This is followed by a detailed step-by-step guide to designing expression arrays with OligoWiz....

  7. Atom probe microanalysis: Principles and applications to materials problems

    International Nuclear Information System (INIS)

    Miller, M.K.; Smith, G.D.W.

    1987-01-01

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  8. Feature extraction of the wafer probe marks in IC packaging

    Science.gov (United States)

    Tsai, Cheng-Yu; Lin, Chia-Te; Kao, Chen-Ting; Wang, Chau-Shing

    2017-12-01

    This paper presents an image processing approach to extract six features of the probe mark on semiconductor wafer pads. The electrical characteristics of the chip pad must be tested using a probing needle before wire-bonding to the wafer. However, this test leaves probe marks on the pad. A large probe mark area results in poor adhesion forces at the bond ball of the pad, thus leading to undesirable products. In this paper, we present a method to extract six features of the wafer probe marks in IC packaging for further digital image processing.

  9. Diagnostic PCR: Comparative sensitivity of four probe chemistries

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Löfström, Charlotta; Sommer, Helle Mølgaard

    2009-01-01

    Three probe chemistries: locked nucleic acid (LNA), minor groove binder (MGB) and Scorpion were compared with a TaqMan probe in a validated real-time PCR assay for detection of food-borne thermotolerant Campylobacter. The LNA probe produced significantly lower Ct-values and a higher proportion...... of positive PCR responses analyzing less than 150 DNA copies than the TaqMan probe. Choice of probe chemistry clearly has an impact on the sensitivity of PCR assays, and should be considered in an optimization strategy....

  10. The role of probe oxide in local surface conductivity measurements

    Science.gov (United States)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.; Maffeis, T. G. G.; Kalna, K.; Cobley, R. J.

    2015-05-01

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

  11. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  12. Shared probe design and existing microarray reanalysis using PICKY

    Directory of Open Access Journals (Sweden)

    Chou Hui-Hsien

    2010-04-01

    Full Text Available Abstract Background Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations. Results PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users. Conclusions Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.

  13. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

    Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  14. Reducing Plasma Perturbations with Segmented Metal Shielding on Electrostatic Probes

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Electrostatic probes are widely used to measure spatial plasma parameters in the quasi-neutral plasma created in Hall thrusters and similar E x B electric discharge devices. Significant perturbations of the plasma, induced by such probes, can mask the actual physics involved in operation of these devices. In an attempt to reduce these perturbations in Hall thrusters, the perturbations were examined by varying the component material, penetration distance, and residence time of various probe designs. This study leads us to a conclusion that secondary electron emission from insulator ceramic tubes of the probe can affect local changes of the plasma parameters causing plasma perturbations. A probe design, which consists of a segmented metal shielding of the probe insulator, is suggested to reduce these perturbations. This new probe design can be useful for plasma applications in which the electron temperature is sufficient to produce secondary electron emission by interaction of plasma electrons with dielectric materials

  15. Prediction of ultrasonic probe characteristics through modeling and simulation

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2004-01-01

    One of the main component in an ultrasonic probe is piezoelectric material. It converts electrical energy supplied to it into mechanical energy (i.e. sound waves) and vice versa. In industrial application, the characteristic of ultrasonic probes is important as it will affect the results obtained. The probes fabricated must possess the characteristics suitable to the intended application. Through modeling and simulation, we can predict the characteristics of the probes. Mason equivalent circuit is used to make a model and simulation of the probes. In this model, the probes will be treated and simplified as a one dimensional electrical line. From simulation, the electrical properties such as impedance, operating frequency bandwidth and others can be predicted. From this model, the correct material to be used for actual probe construction can be obtained. The limitation of this method is details such as bond line between layers is not taken into consideration. (Author)

  16. Touch-Trigger Probe Error Compensation in a Machining Center

    International Nuclear Information System (INIS)

    Lee, Chan Ho; Lee, Eung Suk

    2011-01-01

    Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool

  17. Cone penetrometer fiber optic raman spectroscopy probe assembly

    Science.gov (United States)

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  18. Objective, Quantitative, Data-Driven Assessment of Chemical Probes.

    Science.gov (United States)

    Antolin, Albert A; Tym, Joseph E; Komianou, Angeliki; Collins, Ian; Workman, Paul; Al-Lazikani, Bissan

    2018-02-15

    Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Probing the crystallography of ordered Phases by coupling of orientation microscopy with atom probe tomography.

    Science.gov (United States)

    Meher, S; Nandwana, P; Rojhirunsakool, T; Tiley, J; Banerjee, R

    2015-01-01

    The determination of atomic scale structural and compositional information using atom probe tomography is currently limited to elemental solids and dilute alloys. In the present article, a unique coupling of orientation microscopy and atom probe tomography successfully facilitates the crystallographic study of non-dilute alloy systems, with high evaporation fields. This reproducible methodology affords a new perspective to the conventional atom probe tomography of ordered precipitate strengthened superalloys. The high accuracy in crystallographic site-specific sample preparation results in high spatial resolution in APT, which has been demonstrated in Co-base superalloys. The practical applications of this technique can be extended to accurately characterize the nature of buried order/disorder interfaces at the atomic scale, as well as the site occupancies associated with different solute atoms in multi-component superalloys. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. UPS 2.0: unique probe selector for probe design and oligonucleotide microarrays at the pangenomic/genomic level.

    Science.gov (United States)

    Chen, Shu-Hwa; Lo, Chen-Zen; Su, Sheng-Yao; Kuo, Bao-Han; Hsiung, Chao A; Lin, Chung-Yen

    2010-12-02

    Nucleic acid hybridization is an extensively adopted principle in biomedical research, in which the performance of any hybridization-based method depends on the specificity of probes to their targets. To determine the optimal probe(s) for detecting target(s) from a sample cocktail, we developed a novel algorithm, which has been implemented into a web platform for probe designing. This probe design workflow is now upgraded to satisfy experiments that require a probe designing tool to take the increasing volume of sequence datasets. Algorithms and probe parameters applied in UPS 2.0 include GC content, the secondary structure, melting temperature (Tm), the stability of the probe-target duplex estimated by the thermodynamic model, sequence complexity, similarity of probes to non-target sequences, and other empirical parameters used in the laboratory. Several probe background options,Unique probe within a group,Unique probe in a specific Unigene set,Unique probe based on the pangenomic level, and Unique Probe in the user-defined genome/transcriptome, are available to meet the scenarios that the experiments will be conducted. Parameters, such as salt concentration and the lower-bound Tm of probes, are available for users to optimize their probe design query. Output files are available for download on the result page. Probes designed by the UPS algorithm are suitable for generating microarrays, and the performance of UPS-designed probes has been validated by experiments. The UPS 2.0 evaluates probe-to-target hybridization under a user-defined condition to ensure high-performance hybridization with minimal chance of non-specific binding at the pangenomic and genomic levels. The UPS algorithm mimics the target/non-target mixture in an experiment and is very useful in developing diagnostic kits and microarrays. The UPS 2.0 website has had more than 1,300 visits and 360,000 sequences performed the probe designing task in the last 30 months. It is freely accessible at http

  1. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Science.gov (United States)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  2. Development of nanowire arrays for neural probe

    Science.gov (United States)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.

    2005-05-01

    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  3. An image registration based ultrasound probe calibration

    Science.gov (United States)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  4. Probing the Big Bang with LEP

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.

  5. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  6. Atom Probe Tomography Studies of RF Materials

    CERN Document Server

    Norem, Jim; Sebastian, Jason; Seidman, David N

    2005-01-01

    We are constructing a facility which combines an atom probe field ion microscope with a multi-element, in-situ deposition and surface modification capability. This system is dedicated to rf studies and the initial goal will be to understand the properties of evaporative coatings: field emission, bonding interdiffusion etc, to suppress breakdown and dark currents in normal cavities. We also hope to use this system to look more generally at interactions of surface structure and high rf fields. We will present preliminary data on structures relevant to normal and superconducting rf systems.

  7. Probing optically silent superfluid stripes in cuprates

    Science.gov (United States)

    Rajasekaran, S.; Okamoto, J.; Mathey, L.; Fechner, M.; Thampy, V.; Gu, G. D.; Cavalleri, A.

    2018-02-01

    In many theoretical models of high-temperature superconductors, remnants of superconductivity persist to temperatures higher than the transition temperature, TC. Rajasekaran et al. used nonlinear terahertz spectroscopy to probe this region of the phase diagram of a cuprate superconductor that is well known for a stripe phase that appears for certain doping levels (see the Perspective by Ergeçen and Gedik). For a sample deep in the stripe phase, a large nonlinear signal persisted from the superconducting region up to temperatures much higher than TC. The findings suggest the formation of a peculiar spatially modulated superconducting state called the pair-density wave.

  8. Electronic control system for irradiation probes

    International Nuclear Information System (INIS)

    Gluza, E.; Neumann, J.; Zahalka, F.

    1980-01-01

    The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)

  9. Probing the Big Bang with LEP

    Science.gov (United States)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  10. Probing eukaryotic cell mechanics via mesoscopic simulations

    Science.gov (United States)

    Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck

    2017-11-01

    We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.

  11. Hardware for digitally controlled scanned probe microscopes

    OpenAIRE

    Clark, S. M.; Baselt, D. R.; Spence, C. F.; Youngquist, M. G.; Baldeschwieler, J. D.

    1992-01-01

    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the mi...

  12. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    . Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  13. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  14. Site-Specific Infrared Probes of Proteins

    Science.gov (United States)

    Ma, Jianqiang; Pazos, Ileana M.; Zhang, Wenkai; Culik, Robert M.; Gai, Feng

    2015-04-01

    Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.

  15. Site-Specific Infrared Probes of Proteins

    Science.gov (United States)

    Ma, Jianqiang; Pazos, Ileana M.; Zhang, Wenkai; Culik, Robert M.; Gai, Feng

    2015-01-01

    Infrared spectroscopy has played an instrumental role in studying a wide variety of biological questions. However, in many cases it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and/or environmental information in a site-specific manner. To overcome this limitation, many recent efforts have been dedicated to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural and/or environmental properties. In this Review, we highlight some recent advancements of this rapidly growing research area. PMID:25580624

  16. Probing the Big Bang with LEP

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs

  17. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  18. Probing cell internalisation mechanics with polymer capsules.

    Science.gov (United States)

    Chen, Xi; Cui, Jiwei; Ping, Yuan; Suma, Tomoya; Cavalieri, Francesca; Besford, Quinn A; Chen, George; Braunger, Julia A; Caruso, Frank

    2016-10-06

    We report polymer capsule-based probes for quantifying the pressure exerted by cells during capsule internalisation (P in ). Poly(methacrylic acid) (PMA) capsules with tuneable mechanical properties were fabricated through layer-by-layer assembly. The P in was quantified by correlating the cell-induced deformation with the ex situ osmotically induced deformation of the polymer capsules. Ultimately, we found that human monocyte-derived macrophage THP-1 cells exerted up to approximately 360 kPa on the capsules during internalisation.

  19. Electronic probe microanalyzer. Annual report 1963

    International Nuclear Information System (INIS)

    Kirianenko, Alexis; Maurice, Francoise; Seguin, Remy; Zemskoff, Anne; Adda, Yves

    1964-09-01

    This annual report presents the highlights of the fifth year of operation of the CEA Saclay's electronic probe microanalyzer. It provides a list of the analyses performed during the year with some illustrations and mentions the improvements given to the apparatus and its new analysing possibilities (crystallographic analysis using divergent X beams, 'electronic' image formation with respect to the atomic number). Highlights in the development of this analytical technique are presented as well as a new device designed by R. Castaing: the secondary ion emission microanalyser. A list of all laboratories equipped with the French microanalyser is provided

  20. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......, it was deduced that they were not deposited but instead grew within the deposit. The presence of unburned char particles within the deposits supports the concept that a reducing environment existed in the deposits. Two processes are proposed for explaining the existence of pyrrhotite crystals within a deposit...

  1. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    Science.gov (United States)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the

  2. Policies for Probe-Wear Leveling in MEMS-Based Storage Devices

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2009-01-01

    Probes (or read/write heads) in MEMS-based storage devices are susceptible to wear. We study probe wear, and analyze the causes of probe uneven wear. We show that under real-world traces some probes can wear one order of magnitude faster than other probes leading to premature expiry of some probes.

  3. Note: Additionally refined new possibilities of plasma probe diagnostics

    Science.gov (United States)

    Riaby, V. A.; Savinov, V. P.; Masherov, P. E.; Yakunin, V. G.

    2018-03-01

    In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient CBCyl ≈ 1.13; and (ii) in a general experiment, with known CBCyl, the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of CBCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to CBCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.

  4. A quirky probe of neutral naturalness

    Science.gov (United States)

    Chacko, Zackaria; Curtin, David; Verhaaren, Christopher B.

    2016-07-01

    We consider the signals arising from top partner pair production at the LHC as a probe of theories of neutral naturalness. We focus on scenarios in which top partners carry electroweak charges, such as folded supersymmetry or the quirky little Higgs. In this class of theories the top partners are pair produced as quirky bound states, since they are charged under a mirror color group whose lightest states are hidden glueballs. The quirks promptly de-excite and annihilate into glueballs, which decay back to Standard Model fermions via Higgs mixing. This can give rise to spectacular signatures at the LHC, such displaced decays, or high-multiplicity prompt production of many hard b ¯b or τ+τ- pairs. We show that signals arising from top partner pair production constitute the primary discovery channel for this class of theories in most regions of parameter space, and might provide the only experimental probe of scenarios with sub-cm glueball decay lengths. The measurement of top partner masses and couplings, which could be used to test the neutral naturalness mechanism directly, is also a tantalizing possibility.

  5. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  6. Invited Review Article: Pump-probe microscopy

    International Nuclear Information System (INIS)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  7. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  8. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  9. Scanning Probe Microscope-Based Fluid Dispensing

    Directory of Open Access Journals (Sweden)

    Murali Krishna Ghatkesar

    2014-10-01

    Full Text Available Advances in micro and nano fabrication technologies have enabled fabrication of smaller and more sensitive devices for applications not only in solid-state physics but also in medicine and biology. The demand for devices that can precisely transport material, specifically fluids are continuously increasing. Therefore, integration of various technologies with numerous functionalities in one single device is important. Scanning probe microscope (SPM is one such device that has evolved from atomic force microscope for imaging to a variety of microscopes by integrating different physical and chemical mechanisms. In this article, we review a particular class of SPM devices that are suited for fluid dispensing. We review their fabrication methods, fluid-pumping mechanisms, real-time monitoring of dispensing, physics of dispensing, and droplet characterization. Some of the examples where these probes have already been applied are also described. Finally, we conclude with an outlook and future scope for these devices where femtolitre or smaller volumes of liquid handling are needed.

  10. Mining information from atom probe data.

    Science.gov (United States)

    Cairney, Julie M; Rajan, Krishna; Haley, Daniel; Gault, Baptiste; Bagot, Paul A J; Choi, Pyuck-Pa; Felfer, Peter J; Ringer, Simon P; Marceau, Ross K W; Moody, Michael P

    2015-12-01

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial-chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or "mine" fundamental materials science information from that data. Copyright © 2015. Published by Elsevier B.V.

  11. Tests of Hadronic Probes of GT Strength

    CERN Multimedia

    2002-01-01

    There are many important problems where one wishes to know the distribution of Gamow-Teller (GT) strength in circumstances where it cannot be measured directly (for example, because of energy-release limitations). Then one must rely on hadronic probes to infer the GT strength. It is therefore essential to test these probes as extensively as possible. The isospin-analog transitions in $^{37}$Ca $\\beta^{+}$ -decay and $^{37}$Cl$(p, n)$ provide an excellent ground for such a test. Recent $^{37}$Cl$ (p, n) $ studies, while qualitatively in agreement with our previous ISOLDE work on $^{37}$Ca $\\beta^{+} $ -decay, show quantitative discrepancies that appear to grow as the excitation energy in the residual nuclei increases. Because of the bulk of the GT strengh appears at these high excitation energies, it is important to extend the $\\beta$-decay data to even higher excitation energies where, because of rapidly diminishing phase-space, strong GT transitions correspond to very weak $\\beta$ -branches. We propose to do...

  12. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  13. Full tip imaging in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Du, Sichao [School of Physics, The University of Sydney, NSW 2006 (Australia); Burgess, Timothy [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Tjing Loi, Shyeh [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Gault, Baptiste [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Department of Materials Science and Engineering, McMaster University, 1280 Main St W, Hamilton, ON, Canada L8S 4L8 (Canada); Gao, Qiang [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Bao, Peite; Li, Li [School of Physics, The University of Sydney, NSW 2006 (Australia); Cui, Xiangyuan; Kong Yeoh, Wai [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Hoe Tan, Hark; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Zheng, Rongkun, E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-01-15

    Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected. Therefore, the capacity to analyze the full tip is crucial and much desired in cases that the shell of the specimen is also the region of interest. In this paper, we demonstrate that, in the analysis of III-V nanowires epitaxially grown from a substrate, the presence of the flat substrate positioned only micrometers away from the analyzed tip apex alters the field distribution and ion trajectories, which provides extra image compression that allows for the analysis of the entire specimen. An array of experimental results, including field desorption maps, elemental distributions, and crystallographic features clearly demonstrate the fact that the whole tip has been imaged, which is confirmed by electrostatic simulations. -- Highlights: Black-Right-Pointing-Pointer The full tip has been imaged by atom probe tomography. Black-Right-Pointing-Pointer The conductive substrate close to specimen tip introduces extra image compression. Black-Right-Pointing-Pointer The apex of the tip is far from a hemispherical shape. Black-Right-Pointing-Pointer This work demonstrates a way to increase the FOV of APT.

  14. Neutron moisture probes : the minimum error attainable

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1987-04-01

    The effect of the soil parameters dry density, mass absorption and mass scattering coefficients on the neutron flux at the detector of a neutron moisture probe has been described previously by a set of polynomial equations. The partial derivatives of these equations have been used to determine the deviation introduced into water density calculation by a one per cent inaccuracy in each of the parameters. Accuracy of measurement of the soil parameters is discussed and applied to a typical soil at various water densities. The accuracy to which soil parameters can be measured is examined and found to be approximately ± 2% for the dry soil density, ± 1% for the mass absorption coefficient and ± 2% for the mass scattering coefficient. Using these data, together with a statistical accuracy of ± 1% in the probe count rate, the minimum error achievable for the water density varies between ± 3.5% at a water density of 0.06 g cm -3 and ± 1.55% at a water density of 0.41 g cm -3

  15. Novel Probes of Gravity and Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  16. Mapping interfacial excess in atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter, E-mail: peter.felfer@sydney.edu.au [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Scherrer, Barbara [Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia); Eidgenossische Technische Hochschule Zürich (Switzerland); Demeulemeester, Jelle [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Vandervorst, Wilfried [Imec vzw, Kapeldreef 75, Heverlee 3001 (Belgium); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Cairney, Julie M. [School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney (Australia)

    2015-12-15

    Using modern wide-angle atom probes, it is possible to acquire atomic scale 3D data containing 1000 s of nm{sup 2} of interfaces. It is therefore possible to probe the distribution of segregated species across these interfaces. Here, we present techniques that allow the production of models for interfacial excess (IE) mapping and discuss the underlying considerations and sampling statistics. We also show, how the same principles can be used to achieve thickness mapping of thin films. We demonstrate the effectiveness on example applications, including the analysis of segregation to a phase boundary in stainless steel, segregation to a metal–ceramic interface and the assessment of thickness variations of the gate oxide in a fin-FET. - Highlights: • Using computational geometry, interfacial excess can be mapped for various features in APT. • Suitable analysis models can be created by combining manual modelling and mesh generation algorithms. • Thin film thickness can be mapped with high accuracy using this technique.

  17. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  18. Short-time solvation dynamics probed by phase-locked heterodyne detected pump-probe

    NARCIS (Netherlands)

    de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.

    1995-01-01

    Phase-locked heterodyne detected pump-probe experiments are reported on solutions of a dye molecule in ethylene glycol, methanol and acetonitrile. By performing experiments at different phase-lock wavelengths, the real and imaginary parts of the line broadening function g(t) could be mapped out. The

  19. A modified Katsumata probe - ion sensitive probe for measurement in non-magnetized plasmas

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Hubička, Zdeněk; Adámek, Petr; Olejníček, Jiří; Kment, Štěpán; Adámek, Jiří; Stöckel, Jan

    2015-01-01

    Roč. 86, č. 7 (2015), "073510-1"-"073510-7" ISSN 0034-6748 R&D Projects: GA MŠk LH12043 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : Katsumata probe * non-magnetized plasma * magnetron * ion temperature * non-magnetized plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.336, year: 2015

  20. Electron and hole transport in poly(fluorene-benzothiadiazole)

    NARCIS (Netherlands)

    Zhang, Yuan; Blom, Paul W. M.

    2011-01-01

    We investigate the electron and hole transport in poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT). An Ohmic hole contact on F8BT is achieved by using the high work function anode MoO(3) as hole injection contact, enabling the occurrence of space-charge limited

  1. Syntheses of fluorene/carbazole-thienothiadiazole copolymers for organic photovoltaics

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Kmínek, Ivan; Pavlačková, Petra; Cimrová, Věra

    2011-01-01

    Roč. 33, č. 17 (2011), s. 111-118 ISSN 1938-5862. [ECS Meeting /218./. Las Vegas, 10.10.2010-15.10.2010] R&D Projects: GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-band gap conjugated polymers * Cadogan ring closure * electron-rich and electron-deficient monomers Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Probing Access Resistance of Solid-state Nanopores with a Scanning Probe Microscope Tip.

    Science.gov (United States)

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a Scanning Probe Microscope has been developed. When a micrometer-scale scanning probe tip is near a voltage biased nanometer-scale pore (10-100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, we estimate the relative pore resistance increase due to the tip, ΔR/R(0), as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R(0) also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ~10 nm, our experiments show that ΔR/R(0) depends on salt concentration as predicted by the Poisson and Nernst-Planck equations. Furthermore, our measurements show that ΔR/R(0) goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally, they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  3. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.

    Science.gov (United States)

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, the relative pore resistance increases due to the tip and ΔR/R0 is estimated as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R0 also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ≈10 nm, experiments show that ΔR/R0 depends on salt concentration as predicted by the Poisson and Nernst–Planck equations. Furthermore, the measurements show that ΔR/R0 goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally; they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Versatile robotic probe calibration for position tracking in ultrasound imaging

    Science.gov (United States)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  5. Mach Probe Measurements in a Large-Scale Helicon Plasma

    Science.gov (United States)

    Hatch, M. W.; Kelly, R. F.; Fisher, D. M.; Gilmore, M.; Dwyer, R. H.

    2017-10-01

    A new six-tipped Mach probe, that utilizes a fused-quartz insulator, has been developed and initially tested in the HelCat dual-source plasma device at the University of New Mexico. The new design allows for relatively long duration measurements of parallel and perpendicular flows that suffer less from thermal changes in conductivity and surface build-up seen in previous alumina-insulated designs. Mach probe measurement will be presented in comparison with ongoing laser induced fluorescence (LIF) measurements, previous Mach probe measurements, ExB flow estimates derived from Langmuir probes, and fast-frame CCD camera images, in an effort to better understand previous anomalous ion flow in HelCat. Additionally, Mach probe-LIF comparisons will provide an experimentally obtained Mach probe calibration constant, K, to validate sheath-derived estimates for the weakly magnetized case. Supported by U.S. National Science Foundation Award 1500423.

  6. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  7. Use of a fiber optic probe for organic species determination

    Science.gov (United States)

    Ekechukwu, A.A.

    1996-12-10

    A fiber optic probe is described for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe`s distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device. 5 figs.

  8. Scanning diamond NV center probes compatible with conventional AFM technology

    Science.gov (United States)

    Zhou, Tony X.; Stöhr, Rainer J.; Yacoby, Amir

    2017-10-01

    Scanning probe microscopy using nitrogen vacancy (NV) centers in diamond has become a versatile tool with applications in physics, chemistry, life sciences, and earth and planetary sciences. However, the fabrication of diamond scanning probes with high photon collection efficiency, NV centers with long coherence times, and integrated radio frequency (RF) remains challenging due to the small physical dimensions of the probes and the complexity of the fabrication techniques. In this work, we present a simple and robust method to reliably fabricate probes that can be integrated with conventional quartz tuning fork based sensors as well as commercial silicon AFM cantilevers. An integrated RF micro-antenna for NV center spin manipulation is directly fabricated onto the probe making the design versatile and compatible with virtually all AFM instruments. This integration marks a complete sensor package for NV center-based magnetometry and opens up this scanning probe technique to the broader scientific community.

  9. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  10. Can quantum probes satisfy the weak equivalence principle?

    Energy Technology Data Exchange (ETDEWEB)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); Paris, Matteo G.A. [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); INFN, Sezione di Milano, I-20133 Milano (Italy)

    2017-05-15

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’s mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.

  11. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  12. Modular probes for enriching and detecting complex nucleic acid sequences

    Science.gov (United States)

    Wang, Juexiao Sherry; Yan, Yan Helen; Zhang, David Yu

    2017-12-01

    Complex DNA sequences are difficult to detect and profile, but are important contributors to human health and disease. Existing hybridization probes lack the capability to selectively bind and enrich hypervariable, long or repetitive sequences. Here, we present a generalized strategy for constructing modular hybridization probes (M-Probes) that overcomes these challenges. We demonstrate that M-Probes can tolerate sequence variations of up to 7 nt at prescribed positions while maintaining single nucleotide sensitivity at other positions. M-Probes are also shown to be capable of sequence-selectively binding a continuous DNA sequence of more than 500 nt. Furthermore, we show that M-Probes can detect genes with triplet repeats exceeding a programmed threshold. As a demonstration of this technology, we have developed a hybrid capture method to determine the exact triplet repeat expansion number in the Huntington's gene of genomic DNA using quantitative PCR.

  13. Development and field practical performance of smart array probe

    International Nuclear Information System (INIS)

    Maeda, Kotaro; Shimone, Junri; Akagawa, Junichi; Nagata, Yasuyuki; Harada, Yutaka; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    In 1999, NEL developed the transmit-receive type ECT array probe for steam generator (SG) tubing, called 'X-probe', in cooperation with foreign firms. Recently NEL has developed the advanced ECT array probe, 'Smart Array Probe', characterized with a significantly improved resolution for circumferential cracks. The doubled channels in the circumferential mode have greatly improved the circumferential resolution of Smart Array Probe. With all the circumferential mode channels on the same circle, there is no need for axial position correction of inspection data. This report describes both the field practical performance and the compliance assessment to a Japanese SG-ECT guideline 'JEAG4208' of Smart Array ECT System, composed of Smart Array Probe, pusher-in-tester 'OMNI-200', and NEL's ECT Analysis System. (author)

  14. Micromachined hot-wire thermal conductivity probe for biomedical applications.

    Science.gov (United States)

    Yi, Ming; Panchawagh, Hrishikesh V; Podhajsky, Ronald J; Mahajan, Roop L

    2009-10-01

    This paper presents the design, fabrication, numerical simulation, and experimental validation of a micromachined probe that measures thermal conductivity of biological tissues. The probe consists of a pair of resistive line heating elements and resistance temperature detector sensors, which were fabricated by using planar photolithography on a glass substrate. The numerical analysis revealed that the thermal conductivity and diffusivity can be determined by the temperature response induced by the uniform heat flux in the heating elements. After calibrating the probe using a material (agar gel) of known thermal conductivity, the probe was deployed to calculate the thermal conductivity of Crisco. The measured value is in agreement with that determined by the macro-hot-wire probe method to within 3%. Finally, the micro thermal probe was used to investigate the change of thermal conductivity of pig liver before and after RF ablation treatment. The results show an increase in thermal conductivity of liver after the RF ablation.

  15. Modular design of AFM probe with sputtered silicon tip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, Jacob; Bouwstra, Siebe

    2001-01-01

    We present an atomic force microscopy (AFM) probe with integrated piezoresistive read-out. The probe consists of a micromachined cantilever with a tip at the end. The cantilever is a multilayer structure with its thickness defined by etch-stop and the bending controlled by fitting the thicknesses...... with polysilicon resistors for demonstrating the fabrication principle. The probes have been characterised with respect to noise and deflection sensitivity and have been applied in AFM imaging....

  16. Study on low frequency probe characterization for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Pauzi Ismail

    2002-01-01

    Ultrasonic testing has been widely used in metal and non-metal material. For non-metal material such as concrete, a probe emitting low frequency ultrasonic wave is applied. This paper describes the comparison between three custom made probes using same design and piezoelectric crystal. The only difference is the backing material, which comprise of three different materials. Characterization of each transducer is compared in order to understand the effects of backing material in the probe. (Author)

  17. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  18. Calibration of NS value of magnetic probe on EAST

    International Nuclear Information System (INIS)

    Sun Jiuyu; Shen Biao; Liu Guangjun; Sun Youwen; Qian Jinping; Li Shi; Xiao Bingjia; Chen Dalong; Shi Tonghui

    2014-01-01

    Based on the basic principle of measuring magnetic field by magnetic probe, a solenoid calibration system is constructed by a long solenoid, alternating current power, standard probe and data acquisition system in order to get the accurate magnetic field data. The NS value of magnetic probe on EAST is calibrated accurately by the solenoid calibration system and the data of the calibration is analysed. The obtained results are what we expected and provide the prerequisite for accurate magnetic field measurement in tokamak. (authors)

  19. Intra- and inter-examiner reproducibility of manual probing depth

    OpenAIRE

    Andrade,Roberto; Espinoza,Manuel; Gómez,Elena Maria; Rolando Espinoza,José; Cruz,Elizabeth

    2012-01-01

    The periodontal probe remains the best clinical diagnostic tool for the collection of information regarding the health status and the attachment level of periodontal tissues. The aim of this study was to evaluate intra- and inter-examiner reproducibility of probing depth (PD) measurements made with a manual probe. With the approval of an Ethics Committee, 20 individuals without periodontal disease were selected if they presented at least 6 teeth per quadrant. Using a Williams periodontal prob...

  20. Probing and Manipulating Ultracold Fermi Superfluids

    Science.gov (United States)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  1. Alternative mapping of probes to genes for Affymetrix chips

    DEFF Research Database (Denmark)

    Gautier, Laurent; Møller, M.; Friis-Hansen, L.

    2004-01-01

    transcripts: the NCBI RefSeq database. We also built mappings and used them in place of the original probe to genes associations provided by the manufacturer of the arrays. Results: In a large number of cases, 36%, the probes matching a reference sequence were consistent with the grouping of probes...... by the manufacturer of the chips. For the remaining cases there were discrepancies and we show how that can affect the analysis of data. Conclusions: While the probes on Affymetrix arrays remain the same for several years, the biological knowledge concerning the genomic sequences evolves rapidly. Using up...

  2. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric-emission......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  3. Probe selection and expression index computation of Affymetrix Exon Arrays.

    Directory of Open Access Journals (Sweden)

    Yi Xing

    2006-12-01

    Full Text Available There is great current interest in developing microarray platforms for measuring mRNA abundance at both gene level and exon level. The Affymetrix Exon Array is a new high-density gene expression microarray platform, with over six million probes targeting all annotated and predicted exons in a genome. An important question for the analysis of exon array data is how to compute overall gene expression indexes. Because of the complexity of the design of exon array probes, this problem is different in nature from summarizing gene-level expression from traditional 3' expression arrays.In this manuscript, we use exon array data from 11 human tissues to study methods for computing gene-level expression. We showed that for most genes there is a subset of exon array probes having highly correlated intensities across multiple samples. We suggest that these probes could be used as reliable indicators of overall gene expression levels. We developed a probe selection algorithm to select such a subset of highly correlated probes for each gene, and computed gene expression indexes using the selected probes.Our results demonstrate that probe selection improves gene expression estimates from exon arrays. The selected probes can be used in future analyses of other exon array datasets to compute gene expression indexes.

  4. Biocompatibility of a quad-shank neural probe

    Science.gov (United States)

    Tyson, Joel; Tran, Minhquan; Slaughter, Gymama

    2017-10-01

    Multichannel, flexible neural probes have been fabricated using standard CMOS techniques. The neural probe consists of four shanks with 16 recording sites each of approximately 290 μm2. The recording sites are created using gold rectangular pyramidal electrodes sandwiched between two polyimide dielectric layers. Windows in the first polyimide layer expose the electrode sites and bonding pads. The bonding pads and interconnect wires at the topmost section of the probe are soldered to tungsten wire followed by encapsulation with epoxy to protect the interconnections from contact with phosphate buffered saline solution. The electrode test impedance values at 1 kHz are on average 135 kΩ. Multi-walled carbon nanotubes (MWCNTs) were deposited on electrode sites resulting in a reduction of impedance at 1 kHz to 6.89 kΩ on average. Moreover, the cell viability and proliferation of the PC12 cells on the surface of the probe was investigated by trypan blue exclusion assay to evaluate biocompatibility of the probe material. The PC12 cells attached and grew on the surfaces of the probe with no significant effect on the cells' morphology and viability. The polyimide probe displayed a good cell viability and proliferation, making the polyimide attractive for potential candidate as probe materials in the fabrication of neural probes.

  5. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  6. Designs of Langmuir probes for W7-X

    International Nuclear Information System (INIS)

    Laube, Ralph; Laux, Michael; Ye, Min You; Greuner, Henri; Lindig, Stefan

    2011-01-01

    Several designs of Langmuir probes for the stellarator Wendelstein 7-X (W7-X) are described. Different types of probes are proposed for the different divertors to be used during different operational phases of W7-X. Comb-like arrays of stiff probes, arrays of flexible probes, and fixed inlay probes are reviewed. For the initial phase of W7-X it was decided to install arrays of fixed inlay probes. Two mockups were manufactured and one of them was tested with success in the high heat flux test facility GLADIS. For long-pulse operation of W7-X different conceptual designs are proposed and are still developed further. This paper summarizes the different design constrains for the Langmuir probes in the different divertor surroundings, describes the design of the array of inlay probes for the initial phase and the result of the GLADIS test, and gives a preview of the conceptual designs of probes for the long-pulse operational phase of W7-X.

  7. Designs of Langmuir probes for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Laube, Ralph, E-mail: ralph.laube@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Laux, Michael; Ye, Min You [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Greuner, Henri; Lindig, Stefan [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)

    2011-10-15

    Several designs of Langmuir probes for the stellarator Wendelstein 7-X (W7-X) are described. Different types of probes are proposed for the different divertors to be used during different operational phases of W7-X. Comb-like arrays of stiff probes, arrays of flexible probes, and fixed inlay probes are reviewed. For the initial phase of W7-X it was decided to install arrays of fixed inlay probes. Two mockups were manufactured and one of them was tested with success in the high heat flux test facility GLADIS. For long-pulse operation of W7-X different conceptual designs are proposed and are still developed further. This paper summarizes the different design constrains for the Langmuir probes in the different divertor surroundings, describes the design of the array of inlay probes for the initial phase and the result of the GLADIS test, and gives a preview of the conceptual designs of probes for the long-pulse operational phase of W7-X.

  8. Nanostructuring carbon fibre probes for use in central venous catheters.

    Science.gov (United States)

    Li, Meixian; Phair, Jolene; Cardosi, Marco F; Davis, James

    2014-02-17

    A carbon fibre probe is described which utilises the oxidation of an endogenous biomarker to provide diagnostic information on the condition of intravascular access lines. The probe surface was modified through anodic oxidation to provide a high selectivity towards urate which was used as a redox probe through which the pH could be determined. A Nernstian response (-60 mV/pH) was obtained which was free from the interference of other redox species common to biofluids. The electroanalytical performance of the probe has been optimised and the applicability of the approach demonstrated through testing the responses in whole blood. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The photostability of the commonly used biotin-4-fluorescein probe.

    Science.gov (United States)

    Haack, Richard A; Swift, Kerry M; Ruan, Qiaoqiao; Himmelsbach, Richard J; Tetin, Sergey Y

    2017-08-15

    Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A miniature forward-imaging optical coherence tomography (OCT) probe

    Science.gov (United States)

    Joos, Karen M.; Shen, Jin-Hui

    2012-03-01

    Optical coherence tomography (OCT) has had a tremendous global health impact upon the current ability to diagnose, treat, and monitor multiple eye diseases. We propose that a miniature forward-imaging OCT probe can be developed for real-time ocular imaging. A miniature 25-gauge forward-imaging probe was designed and developed to use with an 850 nm spectral-domain optical coherence tomography (SDOCT) system (Bioptigen, Inc. Durham, NC). Imaging parameters were determined. Ocular tissues were examined with the miniature OCT probe. A miniature SDOCT probe was developed with the scanning driver within the hand piece. The SDOCT fiber-scanning probe maximally transmitted power of 800 μW. The scanning range was 3 mm when the probe tip was held 3 to 5 mm from the tissue surface. The axial resolution was 6 μm and the lateral resolution was 30-35 μm. The 25-gauge forward-imaging probe was used to image cellophane tape, eyelid skin, cornea, conjunctiva, sclera, iris, anterior lens, anterior chamber angle, retina, retinal tear, retinal detachment, optic nerve head, and optic nerve sheath. Images obtained from the miniature probe appeared similar to images from a 3 mm scanning range of a commercial large handheld OCT probe (Bioptigen, Inc. Durham, NC).

  11. EvoOligo: oligonucleotide probe design with multiobjective evolutionary algorithms.

    Science.gov (United States)

    Shin, Soo-Yong; Lee, In-Hee; Cho, Young-Min; Yang, Kyung-Ae; Zhang, Byoung-Tak

    2009-12-01

    Probe design is one of the most important tasks in successful deoxyribonucleic acid microarray experiments. We propose a multiobjective evolutionary optimization method for oligonucleotide probe design based on the multiobjective nature of the probe design problem. The proposed multiobjective evolutionary approach has several distinguished features, compared with previous methods. First, the evolutionary approach can find better probe sets than existing simple filtering methods with fixed threshold values. Second, the multiobjective approach can easily incorporate the user's custom criteria or change the existing criteria. Third, our approach tries to optimize the combination of probes for the given set of genes, in contrast to other tools that independently search each gene for qualifying probes. Lastly, the multiobjective optimization method provides various sets of probe combinations, among which the user can choose, depending on the target application. The proposed method is implemented as a platform called EvoOligo and is available for service on the web. We test the performance of EvoOligo by designing probe sets for 19 types of Human Papillomavirus and 52 genes in the Arabidopsis Calmodulin multigene family. The design results from EvoOligo are proven to be superior to those from well-known existing probe design tools, such as OligoArray and OligoWiz.

  12. Imaging optical probe for pressurized steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.

    1979-01-01

    An air-cooled imaging optical probe, with an outside diameter of 25.4 mm, has been developed to provide high resolution viewing of flow regimes in a steam-water environment at 343 0 C and 15.2 MPa. The design study considered a 3-m length probe. A 0.3-m length probe prototype was fabricated and tested. The optical probe consists of a 3.5-mm diameter optics train surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optics train will exceed 93 0 C when a 3-m length probe is immersed in a 343 0 C environment. Computer stress analysis plus actual tests show that the probe can operate successfully with conservative safety factors. The imaging optical probe was tested five times in the design environment at the semiscale facility at the INEL. Two-phase flow regimes in the high temperature, high pressure, steam-water blowdown and reflood experiments were recorded on video tape for the first time with the imaging optical probe

  13. Probing QCD and new physics with dijets

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Dijets are the most abundant final state in hadron collisions. During the last 30 years dijets have been used to probe QCD and also search for new phenomena beyond the Standard Model. Recent results from Tevatron and LHC are discussed that reveal the full physics potential of dijets. Precise measurements of cross sections and angular observables, made possible thanks to the excellent understanding of the jet objects, confront the perturbative QCD predictions at the multi-TeV regime and constrain the PDFs. At the same time, the dijet invariant mass spectrum is used as a means of searching for resonances and for contact interactions between the quarks. Following the success of the LHC Run I physics program, dijets will once again play a central role in the quest for exciting discoveries at Run II, and we are prepared to exploit this powerful final state.

  14. Probing the Planck Scale with Proton Decay

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Thormeier, Marc

    2004-04-28

    We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. We present a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)_X family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle. Many of the models naturally lead to nucleon decay near present limits without any reference to grand unification.

  15. The CASTER Black Hole Finder Probe

    International Nuclear Information System (INIS)

    McConnell, M. L.; Bloser, P. F.; Macri, J. R.; Ryan, J. M.; Case, G. L.; Stacy, J. G.; Cherry, M. L.; Guzik, T. G.; Schaefer, B.; Wefel, J. P.; Cravens, J.; Hurley, K.; Kippen, R. M.; Vestrand, W. T.; Miller, R. S.; Paciesas, W.

    2006-01-01

    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10-600 keV energy band. The development of new inorganic scintillator materials provides improved performance that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology

  16. Shape Descriptors for Scanning Probe Recognition Microscopy

    Science.gov (United States)

    Chen, Qian; Ayres, Virginia; Udpa, Lalita

    2003-03-01

    Direct investigation of, and interaction with, biological objects at the macromolecular level will provide insight into multiple physical regulatory processes. Scanning probe microscopy (SPM) techniques have the potential to provide a direct interaction with living specimens at the macromolecular scale. A key enabling capability is to replace the current x-y raster scan with site-specific direct investigation. In the present research we will discuss the site-specific recognition techniques that are appropriate for tubular and globular biological features. The SPM image will be input to an image segmentation and boundary detection algorithm to extract closed boundaries of features in the image. The boundary information will be parameterized using Fourier descriptors, which are rotation invariant descriptors to be used for recognizing the segmented shape.

  17. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  18. Scanning probe microscope dimensional metrology at NIST

    International Nuclear Information System (INIS)

    Kramar, John A; Dixson, Ronald; Orji, Ndubuisi G

    2011-01-01

    Scanning probe microscope (SPM) dimensional metrology efforts at the US National Institute of Standards and Technology (NIST) are reviewed in this paper. The main SPM instruments for realizing the International System of Units (SI) are the Molecular Measuring Machine, the calibrated atomic force microscope and the critical dimension atomic force microscope. These are optimized for long-distance measurements, three-dimensional measurements over conventional SPM distances and critical dimension or linewidth measurements, respectively. 10 mm distances have been measured with the relative standard uncertainty, u c , of 1.5 × 10 −5 ; step heights at the 100 nm scale have been measured with the relative u c of 2.5 × 10 −3 and sub-micrometer linewidths have been measured with u c = 0.8 nm

  19. CHAMP (Camera, Handlens, and Microscope Probe)

    Science.gov (United States)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  20. CHAMP - Camera, Handlens, and Microscope Probe

    Science.gov (United States)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  1. Nucleon form factors. Probing the chiral limit

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2006-10-01

    The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)

  2. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  3. Interferometric probes of many-body localization.

    Science.gov (United States)

    Serbyn, M; Knap, M; Gopalakrishnan, S; Papić, Z; Yao, N Y; Laumann, C R; Abanin, D A; Lukin, M D; Demler, E A

    2014-10-03

    We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.

  4. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  5. NASA's Radiation Belt Storm Probe Mission

    Science.gov (United States)

    Sibeck, David G.

    2011-01-01

    NASA's Radiation Belt Storm Probe (RBSP) mission, comprising two identically-instrumented spacecraft, is scheduled for launch in May 2012. In addition to identifying and quantifying the processes responsible for energizing, transporting, and removing energetic particles from the Earth's Van Allen radiation, the mission will determine the characteristics of the ring current and its effect upon the magnetosphere as a whole. The distances separating the two RBSP spacecraft will vary as they move along their 1000 km altitude x 5.8 RE geocentric orbits in order to enable the spacecraft to separate spatial from temporal effects, measure gradients that help identify particle sources, and determine the spatial extent of a wide array of phenomena. This talk explores the scientific objectives of the mission and the manner by which the mission has been tailored to achieve them.

  6. Radiation Belt Storm Probe (RBSP) Mission

    Science.gov (United States)

    Sibeck, D. G.; Fox, N.; Grebowsky, J. M.; Mauk, B. H.

    2009-01-01

    Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV.

  7. Spin probes of chemistry in zeolites

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1997-09-01

    Electron spin resonance (EPR) studies in zeolites are reviewed in which radiolysis was used to ionize the zeolite lattice, create reactive intermediates, spin label reaction products and to provide a window onto chemistry and transport of adsorbates and matrix control of chemistry. The review examines reactions of radical cations and the influence of the geometry constraints inside the zeolite, explores how zeolite model systems can be used to learn about energy and charge transfer in solids and illustrates the use of radiolysis and EPR for in situ spectroscopic studies of solid-acid catalysis. The various spin probes created inside the zeolite pores report on properties of the zeolites as well as shed light on radiolytic processes

  8. Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems.

    Science.gov (United States)

    Ash, Philip A; Vincent, Kylie A

    A more complete understanding of bioelectrochemical interfaces is of increasing importance in both fundamental studies and biotechnological applications of proteins. Bioelectrochemical methods provide detailed information about the activity or rate of a process, but in situ spectroscopic methods are needed to gain direct structural insight into functionally relevant states. A number of methods have been reported that allow electrochemical and spectroscopic data to be collected from the same electrode, providing direct spectroscopic 'snapshots' of protein function, and here we focus on the application of infrared and Raman spectroscopies to the study of electrode-immobilised species. The ability to probe coordination at metal centres, protonation changes in amino acid side chains, reaction-induced changes in organic cofactors or substrates, protein orientation and subtle changes in protein secondary structure simultaneously, rapidly and at room temperature means that vibrational spectroscopic approaches are almost uniquely applicable to answering a wide range of questions in bioelectrochemistry.

  9. Holography, probe branes and isoperimetric inequalities

    Directory of Open Access Journals (Sweden)

    Frank Ferrari

    2015-07-01

    Full Text Available In many instances of holographic correspondences between a d-dimensional boundary theory and a (d+1-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (d−1-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré–Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.

  10. Internal field probing of translating FRCs

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; Milroy, R.D.

    1984-11-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translation velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.40. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Of many translation conditions studied, the condition considered here is translation into a weak guide field resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed. Evidence of island structure is also observed. Fluctuating levels of B/sub THETA/ are observed with amplitudes less than or equal to B 0 /3 and values of flux approx. 4 x the poloidal flux. Values of β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) are implied from the field measurements. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  11. Interstellar Probe: First Step to the Stars

    Science.gov (United States)

    McNutt, R. L., Jr.

    2017-12-01

    The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such

  12. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  13. Errors of first-order probe correction for higher-order probes in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy

    2004-01-01

    An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....

  14. Tip Enhanced Raman Scattering of Strained Silicon with Single and Multiple Probe Scanned Probe Microscopes.

    Science.gov (United States)

    Lewis, Aaron

    2007-03-01

    Raman spectroscopy is an effective tool for the identification and analysis of molecular components of complex materials. The spatial resolution of Raman spectroscopy is limited by the wavelength of the light. One approach to overcome this drawback is Surface Enhanced Raman Scattering (SERS). This technique uses nanometric interactions between metal structures and surfaces to effect enhancement of the Raman signals. An important mechanism for enhancement originates from an electrostatic lightning rod effect due to the excitation of localized surface plasmon resonances. This is accomplished in a scanned probe microscopy context by employing an ultra-sharp metalized tip that is brought into a focused laser spot on the sample surface thereby enhancing the Raman signal. In this technique also known as Tip Enhanced Raman Scattering (TERS) the electrical field is locally enhanced near the sharp metalized tip. Rastering the sample should then allow for Raman imaging with nanometric resolution. Within this context it will be shown that multiple probe scanned probe microscopes have considerable potential in such tip enhanced applications.

  15. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  16. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)

    International Nuclear Information System (INIS)

    Rohwerder, Michael; Turcu, Florin

    2007-01-01

    With the introduction of a Kelvin probe mode to atomic force microscopy, the so called scanning Kelvin probe force microscopy (SKPFM), the Kelvin probe technique finds application in a steadily increasing number of different fields, from corrosion science to microelectronics and biosciences. For many of these applications, high resolution is required as the relevant information lies in the sub-microscopic distribution of work functions or potentials, which explains the increasing interest in SKPFM. However, compared to the standard scanning Kelvin probe (SKP) technique SKPFM is prone to much more artefacts, which are often not taken into account in the interpretation of the results, as is also the case with the real physical nature of the measured data. A critical discussion of possible artefacts and on the interpretation of the data is presented in this paper, with the main focus on application in corrosion science

  17. Design of magnetic probe coils in the EAST tokamak

    International Nuclear Information System (INIS)

    Xi Weibin; Wu Songtao; Shen Biao; Wan Baonan; Song Yuntao

    2008-01-01

    A detailed description of measurement theory, magnetic probes geometry, fabrication, calibration, and frequency response is introduced. The calibration error of the magnetic probe and the frequency response of Mirnov coil are given. The EAST experiments show that magnetic sensors could provide sufficient information for machine operation and plasma control. (authors)

  18. Icy Satellites Impactor Probes for the Jovian Icy Moons Orbiter

    Science.gov (United States)

    Shirley, J. H.; Zimmerman, W. F.; Strauss, W.; Ivlev, R.; Duong, T.; Hunter, D.; Slimko, E.; Nacaise, F.; Archer, E.; Nesmith, B.

    2003-01-01

    We present a preliminary design and mission description for Icy Satellites Impactor Probes (IPS). This design addresses two of the scientific themes of this Icy Galilean Satellites Forum: Surface Chemistry and Geophysics, and Interior Structures. Impactor probes may also make significant contributions in the areas of surface geology and mineralogy.

  19. Nanomechanical properties of polymer brushes by colloidal AFM probes

    NARCIS (Netherlands)

    Kutnyanszky, E.; Vancso, Gyula J.

    2012-01-01

    Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by

  20. Scanning Probe Microscopy at 650 °C in Air

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Nørgaard, Anne-Mette

    2009-01-01

    The controlled atmosphere high temperature scanning probe microscope was designed to study the electrical properties of surfaces at elevated temperatures by using the probe as an electrode. The capability of a simultaneous acquisition of topographical and electrical data for the same surface area...

  1. The US Army HazMin probe model

    International Nuclear Information System (INIS)

    Kuusinen, T.; Dirks, J.; Brothers, A.; Fowler, K.; Skumanich, M.; Scola, R.; Perich, A.; Napolitano, M.

    1993-03-01

    In 1987, the US Department of Defense (DOD) established a goal of reducing the quantity of hazardous waste generated by DOD facilities by 50%. To help achieve this goal, the US Army Production Base Modernization Activity (PBMA) has contracted with the Pacific Northwest Laboratory (PNL) to develop decision support software to be used in the Army-wide hazardous waste minimization (HazMin) program. The resulting waste minimization prioritization software has been named the Project Opportunity and Benefit Evaluation (PROBE) model. PROBE can be used to evaluate both waste stream and project priorities. PROBE operates on any IBM-compatible personal computer hardware with at least 640K of memory and 5 megabytes of available hard disk space. PROBE was developed under the direction of PBMA, which retains unlimited rights to the Federal version of PROBE. PBMA encourages other DOD services and other Federal agencies to use PROBE to assist in their own waste minimization programs. PNL is also considering developing a copyrighted version of PROBE for the commercial market. PROBE was written using FoxPro 2.0 application development software, and runs as an executable file from either MS-DOS or Windows. The software can be loaded onto a single high-capacity floppy disk in a compressed format and can be transferred onto hard disk, ready to operate, via a simple start-up routine

  2. The Cell Probe Complexity of Succinct Data Structures

    DEFF Research Database (Denmark)

    Gal, Anna; Miltersen, Peter Bro

    2003-01-01

    In the cell probe model with word size 1 (the bit probe model), a static data structure problem is given by a map , where is a set of possible data to be stored, is a set of possible queries (for natural problems, we have ) and is the answer to question about data . A solution is given by a repre...

  3. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  4. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  5. Gold nanoparticle-coated biomaterial as SERS micro-probes

    Indian Academy of Sciences (India)

    Abstract. We report for the first time, on the utility of plant-based biomaterial as enhanced-Raman scattering probes. The bio-substrate used in this study are commonly found in plant extracts, and are cost-effective, mecha- nically robust, flexible and easily transportable. The probe was fabricated by coating the plant extract ...

  6. Thermally sensitive dual fluorescent polymeric micelles for probing cell properties

    NARCIS (Netherlands)

    Li Feng, F.; Westphal, A.H.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2011-01-01

    Dual fluorescent micelles with a hydrophobic probe (HMA) embedded in the micelle core and a hydrophilic probe (TRITC) attached on the micelle corona were prepared. These micelles can act as nanometre-sized thermal sensors. Within a short temperature range, the fluorescent emission of the micelles

  7. Respiratory Tularemia:Francisella Tularensisand Microarray Probe Designing.

    Science.gov (United States)

    Ranjbar, Reza; Behzadi, Payam; Mammina, Caterina

    2016-01-01

    Francisella tularensis ( F. tularensis ) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing. The main goal of this original article was to design suitable long oligo microarray probes for detection and identification of F. tularensis . For performing this research, the complete genomes of F. tularensis subsp. tularensis FSC198, F. tularensis subsp. holarctica LVS, F. tularensis subsp. mediasiatica , F. tularensis subsp. novicida ( F. novicida U112), and F. philomiragia subsp. philomiragia ATCC 25017 were studied via NCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processed via AlleleID 7.7 software and Oligoanalyzer tool, respectively. In this in silico investigation, a number of long oligo microarray probes were designed for detecting and identifying F. tularensis . Among these probes, 15 probes were recognized as the best candidates for microarray chip designing. Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.

  8. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence

    DEFF Research Database (Denmark)

    Taskova, Maria; Uhd, Jesper; Miotke, Laura

    2017-01-01

    opportunities in transcriptome analysis, virology, and other fields. Herein, we report for the first time a "click" chemistry approach to oligonucleotide probe elongation as a novel approach to specifically detect a viral sequence. We hybridized a library of short, terminally labeled probes to Ebola virus RNA...

  9. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  10. Capacitance and effective area of flush monopole probes.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Morris, Marvin E.; Basilio, Lorena I.; Lehr, Jane Marie; Higgins, Matthew B.

    2004-08-01

    Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

  11. Soft-landing deposition of radioactive probe atoms on surfaces

    NARCIS (Netherlands)

    Laurens, C.R; Rosu, M.F; Pleiter, F; Niesen, L

    1999-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass-separated using an isotope separa-tor, decelerated to 5 eV, and directly

  12. Extreme Environments Technologies for Probes to Venus and Jupiter

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Peterson, Craig E.; Cutts, James A.; Belz, Andrea P.

    2007-01-01

    This viewgraph presentation reviews the technologies that are used to mitigate extreme environments for probes at Venus and Jupiter. The contents include: 1) Extreme environments at Venus and Jupiter; 2) In-situ missions to Venus and Jupiter (past/present/future); and 3) Approaches to mitigate conditions of extreme environments for probes with systems architectures and technologies.

  13. Probing Magnetic Fields with Square Kilometre Array and its ...

    Indian Academy of Sciences (India)

    of-sight (along the galactic plane). Probing magnetic fields by FD alone will fail to give complete information about these systematic fields. In radio, these fields are probed by synchrotron emission. Despite the limitation due to assumption of ...

  14. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  15. Design and performance of low-wattage electrical heater probe

    International Nuclear Information System (INIS)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-01-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance

  16. Metastable atom probe for measuring electron beam density profiles

    Science.gov (United States)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  17. Materials applications of an advanced 3-dimensional atom probe

    NARCIS (Netherlands)

    Cerezo, A; Gibuoin, D; Sijbrandij, SJ; Venker, FM; Warren, PJ; Wilde, J; Smith, GDW

    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP lends to significant improvements in the efficiency of the

  18. The positioning device of beam probes for accelerator LUE-200

    International Nuclear Information System (INIS)

    Becher, Yu.; Kalmykov, A.V.; Minashkin, M.F.; Sumbaev, A.P.

    2011-01-01

    The description of a device for the positioning of sliding beam probes which is the part of the beam diagnostic system for the LUE-200 electron linac of IREN installation is presented. The device provides remote control of input-output operation of beam probes of five diagnostic stations established in an accelerating tract and in the beam transportation channel of the accelerator

  19. Organizational Probes:Exploring Playful Interactions in Work Environment

    NARCIS (Netherlands)

    Vyas, Dhaval; Eliens, A.P.W.; Eliëns, A.; van de Watering, M.R.; van der Veer, Gerrit C.; Jorge, J

    2008-01-01

    Playfulness, with non-intrusive elements, can be considered a useful resource for enhancing social awareness and community building within work organizations. Taking inspirations from the cultural probes approach, we developed organizational probes as a set of investigation tools that could provide

  20. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  1. Probing Shells Against Buckling: A Nondestructive Technique for Laboratory Testing

    Science.gov (United States)

    Thompson, J. Michael T.; Hutchinson, John W.; Sieber, Jan

    2017-12-01

    This paper addresses testing of compressed structures, such as shells, that exhibit catastrophic buckling and notorious imperfection sensitivity. The central concept is the probing of a loaded structural specimen by a controlled lateral displacement to gain quantitative insight into its buckling behavior and to measure the energy barrier against buckling. This can provide design information about a structure’s stiffness and robustness against buckling in terms of energy and force landscapes. Developments in this area are relatively new but have proceeded rapidly with encouraging progress. Recent experimental tests on uniformly compressed spherical shells, and axially loaded cylinders, show excellent agreement with theoretical solutions. The probing technique could be a valuable experimental procedure for testing prototype structures, but before it can be used a range of potential problems must be examined and solved. The probing response is highly nonlinear and a variety of complications can occur. Here, we make a careful assessment of unexpected limit points and bifurcations, that could accompany probing, causing complications and possibly even collapse of a test specimen. First, a limit point in the probe displacement (associated with a cusp instability and fold) can result in dynamic buckling as probing progresses, as demonstrated in the buckling of a spherical shell under volume control. Second, various types of bifurcations which can occur on the probing path which result in the probing response becoming unstable are also discussed. To overcome these problems, we outline the extra controls over the entire structure that may be needed to stabilize the response.

  2. Higher Cell Probe Lower Bounds for Evaluating Polynomials

    DEFF Research Database (Denmark)

    Larsen, Kasper Green

    2012-01-01

    In this paper, we study the cell probe complexity of evaluating an $n$-degree polynomial $P$ over a finite field $F$ of size at least $n^{1+Omega(1)}$. More specifically, we show that any static data structure for evaluating $P(x)$, where $x in F$, must use $Omega(lg |F|/lg(Sw/nlg|F|))$ cell probes...

  3. In-flight calibration of mesospheric rocket plasma probes.

    Science.gov (United States)

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  4. Gold nanoparticle-coated biomaterial as SERS micro-probes

    Indian Academy of Sciences (India)

    ... and the ability to detect biomolecules are demonstrated herein. We envision these bio-probes as potential candidates for enhanced Raman sensing in chemical, environmental, and archaeological applications. By further engineering the shape, morphology, and surface chemistry of these micro-probes, we foresee their ...

  5. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  6. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  7. Europe's first Moon probe prepares for launch

    Science.gov (United States)

    2003-08-01

    The European Space Agency’s SMART-1 spacecraft was delivered to Kourou, French Guiana, on July 15 and is currently being prepared for launch atop an Ariane 5 during the night from August 28 to 29. The launch window will open at 20:04 local time (01:04 on August 29 morning CEST) and will remain open for26 minutes. The 367 kg spacecraft will share Ariane’s V162 launch with two commercial payloads: the Indian Space Research Organisation’s Insat 3E and Eutelsat’s e-Bird communication satellites. The smallest spacecraft in the trio, SMART-1, will travel in the lower position, inside a cylindrical adapter, and will be the last to be released. A generic Ariane 5 will be in charge of placing these three payloads in a standard geostationary transfer orbit from which each will begin its own journey towards its final operational orbit. SMART-1, powered by its ion engine, will reach its destination in about 16 months, having followed a long spiralling trajectory. SMART-1’s ion engine will be used to accelerate the probe and raise its orbit until it reaches the vicinity of the Moon, some 350,000 to 400,000 km from Earth. Then, following gravity assists from a series of lunar swingbys in late September, late October and late November 2004, SMART-1 will be “captured” by the Moon’s gravity in December 2004 and will begin using its engine to slow down and reduce the altitude of its lunar orbit. Testing breakthrough technologies and studying the Moon SMART-1 is not a standard outer space probe. As ESA’s first Small Mission for Advanced Research in Technology, it is primarily designed to demonstrate innovative and key technologies for future deep space science missions. However, once it has arrived at its destination, it will also perform an unprecedented scientific study of the Moon. SMART-1 is a very small spacecraft (measuring just one cubic metre). Its solar arrays, spanning 14 metres, will deliver 1.9 kW of power, about 75% of which will be used for the probe

  8. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...... on the sensor plate by the ambient surface charge, and hence as the probe is moved parallel to the surface the potential of the sensor plate changes. The probe sensor-plate potential is thus the parameter of interest as this parameter can be related in a quantitative manner to the surface charge density....... In the present study, the influence of the spacer geometry upon the λ-function is examined. This knowledge allows the response of the probe with reference to detection sensitivity and spatial selectivity to be considered. Such probe characteristics enable general conclusions to be reached about...

  9. Use of a fiber optic probe for organic species determination

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, Amy A. (Augusta, GA)

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  10. Influence of access hole parameters on neutron moisture probe readings

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1979-10-01

    Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner, as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051- to 0.102-m hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.35g . cm -3 and moisture content of 3.8 to 26.7% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate

  11. Influence of access hole parameters on neutron moisture probe readings

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1978-04-01

    Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051 to 0.102-hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The relationship between hole diameter and count rate also was investigated. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.2 g . cm -3 and moisture content of 1.3 to 35.5% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate

  12. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  13. Level set methods for modelling field evaporation in atom probe.

    Science.gov (United States)

    Haley, Daniel; Moody, Michael P; Smith, George D W

    2013-12-01

    Atom probe is a nanoscale technique for creating three-dimensional spatially and chemically resolved point datasets, primarily of metallic or semiconductor materials. While atom probe can achieve local high-level resolution, the spatial coherence of the technique is highly dependent upon the evaporative physics in the material and can often result in large geometric distortions in experimental results. The distortions originate from uncertainties in the projection function between the field evaporating specimen and the ion detector. Here we explore the possibility of continuum numerical approximations to the evaporative behavior during an atom probe experiment, and the subsequent propagation of ions to the detector, with particular emphasis placed on the solution of axisymmetric systems, such as isolated particles and multilayer systems. Ultimately, this method may prove critical in rapid modeling of tip shape evolution in atom probe tomography, which itself is a key factor in the rapid generation of spatially accurate reconstructions in atom probe datasets.

  14. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  15. Human MLPA Probe Design (H-MAPD: a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays

    Directory of Open Access Journals (Sweden)

    Hatchwell Eli

    2008-09-01

    Full Text Available Abstract Background Multiplex ligation-dependent probe amplification (MLPA is an efficient and reliable technique for gene dosage analysis. Currently MLPA can be conducted on two platforms: traditional electrophoresis-based, and FlexMAP bead-coupled. Since its introduction in 2002, MLPA has been rapidly adopted in both clinical and research situations. However, MLPA probe design is a time consuming process requiring many steps that address multiple criteria. There exist only one or two commercial software packages for traditional electrophoresis-based MLPA probe design. To our knowledge, no software is yet available that performs bead-coupled MLPA probe design. Results We have developed H-MAPD, a web-based tool that automates the generation and selection of probes for human genomic MLPA. The software performs physical-chemical property tests using UNAFold software, and uniqueness tests using the UCSC genome browser. H-MAPD supports both traditional electrophoresis-based assays, as well as FlexMAP bead-coupled MLPA. Conclusion H-MAPD greatly reduces the efforts for human genomic MLPA probe design. The software is written in Perl-CGI, hosted on a Linux server, and is freely available to non-commercial users.

  16. Interstellar Probe: The Next Step To Flight

    Science.gov (United States)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The

  17. Response of Magnetic Force Microscopy Probes under AC Magnetic Field

    Science.gov (United States)

    Sungthong, A.; Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this paper, magnetic force microscopy (MFM) probes with different coating materials were characterized under AC magnetic field. A perpendicular magnetic write head similar to those used in hard disk drives was employed as the AC magnetic field generator. In order to measure a response of MFM probes to AC magnetic field, a MFM probe under test was scanned, at a scan height of 10 nm, across the surface of the magnetic write head. During MFM imaging, the write head was biased by a sufficient magnitude of AC current, approximately 30 mA. A spectral analysis for a frequency sweep from 1 kHz to 100 MHz was extracted from post-processing MFM images. As expected, a MFM probe coated with hard magnetic alloys, i.e. FePt, has the lowest response to AC magnetic fields. MFM probes coated with soft magnetic alloys, i.e. NiFe and NiCoCr, have a relatively high and flat response across the frequency range. Ni coated MFM probe has the highest response to AC magnetic fields. In addition, CoCr and NiCo coated MFM probes show lower response than NiFe and NiCoCr probes at low frequencies; however, theirs response to AC magnetic field increase for the AC magnetic field with a frequency above 50 kHz. This can be implied that those MFM probes are a good candidate for being used to study the high-frequency performance of perpendicular magnetic write heads. Noting that response of all MFM probes significantly decreased when driven frequencies above 1 MHz due to the limitation of the hardware, i.e. response of quadrant photodiode and op-amp in a pre-amplifier.

  18. Plasma diagnostic techniques using particle beam probes

    International Nuclear Information System (INIS)

    Jennings, W.C.

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques

  19. Plasma diagnostic techniques using particle beam probes

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  20. Multimode-Optical-Fiber Imaging Probe

    Science.gov (United States)

    Jackson, Deborah

    2000-01-01

    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).

  1. Standardless quantification methods in electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Trincavelli, Jorge, E-mail: trincavelli@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Limandri, Silvina, E-mail: s.limandri@conicet.gov.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Bonetto, Rita, E-mail: bonetto@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Facultad de Ciencias Exactas, de la Universidad Nacional de La Plata, Calle 47 N° 257, 1900 La Plata (Argentina)

    2014-11-01

    The elemental composition of a solid sample can be determined by electron probe microanalysis with or without the use of standards. The standardless algorithms are quite faster than the methods that require standards; they are useful when a suitable set of standards is not available or for rough samples, and also they help to solve the problem of current variation, for example, in equipments with cold field emission gun. Due to significant advances in the accuracy achieved during the last years, product of the successive efforts made to improve the description of generation, absorption and detection of X-rays, the standardless methods have increasingly become an interesting option for the user. Nevertheless, up to now, algorithms that use standards are still more precise than standardless methods. It is important to remark, that care must be taken with results provided by standardless methods that normalize the calculated concentration values to 100%, unless an estimate of the errors is reported. In this work, a comprehensive discussion of the key features of the main standardless quantification methods, as well as the level of accuracy achieved by them is presented. - Highlights: • Standardless methods are a good alternative when no suitable standards are available. • Their accuracy reaches 10% for 95% of the analyses when traces are excluded. • Some of them are suitable for the analysis of rough samples.

  2. Nuclear research with electromagnetic probe. Progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The electromagnetic probe is used to address some of the forefront questions in nuclear physics. Two questions are of special interest in this project, one is related to the electromagnetic properties of the nucleon in the nuclear medium, the other concerns the transition between nucleons-mesons and quarks-gluons degrees of freedom when describing nuclei at medium energies. The electromagnetic properties of free protons have been extensively studied and are used as basic input to describe any of the electric or magnetic properties of nuclei. However, inclusive and semi-exclusive experiments measurements in the quasielastic and the deep inelastic region seem to indicate that the properties of bound nucleons are modified significantly in the nuclear medium. It is therefore of first importance to understand how the free properties of nucleons are modified in order to have a realistic description of nuclei. It was suggested, for example, that nucleons are swollen in nuclei. The physical consequences of such an idea are of great impact on the description of nuclei

  3. Probing noncommutative theories with quantum optical experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Dey

    2017-11-01

    Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  4. Probing multimode squeezing with correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Silberhorn, Christine [Applied Physics, University of Paderborn, Warburger Strasse 100, 33098 Paderborn (Germany); Laiho, Kaisa; Eckstein, Andreas; Cassemiro, Katiuscia N, E-mail: Andreas.Christ@uni-paderborn.de [Max Planck Institute for the Science of Light, Guenther-Scharowsky Strasse 1/Bau 24, 91058 Erlangen (Germany)

    2011-03-15

    Broadband multimode squeezers constitute a powerful quantum resource with promising potential for different applications in quantum information technologies such as information coding in quantum communication networks or quantum simulations in higher-dimensional systems. However, the characterization of a large array of squeezers that coexist in a single spatial mode is challenging. In this paper, we address this problem and propose a straightforward method for determining the number of squeezers and their respective squeezing strengths by using broadband multimode correlation function measurements. These measurements employ the large detection windows of the state of the art avalanche photodiodes in order to simultaneously probe the full Hilbert space of the generated state, which enables us to benchmark the squeezed states. Moreover, due to the structure of correlation functions, our measurements are not affected by losses. This is a significant advantage, since detectors with low efficiencies are sufficient. Our approach is less costly than tomographic methods relying on multimode homodyne detection, which is based on much more demanding measurement and analysis tools and appear to be impractical for large Hilbert spaces.

  5. Probing neurodegeneration and aging: A PET approach

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, H.F. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Positron Emission Tomography (PET) imaging has received wide application to the study of the aging brain and its diseases, most notably Parkinson`s Disease (PD) and Alzheimer`s Disease (AD). Basic neurological processes such as blood flow and glucose metabolism have been most often measured. Radioligands developed for specific neurochemical systems have amplified the flow and metabolism studies by more precisely defining the changes associated with degenerative processes. Our present research focuses on two additional applications of radiopharmaceutical development and PET imaging - (1) investigating the fundamental mechanisms of neurodegeneration and aging, and (2) assessing novel therapeutic intervention for PD with PET imaging. We have synthesized fluorine-18 labeled analogs of rotenone, a natural product that possesses high affinity to Complex I of the mitochondrial electron transport chain, and evaluated their potential to study changes in neuronal mitochondrial density and function. A large body evidence points to mitochondrial dysfunction as a key factor in aging and neurodegeneration. We are also currently evaluating the use of genetically transfected cells to treat PD. Primates are being imaged with [{sup 18}F]flouro-m-L-tyrosine before and after MPTP Parkinsonian type lesioning and following implantation of genetically altered cells capable of secreting tyrosine hydroxylase into the lesioned area. The ability to develop and apply PET probes has significantly enhanced the understanding of normal, aging, and degenerative processes of the brain.

  6. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  7. Golden probe of the top Yukuwa coupling

    CERN Document Server

    Chen, Yi; Vega-Morales, Roberto

    2015-01-01

    We perform a preliminary study of the ability of the Higgs decay to four leptons to shed light on the top quark Yukawa couplings. In particular we examine whether the $h\\to 4\\ell$ `golden channel' is sensitive to the $CP$ properties of the top quark couplings to the Higgs boson. We show that kinematic distributions are sensitive to interference of the next-to-leading order electroweak corrections with the tree level $ZZ$ contribution. This translates into a sensitivity to the top quark Yukawa couplings such that meaningful constraints on their $CP$ properties can begin to be obtained once $\\sim 300$ fb$^{-1}$ of data has been collected at $\\sim 14$ TeV, with significant improvements at higher luminosity or with a higher energy hadron collider. This makes the $h\\to4\\ell$ channel a useful probe of the top quark Yukawa couplings that is qualitatively different from already established searches in $h\\to V\\gamma$ two body decays, $tth$, and $gg\\to h$. We also briefly discuss other potential possibilities for probi...

  8. Probing Majorana neutrino textures at DUNE

    Science.gov (United States)

    Bora, Kalpana; Borah, Debasish; Dutta, Debajyoti

    2017-10-01

    We study the possibility of probing different texture zero neutrino mass matrices at the long baseline neutrino experiment DUNE, particularly focusing on its sensitivity to the octant of atmospheric mixing angle θ23 and leptonic Dirac C P phase δcp. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space which satisfies the texture zero conditions. Apart from using the latest global fit 3 σ values of neutrino oscillation parameters, we also use the latest bound on the sum of absolute neutrino masses (∑i |mi|) from the Planck mission data and the updated bound on effective neutrino mass Me e from neutrinoless double beta decay (0 ν β β ) experiments to find the allowed Majorana texture zero mass matrices. For the allowed texture zero mass matrices from all these constraints, we then feed the corresponding light neutrino parameter values satisfying the texture zero conditions into the numerical analysis in order to study the capability of DUNE to allow or exclude them once it starts taking data. We find that DUNE will be able to exclude some of these texture zero mass matrices which restrict (θ23-δcp) to a very specific range of values, depending on the values of the parameters that nature has chosen.

  9. MTRAP: The Magnetic Transition Region Probe

    Science.gov (United States)

    Davis, J. M.; West, E. A.; Moore, R. L.; Gary, G. A.; Kobayashi, K.; Oberright, J. F.; Evans, D. C.; Wood, H. J.; Saba, J. L. R.; Alexander, D.

    2005-01-01

    The Magnetic Transition Region Probe is a space telescope designed to measure the magnetic field at several heights and temperatures in the solar atmosphere, providing observations spanning the chromospheric region where the field is expected to become force free. The primary goal is to provide an early warning system (hours to days) for solar energetic particle events that pose a serious hazard to astronauts in deep space and to understand the source regions of these particles. The required magnetic field data consist of simultaneous circular and linear polarization measurements in several spectral lines over the wavelength range from 150 to 855 nm. Because the observations are photon limited an optical telescope with a large (>18sq m) collecting area is required. To keep the heat dissipation problem manageable we have chosen to implement MTRAP with six separate Gregorian telescopes, each with approx. 3 sq m collecting area, that are brought to a common focus. The large field of view (5 x 5 arcmin(sup 2)) and angular resolution (0.025 arcsec pixels) require large detector arrays and, because of the requirements on signal to noise (10(exp 3)), pixels with large full well depths to reduce the readout time and improve the temporal resolution. The optical and engineering considerations that have gone into the development of a concept that meets MTRAP's requirements are described.

  10. Constraints on dark radiation from cosmological probes

    CERN Document Server

    Rossi, Graziano; Palanque-Delabrouille, Nathalie; Lesgourgues, Julien

    2015-01-01

    We present joint constraints on the number of effective neutrino species N_eff and the sum of neutrino masses M_nu, based on a technique which exploits the full information contained in the one-dimensional Lyman-Alpha forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain N_eff=2.91(+0.21)(-0.22) (95% CL) and M_nu<0.15 eV (95% CL) when we combine BOSS Lyman-Alpha forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and N_eff=2.88(+0.20)(-0.20) (95% CL) and M_nu<0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results provide evidence for the Cosmic Neutrino Background from N_eff~3 (N_eff=0 is rejected at more than 14 sigma), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., N_eff=4) - or more generally any decoupled relativistic relic with Delta N_eff ~ 1 - at a significance of over 5 sigma, the strongest bound to date, implying that there is no need for exotic neutrino physics ...

  11. Off-Shell Higgs Probe of Naturalness

    Science.gov (United States)

    Gonçalves, Dorival; Han, Tao; Mukhopadhyay, Satyanarayan

    2018-03-01

    Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs boson mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field (S ) coupled to the standard model Higgs doublet (H ) in a form |S |2|H |2. In the process p p →h*→Z Z , the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at 2 mS, leads to a measurable deviation in the differential distribution of the Z -pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the 5 σ level at the high-luminosity LHC, improving further with the upgraded 27 TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.

  12. Probing Aggrecan Interactions with Ions by AFM

    Science.gov (United States)

    Chandran, Preethi; Dimitriadis, Emilios; Basser, Peter; Horkay, Ferenc

    2010-03-01

    Aggrecan (MW 2 MDa) is a highly charged bottle-brush shape biological polymer found in the extracellular matrix of tissues. It consists of a protein backbone (400nm long), to which about 100 linear chains of negatively-charged glucosaminoglycans are attached approximately 4 nm apart. The high charge density of the aggrecan bottle-brush allows it to imbibe water, thereby maintaining tissue hydration and permeability, while also binding to cell-signaling molecules. In solution, aggrecan molecules respond differently to varying salt conditions, than other charged biological and synthetic polyelectrolytes like DNA and poly(acrylic acid) (Horkay, 2008). To probe the nature of its interactions with charged surfaces, we looked at the absorption patterns of aggrecan assemblies on controlled surfaces (polylysine, mica) under different ionic conditions, using Atomic Force Microscopy. We propose a simple model of the charge interactions, which relates the surface-adsorption patterns to the solution structures. The study may help understanding how aggrecan loss or degradation with age and joint disease affects tissue microstructure and physical properties.

  13. Assessing Biological Samples with Scanning Probes

    Science.gov (United States)

    Engel, A.

    Scanning probe microscopes raster-scan an atomic scale sensor across an object. The scanning transmission electron microscope (STEM) uses an electron beam focused on a few Å, and measures the electron scattering power of the irradiated column of sample matter. Not only does the STEM create dark-filed images of superb clarity, but it also delivers the mass of single protein complexes within a range of 100 kDa to 100 MDa. The STEM appears to be the tool of choice to achieve high-throughput visual proteomics of single cells. In contrast, atomically sharp tips sample the object surface in the scanning tunneling microscope as well as the atomic force microscopes (AFM). Because the AFM can be operated on samples submerged in a physiological salt solution, biomacromolecules can be observed at work. Recent experiments provided new insights into the organization of different native biological membranes, and allowed molecular interaction forces, that determine protein folds and ligand binding, to be measured.

  14. Neutrino mass constraints from joint cosmological probes.

    Science.gov (United States)

    Kwan, Juliana

    2018-01-01

    One of the most promising avenues to come from precision cosmology is the measurement of the sum of neutrino masses in the next 5-10 years. Ongoing imaging surveys, such as the Dark Energy Survey and the Hyper Suprime Cam survey, will cover a substantial volume of the sky and when combined with existing spectroscopic data, are expected to deliver a definitive measurement in the near future. But it is important that the accuracy of theoretical predictions matches the precision of the observational data so that the neutrino mass signal can be properly detected without systematic error. To this end, we have run a suite of high precision, large volume cosmological N-body simulations containing massive neutrinos to quantify their effect on probes of large scale structure such as weak lensing and galaxy clustering. In this talk, I will describe the analytical tools that we have developed to extract the neutrino mass that are capable of fully utilizing the non-linear regime of structure formation. These include predictions for the bias in the clustering of dark matter halos (one of the fundamental ingredients of the halo model) with an error of only a few percent.

  15. Ultra-High Energy Probes of Classicalization

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupat...

  16. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  17. On the truncation of the azimuthal mode spectrum of high-order probes in probe-corrected spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Laitinen, Tommi

    2011-01-01

    Azimuthal mode (m mode) truncation of a high-order probe pattern in probe-corrected spherical near-field antenna measurements is studied in this paper. The results of this paper provide rules for appropriate and sufficient m-mode truncation for non-ideal first-order probes and odd-order probes wi...

  18. Creep compliance rheology with a probe-like cylindrical geometry.

    Science.gov (United States)

    Connelly, Kelly; Sharif-Kashani, Pooria; Farajzadeh, Matt; Hubschman, Jean-Pierre; Kavehpour, H Pirouz

    2016-01-01

    Rheology experiments have been performed on the vitreous humor, a soft gel that rests inside of the eye, to study its viscoelastic behavior and underlying macromolecular structure. A significant challenge for experimentalists is preserving the macromolecular structure when removing vitreous from in vivo conditions. We have developed a novel probe-like rheometer geometry that allows us to perform shear rheology experiments on the vitreous humor in situ. The aim of this study is to assess the feasibility of the probe geometry. Creep compliance responses of silicone oils, Xanthan gum solutions, and bovine and porcine vitreous humor were measured using the probe geometry and compared to measurements performed with standard geometries. Viscosities calculated from the creep responses of silicone oils closely match between the probe and standard geometry. Viscosities and creep compliance values of Xanthan gum measurements achieve order of magnitude agreement between the probe and standard geometry. Significant differences are detected with the probe between bovine and porcine vitreous (p<0.001). These results suggest the probe may feasibly measure viscosities of Newtonian fluids, and correctly detect differences in the creep response of complex fluids with varying viscoelastic behaviors.

  19. Probe method of measuring the electron energy distribution in plasmas

    International Nuclear Information System (INIS)

    Amemiya, Hiroshi

    1984-01-01

    The function for the velocity distribution of electrons in plasma in a basic function associated with various phenomena. The probe method gives the distribution by a simple technique to insert a micro-electrode into plasma, and has good spatial resolution. It is specifically useful for weakly ionized, low temperature plasma. The purpose of this paper is to assist experimenters so that they can easily use this method for various phenomena by starting at its basic principle and explaining the scope of application and actual measuring techniques. The scope of application is considered by dividing it into the problems of sheath thickness, collision effect, the energy distribution of beam, the influence of probe end, probe surface phenomenon, magnetized plasma, the measurement of high energy tail, etc. For sheath thickness, it is accepted if the difference between sheath radius and probe radius is shorter than mean free path, and this is a measure for the application limit. The probe method is applicable as far as the beam density is far smaller than plasma density, and the symmetry of positive ion sheath is not disturbed. The surface area of a counter electrode should be 10 4 .Rc/lambda times or more of the probe surface area, where Rc is the radius of a counter electrode. The differentiation method of the probe characteristics includes A.C. method, high speed sweep measurement or digital method, and some applications are described. (Wakatsuki, Y.)

  20. A repetitive probe for FISH analysis of bovine interphase nuclei

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond

    2000-03-01

    Full Text Available Abstract The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH. Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5 that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5, one probe (W22 shared no homology with other DNA sequences and one (H1A displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22, one labelled the arms of all chromosomes (W5 and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25. Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals.

  1. Heat Flow Probe for Lunar and Planetary Missions

    Science.gov (United States)

    Fish, C. S.; Ban, H.; Sellers, S.; White, J.; Wouden, A.; Allen, D.

    2009-12-01

    Heat flow information is essential for studying the composition and internal structure of the Moon and other planetary bodies. Heat flow data is typically obtained by inserting a probe to certain depth below the surface and measuring the local thermal conductivity and temperature gradient. For robotic landing missions, the limit in total mass and power consumption requires special design of probe insertion and sensor systems. Although there have been efforts in the development of such probes, the technology has not been used successfully and the understanding of the fundamental processes involved in the penetration and heat transfer is limited. The team from Utah State University and Space Dynamics Lab is developing a tethered heat flow probe for potential lunar and other planetary missions. The probe consists of a penetrator, which uses an internal percussive mechanism, and a tethered cable attached to the penetrator to function as the data and power link, as well as thermal conductivity and temperature sensors. The research focused on two important issues: (1) how to optimize the percussive penetration with specific soil and gravitational characteristics; and (2) what is the thermal uncertainty level caused by the disturbance due to the lander, probe penetration, and soil stratification. Laboratory experiments and computation studies were performed to provide answers toward these two questions. This presentation summarizes the overall concept of the probe and presents current experimental results in these topics.

  2. Irradiation probe and laboratory for irradiated material evaluation

    International Nuclear Information System (INIS)

    Smutny, S.; Kupca, L.; Beno, P.; Stubna, M.; Mrva, V.; Chmelo, P.

    1975-09-01

    The survey and assessment are given of the tasks carried out in the years 1971 to 1975 within the development of methods for structural materials irradiation and of a probe for the irradiation thereof in the A-1 reactor. The programme and implementation of laboratory tests of the irradiation probe are described. In the actual reactor irradiation, the pulse tube length between the pressure governor and the irradiation probe is approximately 20 m, the diameter is 2.2 mm. Temperature reaches 800 degC while the pressure control system operates at 20 degC. The laboratory tests (carried out at 20 degC) showed that the response time of the pressure control system to a stepwise pressure change in the irradiation probe from 0 to 22 at. is 0.5 s. Pressure changes were also studied in the irradiation probe and in the entire system resulting from temperature changes in the irradiation probe. Temperature distribution in the body of the irradiation probe heating furnace was determined. (B.S.)

  3. Noninvasive encapsulated fiber optic probes for interferometric measurement

    Science.gov (United States)

    Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.

    2017-10-01

    This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.

  4. Comparison of Particulate Collection in Probes and on Filters

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J.M.; Humphreys, M.P.

    2001-06-14

    Major radionuclide emissions from the Department of Energy's Y-12 National Security Complex are nuclides of uranium which are emitted as a particulate. The radionuclide NESHAP regulation requires stack sampling to be conducted in accordance with ANST Standard N13.1, 1969. Appendix B of this standard requires in every case where sampling delivery lines are used that an evaluation should be made of deposition in these lines. A number of Y-12 Complex stacks are fitted with continuous samplers which draw particulate laden air through a probe and across a sample filter. One approach to evaluate line loss as required by the ANSI standard is to establish a representative factor that is used for all subsequent sampling efforts. Another approach is to conduct a routine probe wash procedure on an ongoing basis to account for line losses. In 1991, Y-12 National Security Complex personnel began routine probe washes as part of their sample collection procedure. Since then, 50-80 stacks have been sampled on a near continuous basis and probe washes have been conducted quarterly. Particulate collection in probes versus particulate collection on filters is recorded as a probe factor and probe factor trends for a 10-year period are available.

  5. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    Science.gov (United States)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  6. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  7. Nucleic acid-based fluorescent probes and their analytical potential.

    Science.gov (United States)

    Juskowiak, Bernard

    2011-03-01

    It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.

  8. SNAP: Small Next-generation Atmospheric Probe Concept

    Science.gov (United States)

    Sayanagi, K. M.; Dillman, R. A.; Atkinson, D. H.; Li, J.; Saikia, S.; Simon, A. A.; Spilker, T. R.; Wong, M. H.; Hope, D.

    2017-12-01

    We present a concept for a small, atmospheric probe that could be flexibly added to future missions that orbit or fly-by a giant planet as a secondary payload, which we call the Small Next-generation Atmospheric Probe (SNAP). SNAP's main scientific objectives are to determine the vertical distribution of clouds and cloud-forming chemical species, thermal stratification, and wind speed as a function of depth. As a case study, we present the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flagship mission; in combination with the mission's main probe, SNAP would perform atmospheric in-situ measurements at a second location, and thus enable and enhance the scientific objectives recommended by the 2013 Planetary Science Decadal Survey and the 2014 NASA Science Plan to determine atmospheric spatial variabilities. We envision that the science objectives can be achieved with a 30-kg entry probe 0.5m in diameter (less than half the size of the Galileo probe) that reaches 5-bar pressure-altitude and returns data to Earth via the carrier spacecraft. As the baseline instruments, the probe will carry an Atmospheric Structure Instrument (ASI) that measures the temperature, pressure and acceleration, a carbon nanotube-based NanoChem atmospheric composition sensor, and an Ultra-Stable Oscillator (USO) to conduct a Doppler Wind Experiment (DWE). We also catalog promising technologies currently under development that will strengthen small atmospheric entry probe missions in the future. While SNAP is applicable to multiple planets, we examine the feasibility, benefits and impacts of adding SNAP to the Uranus Orbiter and Probe flagship mission. Our project is supported by NASA PSDS3 grant NNX17AK31G.

  9. A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to design, construct and test a high-frequency-response air-data probe, the Fast Response Atmospheric Turbulence probe (FRAT probe)...

  10. X-31 Kiel Probe Side View

    Science.gov (United States)

    1993-01-01

    A photograph of the noseboom on the X-31 shows the Kiel air data probe angled at 10 degrees to better align the tip with the airflow at very high angles of attack. The devices were mounted on the nose of the X-31s to measure air pressure. Icing in the unheated Kiel probe on the first X-31 (Bu. No. 164584), caused that aircraft to crash on January 19, 1995. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. Each had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden

  11. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...... and quantum technologies. By probing, the production of squeezed and entangled states of collective variables in a Bose-Einstein condensate is investigated. Thereafter, an atomic probe using the strong interactions between highly excited atomic states, manipulates the light-matter dynamics of an ultracold gas...

  12. Femtosecond pump-probe studies of zinc phthalocynine in DMSO

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2010-09-01

    Full Text Available .kashan.co.za] Femtosecond pump-probe studies of zinc phthalocynine in DMSO S OMBINDA-LEMBOUMBA1,2, A DU PLESSIS1, LR BOTHA1, EG ROHWER2 AND CM STEENKANP2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001 2Laser Research Institute, Department of Physics, University.... The excited state of the oxygen will lead to the destruction of the tumour. Figure 1: Energy transfer and energy level diagram of zinc phthalocyanine PUMP-PROBE TECHNIQUE Figure 2 indicates the Femtosecond pump-probe technique used to investigate...

  13. Fundamental size limitations of micro four-point probes

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Petersen, Dirch Hjorth; Hansen, Ole

    2009-01-01

    The continued down-scaling of integrated circuits and magnetic tunnel junctions (MTJ) for hard disc read heads presents a challenge to current metrology technology. The four-point probes (4PP), currently used for sheet resistance characterization in these applications, therefore must be down......-scaled as well in order to correctly characterize the extremely thin films used. This presents a four-point probe design and fabrication challenge. We analyze the fundamental limitation on down-scaling of a generic micro four-point probe (M4PP) in a comprehensive study, where mechanical, thermal, and electrical...

  14. 3D Parylene sheath neural probe for chronic recordings

    Science.gov (United States)

    Kim, B. J.; Kuo, J. T. W.; Hara, S. A.; Lee, C. D.; Yu, L.; Gutierrez, C. A.; Hoang, T. Q.; Pikov, V.; Meng, E.

    2013-08-01

    Objective. Reliable chronic recordings from implanted neural probes remain a significant challenge; current silicon-based and microwire technologies experience a wide range of biotic and abiotic failure modes contributing to loss of signal quality. Approach. A multi-prong alternative strategy with potential to overcome these hurdles is introduced that combines a novel three dimensional (3D), polymer-based probe structure with coatings. Specifically, the Parylene C sheath-based neural probe is coated with neurotrophic and anti-inflammatory factors loaded onto a Matrigel carrier to encourage the ingrowth of neuronal processes for improved recording quality, reduce the immune response, and promote improved probe integration into brain tissue for reliable, long-term implementation compared to its rigid counterparts. Main results. The 3D sheath structure of the probe was formed by thermal molding of a surface micromachined Parylene C microchannel, with electrode sites lining the interior and exterior regions of the lumen. Electrochemical characterization of the probes via cyclic voltammetry and electrochemical impedance spectroscopy was performed and indicated suitable electrode properties for neural recordings (1 kHz electrical impedance of ∼200 kΩ in vitro). A novel introducer tool for the insertion of the compliant polymer probe into neural tissue was developed and validated both in vitro using agarose gel and in vivo in the rat cerebral cortex. In vivo electrical functionality of the Parylene C-based 3D probes and their suitability for recording the neuronal activity over a 28-day period was demonstrated by maintaining the 1 kHz electrical impedance within a functional range (<400 kΩ) and achieving a reasonably high signal-to-noise ratio for detection of resolvable multi-unit neuronal activity on most recording sites in the probe. Immunohistochemical analysis of the implant site indicated strong correlations between the quality of recorded activity and the

  15. A Common Probe Design for Multiple Planetary Destinations

    Science.gov (United States)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  16. Calorimeter probes for measuring high thermal flux. [in arc jets

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  17. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  18. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Smith, R. [Sonsub Services, Inc., Houston, TX (United States)

    1993-05-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  19. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Smith, R. (Sonsub Services, Inc., Houston, TX (United States))

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  20. Probe-guided surgery for colorectal cancer.

    Science.gov (United States)

    Lechner, P; Lind, P; Snyder, M; Haushofer, H

    2000-01-01

    Anti-CEA-scintigraphy turned out to be very reliable in detecting primary and recurrent colorectal cancer, its overall accuracy being more than 90%. The intraoperative application of this technology should provide similar results when focussing at extrahepatic tumor deposits, for example in lymph nodes, thus allowing accurate staging of the underlying disease. To test this hypothesis we launched the following feasibility study the results of which are compared to those reported in the recent literature. We investigated 20 patients, six with rectum and 14 with colon cancer. 24 hours before surgery they were intravenously given 1 ml of a fab'-fragment-antibody to CEA, labeled with 25 mCi of 99mTc (CEA-Scan). During surgery the radioactivity in lymph glands regional to the tumors was measured and compared to the much lower activity in healthy nodes. For this we used a scintillation probe (C-Trak, Care Wise, Inc., Morgan Hill, CA). All lymph nodes of interest were then excised and submitted to frozen section pathology. In 7 out of 20 cases scintimetry led to an up-staging of the disease. In addition we found metastatic spread to lymph nodes that were basically not regional to the primary tumor (retroperitoneum, renal hilum etc.). Scintimetry can precisely identify even very small tumor deposits. So it leads to accurate staging while surgery is still ongoing. In a further step the concept of sentinel node diagnosis, which is right now being clinically evaluated, may some day be applied in colorectal surgical oncology.