WorldWideScience

Sample records for amiloride

  1. Amiloride transport in rabbit renal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rabbit renal brush-border membrane vesicles (BBMV) were used to study amiloride transport across the luminal membrane of proximal tubular cells. An outwardly directed H+ gradient (pHi 6.0; pHo 7.5) stimulated 8 microM [14C]-amiloride uptake into BBMV and supported a transient active accumulation of substrate consistent with the presence of an amiloride-H+ exchange process. Uptake was inhibited, in the presence or absence of a pH gradient, by 1 mM unlabeled amiloride or 20 mM tetraethylammonium (TEA). Amiloride transport was not directly affected by the presence of 100 mM Na+ in the extravesicular medium, suggesting that Na-H exchange did not mediate amiloride flux. Amiloride transport was a saturable process with a maximal flux (under pH gradient conditions) of 3 nmol.mg-1.min-1 and an apparent Kt of 8 microM. TEA acted as a competitive inhibitor of this process with an apparent Ki of approximately 80 microM, similar to the Kt of TEA transport via the TEA-H+ exchanger. Likewise, amiloride acted as a competitive inhibitor of TEA uptake with an apparent Ki of approximately 11 microM. Preloading BBMV with 1-2 mM TEA stimulated the rate of amiloride uptake and supported a transient active accumulation of amiloride. We conclude that amiloride and TEA are transported by a common pathway in BBMV, which involves a carrier-mediated exchange with H+ and which may play a role in the tubular secretion of these compounds

  2. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    International Nuclear Information System (INIS)

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na+-H+ exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of [3H]thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na+-H+ antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity

  3. Intracellular accumulation of potent amiloride analogues by human neutrophils

    International Nuclear Information System (INIS)

    The mechanism of uptake of a series of amiloride derivatives by human neutrophils was investigated using [14C]amiloride and the 14C-labeled 5-(1-hexahydroazepinyl)-6-bromo analogue (BrMM) which is approximately 500-fold more potent than the parent compound at inhibiting Na+/H+ exchange. At an external concentration of 2 microM, the influx of BrMM at 37 degrees C was rapid, reaching a steady state by approximately 20 min. The rate of BrMM uptake (approximately 25 mumol/liter.min) was approximately 90-fold faster than for the same concentration of amiloride, a finding which correlates with differences in lipid partitioning of the two compounds. Uptake was unrelated to specific binding to Na+/H+ exchange transport sites: influx of either drug was nonsaturable whereas amiloride- and BrMM-mediated inhibition of Na+/H+ countertransport obeyed Michaelis-Menten kinetics with apparent Ki values of approximately 75 and approximately 0.2 microM. Entry occurred exclusively via the neutral (uncharged) forms (pK'a 8.40-8.55). Influx was markedly pH-dependent: it was enhanced by extracellular alkalinization and reduced by acidification. Influx was, however, insensitive to large changes in membrane voltage, thereby implying the protonated (charged) species to be impermeant. About 75% of the total intracellular pool of amiloride, but only approximately 25% of BrMM, is contained within the lysosomes, an expected consequence of the partitioning and subsequent trapping of a weak base within this strongly acidic subcellular compartment. With BrMM, there was a relative approximately 60-fold enrichment in the internal/external water concentration ratio of the drug; the value for amiloride was much less, approximately 4. This disparity is consistent with substantial binding of BrMM to internal constituents, presumably to proteins and/or nucleic acids

  4. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin

    OpenAIRE

    1983-01-01

    The sodium flux ratio of the amiloride-sensitive Na+ channel in the apical membrane of in vitro Rana catesbeiana skin has been evaluated at different sodium concentrations and membrane potentials in sulfate Ringer solution. Amiloride-sensitive unidirectional influxes and effluxes were determined as the difference between bidirectional 22Na and 24Na fluxes simultaneously measured in the absence and presence of 10(-4) M amiloride in the external bathing solution. Amiloride- sensitive Na+ efflux...

  5. Human kidney amiloride-binding protein: cDNA structure and functional expression

    International Nuclear Information System (INIS)

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Naplus channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Naplus channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein

  6. Pulmonary deposition of nebulised amiloride in cystic fibrosis: comparison of two nebulisers.

    OpenAIRE

    Thomas, S. H.; O'Doherty, M J; Graham, A.; Page, C J; Blower, P; Geddes, D. M.; Nunan, T. O.

    1991-01-01

    BACKGROUND Preliminary evidence suggests that regular inhalation of nebulised amiloride reduces sputum viscoelasticity, increases the clearance of sputum by mucociliary mechanisms and by coughing and reduces the rate of deterioration in lung function in patients with cystic fibrosis. These effects depend on adequate delivery of amiloride to the airways. This study was performed to quantify and compare pulmonary deposition of amiloride produced by two different nebuliser systems. METHODS The p...

  7. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners.

    OpenAIRE

    1983-01-01

    The diuretic amiloride, a potent inhibitor of sodium transport in a variety of epithelial systems, was applied to the human tongue. Application of amiloride reduced the taste intensity of sodium and lithium salts and of sweeteners ranging widely in chemical structure. The sweeteners included saccharides, glycosides, dipeptides, proteins, and amino acids. Amiloride did not affect perception of potassium or calcium salts, bitter and sour tastes, or amino acids without a sweet or salty component...

  8. Production of new amilorides as potent inhibitors of mitochondrial respiratory complex I.

    Science.gov (United States)

    Murai, Masatoshi; Habu, Sayako; Murakami, Sonomi; Ito, Takeshi; Miyoshi, Hideto

    2015-01-01

    Amilorides, well-known inhibitors of Na(+)/H(+) antiporters, have also shown to inhibit bacterial and mitochondrial NADH-quinone oxidoreductase (complex I). Since the membrane subunits ND2, ND4, and ND5 of bovine mitochondrial complex I are homologous to Na(+)/H(+) antiporters, amilorides have been thought to bind to any or all of the antiporter-like subunits; however, there is no direct experimental evidence in support of this notion. Photoaffinity labeling is a powerful technique to identify the binding site of amilorides in bovine complex I. Commercially available amilorides such as 5-(N-ethyl-N-isopropyl)amiloride are not suitable as design templates to synthesize photoreactive amilorides because of their low binding affinities to bovine complex I. Thereby, we attempted to modify the structures of commercially available amilorides in order to obtain more potent derivatives. We successfully produced two photoreactive amilorides (PRA1 and PRA2) with a photolabile azido group at opposite ends of the molecule. PMID:25731956

  9. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Buhl, Kristian Bergholt; Jacobsen, Ib A;

    2014-01-01

    daytime BP was reduced by 6.3/3.0 mm Hg. Seven of 80 cases (9%) discontinued amiloride due to hyperkalemia >5.5 mol/L, the most frequent adverse event. Urinary plasmin(ogen) and albumin excretions were significantly reduced after amiloride treatment (P < .0001). Urokinase activity was detectable in...

  10. Amiloride inhibits mammalian renal kallikrein and a kallikrein-like enzyme from toad bladder and skin.

    OpenAIRE

    Margolius, H S; Chao, J.

    1980-01-01

    Renal kallikrein is localized in luminal plasma membranes of the mammalian distal nephron and gains access to urine from this site. Its activity is regulated, in part, by aldosterone. These facts led us to study the effects of amiloride, a drug known to inhibit sodium reabsorption and potassium secretion at this site, on kallikrein activity. Amiloride inhibited the esterolytic activity of purified rat or human urinary kallikrein or of rat renal cortical cells upon a synthetic substrate (ID50 ...

  11. Regulation of human D1, D2(long), D2(short), D3 and D4 dopamine receptors by amiloride and amiloride analogues

    OpenAIRE

    Hoare, S R J; Coldwell, M C; Armstrong, D.; Strange, P G

    2000-01-01

    The modulatory effects of the allosteric effectors methylisobutylamiloride (MIA), benzamil and amiloride have been examined at human D1, D2, D3 and D4 dopamine receptors. The subtype selectivity and the mechanism of action of this allosteric regulation was examined.In radioligand dissociation experiments each modulator accelerated dissociation from all four receptor subtypes indicating allosteric regulation. MIA displayed selectivity for the D3 subtype for acceleration of radioligand dissocia...

  12. Active urea transport by the skin of Bufo viridis: Amiloride- and phloretin-sensitive transport sites

    International Nuclear Information System (INIS)

    Urea is actively transported inwardly (Ji) across the skin of the green toad Bufo viridis. Ji is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10-4 M) significantly inhibited Ji in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10-4 M) significantly inhibited Ji in adapted animals by 23-46%; there was also a reduction in Ji in unadapted toads at 10-4 and 5 x 10-4 M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K1/2) was 5 x 10-4 M for adapted animals. Ji was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that Ji is independent of sodium transport

  13. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A...

  14. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  15. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC) Amiloride sensitive sodium channels (ENaC) and their regulation by proteases

    OpenAIRE

    Luciano Galizia; Alejandro Ojea; Basilio A. Kotsias

    2011-01-01

    El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven ...

  16. Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue

    OpenAIRE

    1996-01-01

    The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combinat...

  17. Effect of Amiloride to Retinal Toxicity Induced by Tissue Plasminogen Activator

    OpenAIRE

    Kim, Ungsoo Samuel; Oh, Hyun-Sub; Kwon, Oh Woong; Chung, In; Lee, Sung-Ho; Lee, Joon Haeng

    2012-01-01

    Purpose The effects of amiloride on cellular toxicity caused by tissue plasminogen activator (tPA) in mouse primary retinal cells were investigated. Methods Primary retinal cell cultures were maintained using glial conditioned medium. Commercial tPA and L-arginine were added, and the level of cyclic guanosine monophosphate (cyclic-GMP) in the culture supernatant was assessed using an ELISA assay. We measured the cell viability of cultured retinal cells pretreated with three different concentr...

  18. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  19. Amiloride enhances antigen specific CTL by faciliting HBV DNA vaccine entry into cells.

    Directory of Open Access Journals (Sweden)

    Shuang Geng

    Full Text Available The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses.

  20. NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Stine F; King, Scott A; Nygaard, Eva B;

    2007-01-01

    NHE1). Although highly homologous to the amiloride- and HOE-sensitive human NHE1 (hNHE1), AtNHE1 is insensitive to HOE-type and PaNHE1 to both amiloride- and HOE-type compounds. Here we generated chimeras to "knock in" amiloride and HOE sensitivity to PaNHE1, and we thereby identified several NHE1...

  1. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC)

    OpenAIRE

    Luciano Galizia; Alejandro Ojea; Basilio A. Kotsias

    2011-01-01

    El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. ...

  2. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  3. Inhibition of RANKL-dependent cellular fusion in pre-osteoclasts by amiloride and a NHE10-specific monoclonal antibody.

    Science.gov (United States)

    Mine, Yuichi; Shuto, Takahiro; Nikawa, Hiroki; Kawai, Toshihisa; Ohara, Masaru; Kawahara, Kazuko; Ohta, Kouji; Kukita, Toshio; Terada, Yoshihiro; Makihira, Seicho

    2015-06-01

    The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy. PMID:25612314

  4. Effect of canrenone and amiloride on the prooxidative effect induced by aldosterone in human mononuclear leukocytes in vitro.

    Science.gov (United States)

    Fiore, C; Sartorato, P; Pagnin, E; Ragazzi, E; Calò, L A; Armanini, D

    2009-12-01

    Clinical studies have demonstrated that aldosterone receptor antagonists do improve the survival of patients with chronic heart diseases and in vitro studies have shown that canrenone blocks the proinflammatory effect of aldosterone in mononucler leukocytes (MNL). The aim of the study was to compare, in the model of human MNL, the effect of potassium-sparing diuretics amiloride and canrenone, on the protein expression of p22phox, a NADPH-oxidase system subunit, that is a principal marker of production of superoxide anions. MNL were isolated from 10 informed healthy volunteers (5 males and 5 females, age range 24-36 yr) and the proteins extracted. p22phox protein expression was evaluated by Western blot and quantified using a densitometric semiquantitative analysis. The experiments showed that aldosterone (10(-8) M) enhances the protein expression of p22phox and that its effect is reversed by co-incubation with canrenone (10(-6) M), while incubation with amiloride (10(-6) M) reduced the prooxidative effect of aldosterone at a significantly lower extent than canrenone. Co-incubation with canrenone, amiloride, and aldosterone together produced the same effect as aldosterone plus canrenone. Incubation with cortisol (40(-8) M) was not effective. These data confirm the prooxidative effect of aldosterone in MNL. The addition of aldosterone-receptor antagonist canrenone produced a higher inhibition than sodium channel blocker amiloride on the effect of aldosterone on p22phox protein expression. PMID:19509473

  5. Aberrant glomerular filtration of urokinase-plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine

    DEFF Research Database (Denmark)

    Stæhr, Mette; Buhl, Kristian Bergholt; Andersen, René F;

    2015-01-01

    In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in pre-urine is thought to activate proteolytically ENaC and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator...

  6. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC Amiloride sensitive sodium channels (ENaC and their regulation by proteases

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2011-04-01

    Full Text Available El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. Dos factores regulan la actividad del ENaC. 1 el número de canales insertos en la membrana celular y 2 la probabilidad de apertura o tiempo en que se encuentra abierto el canal. El número de canales es el resultado de un balance entre su síntesis y degradación. La probabilidad de apertura depende de la proteólisis de zonas específicas de las subunidades α y γ por múltiples proteasas dentro de la célula y en el espacio extracelular. Entre las proteasas más estudiadas se encuentran la furina, prostasina, elastasa, plasmina y tripsina. Existen sustancias endógenas que bloquean la actividad de estas proteasas como la aprotinina, la bikunina y la nexina-1 y la expresión de las proteasas y sus inhibidores es regulada a su vez por la aldosterona, la tasa de movimiento de Na y el TFGβ. En este trabajo presentamos algunos ejemplos de esta regulación y su potencial papel en condiciones normales y en ciertas enfermedades como la fibrosis quística, renales e hipertensión.ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia and it is also expressed in human placenta. ENaC is crucial in the control of electrolyte and extracellular volume homeostasis. ENaC is regulated by several hormones, including aldosterone and blocked by amiloride and its analogs. ENaC channels are composed by three homologous subunits, α, β and γ that form the pore where Na ions are transported. Two factors

  7. Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway

    Directory of Open Access Journals (Sweden)

    Cheon Yong-Pil

    2009-08-01

    Full Text Available Abstract Background MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. Results We examined transduction of MPG-EGFP fusion protein by live imaging, flow cytometry, along with combination of cell biological and pharmacological methods. We show that MPG-EGFP fusion proteins efficiently enter various mammalian cells within a few minutes and are co-localized with FM4-64, a general marker of endosomes. The transduction of MPG-EGFP occurs rapidly and is inhibited at a low temperature. The entry of MPG-EGFP is inhibited by amiloride, but cytochalasin D and methyl-β-cyclodextrin did not inhibit the entry, suggesting that macropinocytosis is not involved in the transduction. Overexpression of a mutant form of dynamin partially reduced the transduction of MPG-EGFP. The partial blockade of MPG-EGFP transduction by a dynamin mutant is abolished by the treatment of amiloride. MPG-EGFP transduction is also observed in the mammalian oocytes. Conclusion The results show that the transduction of MPG fusion protein utilizes endocytic pathway(s which is amiloride-sensitive and partially dynamin-dependent. Collectively, the MPG fusion protein could be further developed as a novel tool of "protein therapeutics", with potentials to be used in various cell systems including mammalian oocytes.

  8. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O;

    2015-01-01

    saline. U-NKCC2, u-ENaCγ, u-AQP2 and plasma concentrations of vasopressin (p-AVP), renin (PRC), angiotensin II (p-ANG II) and aldosterone (p-Aldo) were measured, by radioimmunoassay. Central blood pressure was estimated by applanation tonometry and body fluid volumes were estimated by bio-impedance......-blinded, placebo-controlled, 3-way crossover study we examined 23 healthy subjects on a standardized diet and fluid intake. The subjects were treated with amiloride 5 mg, BFTZ 1.25 mg or placebo twice a day for 4.5 d before each examination day. On the examination day, glomerular filtration rate was measured by...... the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic...

  9. Podocyturia: A Clue for the Rational Use of Amiloride in Alport Renal Disease.

    Science.gov (United States)

    Trimarchi, H; Canzonieri, R; Muryan, A; Schiel, A; Araoz, A; Paulero, M; Andrews, J; Rengel, T; Forrester, M; Lombi, F; Pomeranz, V; Iriarte, R; Zotta, E

    2016-01-01

    No specific or efficient treatment exists for Alport syndrome, an X-linked hereditary disease caused by mutations in collagen type IV, a crucial component of the glomerular basement membrane. Kidney failure is usually a major complication of the disease, and patients require renal replacement therapy early in life. Microhematuria and subsequently proteinuria are hallmarks of kidney involvement, which are due to primary basement membrane alterations that mainly cause endothelial thrombosis and podocyte contraction and ulterior irreversible detachment. Commonly drug-based approaches include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which are employed to reduce proteinuria and thus retard kidney disease progression and cardiovascular morbidity and mortality. However, as any hereditary disease, it is expressed as early as in the intrauterine life, and usually an index case is helpful to detect family-related cases. As no specific treatment exists, pathophysiologically based approaches are useful. The present case illustrates the reduction rate of urinary podocyte loss and proteinuria after amiloride administration and suggests the molecular pathways involved in Alport renal disease. Finally, podocyturia rather than proteinuria should be considered as an earlier biomarker of kidney involvement and disease progression in Alport disease. PMID:26942026

  10. Podocyturia: A Clue for the Rational Use of Amiloride in Alport Renal Disease

    Directory of Open Access Journals (Sweden)

    H. Trimarchi

    2016-01-01

    Full Text Available No specific or efficient treatment exists for Alport syndrome, an X-linked hereditary disease caused by mutations in collagen type IV, a crucial component of the glomerular basement membrane. Kidney failure is usually a major complication of the disease, and patients require renal replacement therapy early in life. Microhematuria and subsequently proteinuria are hallmarks of kidney involvement, which are due to primary basement membrane alterations that mainly cause endothelial thrombosis and podocyte contraction and ulterior irreversible detachment. Commonly drug-based approaches include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which are employed to reduce proteinuria and thus retard kidney disease progression and cardiovascular morbidity and mortality. However, as any hereditary disease, it is expressed as early as in the intrauterine life, and usually an index case is helpful to detect family-related cases. As no specific treatment exists, pathophysiologically based approaches are useful. The present case illustrates the reduction rate of urinary podocyte loss and proteinuria after amiloride administration and suggests the molecular pathways involved in Alport renal disease. Finally, podocyturia rather than proteinuria should be considered as an earlier biomarker of kidney involvement and disease progression in Alport disease.

  11. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2011-04-01

    Full Text Available El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. Dos factores regulan la actividad del ENaC. 1 el número de canales insertos en la membrana celular y 2 la probabilidad de apertura o tiempo en que se encuentra abierto el canal. El número de canales es el resultado de un balance entre su síntesis y degradación. La probabilidad de apertura depende de la proteólisis de zonas específicas de las subunidades α y γ por múltiples proteasas dentro de la célula y en el espacio extracelular. Entre las proteasas más estudiadas se encuentran la furina, prostasina, elastasa, plasmina y tripsina. Existen sustancias endógenas que bloquean la actividad de estas proteasas como la aprotinina, la bikunina y la nexina-1 y la expresión de las proteasas y sus inhibidores es regulada a su vez por la aldosterona, la tasa de movimiento de Na y el TFGβ. En este trabajo presentamos algunos ejemplos de esta regulación y su potencial papel en condiciones normales y en ciertas enfermedades como la fibrosis quística, renales e hipertensión.

  12. Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride.

    Science.gov (United States)

    Jalily, Pouria H; Eldstrom, Jodene; Miller, Scott C; Kwan, Daniel C; Tai, Sheldon S-H; Chou, Doug; Niikura, Masahiro; Tietjen, Ian; Fedida, David

    2016-08-01

    The increasing prevalence of influenza viruses with resistance to approved antivirals highlights the need for new anti-influenza therapeutics. Here we describe the functional properties of hexamethylene amiloride (HMA)-derived compounds that inhibit the wild-type and adamantane-resistant forms of the influenza A M2 ion channel. For example, 6-(azepan-1-yl)-N-carbamimidoylnicotinamide ( 9: ) inhibits amantadine-sensitive M2 currents with 3- to 6-fold greater potency than amantadine or HMA (IC50 = 0.2 vs. 0.6 and 1.3 µM, respectively). Compound 9: competes with amantadine for M2 inhibition, and molecular docking simulations suggest that 9: binds at site(s) that overlap with amantadine binding. In addition, tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 27: ) acts both on adamantane-sensitive and a resistant M2 variant encoding a serine to asparagine 31 mutation (S31N) with improved efficacy over amantadine and HMA (IC50 = 0.6 µM and 4.4 µM, respectively). Whereas 9: inhibited in vitro replication of influenza virus encoding wild-type M2 (EC50 = 2.3 µM), both 27: and tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 26: ) preferentially inhibited viruses encoding M2(S31N) (respective EC50 = 18.0 and 1.5 µM). This finding indicates that HMA derivatives can be designed to inhibit viruses with resistance to amantadine. Our study highlights the potential of HMA derivatives as inhibitors of drug-resistant influenza M2 ion channels. PMID:27193582

  13. The effects of amiloride and age on oxygen consumption coupled to electrogenic sodium transport in the human sigmoid colon

    Directory of Open Access Journals (Sweden)

    Graciela E Carra

    2015-01-01

    Full Text Available Background/Aim: Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Materials and Methods: Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62–77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L. Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Results: Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884;P = 0.0007. Oxygen consumption decreased by 1 m mol/h/cm2 for each 25 m A/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. Conclusion: The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject.

  14. The Effects of Amiloride and Age on Oxygen Consumption Coupled to Electrogenic Sodium Transport in the Human Sigmoid Colon

    Science.gov (United States)

    Carra, Graciela E.; Matus, Daniel; Ibáñez, Jorge E.; Saraví, Fernando D.

    2015-01-01

    Background/Aim: Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Materials and Methods: Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62–77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L). Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Results: Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884; P = 0.0007). Oxygen consumption decreased by 1 μmol/h/cm2 for each 25 μA/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. Conclusion: The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject. PMID:26458855

  15. Selective activation of hTRPV1 by N-geranyl cyclopropylcarboxamide, an amiloride-insensitive salt taste enhancer.

    Directory of Open Access Journals (Sweden)

    Min Jung Kim

    Full Text Available TRPV1t, a variant of the transient receptor potential vanilloid-1 (TRPV1 has been proposed as a constitutively active, non-selective cation channel as a putative amiloride-insensitive salt taste receptor and shares many properties with TRPV1. Based on our previous chorda tympani taste nerve recordings in rodents and human sensory evaluations, we proposed that N-geranylcyclopropylcarboxamide (NGCC, a novel synthetic compound, acts as a salt taste enhancer by modulating the amiloride/benzamil-insensitive Na(+ entry pathways. As an extension of this work, we investigated NGCC-induced human TRPV1 (hTRPV1 activation using a Ca(2+-flux signaling assay in cultured cells. NGCC enhanced Ca(2+ influx in hTRPV1-expressing cells in a dose-dependent manner (EC50 = 115 µM. NGCC-induced Ca(2+ influx was significantly attenuated by ruthenium red (RR; 30 µM, a non-specific blocker of TRP channels and capsazepine (CZP; 5 µM, a specific antagonist of TRPV1, implying that NGCC directly activates hTRPV1. TRPA1 is often co-expressed with TRPV1 in sensory neurons. Therefore, we also investigated the effects of NGCC on hTRPA1-expressing cells. Similar to hTRPV1, NGCC enhanced Ca(2+ influx in hTRPA1-expressing cells (EC50 = 83.65 µM. The NGCC-induced Ca(2+ influx in hTRPA1-expressing cells was blocked by RR (30 µM and HC-030031 (100 µM, a specific antagonist of TRPA1. These results suggested that NGCC selectively activates TRPV1 and TRPA1 in cultured cells. These data may provide additional support for our previous hypothesis that NGCC interacts with TRPV1 variant cation channel, a putative amiloride/benzamil-insensitive salt taste pathway in the anterior taste receptive field.

  16. A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Dahl, Hans A.; Buttenschön, Henriette N.;

    2012-01-01

    Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors...... the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant...

  17. Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: Purification, characterization, and modulation by amiloride

    International Nuclear Information System (INIS)

    The atrial natriuretic factor (ANF) R1 receptor from bovine adrenal zona glomerulosa was solubilized with Triton X-100 and purified 13,000-fold, to apparent homogeneity, by sequential affinity chromatography on ANF-agarose and steric exclusion high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the purified receptor preparation in the absence or presence of dithiothreitol revealed a single protein band of Mr 130,000. Affinity cross-linking of 125I-ANF to the purified receptor resulted in the labeling of the Mr 130,000 band. The purified receptor bound ANF with a specific activity of 6.8 nmol/mg of protein, corresponding to a stoichiometry of 0.9 mol of ANF bound/mol of Mr 130,000 polypeptide. Starting with 500 g of adrenal zona glomerulosa tissue, the authors obtained more than 500 pmol of purified receptor with an overall yield of 9%. The purified receptor showed a typical ANF-R1 pharmacological specificity similar to that of the membrane-bound receptor. The homogeneous Mr 130,000 receptor protein displayed high guanylate cyclase activity [1.4 μmol of cyclic GMP formed min-1 (mg of protein)-1] which was not stimulated by ANF. This finding supports the notion that the ANF binding and the guanylate cyclase activities are intrinsic components of the same polypeptide. Finally, the purified ANF-R1 receptor retained its sensitivity to modulation by amiloride, suggesting the presence of an allosteric binding site for amiloride on the receptor protein

  18. K+ transport across the lamprey erythrocyte membrane: characteristics of a Ba(2+)- and amiloride-sensitive pathway.

    Science.gov (United States)

    Kirk, K

    1991-09-01

    The characteristics of K+ transport in erythrocytes from the river lamprey (Lampetra fluviatilis) were investigated using standard radioisotope flux techniques. The cells were shown to have a ouabain-sensitive transport pathway that carried 43K+ and 86Rb+ into the cell at similar rates. Most of the ouabain-resistant 43K+ and 86Rb+ influx was via a pathway that was insensitive to cotransport inhibitors and to the replacement of extracellular Cl- or Na+. This pathway showed a strong selectivity for 43K+ over 86Rb+. It was inhibited fully by Ba2+ (I50 approximately 2.8 mumol l-1), amiloride (I50 approximately 150 mumol l-1) and ethylisopropylamiloride (I50 approximately 3.3 mumol l-1) and less effectively by quinine and by the tetraethylammonium ion. Inhibition by Ba2+ took full effect within a few minutes whereas the full inhibitory effect of amiloride took more than 1 h to develop. Experiments with the membrane potential probe [14C]tetraphenylphosphonium ion gave results consistent with the lamprey erythrocyte membrane having a Ba(2+)-sensitive K+ conductance that was significantly greater than the membrane Na+ conductance and which gave rise to a marked dependence of the membrane potential on the extracellular K+ concentration. The rate constants for Ba(2+)-sensitive 43K+ and 86Rb+ influx decreased (proportionally) with increasing extracellular K+ concentration in a manner that was consistent with the transport being via a conductive pathway. The decrease was attributed to a depolarisation of the membrane (in response to the increasing extracellular K+ concentration) and a consequent decrease in the driving force for the conductive movement of 43K+ and 86Rb+ into the cells. Ba(2+)-sensitive 86Rb+ influx increased significantly with decreasing cell volume and with increasing intracellular pH (at a constant extracellular pH) but increased only slightly with increasing extracellular pH. The pathway operated normally in the complete absence of extracellular Ca2+ but

  19. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  20. 阿米洛利对豚鼠心肌细胞钾电流及钙电流的作用%Effects of amiloride on potassium and calcium currents in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    程岚; 王芳; 周红义; 姚伟星; 夏国瑾; 江明性

    2004-01-01

    目的研究阿米洛利(amiloride)对豚鼠心肌细胞钾电流及钙电流的作用.方法采用全细胞膜片钳技术记录豚鼠心室肌细胞钾通道及钙通道电流.结果阿米洛利在10~100μmol·L-1抑制L型及T型钙电流,不改变钙电流I-V曲线的形状,仅抑制这两型电流的幅度.当累积浓度达l00μmol·L-1时,阿米洛利轻微抑制快激活延迟整流钾电流(IKr),对慢激活延迟整流钾电流(IKs)无影响.阿米洛利在1~100μmol·L-1浓度依赖性地抑制内向整流钾电流(IK1).结论阿米洛利抑制电压依赖性的钾、钙电流,为其抗心律失常作用提供了离子基础.%Aim To elucidate the possible mechanisms underlying antiarrhythmia of the non-selective Na*/H + exchanger inhibitor- amiloride. Methods Single ventricular cells were isolated using a double-enzyme method. Effects of amiloride on voltage-dependent potassium and calcium currents in isolated guinea pig ventricular myocyte were recorded by using whole-cell patch clamp techniques. Results Amiloride resulted in a concentration-dependent inhibition of peak ICa,L, But amiloride did not change the shape of their I - V curves. It only decreased the amplitudes of the currents of the two types. When Amiloride depressed potassium and calcium currents, which may give support to its uses in some diseases of the cardiovascular system.

  1. 31-P NMR studies of intracellular pH (pH/sub i/) of the in vitro resting rat diaphragm (D) exposed to hypercapnia (HC), plus amiloride (HCA)

    International Nuclear Information System (INIS)

    The authors have previously reported that the pH/sub i/ of the resting rat D in vitro fell when exposed to HC. Since pH/sub i/ influences cellular functions, it is important to understand mechanisms whereby a tissue maintains its pH/sub i/ One mechanism reported to exist in some vertebrate tissues is a sodium-proton pump which is inhibited by amiloride. If the rat D had the Na+-H+ pump, the resting rat D pH/sub i/, when exposed to hypercapnia, would decrease more if amiloride was present than if there was no amiloride. The D was placed in a 25 mm NMR sample tube and superfused with buffer gassed with 95%O2-5%CO2 at 370C. Two 15 minute pulsed Fourier transform spectra were acquired at 72.89 MHz using 2 sec repetition rate during normocapnia. The D was next superfused for 60 minutes with buffer gassed with 80%O2-20%CO2 and containing 5 x 10-4M amiloride (n=5; HCA) or not (n=8; HC). Four 15 minute spectra were obtained; pH/sub i/ was determined from the chemical shift of P/sub i/ resonance. The pH/sub i/ (X vector +/- SE) of HC D's fell from 7.14 +/- .04 to 6.85 +/- .05 at 1 hour of exposure. The pH/sub i/ of HCA D's fell from 6.95 +/- .05 to 6.57 +/- .03. The decrease in pH/sub i/ during hypercapnia is significantly greater (P+-H+ pump to regulate pH/sub i/ and that this pump operates in the in vitro resting rat D exposed to hypercapnia

  2. NaCl-preferring NZB/B1NJ Mice and NaCl-avoiding CBA/J Mice Have Similar Amiloride Inhibition of Chorda Tympani Responses to NaCl

    OpenAIRE

    Ninomiya, Yuzo; Bachmanov, Alexander A.; Yatabe, Akira; Gary K Beauchamp

    1998-01-01

    Integrated chorda tympani nerve responses to NaCl were studied in two mouse strains, an NaCl-preferring NZB/B1NJ and an NaCl-avoiding CBA/J. The NaCl responses of both strains had similar magnitude and were suppressed by amiloride to a similar extent. This suggests that peripheral gustatory responsiveness to NaCl is not the only mechanism underlying mouse strain variation in NaCl acceptance.

  3. Effects of Small Dose of Amlodipine Combined with Compound Amiloride or Telmisartan on Insulin Resistance in Patients with Primary Hypertension%小剂量氨氯地平联合复方阿米洛利或替米沙坦对原发性高血压患者胰岛素抵抗的影响

    Institute of Scientific and Technical Information of China (English)

    王瑞英; 李丽莉; 张鹤; 张松筠; 王绵; 李彩格

    2011-01-01

    OBJECTIVE: To compare the effects of small dose of amlodipine combined with compound amiloride or telmisartan on insulin resistance in patients with primary hypertension, and to observe the change of serum resistin related with insulin resistance. METHODS: 54 patients with primary hypertension were randomly divided into 2 groups. Group A were treated with small dose of amlodipine combined with compound amiloride and group B small dose of amlodipine combined with telmisartan for 18 months. Before and after treatment, serum insulin, serum resistin and insulin resistance index (Homa-IR) were determined. RESULTS: After 18 months of treatment, FINS and Homa-IR of group A were higher than those of group B, there was significant difference (P<0.05). FINS and Homa-IR of 2 groups were decreased after treatment, the difference of group A was not statistical significance (P>0.05). The difference of group B was statistical significance (P<0.05). The level of serum resistin in group A was decreased after treatment, there was no statistical significance (P>0.05). The level of serum resistin in group B was decreased significantly (P<0.05). The level of serum resistin in group B was significantly lower than in group A (P<0.05). CONCLUSION:Small dose of amlodipine combined with telnisartan is better than Small dose of amlodipine combined with amiloride in the improvement of insulin resistance in patients with primary hypertension. Resistin plays important role in the formulation of insulin resistance in hypertensive patients.%目的:比较小剂量氨氯地平联合复方阿米洛利或替米沙坦对原发性高血压患者胰岛素抵抗(IR)的影响,同时观察与IR密切相关的血清抵抗素的变化.方法:选取原发性高血压患者54例,随机分为2组:A组应用小剂量氨氯地平联合复方阿米洛利,B组应用小剂量氨氯地平联合替米沙坦,2组疗程均为18个月.分别于治疗前后测定血清胰岛素、抵抗素、胰岛素抵抗

  4. The comparative study of amlodipine combined with amiloride or with telmisartan on carotid atherosclerosis in hypertensive patients%氨氯地平联合复方阿米洛利或联合替米沙坦对高血压患者颈动脉粥样硬化的对比研究

    Institute of Scientific and Technical Information of China (English)

    孙尚文; 路方红; 孙颖; 赵颖馨; 刘振东; 王舒健

    2011-01-01

    Objective To investigate the effects of either combining amlodipine with amiloride or with telmisartan on carotid atherosclerosis in hypertensive patients. Methods The patients were randomly divided into amlodipine with amiloride group (Group A, n=207) or amlodipine with telmisartan group (Group B, n = 211). Carotid arterial mean intimal-medial thickness (MIMT), carotid inner diameters and blood flow parameter were measured with high resolution ultrasound and later again after 12 and 24 month treatment. Results There was no significant difference in reducing blood pressure between two groups (P>0. 05). Compared to baseline, in both groups, the artery diameters after 12, or 24 month treatment became larger [A group (7. 92±1. 51) vs (8. 32±1. 47) vs (7. 45±1. 36) mm; B group (7. 95±1. 55) vs (8. 33±1. 62) vs (7. 39±1. 44) mm], Crouse points decreased [A group (3. 12± 2.76) and (2. 61±2. 10) vs (3. 67±2. 87)mm; B group (2. 97±2. 32) and (2. 34±1. 87) vs (3. 71±3. 02)], peak systolic velocity (PSV), end diastolic velocity (EDV) became quicker, and resistance index (RI) became less. With prolonged treatment, the trend is more evident (all P0. 05] while at 24 month, reduction of MIMT appearedsignificantly [(0. 91±0. 14) vs (0. 97±0. 12) mm, P<0. 05]. Compared to combined with amiloride, amlodipine combined with telmisartan in patients after 12 and 24 month treatment, the MIMT reduction, Crouse points decrease, RI decrease, all are significant (P<0. 05). Conclusion The combination therapy of amlodipine with amiloride/HCTZ or amlodipine with telmisartan are similar in lowering BP, easing atherosclerosis, and are more significant with a longer treatment time. However combing amlodipine with telmisartan has a better effect on correcting abnormal function and structure of large arteries, which may delay the progression of atherosclerosis.%目的 探讨氨氯地平联合复方阿米洛利与氨氯地平联合替米沙坦对高血压患者颈动

  5. Severe hyponatraemia in an amiloride/hydrochlorothiazide-treated patient

    NARCIS (Netherlands)

    Van Assen, S.; Mudde, A.H.

    1999-01-01

    A 85-year-old woman treated with, among other drugs, a thiazide diuretic presented with a severe hyponatraemia. She met several of the criteria for SIADH and, besides drugs, no cause for SIADH was found. After stopping the thiazide diuretic and restricting fluid intake the patient recovered fully. I

  6. Podocyturia: A Clue for the Rational Use of Amiloride in Alport Renal Disease

    OpenAIRE

    H. Trimarchi; R. Canzonieri; Muryan, A.; Schiel, A.; Araoz, A.; Paulero, M.; Andrews, J; Rengel, T.; Forrester, M.; F. Lombi; V. Pomeranz; Iriarte, R.; Zotta, E.

    2016-01-01

    No specific or efficient treatment exists for Alport syndrome, an X-linked hereditary disease caused by mutations in collagen type IV, a crucial component of the glomerular basement membrane. Kidney failure is usually a major complication of the disease, and patients require renal replacement therapy early in life. Microhematuria and subsequently proteinuria are hallmarks of kidney involvement, which are due to primary basement membrane alterations that mainly cause endothelial thrombosis and...

  7. Nociceptin/orphanin FQ peptide receptor agonist Ac-RYYRWKKKKKKK-NH2 (ZP120) induces antinatriuresis in rats by stimulation of amiloride-sensitive sodium reabsorption

    DEFF Research Database (Denmark)

    van Deurs, Ulla S K; Hadrup, Niels; Petersen, Jørgen Søberg;

    2008-01-01

    The aim of the present study was to examine the mechanisms responsible for the antinatriuretic effect of the selective, peripherally acting, nociceptin/orphanin FQ peptide (NOP) receptor partial agonist Ac-RYYRWKKKKKKK-NH(2) (ZP120). Using immunohistochemistry, we showed that in the cortex NOP...... the hypothesis that ZP120 induces direct renal effects by modifying the activity of sodium transporters in the distal convoluted tubules or in the collecting ducts, ZP120-induced antinatriuresis was examined during coadministration of an inhibitor of the NaCl cotransporter, bendroflumethiazide, or a blocker...

  8. Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells

    DEFF Research Database (Denmark)

    Andersen, Henrik; Friis, Ulla G; Hansen, Pernille B L;

    2015-01-01

    by western immunoblotting, patch clamp and ELISA. Urine exosomes were isolated to elucidate potential cleavage of γENaC by a monoclonal antibody directed against the 'inhibitory' peptide tract. RESULTS: Compared with control, DN patients displayed significantly higher blood pressure and urinary excretion...... with controls. Immunoblotting of urine exosomes showed aquaporin 2 in all patient samples. Exosomes displayed a virtual absence of intact γENaC while moieties compatible with cleavage by furin only, were shown in both groups. Proteolytic cleavage by the extracellular serine proteases plasmin or prostasin...

  9. Ion exchange mechanisms on the erythrocyte membrane of the aquatic salamander, Amphiuma tridactylum

    DEFF Research Database (Denmark)

    Tufts, B L; Nikinmaa, M; Steffensen, J F; Randall, D J

    1987-01-01

    could be abolished by amiloride, ouabain or removal of sodium from the incubation medium. In addition, amiloride and DIDS both caused a decrease in cell water content. The data indicate that sodium/proton and chloride/bicarbonate exchangers are present on the membrane of Amphiuma erythrocytes and these...

  10. Cyclosporine Injection

    Science.gov (United States)

    ... diuretics ('water pills') including amiloride (in Hydro-ride), spironolactone (Aldactone), and triamterene (Dyazide, Dyrenium, in Maxzide); erythromycin ( ... or growth of extra tissue on the gums acne uncontrollable shaking of a part of your body ...

  11. Heart failure - tests

    Science.gov (United States)

    ... test regularly if: You are taking medicines called ACE inhibitors or ARBs (angiotensin receptor blockers) Your provider makes ... there are changes made for some medicines including: ACE inhibitors, ARBs, or certain types of water pills (amiloride, ...

  12. Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole.

    NARCIS (Netherlands)

    Afeltra, J.; Vitale, R.G.; Mouton, J.W.; Verweij, P.E.

    2004-01-01

    To develop new approaches for the treatment of invasive infections caused by Aspergillus fumigatus, the in vitro interactions between itraconazole (ITZ) and seven different nonantimicrobial membrane-active compounds--amiodarone (AMD), amiloride, lidocaine, lansoprazole (LAN), nifedipine (NIF), verap

  13. Defective fluid transport by cystic fibrosis airway epithelia.

    OpenAIRE

    Smith, J.J.; Karp, P H; Welsh, M J

    1994-01-01

    Cystic fibrosis (CF) airway epithelia exhibit defective transepithelial electrolyte transport: cAMP-stimulated Cl- secretion is abolished because of the loss of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, and amiloride-sensitive Na+ absorption is increased two- to threefold because of increased amiloride-sensitive apical Na+ permeability. These abnormalities are thought to alter respiratory tract fluid, thereby contributing to airway disease, the m...

  14. MECHANISMS BY WHICH HYPERTONICITY INHIBITS TRANSEPITHELIAL NA + TRANSPORT ACROSS HUMAN BRONCHIAL EPITHELIAL CELLS FROM CYSTIC FIBROSIS DONORS

    OpenAIRE

    Rasgado-flores, H.; Mandava, V.; Siman, H.; Piennette, P.; Ngansop, T.; Rodriguez, A.; Chiwocha, T.; Pena-rasgado, C.; Bridges, R.

    2013-01-01

    Hyperosmotic challenge (HC) saline inhalation benefits Cystic Fibrosis (CF) patients. Surprisingly, these benefits are long-lasting and amiloride diminishes them. Our aim was to explain these effects. Human bronchial epithelial (HBE) cells from CF donors were grown in inserts and were used to measure amiloride-sensitive short circuit currents (I Na), and transepithelial conductance (G T) and capacitance (C T). HC solutions were prepared by either adding additional NaCl or mannitol to the isos...

  15. A cell shrinkage-induced non-selective cation conductance with a novel pharmacology in Ehrlich-Lettre-ascites tumour cells

    DEFF Research Database (Denmark)

    Lawonn, Peter; Hoffmann, Else K; Hougaard, Charlotte;

    2003-01-01

    In whole-cell recordings on Ehrlich-Lettre-ascites tumour (ELA) cells, the shrinkage-induced activation of a cation conductance with a selectivity ratio P(Na):P(Li):P(K):P(choline):P(NMDG) of 1.00:0.97:0.88:0.03:0.01 was observed. In order of potency, this conductance was blocked by Gd(3+)=benzamil......>amiloride>ethyl-isopropyl-amiloride (EIPA). In patch-clamp studies using the cell-attached configuration, a 14 pS channel became detectable that was reversibly activated upon hypertonic cell shrinkage. It is concluded that ELA cells express a shrinkage-induced cation channel that may reflect a molecular link between amiloride...

  16. Fast Nongenomic Effect of Aldosterone on the Volume of Principal Cells in Collecting Tube and Genetic Heterogeneity of Epithelial Sodium Channel in the Postnatal Ontogenesis of Rat Kidney.

    Science.gov (United States)

    Logvinenko, N S; Gerbek, Yu E; Solenov, E I; Ivanova, L N

    2016-03-01

    The effects of amiloride, epithelial sodium pump inhibitor, on the fast nongenomic effect of aldosterone in principal cells of an isolated segment of the distal portion of renal collecting tubes were studied in 10-day-old and adult rats. Fluorescent staining with Calcein AM showed various effects of amiloride (10(-5) M) on the stabilizing effect of aldosterone (10 nM) in hypotonic shock (280/140 mOsm/kg). Amiloride attenuated by 30% the effect of aldosterone on the amplitude of principal cell swelling in adult animals and almost completely abolished this effect in 10-day rats (p<0.05). These age-specific differences in the contribution of the distal portion of the collecting tube to the nongenomic effect of aldosterone did not depend on genetic heterogeneity of its α-subunit. PMID:27021081

  17. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L;

    1999-01-01

    difference and changes in potential difference in response to passage of current pulses were recorded, and epithelial resistance and the equivalent short-circuit current were calculated. Non-CF control potential difference and short-circuit current values were significantly lower than the CF values, and...... amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level in...

  18. Permeability Properties of Enac Selectivity Filter Mutants

    OpenAIRE

    Kellenberger, Stephan; Auberson, Muriel; Gautschi, Ivan; Schneeberger, Estelle; Schild, Laurent

    2001-01-01

    The epithelial Na+ channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na+ absorption. The amiloride-sensitive ENaC is highly selective for Na+ and Li+ ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and the narrow ion-selective region of the pore. We have shown previously that mutations of the αS589 residue in...

  19. Ion transport by mitochondria-rich cells in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Ussing, H H; Spring, K R

    1987-01-01

    The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution......) solutions, apical exposure to a sodium-free solution, or to amiloride. Serosal exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions...

  20. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...... sensitive to amiloride but insensitive to bumetanide. As compared with the trachea, the bronchial (absorptive) epithelium is characterized by 1) a large amiloride-sensitive cellular conductance and 2) a relatively depolarized basolateral membrane. We conclude that this primary cell culture technique...

  1. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

    Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na+ ...

  2. Elevated 22Na uptake in aortae of Dahl salt-sensitive rats with high salt diet

    International Nuclear Information System (INIS)

    We examined the effects of high salt intake on blood pressure and vascular 22Na uptake in Dahl salt-sensitive (DS) rats. At 6 weeks of age, one group of 6 DS rats was placed on a low (0.4%) salt diet and the second group of 6 DS rats was placed on a high (8.0%) salt diet for a period of 4 weeks. Blood pressure recordings were made weekly. At 10 weeks of age, the animals were sacrificed and aortic 22Na uptake was measured. Total and amiloride sensitive (Na(+)-H+ antiport) components of 22Na uptake were measured from which was calculated the amiloride insensitive component. Na+, K(+)-pumps were inhibited for these vascular 22Na uptake experiments with ouabain to prevent Na+ efflux. DS rats on the high salt diet demonstrated significantly (P less than 0.01) higher blood pressure when compared to DS rats on a low salt diet. Similarly, DS rats on a high salt diet demonstrated significantly (P less than 0.05) higher total, amiloride sensitive and amiloride insensitive vascular 22Na uptake as compared to DS rats on low salt diet. The parallel increase in vascular 22Na uptake and blood pressure suggests a possible, key role of Na+ influx in the mechanism of salt induced hypertension of DS rats

  3. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D;

    2010-01-01

    NaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission....

  4. Sequence Classification: 791090 [

    Lifescience Database Archive (English)

    Full Text Available resistant FLR-1, ion channel similar to amiloride-sensitive sodium channel, modulates defecation rhythm, pace of development and fluo...ride sensitivity (72.3 kD) (flr-1) || http://www.ncbi.nlm.nih.gov/protein/17568351 ...

  5. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  6. Na+ uptake into colonic enterocyte membrane vesicles

    International Nuclear Information System (INIS)

    Na+ uptake was studied in colonic enterocyte membrane vesicles prepared from normal and dexamethasone-treated rats. Vesicles from rats treated with dexamethasone demonstrated a fivefold greater 22Na+ uptake compared with vesicles from normal rats. Most of the tracer uptake in membranes derived from treated rats occurred through a conductive, amiloride-blockable pathway located in vesicles with low native K+ permeability and high Cl- permeability. Kinetic analysis of the amiloride inhibition curve revealed the presence of two amiloride-blockable pathways, one with a high affinity accounting for 85% of the uptake, and one with a low affinity accounting for only 12% of the uptake. Only the low-affinity pathway was detected with vesicles from normal rats. The high sensitivity to amiloride, the dependence on dexamethasone pretreatment, and the relative permeabilities to K+ and Cl- indicate that most of the 22Na+ uptake in membranes derived from treated rats is through a Na+-specific channel located in apical membrane vesicles. Preincubation of the isolated cells from dexamethasone-treated rats at 37 degree C in Ca2+-free solutions before homogenization and membrane vesicle purification caused a 5- to 10-fold increase in amiloride-blockable 22Na+ uptake compared with vesicles derived from cells maintained at 0 degree C. The addition of Ca2+, but not of Mg2+, to the incubation solution markedly reduced this temperature-dependent enhancement in 22Na+ uptake. These results suggest that Na+ transport in colonic enterocytes from dexamethasone-treated rats is regulated by a Ca2+-dependent, temperature-sensitive process which causes a sustained change in the apical membrane

  7. Bactridine's effects on DUM cricket neurons under voltage clamp conditions.

    Science.gov (United States)

    Forsyth, P; Sevcik, C; Martínez, R; Castillo, C; D'Suze, G

    2012-12-01

    We describe the effects of six bactridines (150 nM) on cricket dorsal unpaired median (DUM) neurons. The addition of bactridine 2 to DUM neurons induced a large current component with a reversal potential more negative than -30 mV, most evident at the end of the pulses. This current was completely suppressed when 1 μM amiloride was applied before adding the bactridines. Since the amiloride sensitive current is able to distort the aim of our study, i.e. the effect of bactridines on sodium channels, all experiments were done in the presence of 1 μM amiloride. Most bactridines induced voltage shifts of V(1/2) of the Boltzmann inactivation voltage dependency curves in the hyperpolarizing direction. Bactridines 1, 4 and 6 reduced Na current peak by 65, 80 and 24% of the control, respectively. The sodium conductance blockage by bactridines was voltage independent at potentials >20 mV. Bactridines effect on cricket DUM neurons does not correspond to neither α- nor β-toxins. Most bactridines shifted the inactivation curves in the hyperpolarizing direction without any effects on the activation m(∞)-like curves. Also bactridines differ from other NaScpTx in that they increased an amiloride-sensitive conductance in DUM neurons. Our result suggest that the α/β classification of sodium scorpion toxins is not all encompassing. The present work shows that bactridines target more than one site: insect voltage dependent Na channels and an amiloride-sensitive ionic pathway which is under study. PMID:23085555

  8. Inflammatory stimuli acutely modulate peripheral taste function.

    Science.gov (United States)

    Kumarhia, Devaki; He, Lianying; McCluskey, Lynnette Phillips

    2016-06-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness. PMID:27009163

  9. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  10. Polarized distribution of Na+/H+ antiport and Na+/HCO3- cotransport in primary cultures of renal inner medullary collecting duct cells.

    Science.gov (United States)

    Hart, D; Nord, E P

    1991-02-01

    Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na

  11. A case of liddle′s syndrome; unusual presentation with hypertensive encephalopathy

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2014-01-01

    Full Text Available Liddle′s syndrome is a rare cause of secondary hypertension. Identification of this disorder is important because treatment differs from other forms of hypertension. We report an interesting case of a 35-year-old lady, a known diabetic and hypertensive patient, who presented with features of hypertensive encephalopathy. The family history was unremarkable. Past treat-ment with various combinations of antihypertensive medications including spironolactone, all at high doses, failed to control her blood pressure. Upon evaluation, the patient had hypokalemic alkalosis, low 24-h urine potassium and suppressed plasma renin activity. Although these findings were similar to hyperaldosteronism, plasma aldosterone was lower than the normal range. Blood pressure decreased markedly after administration of amiloride. Along with hyporeninemic hypo-aldosteronism, the non-responsiveness to spironolactone and good response to amiloride esta-blished the diagnosis of Liddle′s syndrome.

  12. Sodium transport in cultured rat renal papillary collecting tubule

    International Nuclear Information System (INIS)

    The renal papillary collecting duct (PCD) is the final site for regulation of sodium excretion. Cultured rat RPCT cells were investigated as a model for the PCD. Sodium transport was studied using 22Na+ uptake measurements. Steady state Na+ uptake was measured at 230C in the absence of K+ and in the presence of 0.1 mM ouabain. 22Na+ uptake by the monolayer (157 +/- 9 nmol/lg protein/3 min) was saturable at 100 mM extracellular NaCl and half-maximal uptake occurred at 40 mM NaCl. The sigmoidal velocity curve suggested more than one external binding site for Na+ as the Hill coefficient was 2. The measured uptake of 22Na+ appeared to be intracellular and was regulated by Na+/K+ ATPase activity, since activation of the Na+/K+ pump with K+, reduced 22Na+ accumulation seven-fold. The time course for uptake was linear, showed only a single component, and followed first order kinetics with a t/sub 1/2/ of 17 min. Amiloride inhibited 22Na+ uptake. A Dixon plot revealed a linear, mixed type of inhibition with a K/sub i/ of 16 μM amiloride. Over 70% inhibition of total uptake was observed at 0.1 mM amiloride. Lithium was an effective blocker of 22Na+ uptake. Chloride replacement uptake by only 20%. These results suggest that sodium uptake by cultured RPCT cells occurs via a saturable, amiloride-inhibitable channel. A Na+-Cl-, or a Na+-K+-Cl- cotransport system does not appear as a major pathway

  13. Moduretic-induced metabolic acidosis and hyperkalaemia.

    OpenAIRE

    Wan, H. H.; Lye, M. D.

    1980-01-01

    A patient who developed significant metabolic acidosis and severe hyperkalaemia while taking Moduretic (amiloride and hydrochlorothiazide) is reported. During the period of hyperkalaemia (maximum potassium 7-6 mmol/l) the patient's whole body potassium content was normal. His acid-base balance and serum potassium returned to normal some 10 days after stopping the drug. The possible mechanism of acidosis and hyperkalaemia in this patient is discussed.

  14. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Hamann, S; la Cour, M; Lui, G M;

    2000-01-01

    Hi recovery from an NH4+-induced acid load was blocked by sodium removal or amiloride addition. These results suggest the presence of a Na+-H+ exchange mechanism in the retinal cell membrane. When Cl- was replaced isotonically by lactate or pyruvate the cells acidified. The intracellular acidifications were...... the cells not only acidified, they also swelled. The data are compatible with water transport induced by the H+-lactate cotransporter....

  15. Ni2+ treatment causes cement gland formation in ectoderm explants of Xenopus laevis embryo

    Institute of Scientific and Technical Information of China (English)

    HUANGYONG; XIAOYANDING

    1999-01-01

    We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants.Nother T-typer specific calcium channel blocker Amiloride can also induce the formation of cement gland,while L-type specific calcium channel blocker Nifedipine as no inductive effect.These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluar calcium concentration.

  16. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells

    International Nuclear Information System (INIS)

    The obligate intracellular rickettsia Coxiella burnetii has previously been reported to reach the intra-vacuolar compartment of host cells by phagocytosis. With the aim to further examine the mechanisms of C. burnetii internalisation, macrophage monolayers were treated with well characterised inhibitors of endocytosis. The treatment with two general inhibitors, colchicine and methylamine, resulted in a pronounced dose-dependent decrease of radiolabelled phase II rickettsiae retained from the intracellular fraction. A third inhibitor used, amiloride, has been reported to reduce effectively clathrin-independent pinocytic pathways. The internalisation of C. burnetii was shown to be substantially reduced also by amiloride and the effect was dependent on its concentration. The passive role of C. burnetii in the internalisation was verified by using heat-killed C. burnetii. Host cells treated with either of the three inhibitors (amiloride, colchicine and methylamine) showed a similar reduction of intracellular C. burnetii after exposure to killed as weal as live organisms. The data presented indicate that different endocytic mechanisms, pinocytosis as well as phagocytosis, may mediate the uptake of C. burnetii by a host cell. Key words: Coxiella burnetii; internalisation; endocytosis (authors)

  17. Effects of ethanol on calcium transport across the liver cell plasma membrane

    International Nuclear Information System (INIS)

    The effect of ethanol on calcium transport by the liver cell was studied by using a rat liver slice preparation. Ethanol was shown to decrease by about 30% the rate constant for 45Ca efflux from the intracellular compartment. This inhibitory effect of ethanol was not observed in the absence of Ca2+ or Na+ from the incubation medium. Ethanol was also shown to greatly increase non-insulin calcium uptake by liver slices. This effect of ethanol appeared to be dose dependent and was not observed in the absence of Na+ from the incubation medium. The ability of ethanol to increase calcium uptake by the hepatocyte was completely blocked by 1 mM Amiloride. Amiloride, however, did not affect the increased entry of either Na+ or Ca2+ produced by 10 mM Ouabain, a specific inhibitor of the sodium pump. Carbon tetrachloride (CCl4), a well known hepatotoxin, also increased calcium uptake by the hepatocyte. Amiloride, however, was not able to block the CCl4-induced calcium uptake. These results suggest that ethanol activates a Na+ entry pathway, probably represented by a Na+/H+ exchanger, which in turn stimulates an entry of Ca2+ through a Na+/Ca2+ exchange mechanism located in the plasma membrane of the hepatocyte

  18. Molecular size of the Na+-H+ antiport in renal brush border membranes, as estimated by radiation inactivation

    International Nuclear Information System (INIS)

    The radiation inactivation method was applied to brush border membrane vesicles from rat kidney, in order to estimate the molecular size of the Na+-H+ antiporter. Sodium influx (1mM) driven by an acid intravesicular pH was unaffected by the high osmolarity of the cryoprotective solution. Initial rate of influx was estimated by linear regression performed on the first 10 seconds of transport: 0.512 pmol/micrograms protein/s. There was no binding component involved. Incubation performed in the presence of 1 mM amiloride, an inhibitor of the Na+-H+ antiport gave an initial rate of only 0.071 pmol/microgram/s, an 82% inhibition. Membrane vesicles were irradiated at -78 degrees C in a Gammacel Model 220. Sodium influx was reduced, as the dose of radiation increased, but the influx remained linear for the period of time (10s) during which the initial rate was estimated, indicating no alteration of the proton driving force during this time period. Amiloride-insensitive flux remained totally unaffected by the radiation dose, indicating that the passive permeability of the membrane towards sodium was unaffected. The amiloride-sensitive pathway presented a monoexponential profile of inactivation, allowing the molecular size to be estimated at 321 kDa. Based on DCCD-binding studies suggesting the molecular size of the monomer to be around 65 kDa for rat kidney, our results suggest that the functional transporter in the membrane to be a multimer

  19. EFFECTIVE INVERSION OF LEFT HEART REMODELING BY PHENYLALANINE IN ESSENTIAL HYPERTENSION

    Institute of Scientific and Technical Information of China (English)

    赵光胜; 邱慧丽; 范明昌; 张伟忠

    2000-01-01

    Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart "remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables were compared after 3,6 and 9 months of observation between the Phe intervention group (Phe lg/d + amiloride complex 1 tablet/d, 20 cases) and control group (placebo lg/d+amiloride complex 1 tablet/d, 20 cases) with either interventricular septum and (or) post-wall thickness≥12mm, and were carried on further to compare in cross-over trial. Results (1) Phe improved effectively the left heart and systolic dysfunction; while the improvement, also shown in control group due to the concurrent use of diuretic antihypertensive drug-amiloride complex, was much less evident than that in Phe group. (2) The disturbed left heart structure and systolic function were improved prominently while placebo was crossed over to Phe, and the improvement decreased after Phe was crrossed over to placebo. (3) The changes almost attained to its peak level after 6 months and not improved further at 9 months. (4) The differences seen between above 2 groups could not be explained by their diverse drops of blood pressure. Conclusion Phe does exert an independent inverse effect on cardiac "remodeling", which might implicate an important clinical application upon the prevention and control of essential hypertension and its complications.

  20. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]-MIA, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    A radiolabeled amiloride analog, [3H]-MIA, was used for equilibrium binding studies and photolabeling of purified tonoplast vesicles. Scatchard analysis revealed a high affinity binding component with a K4 of 1.4 μM which is closely related to constants of inhibition obtained for Na+-dependent H+ efflux (5.9 μM) and pH-dependent 22Na+ influx (2.5 μM). This suggests that the high affinity component represents a class of sites associated with the Na+/H+ antiport. Photolabeling of tonoplast with [3H]-MIA in the presence of amiloride revealed the presence of two classes of receptors with distinct affinities for MIA, possibly representing the Na+/H+ antiport and the Na+ channel. In order to identify these receptors, amiloride analogues specific for the Na+/H+ antiport or the Na+ channel are being used to protect differentially against labeling of tonoplast proteins by photo-irradiation of [3H]-MIA

  1. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin

    International Nuclear Information System (INIS)

    An isotopic method was developed to measure the intracellular Na+ content of the transepithelial Na+ transport pool of frog skin. Isolated epithelia (no corium) were labeled with 24Na either asymmetrically, from apical (Aa) or basolateral (Ab) solutions, or symmetrically (Aab). Transport pool Na+ could be identified from the kinetics of washout of 24Na carried out in the presence of 1 mM ouabain, 100 microM amiloride, and 1 mM furosemide that served to trap cold Na+ and 24Na within the transport pool. In control epithelia, Aab averaged 64.1 neq/cm2 (13.9 mM), and maximal inhibition of apical membrane Na+ entry with 100 microM amiloride caused Aab to decrease to 24.3 neq/cm2 (5.3 mM). Ouabain caused Aab to increase markedly to 303 neq/cm2 in 30 min, whereas amiloride inhibition of apical membrane Na+ entry reduced markedly the rate of increase of Aab caused by ouabain. These data, in part, confirmed the existence of an important basolateral membrane permeability to Na+ that was measured in separate studies of the bidirectional 24Na fluxes at the basolateral membranes of the cells. Both sets of data were supportive of the idea that a significant Na+ recycling exists at the basolateral membranes of the cells that contributes to the Na+ load on the pump and Na+ recycling participates in the regulation of the Na+ concentration of the Na+ transport pool of these epithelial cells

  2. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    Science.gov (United States)

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  3. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  4. Inhibition of atrial natriuretic peptide-induced natriuresis by plasma hydrolysates containing pepsanurin.

    Science.gov (United States)

    Borić, M P; Croxatto, H R; Albertini, R; Roblero, J S

    1992-02-01

    The specificity of antidiuretic actions of pepsanurin, a peptidic fraction obtained by pepsin hydrolysis of plasma, was studied in anesthetized rats and in isolated perfused rat kidneys. Pepsanurin was obtained from fresh dialyzed human plasma digested with pepsin (2,400 units/ml, 18 hours at 37 degrees C, pH 2.5), deproteinized (10 minutes at 80 degrees C), and centrifuged. In the rat, intraperitoneal injections of pepsanurin (0.5 ml/100 g body wt) significantly inhibited the effects of an intravenous bolus of atrial natriuretic peptide (ANP) (0.5 micrograms) on water, sodium, and potassium excretion without altering systemic blood pressure. In addition, pepsanurin abolished the peak in glomerular filtration rate and reduced the ANP-induced rise in fractional sodium excretion. Pepsanurin also inhibited the natriuretic effects of amiloride (10 micrograms/100 g body wt i.v.) without changing glomerular filtration rate, but it did not inhibit the potassium-retaining effect of amiloride. In contrast, pepsanurin had no effect on basal urinary excretion, and it did not affect the diuretic response induced by furosemide (doses of 25, 50, or 100 micrograms i.v.). Control peptidic hydrolysates prepared from human plasma preincubated 48 hours at 37 degrees C (PIPH), bovine albumin (BSAH), or human albumin did not inhibit ANP, amiloride, or furosemide. In perfused kidneys, pepsanurin significantly and reversibly reduced sodium and water excretion. Furthermore, pepsanurin, but not PIPH or BSAH, blocked the natriuretic and diuretic effects of ANP. These results support the existence of a specific plasma substrate able to release a peptide or peptides that counteract distal tubule diuresis and natriuresis by an intrarenal mechanism. PMID:1531208

  5. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase

    OpenAIRE

    1986-01-01

    Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an...

  6. Structural plasticity and dynamic selectivity of acid sensing ion channel–toxin complexes

    OpenAIRE

    Baconguis, Isabelle; Gouaux, Eric

    2012-01-01

    Acid sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels implicated in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non- and sodium-selective currents in chicken ASIC1a at pH 7.25 and 5.5, respectively. Crystal structures of ASIC1a – psalmotoxin complexes map the toxin binding site to the extracell...

  7. Mechanisms of renal NaCl retention in proteinuric disease

    DEFF Research Database (Denmark)

    Svenningsen, Per; Friis, Ulla G; Versland, Jostein B;

    2013-01-01

    In diseases with proteinuria, for example nephrotic syndrome and pre-eclampsia, there often are suppression of plasma renin-angiotensin-aldosterone system components, expansion of extracellular volume and avid renal sodium retention. Mechanisms of sodium retention in proteinuria are reviewed. In...... animal models of nephrotic syndrome, the amiloride-sensitive epithelial sodium channel ENaC is activated while more proximal renal Na(+) transporters are down-regulated. With suppressed plasma aldosterone concentration and little change in ENaC abundance in nephrotic syndrome, the alternative modality of...

  8. Irreversible inhibition of epithelial sodium channels by ultraviolet irradiation.

    OpenAIRE

    Cuthbert, A W; Fanestil, D. D.; Herrera, F. C.; Pryn, S. J.

    1982-01-01

    1 The effects of u.v. irradiation at 254 nm and 350 nm on sodium transport across frog skin epithelium have been investigated. 2 Irradiation at 254 nm but not at 350 nm produces a dose-dependent, functionally selective blockade of sodium transport. The effect is apparently due to the irreversible closure of apical sodium channels. 3 The amiloride-sensitive conductance was directly related to sodium transport as measured by short circuit current (SCC) both in normal and irradiated tissues, alt...

  9. Serumelektrolytter og medikamentel behandling hos patienter indlagt på en geriatrisk afdeling

    DEFF Research Database (Denmark)

    Sørensen, I J; Matzen, L E

    1993-01-01

    The distributions of sodium and potassium in the serum on admission, and the types of medicine used were studied retrospectively in hospitalized geriatric patients (n = 1418). Sodium concentrations below 130 mmol/l were found in 7.4% and potassium concentrations below 3.0 mmol/l in 5.0% of patien......+amiloride was frequently withdrawn. 38% were given benzodiazepines on discharge. In 40.4% of these, treatment had been started during the hospital stay, most often on account of insomnia. Udgivelsesdato: 1993-Nov-29...

  10. Preeclampsia, migración celular y canales iónicos Preeclampsia, cellular migration and ion channels

    OpenAIRE

    Silvana M. del Mónaco; Gabriela Marino; Yanina Assef; Basilio A. Kotsias

    2008-01-01

    En la placenta humana, el sinciciotrofoblasto es la barrera que regula el transporte de nutrientes, solutos y agua entre la sangre materna y fetal. Dentro de este movimiento transepitelial se encuentra el del Na+, su contribución a la presión osmótica es fundamental en la regulación del volumen de líquido extracelular. El canal epitelial de sodio sensible al amiloride (ENaC) media el transporte de Na+ desde el lumen hacia el interior celular en numerosos epitelios absortivos. Está regulado po...

  11. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  12. [Primary hypokalemic periodic paralysis. Presentation of 18 cases].

    Science.gov (United States)

    Ariza-Andraca, C R; Frati-Munari, A C; Ceron, E; Chavez de los Rios, J M; Martinez-Mata, J

    1993-01-01

    The clinical features of 16 males and 2 females with hypokalemic periodic paralysis (HPP) are presented. Five patients had familial HPP, 4 thyrotoxic HPP and 9 sporadic disease. The age of onset ranged from 6 to 42 years. Clinical pictures varied from paraparesis to severe quadriplegia. The disease onset was earlier in familial HPP (p paralysis (p paralysis. Glucose-insulin provocation test was positive in 5/5 patients. Oral potassium chloride and amiloride were useful to prevent paralysis. Contrasting with reports from USA and Europe, in México, HPP is not exceptional, and should be considered in the differential diagnosis of acute paralysis. PMID:7926395

  13. Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis.

    OpenAIRE

    Hardcastle, J; Hardcastle, P T; Taylor, C J; Goldhill, J

    1991-01-01

    The secretory response to cholinergic stimulation was investigated in rectal biopsy specimens from children with cystic fibrosis and a control group using a modified Ussing chamber technique. Acetylcholine (10(-3) mol/l) increased the short circuit current in 12 control specimens by mean (SEM) 83.0 (16.4) microA/cm2, but samples from five children with cystic fibrosis failed to exhibit such a response (-1.4 (3.2) microA/cm2). Amiloride (10(-4) mol/l), which will inhibit electrogenic sodium ab...

  14. Proton pump activity is required for active uptake of chloride in isolated amphibian skin exposed to freshwater

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Willumsen, Niels J.; Larsen, Erik Hviid

    2002-01-01

    secretion was 34.2-2.0 pmol·cm-2·s-1 (n=18) in frog skin, and 16.7-1.7 pmol·cm-2·s-1 (n=10) in toad skin. Proton secretion by toad skin was dependent on the transepithelial potential (VT), and an amiloride-insensitive short-circuit current was stimulated by exogenous CO2/HCO3-, indicating the presence...... uptake of Cl-. Cl- influx in toad skin was unaffected by large perturbations (100-150 mV) of VT, which was accomplished by adding amiloride to the outer bath under open circuit conditions. A component of the Cl- efflux seemed to be dependent on VT. 4,4'-Diisothiocyanato-stilbene-2,2'-disulfonic acid...... active Cl- uptake in fresh water by creating a favourable gradient for an apical HCO3- exit in exchange for external Cl-. The data also suggest that a carbonic anhydrase activity provides H+ and HCO3- for apically co-expressed proton pumps and Cl-/HCO3- exchangers....

  15. Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action.

    Science.gov (United States)

    Fischer, H; Clauss, W

    1990-04-01

    Sodium transport across isolated lung tissue of the frog Xenopus laevis was measured in Ussing chambers under voltage-clamp conditions. Perfusing the lungs with NaCl-Ringer's solutions on both sides, a basal distinct amiloride-blockable Na+ current was present. Incubating the lungs with 1 mumol/l aldosterone from the pleural side raised the short circuit current after a 1-h latent period. Maximal values were reached after 4-5 h of aldosterone treatment, at which time the transepithelial Na+ current was more than doubled compared to the control. The stimulatory effect was totally inhibited when the aldosterone treatment was preceded by incubation of the lung tissues with spironolactone in 2000-fold excess. In the presence of amiloride (0.5-8 mumol/l) in the alveolar compartment, a Lorentzian noise component appeared in the power spectrum of the fluctuations in the short circuit current. This enabled the calculation of single Na+ channel current and Na+ channel density under both experimental conditions. Aldosterone stimulation did not change single Na+ channel current. On the other hand, the number of conducting Na+ channels increased in parallel with the transepithelial Na+ transport. This suggests that the alveolar epithelium may be a physiological target tissue for aldosterone. Since fluid absorption in the lung is secondary to active Na+ transport, aldosterone may be a potent regulator for maintaining the relatively fluid-free state of the lumen of the lung in some cases of fluid accumulation. PMID:2162035

  16. Lung epithelial ion transport in neonatal lung disease.

    Science.gov (United States)

    Pitkänen, O

    2001-05-01

    Lung epithelial ion transport promotes salt and water movement across the fetal and neonatal lung epithelium. The mechanism is dependent on basolateral membrane Na-K-ATPase and the apical membrane Cl(-) and Na(+) channels. During fetal life active secretion of Cl(-) and parallel movement of Na(+) across the epithelium into the developing lung lumen induce accumulation of liquid into the future airspaces. Postnatally, however, absorption of fluid from the airspaces must start. Present evidence suggests that activation of Na(+) transport from the lumen into the basolateral direction drives fluid absorption and results in an essentially dry air-filled alveolus. In laboratory animals amiloride, a Na(+) channel blocker, induces respiratory distress and impedes lung fluid clearance. One of the epithelial amiloride-sensitive Na(+) channels, ENaC, is composed of three homologous subunits that differentially respond to glucocorticoid hormone. In newborn infants an increase in pulmonary fluid and a defective Na(+) transport associate with respiratory distress. The ontogeny, subunit composition and function of ENaC along the respiratory tract are currently under investigation. It will be interesting to find out whether the subunit composition and function of lung ENaC respond to the therapy of the critically ill newborn infant. PMID:11359039

  17. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    Directory of Open Access Journals (Sweden)

    Ronny Tah Yen Ng

    2015-01-01

    Full Text Available The gold standard for diagnosing cystic fibrosis (CF is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients (G1, CF patients with classes IV-VI CFTR mutations (five patients (G2, and 21 healthy subjects (G3. The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ2, and Fisher’s exact tests, α=0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects.

  18. Clathrin-mediated entry and cellular localization of chlorotoxin in human glioma

    Directory of Open Access Journals (Sweden)

    Johnson Joseph O

    2011-08-01

    Full Text Available Abstract Background Chlorotoxin (TM601, a scorpion venom- derived 36-AA peptide, is an experimental drug against recurrent glioma with tumor specificity but unknown route of intracellular distribution. The aim of this study was to evaluate the route of entry and cellular localization of TM601 in glioma cells. Results We have found that in human gliomas, lung carcinoma and normal vascular endothelial cells, TM601 localizes near trans-Golgi while in normal human dermal fibroblasts (NHDF and astrocytes it is dispersed in the cytoplasm. The uptake of TM601 by U373 glioma cells is rapid, concentration and time dependent, not affected by inhibitors such as filipin (caveolae-dependent endocytosis and amiloride (non-selective macropinocytosis, but significantly affected by chlorpromazine (clathrin-dependent intracellular transport of coated pits resulting in intracellular build-up of the drug and clathrin near the Golgi. In contrast, TM601 uptake by NHDF cells was significantly affected by amiloride indicating that macropinocytosis is the dominant uptake route of TM601 in these cells. Conclusions In conclusion, we found a distinct cellular localization pattern and uptake of TM601 by glioma cells differing from that found in normal cells. Further insight into the cellular processing of TM601 should assist in the development of effective anti-glioma therapeutic modalities.

  19. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies

    International Nuclear Information System (INIS)

    Highlights: • A new MCR-ALS algorithm is proposed for the analysis of incomplete fused multiset. • Resolution of the data allowed the description of amiloride kinetic photodegradation. • The new MCR-ALS algorithm can be easily applied to other drugs and chemicals. - Abstract: An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described

  20. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Michele De, E-mail: michele.deluca@unical.it [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, CS 87036 (Italy); Ragno, Gaetano; Ioele, Giuseppina [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, CS 87036 (Italy); Tauler, Romà [Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, Barcelona 08034 (Spain)

    2014-07-21

    Highlights: • A new MCR-ALS algorithm is proposed for the analysis of incomplete fused multiset. • Resolution of the data allowed the description of amiloride kinetic photodegradation. • The new MCR-ALS algorithm can be easily applied to other drugs and chemicals. - Abstract: An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.

  1. Pharmacological basis for the empirical use of Eugenia uniflora L. (Myrtaceae) as antihypertensive.

    Science.gov (United States)

    Consolini, A E; Baldini, O A; Amat, A G

    1999-07-01

    The rational basis for the use of Eugenia uniflora L. (Myrtaceae) as antihypertensive in Northeastern Argentina was assessed in normotensive rats. Intraperitoneal administration of the aqueous crude extract (ACE) decreased blood pressure (BP) of normotensive rats dose-dependently until 47.1 +/- 8.2% of control. The effective-dose 50 was 3.1 +/- 0.4 mg dried leaves/kg (d.l./kg) (yielding of ACE: 17% w/w). To determine the origin of hypotensive activity. Alpha-adrenergic antagonistic and vasorelaxant ACE activities were tested. The dose-response curve for phenylephrine on BP was inhibited non-competitively until 80% of its maximal effect (at 8 mg d.l. ACE/kg). Perfusion pressure (PP) of rat hindquarters (previously vasoconstricted by high-K+) was decreased by ACE in a concentration-dependent manner until -32.3 +/- 11.5% of tonic contraction at 1.2 g d.l. ACE/100 ml. In addition, A.C.E demonstrated diuretic activity at a dose (120 mg d.l./kg) higher than the hypotensive one. It was almost as potent as amiloride, but while amiloride induced loss of Na+ and saving of K+, ACE induced decrease in Na+ excretion. The results suggest that the empirical use of Eugenia uniflora L. (Myrtaceae) is mostly due to a hypotensive effect mediated by a direct vasodilating activity, and to a weak diuretic effect that could be related to an increase in renal blood flow. PMID:10432205

  2. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.

    Science.gov (United States)

    Ishikawa, T; Marunaka, Y; Rotin, D

    1998-06-01

    The epithelial Na+ channel (ENaC), composed of three subunits (alpha, beta, and gamma), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat alpha beta gamma ENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the alpha beta gamma rENaC-expressing MDCK cells exhibited greater whole cell Na+ current at -143 mV (-1,466.2 +/- 297.5 pA) than did untransfected cells (-47.6 +/- 10.7 pA). This conductance was completely and reversibly inhibited by 10 microM amiloride, with a Ki of 20 nM at a membrane potential of -103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing alpha beta or alpha gamma subunits alone was -115.2 +/- 41.4 pA and -52.1 +/- 24.5 pA at -143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ > K+ = N-methyl-D-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be approximately 5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (Po), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na

  3. Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro.

    Science.gov (United States)

    Shen, Zanming; Martens, Holger; Schweigel-Röntgen, Monika

    2012-04-01

    An energy-rich diet leads to enhanced ruminal Na(+) absorption, which is associated with elevated plasma insulin-like growth factor 1 (IGF-1) levels and an increased number of IGF-1 receptors in rumen papillae. This study examined the in vitro effect of IGF-1 on Na(+) transport across the rumen epithelium of hay-fed sheep, in which the IGF-1 concentration in plasma is lower than in concentrate-fed animals. At concentrations ranging from 20 to 100 μg l(-1), serosal LR3-IGF-1, a recombinant analogue of IGF-1, rapidly (within 30 min) stimulated the mucosal-to-serosal Na(+) flux (J(ms)Na) and consequently the net Na(+) flux (J(net)Na). Compared with controls, J(net)Na increased by about 60% (P LR3-IGF-1 (20 μg l(-1)). The IGF-1-induced increment of J(ms)Na and J(net)Na was inhibited by mucosal amiloride (1 mmol l(-1)). Neither IGF-1 nor amiloride altered tissue conductance or the short-circuit current of the isolated rumen epithelium. These data support the assumption that the stimulating effect of serosally applied IGF-1 on Na(+) transport across the rumen epithelium is mediated by Na(+)-H(+) exchange (NHE). A further study was performed with cultured rumen epithelial cells and a fluorescent probe (BCECF) to estimate the rate of pH(i) recovery after acid loading. The pH(i) of isolated rumen epithelial cells was 6.43 ± 0.15 after butyrate loading and recovered by 0.26 ± 0.02 pH units (15 min)(-1). Application of LR3-IGF-1 (20 μg l(-1)) significantly increased the rate of pH(i) recovery to 0.33 ± 0.02 pH units (15 min)(-1). Amiloride administration reduced the recovery rate in both control and IGF-1-stimulated cells. These results show, for the first time, that an acute effect of IGF-1 on Na(+) absorption across rumen epithelium results from increased NHE activity. Insulin-like growth factor 1 is thus important for the fast functional adaptation of ruminal Na(+) transport via NHE. PMID:22227200

  4. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment.

    Science.gov (United States)

    Rick, R; Dörge, A; von Arnim, E; Thurau, K

    1978-03-20

    For elucidation of the functional organization of frog skin epithelium with regard to transepithelial Na transport, electrolyte concentrations in individual epithelial cells were determined by electron microprobe analysis. The measurements were performed on 1-micron thick freeze-dried cryosections by an energy-dispersive X-ray detecting system. Quantification of the electrolyte concentrations was achieved by comparing the X-ray intensities obtained in the cells with those of an internal albumin standard. The granular, spiny, and germinal cells, which constitute the various layers of the epithelium, showed an identical behavior of their Na and K concentrations under all experimental conditions. In the control, both sides of the skin bathed in frog Ringer's solution, the mean cellular concentrations (in mmole/kg wet wt) were 9 for Na and 118 for K. Almost no change in the cellular Na occurred when the inside bathing solution was replaced by a Na-free isotonic Ringer's solution, whereas replacing the outside solution by distilled water resulted in a decrease of Na to almost zero in all layers. Inhibition of the transepithelial Na transport by ouabain (10(-4) M) produced in increase in Na to 109 and a decrease in K to 16. The effect of ouabain on the cellular Na and K concentrations was completely cancelled when the Na influx from the outside was prevented, either by removing Na or adding amiloride (10(-4) M). When, after the action of ouabain, Na was removed from the outside bathing solution, the Na and K concentration in all layers returned to control values. The latter effect could be abolished by amiloride. The other cell types of the epithelium showed under some experimental conditions a different behavior. In the cornified cells and the light cells, which occurred occasionally in the stratum granulosum, the electrolyte concentrations approximated those of the outer bathing medium under all experimental conditions. In the mitochondria-rich cells, the Na influx

  5. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A2 like domain in N-terminus of VP1. In this study we characterized the role of PLA2 activity on CPV entry process. PLA2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA2 inhibitors inhibited the viral proliferation suggesting that PLA2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A1, brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A1, brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA2 activity of the virus. These results suggest that parvoviral PLA2 activity is essential for productive infection and presumably

  6. Isolation and properties of fibroblast mutants overexpressing an altered Na+/H+ antiporter

    International Nuclear Information System (INIS)

    A new method based on the toxicity of low intracellular pH (pH/sub i/) was developed to isolate fibroblasts variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced in a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pH/sub i/ recovery phase. The inhibition was provoked either by adding 5-(N-methyl, N-propyl)amiloride (MPA, LD50= 0.3 μM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 μM MPA. In response to an acid-load, these variants display a much higher rate of pH/sub i/ recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter. Alternatively reducing Na+ concentration of the pH/sub i/ recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in V/sub max/ and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. In conclusion, the genetic approach presented here: (i) provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and (ii) demonstrates that the external Na+-and amiloride-binding sites are not identical, since they can be genetically altered independently of each other

  7. Dicty_cDB: VSJ753 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 0.00 m2 : 0.00 mNt: 0.00 m3a: 0.00 m3b: 0.00 m_ : 1.00 80.0 %: nuclear 8.0 %: mitochondrial 4.0 %: cytoskeletal 4.0 %: plasma membra...llus cereus subsp. cytotoxi... 32 6.4 DQ374391_1( DQ374391 |pid:none) Branchiostoma floridae amilorid...nslated Amino Acid sequence (All Frames) Frame A: inyyymh*rkevpitlvlsllfckkrklkpqp*hhty...um cysteine aminopeptidase (pepC) gene, partial cds; phospho-beta-glucosidase BglB (bglB), beta-glucoside specific tra...vs Protein Score E Sequences producing significant alignments: (bits) Value CP000764_1849( CP000764 |pid:none) Baci

  8. 人鼻粘膜上皮细胞Na+通道的初步研究%Sodium channels in the apical membrane of human nasal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张欣欣; 郭永清; 董震; 杨占泉; 张文杰

    2001-01-01

    Objective To study the electrophysiological properties of sodium channels in the apical membrane of human nasal epithelial cells. Method Nasal epithelial cells of human inferior turbinate from patients with obstructive sleep apnea syndrome were cultured in serum free medium on collagen gel-coated membranes at an air-liquid interface and studied by a patch clamp technique. Results In cell-attached patches, a typical single channel current with a conductance of 21.09pS and reversal potential of -50.96 were recorded. The permeability ratio PNa/PK was more than 5.80. In the presence of 10-4 mmol/L amiloride in the pipette, the incidence of sodium channels decreased from 26.67% to 5.13%. This revealed that a population of channels were inhibited by amiloride at a dose of 10-4 mmol/L. Ca2+ at dose of 10-3 mmol/L did not influence the incidence of sodium channels. There was no obvious association between voltage and the open probability of the channels. Conclusions Our results indicate that most Na+ channels in cell-attached patches of human nasal epithelial cells are amiloride-sensitive and Na+ selective. Only a few channels are amiloride-insensitive. The channels were not activated by extracellular Ca2+ and the open probability followed a voltage-independent manner.%目的 明确人鼻粘膜上皮细胞Na+通道的特性,为研究Na+通道在鼻粘膜病理性改变及治疗中的作用奠定理论基础。 方法 利用膜片钳技术对经无血清气-液界面培养的鼻源性鼾症患者手术切除下鼻甲标本的鼻上皮细胞进行Na+通道基本特性研究。 结果 在细胞贴附式膜片上,可记录到典型的单通道电流,其电导为21.09pS,反转电位为-50.96mV,且77.78%反转电位5.80。在Na+通道抑制剂10-4 mmol/L Amiloride存在于电极液内时,Na+通道发生率从26.7%减少到5.13%(P0.05)。电压对开放概率无明显影响。 结论 在细胞贴附式膜片上,人鼻粘膜上皮细胞具有大

  9. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K;

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found......) and Na(+),K(+),2Cl(-)-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in i......MEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-alpha or the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage...

  10. Minimal volume regulation after shrinkage of red blood cells from five species of reptiles

    DEFF Research Database (Denmark)

    Kristensen, Karina; Berenbrink, Michael; Koldkjær, Pia;

    2008-01-01

    Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red...... cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon ~ 25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator...... mississippiensis showed no statistically significant RVI within 120 min after shrinkage, while the lizard Tupinambis merianae showed 22% volume recovery after 120 min. Amiloride (10- 4 M) and bumetanide (10- 5 M) had no effect on the RVI in T. merianae, indicating no involvement of the Na+/H+ exchanger (NHE) or...

  11. Ion transport mechanisms in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules

    DEFF Research Database (Denmark)

    Møbjerg, Nadja; Larsen, Erik Hviid; Novak, Ivana

    2004-01-01

    It is not clear how and whether terrestrial amphibians handle NaCl transport in the distal nephron. Therefore, we studied ion transport in isolated perfused collecting tubules and ducts from toad, Bufo bufo, by means of microelectrodes. No qualitative difference in basolateral cell membrane...... amiloride application showed a small apical Na+ conductance. Arginine vasotocin depolarized Vbl. The small apical Na+ conductance indicates that the collecting duct system contributes little to NaCl reabsorption when compared to aquatic amphibians. In contrast, Vbl rapidly depolarized upon lowering of [Na......+] in the bath, demonstrating the presence of a Na+-coupled anion transporter. [HCO3-] steps revealed that this transporter is not a Na+-HCO3- cotransporter. Together, our results indicate that a major task of the collecting duct system in B. bufo is not conductive NaCl transport but rather K+ secretion...

  12. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    International Nuclear Information System (INIS)

    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na+ current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells

  13. Regulation of electrolyte transport with IL-1β in rabbit distal colon

    Directory of Open Access Journals (Sweden)

    F. R. Homaidan

    1995-01-01

    Full Text Available Interletrkin-1β levels are elevated in inflammatory bowel disease. In this study the mechanism by which interleukin-1β affects electrolyte transport in the rabbit distal colon, was investigated. Interleukin-1β caused a delayed increase in short-circuit current (Isc which was attributed to protein synthesis since the effect was inhibited by cycloheximide. The interleukin-1β induced increase in Isc was not affected by amiloride treatment but was completely inhibited by bumetanide or in chloride-free buffer and by indomethacin. Prostaglandin E2 levels increased in tissue treated with interleukin-1β, but this increase was reversed by cycloheximide. These data suggest that interleukin-1β causes its effect via a yet to be identified second messenger, by increasing chloride secretion through a prostaglandin E2 mediated mechanism.

  14. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys

    International Nuclear Information System (INIS)

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na+-H+ exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of 22Na+, and stimulated 22Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H+ gradient-dependent Na+ uptake and Na+ gradient-dependent H+ flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na+ gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin

  15. The effect of ions, ion channel blockers, and ionophores on uptake of vitellogenin into cockroach follicles.

    Science.gov (United States)

    Kindle, H; Lanzrein, B; Kunkel, J G

    1990-12-01

    Since calcium plays an important role in vitellogenin binding and uptake in Nauphoeta cinerea and because calcium channels have been described in follicles of this species, we investigated the effect of various ions, ionophores, and ion channel blockers on vitellogenin uptake in vitro. Calcium significantly stimulated vitellogenin uptake; this effect could be substituted best by barium and less well by strontium and magnesium. The stimulatory effect of calcium, and to a certain extent also that of barium, was dependent on the vitellogenin concentration, whereas the effect of strontium and magnesium was not. In the presence of calcium, vitellogenin uptake was inhibited by barium, strontium, and magnesium as well as by the transition elements nickel, cobalt, and zinc, but not by manganese which had a stimulatory effect. Valinomycin, verapamil, tetraethylammonium, and atropine reduced vitellogenin uptake, while amiloride and ouabain were ineffective. Our results indicate that calcium inward (and possibly potassium outward) fluxes play an important role in vitellogenin uptake. PMID:2257971

  16. Congenital Nephrogenic Diabetes Insipidus Presented With Bilateral Hydronephrosis and Urinary Infection: A Case Report.

    Science.gov (United States)

    Zheng, Kewen; Xie, Yi; Li, Hanzhong

    2016-05-01

    Nephrogenic diabetes insipidus (NDI) is a condition resulting from the kidney's impaired response to circulating antidiuretic hormone (ADH), leading to polydipsia and polyuria. Urinary tract dilatation caused by NDI is a rare situation. Here, we report a case of congenital NDI presented with bilateral hydronephrosis.A 15-year-old boy complaining a history of intermittent fever was admitted to Peking Union Medical College Hospital. He voided 10 to 15 L of urine daily. Radiographic examination revealed severe dilatation of bilateral renal pelvis, ureter, and bladder. Urinalysis shows hyposthenuria.He was diagnosed NDI since born. Transient insertion of a urethral catheter helped to relieve fever. Medical therapy of hydrochlorothiazide and amiloride was prescribed and effective.Dilatation of urinary tract caused by diabetes insipidus is rare, but may be present in severe condition. Therefore, it is crucial for clinicians to perform early treatment to avoid impairment of renal function. PMID:27258490

  17. Influence of bicarbonate on the sensitivity of renin release to sodium chloride

    DEFF Research Database (Denmark)

    Skøtt, O; Jensen, B L

    1989-01-01

    glomeruli treated with bicarbonate/chloride exchange inhibitor (DNDS), NaCl/KCl cotransport inhibitor (bumetanide), or Na+/H+ antiport inhibitor (amiloride) in the presence or absence of bicarbonate. In addition, the sensitivity to increases in osmolality by addition of sucrose was tested in the presence or...... absence of bicarbonate. Renin release from time controls superfused with a bicarbonate-free Ringer was identical to release from glomeruli superfused with a bicarbonate Ringer. DNDS (0.11 or 1.1 mM) had no effect on renin release in a bicarbonate Ringer. 30 mM sucrose inhibited renin release independently...... of bicarbonate. 15 mM NaCl stimulated renin release when bicarbonate was absent, while it caused an inhibition in the presence of bicarbonate. When bicarbonate/chloride exchange was inhibited, addition of NaCl stimulated renin release even when bicarbonate was present. The effect of NaCl on renin...

  18. Intracellular calcium ions as regulators of renal tubular sodium transport.

    Science.gov (United States)

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  19. An adolescent with tingling and numbness of hand: Gitelman syndrome

    Directory of Open Access Journals (Sweden)

    Atul Poudel

    2015-01-01

    Full Text Available Context: Gitelman syndrome is an inherited autosomal recessive disorder. It is usually diagnosed incidentally during adolescence or early adulthood based on clinical and biochemical findings. Case Report: We present a case of 16 years old adolescent female presenting with recurrent chest pain, tingling, and numbness of bilateral hands. Diagnosis was established by the typical biochemical abnormalities with hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis, and hyperreninemic hyperaldosteronism. Genetic diagnosis was confirmed by sequence analysis of the SLC12A3 gene showing the compound heterozygous mutation encoding the thiazide-sensitive sodium chloride co-transporter. The patient was treated with oral potassium, magnesium, and amiloride with complete improvement of symptoms and biochemical profile. Conclusion: Gitelman syndrome should be considered as a differential diagnosis in work up of hypokalemia, especially in adolescent age group. The presence of hypokalemia, metabolic alkalosis, hypomagnesaemia, hypocalciuria, and mutation analysis provides the final diagnosis.

  20. Lithium absorption by the rabbit gall-bladder

    DEFF Research Database (Denmark)

    Hansen, C P; Holstein-Rathlou, N H; Skøtt, O;

    1991-01-01

    Lithium (Li+) absorption across the low-resistance epithelium of the rabbit gall-bladder was studied in order to elucidate possible routes and mechanisms of Li+ transfer. Li+ at a concentration of 0.4 mM in both mucosal and serosal media did not affect isosmotic mucosa-to-serosa fluid absorption......+ absorptions occurring at 50 mM Na+ were inhibited to the same degree by mucosal 1 mM amiloride. Substitution of 5-50 mM (44%) Na+ by Li+ in the external medium dose-dependently depressed Na+ absorption by up to 76%, while substitution by 50 mM choline had no significant effect. Li+ inhibition of Na...

  1. Macropinocytosis is the Entry Mechanism of Amphotropic Murine Leukemia Virus

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Vilhardt, Frederik

    2015-01-01

    infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutical schemes and methods of drug delivery. We show here that Murine Leukemia Virus (A-MLV) pseudotyped with the......, or NIH-3T3 cells knocked-down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH-3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional...... amphotropic (expands the host range to many mammalian cells) envelope protein gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following collapse of cell surface protrusions and membrane scission. We use drugs or introduction of mutant proteins...

  2. Mechanisms Responsible for the Changes in Alveolar Fluid Clearance in Rats with Malnutrition%营养不良性肺水肿大鼠肺泡液体清除机制的研究

    Institute of Scientific and Technical Information of China (English)

    李乃静; 李伟; 谷秀; 李胜岐; 何平

    2011-01-01

    目的 探讨营养不良性肺水肿大鼠肺泡液体清除功能的变化及其机制.方法 制备营养不良性肺水肿大鼠动物模型,分别于48 h和120 h测定大鼠肺泡液体清除率(AFC)、总肺水量(TLW)和肺血管外水量(EVLW).将钠通道阻断剂氨氯吡咪、Na-K-ATP酶阻断剂哇巴因及β2受体激动剂特布他林分别灌注到正常及禁食120 h大鼠的肺泡腔内,测定AFC的变化.结果 大鼠禁食48 h AFC(19.7 ±3.22%)与正常大鼠AFC( 18.5±2.21%)比较没有明显变化;120 h时AFC(9.50±2.19%)明显降低.氨氯吡咪、哇巴因明显降低营养不良性肺水肿大鼠AFC (P <0.05),特布他林对营养不良性肺水肿大鼠AFC的作用与对照组大鼠比较差异无显著性(P>0.05).结论 营养不良性肺水肿与钠通道及Na-K-ATP酶及的活性被抑制,导致肺泡液体清除能力降低有关.%Objective To study the mechanisms responsible for the changes in alveolar fluid clearence in rats with malnutrition. Methods Rats were fasted but allowed access to water for 120 hours. Alveolar fluid clearance (AFC) , lung water content (TLW) and extravascular lung water ( EVLW) of the rats were calculated in the rats with malnutrition. Isotonic 5% album in solutions with amiloride, ouabain and terbutalin were instilled into the distal airways in the malnutrition and control rat lungs, and the AFC was examined. Results As compared with the control rats (18.5 ± 2. 21% ) , AFC in the rats with malnutrition for 48 h was not decreased (19. 7 ± 3. 19% ). AFC in the rats under conditions of malnutrition for 120 h was decreased (9.50 ±2.19%). Amiloride and ouabain could reduce the AFC in both malnutrition and control rats. There was no significant difference in the magnitude of the terbutalin-stimilated AFC in rats under conditions of malnutrition compared with that in control rats. Conclusion Malnutrition primarily impairs amiloride-sensitive and amiloride-insensitive alveolar fluid clearance, leading

  3. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

    DEFF Research Database (Denmark)

    Rødgaard, Tina; Schou, Kenneth; Friis, Martin Barfred;

    2008-01-01

    of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory...... volume decrease (RVD). Upon return to the original isotonic medium, cells shrank initially followed by a regulatory volume increase (RVI). To maintain cell shrinkage, the RVI process was inhibited as follows: Ethyl-isopropyl-amiloride (EIPA) inhibited the Na(+)/H(+) antiport, Bumetanide inhibited the Na......(+)/K(+)/2Cl(-) co-transporter, and Gadolinium inhibited shrinkage-activated Na(+) channels. Cells remained shrunken for at least 4 hours (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high NaCl hypertonic...

  4. Ontogeny of DA1 receptor-mediated natriuresis in the rat: in vivo and in vitro correlations.

    Science.gov (United States)

    Kaneko, S; Albrecht, F; Asico, L D; Eisner, G M; Robillard, J E; Jose, P A

    1992-09-01

    The natriuretic and diuretic effects of dopamine are attenuated in the young. Because dopamine has actions on receptors (e.g., adrenergic, serotonin) other than dopamine, we studied a novel dopamine agonist, pramipexole, which has a selectivity to both DA1 and DA2-receptor subtypes. Intravenous administration of pramipexole resulted in a dose-related (1, 10, and 100 micrograms.kg-1.min-1) increase in urine flow and absolute and fractional sodium excretion and a decrease in mean arterial pressure (MAP) in three groups of rats studied. Pramipexole induced a greater decrease in MAP in 6- to 7- (n = 5) and 9- to 16- (n = 6) than in 3- to 4-wk-old (n = 8) rats; the natriuresis and diuresis were greatest in 12- to 16- and least in 3- to 4-wk-old rats. The renal effects of pramipexole were mainly due to actions at the DA1 receptor, since these effects were completely blocked by the coinfusion of a DA1 antagonist, SKF 83742. To explore further a cause of the attenuated natriuretic effect of pramipexole in the young, we studied the effect of a selective DA1-receptor agonist, fenoldopam, on amiloride-sensitive 22Na+ uptake in renal brush-border membrane vesicles. The 3-s amiloride-sensitive uptake was inhibited (45%) by fenoldopam (5 x 10(-5)M) in 9- to 16- (n = 6) but not in 3- to 4-wk-old (n = 5) rats. These studies suggest that the attenuated natriuretic effect of dopamine in the young is in part due to decreased DA1 action on the brush-border membrane Na(+)-H+ exchanger. PMID:1357983

  5. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells.

    Science.gov (United States)

    Rochat, Thierry; Lacroix, Jean-Silvain; Jornot, Lan

    2004-10-01

    N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport. PMID:15281093

  6. Isotonic secretion via frog skin glands in vitro. Water secretion is coupled to the secretion of sodium ions.

    Science.gov (United States)

    Nielsen, R

    1990-05-01

    In isolated frog skin at least three different types of cells are engaged in the transepithelial ion and water transport; these are the granular cells, the mitochondria-rich cells and the glandular cells. The experiments presented were carried out on isolated frog skin bathed in Cl- or NO3- Ringer's solution, where the active transepithelial Na+ uptake via the granular cells was blocked by amiloride. Transepithelial current and water flow were measured. When a negative current was passed across the skins (the skins were clamped at -100 mV), the current was mainly carried by a net influx of Cl- via the mitochondria-rich cells. The current had no effect on the transepithelial water movement. This finding indicates that there is nearly no coupling between the Cl- flux and the movement of water via the mitochondria-rich cells. Prostaglandin E2 activates the glandular cells of the exocrine glands in the skin. When prostaglandin E2 was added under these experimental conditions (the skins were clamped at -100 mV, with amiloride in the apical bathing solution, and the glandular secretion of ions was blocked by the use of NO3- Ringer's solution), then the transepithelial current became more negative. This change in current was mainly due to an increase in the Na+ efflux via the glands. Thus PGE2 increase the Na+ conductance of the skin glands. Together with this increase in the Na+ efflux a highly significant increase in the water secretion was observed. The water movement (secretion) across the skin was under these conditions coupled to the PGE2-induced efflux of Na+, and when one Na+ was pulled from the basolateral to the apical solution via this pathway 215 molecules of water followed. This must be due to electro-osmosis (friction between ions and water) or current-induced local osmosis. PMID:2356751

  7. The bradykinin B2 receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines

    International Nuclear Information System (INIS)

    The vasoactive peptide bradykinin (BK) acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas. In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells. The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE) with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK) activation by Western blotting. Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl)-amiloride (MIA) blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity. We conclude that BK exerts mitogenic effects in A498 cells via the BK B2 receptor activation of growth-associated NHE and ERK

  8. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    International Nuclear Information System (INIS)

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with [3H]norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered

  9. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport

    Science.gov (United States)

    Kaltofen, Till; Haase, Melanie; Thome, Ulrich H.; Laube, Mandy

    2015-01-01

    Respiratory distress syndrome (RDS) is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC) and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE) cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC) and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER) and progesterone receptor (PR) mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome. PMID:26291531

  10. Intestinal Na+ Loss and Volume Depletion in JAK3-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Anja T. Umbach

    2013-11-01

    Full Text Available Background/Aims: The Janus kinase 3 JAK3 participates in the signaling of immune cells. Lack of JAK3 triggers inflammatory bowel disease, which in turn has been shown to affect intestinal activity of the epithelial Na+ channel ENaC and thus colonic sodium absorption. At least in theory, inflammatory bowel disease in JAK3-deficient mice could lead to intestinal salt loss compromizing extracellular volume maintenance and blood pressure regulation. The present study thus explored whether JAK3 deficiency impacts on colonic ENaC activity, fecal Na+ exretion, blood pressure and extracellular fluid volume regulation. Methods: Experiments were performed in gene-targeted mice lacking functional JAK3 (jak3-/- and in wild type mice (jak3+/+. Colonic ENaC activity was estimated from amiloride-sensitive current in Ussing chamber experiments, fecal, serum and urinary Na+ concentration by flame photometry, blood pressure by the tail cuff method and serum aldosterone levels by immunoassay. Results: The amiloride (50 µM-induced deflection of the transepithelial potential difference was significantly lower and fecal Na+ excretion significantly higher in jak3-/- mice than in jak3+/+ mice. Moreover, systolic arterial blood pressure was significantly lower and serum aldosterone concentration significantly higher in jak3-/- mice than in jak3+/+ mice. Both, absolute and fractional renal Na+ excretion were significantly lower in jak3-/- mice than in jak3+/+ mice. Conclusions: JAK3 deficiency leads to impairment of colonic ENaC activity with intestinal Na+ loss, decrease of blood pressure, increased aldosterone release and subsequent stimulation of renal tubular Na+ reabsorption.

  11. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport.

    Directory of Open Access Journals (Sweden)

    Till Kaltofen

    Full Text Available Respiratory distress syndrome (RDS is the most frequent pulmonary complication in preterm infants. RDS incidence differs between genders, which has been called the male disadvantage. Besides maturation of the surfactant system, Na+ transport driven alveolar fluid clearance is crucial for the prevention of RDS. Na+ transport is mediated by the epithelial Na+ channel (ENaC and the Na,K-ATPase, therefore potential differences in their expression or activity possibly contribute to the gender imbalance observed in RDS. Fetal distal lung epithelial (FDLE cells of rat fetuses were separated by sex and analyzed regarding expression and activity of the Na+ transporters. Ussing chamber experiments showed a higher baseline short-circuit current (ISC and amiloride-sensitive ΔISC in FDLE cells of female origin. In addition, maximal amiloride-sensitive ΔISC and maximal ouabain-sensitive ΔISC of female cells were higher when measured in the presence of a permeabilized basolateral or apical membrane, respectively. The number of FDLE cells per fetus recoverable during cell isolation was also significantly higher in females. In addition, lung wet-to-dry weight ratio was lower in fetal and newborn female pups. Female derived FDLE cells had higher mRNA levels of the ENaC- and Na,K-ATPase subunits. Furthermore, estrogen (ER and progesterone receptor (PR mRNA levels were higher in female cells, which might render female cells more responsive, while concentrations of placenta-derived sex steroids do not differ between both genders during fetal life. Inhibition of ER-β abolished the sex differences in Na+ transport and female cells were more responsive to estradiol stimulation. In conclusion, a higher alveolar Na+ transport, possibly attributable to a higher expression of hormone receptors in female FDLE cells, provides an explanation for the well known sex-related difference in RDS occurrence and outcome.

  12. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  13. Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra*

    Science.gov (United States)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D.; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J. P.; Holstein, Thomas W.; Gründer, Stefan

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na+ channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na+ channels (HyNaCs) 2–4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na+ channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na+ selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission. PMID:20159980

  14. Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hui-Hua Li

    Full Text Available Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC and pulmonary artery (RPAEC endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1 in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC from wild type and cav-1(-/- mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF, persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1(-/- mice was through caveolae-independent pathway(s including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization] consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1(-/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process.

  15. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions.

    Science.gov (United States)

    Wongchai, C; Chaidee, A; Pfeiffer, W

    2012-01-01

    Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. PMID:21974771

  16. Preeclampsia, migración celular y canales iónicos Preeclampsia, cellular migration and ion channels

    Directory of Open Access Journals (Sweden)

    Silvana M. del Mónaco

    2008-10-01

    Full Text Available En la placenta humana, el sinciciotrofoblasto es la barrera que regula el transporte de nutrientes, solutos y agua entre la sangre materna y fetal. Dentro de este movimiento transepitelial se encuentra el del Na+, su contribución a la presión osmótica es fundamental en la regulación del volumen de líquido extracelular. El canal epitelial de sodio sensible al amiloride (ENaC media el transporte de Na+ desde el lumen hacia el interior celular en numerosos epitelios absortivos. Está regulado por la aldosterona, vasopresina, catecolaminas, estrógenos y progesterona. Es bloqueado por el amiloride y sus análogos. Para su activación, diversas proteasas lo escinden en la membrana plasmática y esto a su vez es regulado por la aldosterona. El ENaC está expresado también en la placenta humana y aunque su función no es conocida, podría participar en la homeostasis de agua y electrolitos. El ENaC también es influenciado por el estado de las proteínas del citoesqueleto y los cambios en el volumen celular alteran a su vez a éste. De esta manera existe una relación entre el ENaC y el citoesqueleto. Además, las corrientes de Na+ por el ENaC y otros canales de sodio participan en la migración celular en células normales y cancerosas. Aquí presentamos evidencias que avalan la hipótesis que el ENaC es necesario para la migración celular en células BeWo, derivadas del trofoblasto humano, que sintetizan hormonas y expresan el ENaC. Las células BeWO han sido utilizadas como modelo experimental para estudiar el transporte en células de placenta.The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into

  17. Propionate alters ion transport by rabbit distal colon

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, P.J.; Weiser, M.M.; Duffey, M.E.

    1986-03-01

    The primary anions of the colon are short-chain fatty acids (SCFA) produced by intestinal microorganisms from endogenous secretions and dietary fiber. The effects of the SCFA propionate on ion transport by the epithelium of rabbit distal colon were studied on tissues stripped of underlying musculature and mounted in Ussing chambers. When tissues were bathed with NaCl Ringer's solutions at 37/sup 0/C (5% CO/sub 2/-21mM HCO/sub 3/, pH 7.4) replacement of 33mM Cl/sup -/ in both tissue baths by propionate reduced short-circuit current (Isc) from 86 to 35 ..mu..A/cm/sup 2/ and increased transepithelial conductance (G/sub t/) from 3.6 to 5.6mS/cm/sup 2/. Unidirectional /sup 14/C-propionate flux measurements revealed that this ion was secreted at a rate of 0.5..mu..Eq/cm/sup 2/hr. Intracellular measurements with potential and pH sensitive microelectrodes showed that propionate reduced intracellular pH (PH/sub i/) from 6.84 to 6.68 (P < 0.02), depolarized the apical membrane potential (phi/sub a/) by 4mV (P < 0.02) and decreased the membrane fractional resistance (f/sub R/) from .78 to .71 (P < 0.001). Addition of 0.1mM amiloride to the mucosal bath reversed Isc to -18..mu..A/cm/sup 2/, decreased G/sub t/ to 5.3mS/cm/sup 2/, hyperpolarized phi/sub a/ by 5mV (P < 0.05) and increased f/sub R/ to 0.85 (P < 0.001). Amiloride had no effect on pH/sub i/. These results show that propionate can be secreted by rabbit distal colon and that exposure to this SCFA causes cell acidification and electrophysiological changes consistent with H/sup +/ secretion.

  18. The bradykinin B2 receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kramarenko II

    2012-07-01

    Full Text Available Inga I Kramarenko1, Thomas A Morinelli1,2, Marlene A Bunni1,2, John R Raymond Sr3, Maria N Garnovskaya11Department of Medicine (Nephrology Division, Medical University of South Carolina, Charleston, SC, USA; 2Medical and Research Services of the Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA; 3Medical College of Wisconsin, Milwaukee, WI, USABackground: The vasoactive peptide bradykinin (BK acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas.Purpose: In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells.Methods: The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK activation by Western blotting.Results: Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl-amiloride (MIA blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity

  19. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeoun-Hee [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Chang, Yongmin [Department of Molecular Medicine, Kyungpook National University College of Medicine, Kyungpook National University, 200 Dongduk-Ro Jung-Gu, Daegu 700-714 (Korea, Republic of); Jung, Jae-Chang, E-mail: jcjung@knu.ac.kr [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. Black-Right-Pointing-Pointer Staurosporine mediates uPA activation during RGC differentiation in vitro. Black-Right-Pointing-Pointer Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. Black-Right-Pointing-Pointer Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that

  20. Effect of cAMP on short-circuit current in isolated human ciliary body

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning; HU Qian-qian

    2013-01-01

    Background Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current,Isc) across the ciliary processes in pigs.The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change.Methods In an Ussing-type chamber system,the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed.The involvement of Cl-component in the bath solution was investigated.The effect of Cl-channel (10 μmol/L niflumic acid and 1 mmol/L 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)),K+ channel (10 mmol/L tetraethylammonium chloride (TEA)),or Na+ channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied.Results Dose-dependently,8-bromo-cAMP (10 nmol/L-30 μmol/L) or forskolin (10 nmol/L-3 μmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue.Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side.When the tissue was bathed in low Cl-solutions,the Isc increase was significantly inhibited.Finally,niflumic acid and DIDS,but not TEA or amiloride,significantly prevented the Isc increase induced by 8-bromo-cAMP.Conclusions cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes.Chloride is likely to be among the ions,the transportation of which across the tissue is triggered by cAMP,suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  1. Perindopril: first-line treatment for hypertension.

    Science.gov (United States)

    Zanchetti, A; Desche, P

    1989-01-01

    The antihypertensive efficacy and acceptability of perindopril (P) were compared to those of captopril (C), atenolol (A) and a diuretic, hydrochlorothiazide + amiloride (D), in 3 double-blind parallel multicenter studies involving 165, 173, and 165 patients, respectively. Patients with essential hypertension and a supine DBP between 95 and 125 mmHg (mean 103.9, 106.2, and 105.2 mmHg, respectively) after a 1-month placebo period were randomized to P 4 mg once daily (o.d.) and either C 25 mg twice daily, or A 50 mg o.d. or D (hydrochlorothiazide 50 mg + amiloride 5 mg o.d.) and treated for 3 months, with visits at monthly intervals. If necessary, treatment was adjusted at each visit to control BP (supine DBP less than or equal to 90 mm Hg): firstly by doubling the dose and secondly, one month later, by the addition of a second drug, a diuretic in the studies versus C or A, a beta-blocker in the study versus D. At 3 months, BP control on monotherapy in the three studies was achieved in the following proportion of patients: 49% with P vs 49% with C; 55% with P vs 48% with A; 72% with P vs 72% with D. Most of the patients controlled by P received 4 mg, about 15% were controlled with 8 mg. A further percentage of patients was controlled with combination therapy, the combination with a diuretic being more effective with P than with C (26 vs 8%) or A (23 vs 10%) and the combination with a beta-blocker being less effective with P than with D (5 vs 13%). The total percentage of patients controlled was greater with P than with C (75 vs 57%, p = 0.016) or A (78 vs 58%, p = 0.006) and there was no significant difference between P and D (78 vs 84%). The drop-out rate due to side-effects was up to 6% with P, similar to that observed with C (4%), A (5%) and D (5%). Most of the complaints reported with P were minor and non-specific, their incidence being similar to that observed with the other drugs. Cough was reported with both P (1%) and C (2%) as well as with A (1%) and D (1

  2. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, B.; Lacoste, I.; Ehrenfeld, J. (Commissariat a l' Energie Atomique, Villefranche-sur-mer (France))

    1991-04-01

    We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride, indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+).

  3. Effects of 2-methoxyethanol on fetal development, postnatal behavior, and embryonic intracellular pH of rats.

    Science.gov (United States)

    Nelson, B K; Vorhees, C V; Scott, W J; Hastings, L

    1989-01-01

    The industrial solvent 2-methoxyethanol (2ME) is a reproductive and developmental toxicant when administered by inhalation, gavage, and IP injection. The present research established that this solvent can produce teratogenicity in rats when administered in liquid diet. Groups of 10 Sprague-Dawley rats were given various percentages of 2ME in liquid diet on gestation days 7-18. Day 20 fetuses were examined for visceral or skeletal malformations. Concentrations above 0.025% 2ME (approximately 73 mg/kg/day) produced total embryo-mortality. Cardiovascular malformations were produced at lower levels. The teratogenic no-effect level was 0.006% 2ME (16 mg/kg). In a second experiment, groups of 12 Sprague-Dawley rats were given 0, 0.006 and 0.012% of 2ME as above. Litters were culled to 8 pups, and tested for auditory and tactile startle and conditioned lick suppression, and for performance in figure-8 activity and the Cincinnati water maze on postnatal days 48-65. The high dose of 2ME produced approximately 50% mortality in the offspring and increased the number of errors in the Cincinnati maze. No other behavioral effects were observed at either dose. An interaction study was conducted to determine if simultaneous exposure to 2ME and ethanol would reduce the teratogenicity of 2ME, but no reduction was observed. The hypothesis that 2ME acts by altering embryonic intracellular pH was tested by injecting 0.33 ml/kg of 2ME into rats on gestation day 13, and determining embryonic intracellular pH at 2, 4, 8, and 24 hours thereafter. There was an increase in pH at 4 hours, but not at later time points. Another group of rats was given 2ME along with amiloride, which blocks the sodium/hydrogen antiporter. The combined 2ME-amiloride exposure produced an incidence of cardiovascular malformations in fetuses twice that of 2ME alone. These studies confirmed the structural teratogenicity of 2ME even when given in liquid diet, as it was given for the first time in the present study. At

  4. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle

    International Nuclear Information System (INIS)

    To identify possible cause-effect relationships between changes in active Na+-K+ transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in 14C-labeled sugar transport. Ouabain, at a concentration (10-3 M) sufficient to block active Na+-K+ transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na+ loading in K+-free buffer, the return to K+-containing standard buffer caused marked stimulation of active 22Na+-42K+ transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the 22Na+-42K+ pump leads to decreased intracellular 22Na+ concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na+-K+ transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na+ influx via the Na+/H+-exchange system

  5. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M.; Park, Jinhong; Namkung, Wan; van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A.; Sessler, Jonathan L.; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  6. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa). Ouabain reversed JnetCa to an absorptive flux. Amiloride reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  7. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baconguis, Isabelle; Gouaux, Eric [Oregon HSU

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na+-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the pore is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.

  8. Correlation between chloride flux via the mitochondria-rich cells and transepithelial water movement in isolated frog skin (Rana esculenta).

    Science.gov (United States)

    Nielsen, R

    1995-12-01

    The coupling between net transepithelial Cl- influx and net water flow was investigated. Experiments were performed on isolated frog skin bathed in isotonic Cl- Ringer's solution in the presence of the Na+ channel blocking agent amiloride in the mucosal solution. The skins were voltage-clamped at -80 or -100 mV (with the serosal solution as reference). Under these conditions the current across the skin is carried by an influx of Cl-. In the absence of antidiuretic hormone the correlation between current and net water flow was low, but in the presence of the antidiuretic hormone, arginine vasotocin, there was a highly significant correlation between current and net water flow. The data presented here indicate that under steady state conditions about 70 molecules of water follow each Cl- ion across the skin. If the water influx is driven by electroosmosis one would expect that a change in current should result in an immediate change in the water flow. There was, however, a considerable time delay between the change in current and water flow. This indicates that the observed coupling between Cl- flux and water flow is caused by current-induced local osmosis and not electroosmosis. PMID:8719255

  9. Mechanism of isotonic water transport in glands.

    Science.gov (United States)

    Ussing, H H; Eskesen, K

    1989-07-01

    Since water and electrolytes pass cell membranes via separate channels, there can be no interactions in the membranes, and osmotic interactions between water and solutes can be expressed as the product of solute flux, frictional coefficient of solute, and length of pathway. It becomes clear that isotonic transport via a cell is impossible. In glands, where cation-selective junctions impede anion flux between the cells, isotonic water transport is only possible if sodium, after having passed the junction, is reabsorbed in the acinus and returned to the serosal side. Thus it can be recycled via the cation-selective junction and exert its drag on water more than once. This hypothesis was tested on frog skin glands. Skins were mounted in flux chambers with identical Ringer solutions on both sides. Na channels of the principal cells were closed with amiloride in the outside solution, and secretion stimulated with noradrenaline in the inside solution. Influx and efflux of Na, K and Br (used as tracer for Cl) were measured on paired half-skins during the constant-secretion phase. Flux ratios for both Na and K were higher than expected for electrodiffusion, indicating outgoing solvent drag. Flux ratios for K were much higher than those for Na. This is an agreement with the concept that Na is reabsorbed in the acinus and K is not. Two independent expressions for the degree of sodium recycling are developed. Under all experimental conditions these expressions give values for the recycling which are in good agreement. PMID:2473601

  10. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    Science.gov (United States)

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability. PMID:16538461

  11. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance

    DEFF Research Database (Denmark)

    Willumsen, N J; Larsen, Erik Hviid

    1986-01-01

    independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's. To partition the routes of the conductive Cl- ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potential. Va, and intracellular...... Cl- activity, acCl, of the principal cells identified by differential interference contrast microscopy. Under short-circuit conditions, Isc = 27.0 +/- 2.0 microA/cm2, with NaCl-Ringer's bathing both surfaces, Va was -67.9 +/- 3.8 mV (mean +/- SE, n = 24, six preparations) and acCl was 18.0 +/- 0.9 m...... V was stepped back to 40 mV, Va instantaneously shifted to -67.8 +/- 3.9 mV while acCl and fRa remained constant during deactivation of GCl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density...

  12. Determination of short-circuit current in the in vivo perfused rat colon.

    Science.gov (United States)

    Knauf, H; Haag, K; Lübcke, R; Berger, E; Gerok, W

    1984-02-01

    Current pulses (I) were injected into the lumen of proximal colonic segments in vivo, and the corresponding voltage deflections (delta PD) superimposed on the transcolonic PD were recorded. From the exponential decay of delta PD along the colon axis, the electrical length constant (lambda) was determined. Based on cable analysis the input resistance (= delta PD x = 0/I) and lambda made it possible to calculate the specific resistance (Rm) of the colonic epithelium as 128 +/- 16 omega X cm2. As Rm proved to be an ohmic resistor, the extrapolation from open-circuit PD (8-12 mV, lumen negative) to zero PD was feasible and made the calculation of short-circuit current (= PD/Rm) equal to 70 +/- 16 microA/cm2. In the presence of amiloride short-circuit current decreased to about 50%, whereas with theophylline it increased by about 30%. Substitution of luminal Na+ with choline or Cl- with cyclamate was associated with a marked increase of Rm. The rheogenic component of net Na+ transport was estimated to be only 8%. Electroneutral Na+ absorption functionally coupled with Cl- absorption displayed the characteristic feature of ion transport in the rat proximal colon. PMID:6320673

  13. Effects of ADH on the apical and basolateral membranes of toad urinary bladder epithelial cells.

    Science.gov (United States)

    Donaldson, P J; Leader, J P

    1993-11-01

    Short-circuited urinary bladders from Bufo marinus were supported on their apical surface by an agar mounting method and impaled with microelectrodes via their basolateral membrane. This arrangement provided stable and long-lasting impalements of epithelial cells and yielded reliable membrane potentials and voltage divider ratios (Ra/Rb), where Ra and Rb are apical and basolateral membrane resistances respectively. The membrane potential under short-circuit conditions (Vsc) was -51.4 +/- 2.2 mV (n = 59), while under open-circuit conditions apical membrane potential (Va) and basolateral membrane potential (Vb) were -31.0 +/- 2.4 and 59.5 +/- 2.4 mV, respectively. This yields a "well-shaped" potential profile across the toad urinary bladder, where Va is inversely related to the rate of transport, Isc. Antidiuretic hormone (ADH) produced a hyperpolarisation of Vsc and Vb but had no significant effect on Va. In addition, Ra/Rb was significantly increased by ADH (4.6 +/- 0.5 to 10.2 +/- 3.6). Calculation of individual membrane resistances following the addition of amiloride showed that ADH produced a parallel decrease in Ra and Rb membrane resistance, with the observed increase in Ra/Rb being due to a greater percentage decrease in Rb than in Ra. The ability of ADH to effect parallel changes in apical and basolateral membrane conductance helps to maintain a constant cellular volume despite an increase in transepithelial transport. PMID:8309781

  14. Identification of eight genes that are potentially involved in tamoxifen sensitivity in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Qing JING; Liguo NEW; Jiahuai HAN

    2005-01-01

    Although the antiestrogen agent tamoxifen has long been used to treat women with hormone receptor positive invasive breast carcinoma, the mechanisms of its action and acquired resistance to tamoxifen during treatment are largely unknown. A number of studies have revealed that over-activation of some signaling pathways can cause tamoxifen resistance; however, very little information is available regarding the genes whose loss-of-function alternation contribute to tamoxifen resistance. Here we used a forward genetic approach in vitro to generate tamoxifen resistant cells from the tamoxifen sensitive breast cancer cell line ZR-75-1, and further identified the disrupted gene in different tamoxifen resistant clones. Retinol binding protein 7, DNA polymerase-transactivated protein 3, γ-glutamyltransferase-like activity 1,slit-robo RhoGTPase-activating protein, tetraspan NET-4, HSPC 194, amiloride-sensitive epithelial sodium channel gene,and Notch2, were the eight mutated genes identified in different tamoxifen resistant clones, suggesting their requirement for tamoxifen sensitivity in ZR-75-1 cells. Since the functions of these genes are not related to each other, it suggests that multiple pathways can influence tamoxifen sensitivity in breast cancer cells.

  15. Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis.

    Science.gov (United States)

    Shirani, Afsaneh; Okuda, Darin T; Stüve, Olaf

    2016-01-01

    Identifying effective therapies for the treatment of progressive forms of multiple sclerosis (MS) is a highly relevant priority and one of the greatest challenges for the global MS community. Better understanding of the mechanisms involved in progression of the disease, novel trial designs, drug repurposing strategies, and new models of collaboration may assist in identifying effective therapies. In this review, we discuss various therapies under study in phase II or III trials, including antioxidants (idebenone); tyrosine kinase inhibitors (masitinib); sphingosine receptor modulators (siponimod); monoclonal antibodies (anti-leucine-rich repeat and immunoglobulin-like domain containing neurite outgrowth inhibitor receptor-interacting protein-1, natalizumab, ocrelizumab, intrathecal rituximab); hematopoetic stem cell therapy; statins and other possible neuroprotective agents (amiloride, riluzole, fluoxetine, oxcarbazepine); lithium; phosphodiesterase inhibitors (ibudilast); hormone-based therapies (adrenocorticotrophic hormone and erythropoietin); T-cell receptor peptide vaccine (NeuroVax); autologous T-cell immunotherapy (Tcelna); MIS416 (a microparticulate immune response modifier); dopamine antagonists (domperidone); and nutritional supplements, including lipoic acid, biotin, and sunphenon epigallocatechin-3-gallate (green tea extract). Given ongoing and planned clinical trial initiatives, and the largest ever focus of the global research community on progressive MS, future prospects for developing targeted therapeutics aimed at reducing disability in progressive forms of MS appear promising. PMID:26729332

  16. Properties of acid-induced currents in mouse dorsal root ganglia neurons.

    Science.gov (United States)

    Ergonul, Zuhal; Yang, Lei; Palmer, Lawrence G

    2016-05-01

    Acid-sensing ion channels (ASICs) are cation channels that are activated by protons (H(+)). They are expressed in neurons throughout the nervous system and may play important roles in several neurologic disorders including inflammation, cerebral ischemia, seizures, neurodegeneration, anxiety, depression, and migraine. ASICs generally produce transient currents that desensitize in response to a decrease in extracellular pH Under certain conditions, the inactivation of ASICs can be incomplete and allow them to produce sustained currents. Here, we characterize the properties of both transient and sustained acid-induced currents in cultured mouse dorsal root ganglia (DRG) neurons. At pH levels between 7.3 and 7.1 they include "window currents" through ASICs. With stronger acid signals sustained currents are maintained in the absence of extracellular Na(+) or the presence of the ASIC blockers amiloride and Psalmotoxin-1(PcTx1). These sustained responses may have several different origins in these cells, including acid-induced stimulation of inward Cl(-) currents, block of outward K(+) currents, and augmentation of inward H(+) currents, properties that distinguish these novel sustained currents from the well-characterized transient currents. PMID:27173673

  17. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Hanna M Vesterinen

    Full Text Available To develop and implement an evidence based framework to select, from drugs already licenced, candidate oral neuroprotective drugs to be tested in secondary progressive multiple sclerosis.Systematic review of clinical studies of oral putative neuroprotective therapies in MS and four other neurodegenerative diseases with shared pathological features, followed by systematic review and meta-analyses of the in vivo experimental data for those interventions. We presented summary data to an international multi-disciplinary committee, which assessed each drug in turn using pre-specified criteria including consideration of mechanism of action.We identified a short list of fifty-two candidate interventions. After review of all clinical and pre-clinical evidence we identified ibudilast, riluzole, amiloride, pirfenidone, fluoxetine, oxcarbazepine, and the polyunsaturated fatty-acid class (Linoleic Acid, Lipoic acid; Omega-3 fatty acid, Max EPA oil as lead candidates for clinical evaluation.We demonstrate a standardised and systematic approach to candidate identification for drug rescue and repurposing trials that can be applied widely to neurodegenerative disorders.

  18. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a...... markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction....... Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin...

  19. A review on the use of bulk specimen X-ray microanalysis in cancer research

    International Nuclear Information System (INIS)

    The freeze-fracture, freeze-drying (FFFD) method of biological bulk specimen preparation combined with quantitative X-ray microanalysis is suitable for the measurement of intracellular concentrations of biologically relevant elements in human biopsy or experimental animal materials. Especially useful information can be obtained regarding the intracellular Na+/K+ ratios being independent of the actual (and unknown) water content of the cytoplasm. The sustained increase of this ratio indicates a sustained depolarization of the cell membrane. These data are of importance from the point of view of the membrane hypothesis of mitogenesis (MHM). It has been revealed that the distribution histograms of the intracellular Na+/K+ ratio display a very significant broadening and an increase of the average values in human urogenital, thyroid and laryngeal tumors, as well as in experimentally induced cell proliferation models. Although MHM has been claimed to be invalid on the basis of some atomic absorption measurements of the intracellular monovalent ion concentrations as well as of some in vitro results obtained with amiloride, this review paper demonstrates that MHM may still be a valid hypothesis for the explanation of mitotic regulation.97 references

  20. The RS685012 Polymorphism of ACCN2, the Human Ortholog of Murine Acid-Sensing Ion Channel (ASIC1) Gene, is Highly Represented in Patients with Panic Disorder.

    Science.gov (United States)

    Gugliandolo, Agnese; Gangemi, Chiara; Caccamo, Daniela; Currò, Monica; Pandolfo, Gianluca; Quattrone, Diego; Crucitti, Manuela; Zoccali, Rocco Antonio; Bruno, Antonio; Muscatello, Maria Rosaria Anna

    2016-03-01

    Panic disorder (PD) is a disabling anxiety disorder that is characterized by unexpected, recurrent panic attacks, associated with fear of dying and worrying about possible future attacks or other behavioral changes as a consequence of the attacks. The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of behaviors including fear, anxiety, pain, depression, learning, and memory. The human analog of ASIC1a is the amiloride-sensitive cation channel 2 (ACCN2). Adenosine A2A receptors are suggested to play an important role in different brain circuits and pathways involved in anxiety reactions. In this work we aimed to evaluate the distribution of ACCN2 rs685012 and ADORA2A rs2298383 polymorphisms in PD patients compared with healthy subjects. We found no association between ADORA2A polymorphism and PD. Instead, the C mutated allele for ACCN2 rs685012 polymorphism was significantly more frequent in patients than in controls. On the contrary, the TT homozygous wild-type genotype and also the ACCN2 TT/ADORA2A CT diplotype were significantly more represented in controls. These results are suggestive for a role of ACCN2 rs685012 polymorphism in PD development in Caucasian people. PMID:26589317

  1. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-08-30

    Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.

  2. Drug management of noninfective complications of cystic fibrosis.

    Science.gov (United States)

    Sanchez, I; Guiraldes, E

    1995-10-01

    Cystic fibrosis (CF) is the commonest lethal hereditary disease in Caucasians. The disease involves a gene mutation located at the long arm of chromosome 7, and more than 300 mutations have been identified. CF is a systemic illness affecting the upper respiratory tract and airways, sweat and salivary glands, pancreas, gastrointestinal tract, liver and male reproductive system. The course is highly variable depending on the specific molecular abnormalities in the mutant gene. The current approach to therapy now involves the use of: (i) chest physiotherapy; (ii) bronchodilators when there is evidence of airways hyperreactivity; (iii) oral and intravenous antibiotics for acute pulmonary exacerbations and aerosolised antibiotics for prevention; (iv) recombinant human deoxyribonuclease I (dornase alfa) to promote airways clearance; (v) amiloride to improve sputum viscosity; (vi) pancreatic enzyme replacement therapy along with nutritional support and supplements; (vi) vitamins; and (vii) ursodeoxycholic acid in selected patients. The use of antiprotease and anti-inflammatory agents has been shown to be useful in preventing the damage secondary to chronic lung infection. In patients with severely impaired lung function, lung transplantations have been performed with good results. Finally, it seems probable that lung disease in CF patients will be ameliorated or prevented in the future with early gene therapy, using vectors such as recombinant adenoviruses, adeno-associated virus, lipofection or retrovirus. However, this require extensive basic and clinical research. PMID:8536551

  3. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

    Science.gov (United States)

    McEneaney, Victoria; Dooley, Ruth; Yusef, Yamil R; Keating, Niamh; Quinn, Ursula; Harvey, Brian J; Thomas, Warren

    2010-08-30

    Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization. PMID:20434520

  4. Insulin-stimulated Na+ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    International Nuclear Information System (INIS)

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (∼ 0.5-5.0 μM) stimulates net mucosal to serosal Na+ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10μM) of the epithelial Na+ channel blocker amiloride. Insulin-stimulated Na+ transport does not require new protein synthesis since it is actinomycin-D (10μg/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by 35S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64μM) stimulate Na+ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF1 stimulate Na+ transport in this tissue support the latter contention

  5. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  6. Insulin regulation of Na/K pump activity in rat hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-05-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by /sup 3/H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of /sup 22/Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes.

  7. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  8. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action.

    Directory of Open Access Journals (Sweden)

    Mehboob Hoque

    Full Text Available A chance discovery of the tumoricidal action of a human milk fraction led to the characterization of the active component as oleic acid complex of the α-lactalbumin, which was given the acronym HAMLET. We report in this study that the oleic acid complex of bovine α-lactalbumin (BAMLET is hemolytic to human erythrocytes as well as to those derived from some other mammals. Indirect immunofluorescence analysis suggested binding of BAMLET to erythrocytes prior to induction of hemolysis. Free OA was hemolytic albeit at higher concentrations, while sodium oleate caused hemolysis at far lower concentrations. Amiloride and BaCl2 offered protection against BAMLET-induced hemolysis suggesting the involvement of a cation leak channel in the process. BAMLET coupled to CNBr-activated Sepharose was not only hemolytic but also tumoricidal to Jurkat and MCF-7 cells in culture. The Sepharose-linked preparation was however not toxic to non-cancerous peritoneal macrophages and primary adipocytes. The tumoricidal action was studied using the MTT-assay while apoptosis induction measured by the annexin V-propidium iodide assay. Repeated incubation of the immobilized BAMLET with erythrocytes depleted oleic acid and decreased the hemolytic activity of the complex. Incubation of MCF-7 and Jurkat cells with OA, soluble or immobilized BAMLET resulted in increase in the uptake of Lyso Tracker Red and Nile red by the cells. The data presented support the contention that oleic acid plays the key role, both in BAMLET-induced hemolysis and tumoricidal action.

  9. The effects of environmental deuterium on normal and neoplastic cultured cell development

    International Nuclear Information System (INIS)

    The powdered culture media (RPMI - 1640) were reconstituted either with normal distilled water (150 ppm deuterium) either with deuterium - depleted water (DDW) in various concentrations (30, 60, 90 ppm) and sterilized by filtration with 0.2 μm filters. The cell lines used were NIH (normal mouse fibroblasts), RAG (mouse renal carcinoma) and TS/A (mouse mammary adenocarcinoma). In auxiliary tests, BAIBC mouse splenocytes in direct culture were used, stimulated for growth with concanavalin A or LPS (bacterial lipopolysaccharide). The estimation of the growth was made using the MTT assay or direct counting with trypan blue exclusion. The following results were obtained: Deuterium - depleted water had a stimulating effect on cell growth, the most important stimulating action being from the 90 ppm deuterium-water. The growth curves show, in a first phase, a stimulation of the rapid -growing neoplastic cells, followed by a slower growth of the normal cells. Amiloride 100 mM blocking of the Na+/K+ membrane pump did not affect the cell growth curves, while the lansoprazole 100 mM blocking of the K+/H+ ATP-ase brought the growth curves at the level of those with normal water. This might show an eventual involvement of the K+/H+ antiport in the stimulating effects of the DDW. (authors)

  10. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.B.; Ku, D.D.

    1986-03-05

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1..mu..M), cyproheptadine (1..mu..H) and ibuprofen (1..mu..g/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca/sub 0/) or addition of 1..mu..M nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10..mu..M to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca/sub 0/. More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects.

  11. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway

  12. Na+ and H+ transport in human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    The authors have examined pH gradient-driven Na+ uptake and Na+-driven H+ transport in brush-border membrane vesicles prepared from jejunal tissue obtained from organ donors by measuring the influx of 22Na and the fluorescence quenching of acridine orange (AO). Vesicle preparation by either Ca2+ or Mg2+ precipitation showed no difference in 22Na uptake or AO fluorescence quenching and dissipation. An outward H+ gradient induced a Na+ uptake overshoot of threefold over equilibrium, whereas the absence of an H+ gradient did not produce an overshoot. The initial rate of pH-driven Na+ uptake in voltage-clamped vesicles was related to [Na+o]. Amiloride inhibited this uptake in voltage-clamped vesicles. Dissipation of AO fluorescence quench in vesicles with a preformed internal acid gradient was hastened by Na+o as well as voltage clamping in the absence of Na+. In vesicles without a pH gradient, internal Na+, as well as a diffusion potential in the absence of Na+, induced AO quenching. External Na+ and Li+, but not choline, acted to dissipate AO quenching induced by a diffusion potential, and the rate of dissipation was unaffected by the presence of Cl-. Li+ and NH+4, but not Cs+, K+, Rb+, or choline+, inhibited pH gradient-driven 22Na uptake. They conclude that human jejunal brush-border membrane vesicles contain conductive pathways for both Na+ and H+ and an Na+-H+ exchanger

  13. Ba2+-inhibitable 86Rb+ fluxes across membranes of vesicles from toad urinary bladder

    International Nuclear Information System (INIS)

    86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6 mM. The effects of externally added cations on 86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. The Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry

  14. Characteristics of the paracellular pathway of rabbit cortical collecting duct

    International Nuclear Information System (INIS)

    The nature of the paracellular pathway of the rabbit cortical collecting duct (CCD) was examined under conditions designed to eliminate all cellular ion transport. Transcellular conductive pathways were blocked by addition of amiloride and Ba2+ to the perfusate. Cl self-exchange was eliminated by removing Cl from the bath solution, and HCO3 transport was eliminated by omitting HCO3 and CO2 from the solutions. The residual transepithelial conductance (GT) and radioisotopic tracer flux under these conditions probably occur via the paracellular pathway. The GT measured in nontransporting CCD bathed in NaCl solutions was 1.1-1.2 mS/cm2. When 22Na or 36Cl was replaced by a less mobile ion, the GT decreased by an amount commensurate with the decrease in solution conductivity. The Na-to-Cl permeability ratio determined by NaCl dilution voltages ranged from 0.55 to 0.82. An independent estimate of paracellular selectivity was obtained by comparing the lumen-to-bath tracer rate coefficients for 22Na (kNa) and 36Cl (kCl). The ratio kNa:kCl was 0.75. These observations suggest that the paracellular pathway displays a Na:Cl permselectivity not substantially different from the ratio of their mobilities in water (0.65). The authors conclude that the paracellular conductance of CCD is nonselective in character and ∼1-2 mS/cm2 in magnitude

  15. Conductive Na+ transport in an epithelial cell line (LLC-PK1) with characteristics of proximal tubular cells

    International Nuclear Information System (INIS)

    22Na influx and efflux from confluent monolayers of an epithelial cell line with multiple differentiated characteristics of the straight segment of the renal proximal tubule were studied in the presence and absence of a pH gradient. The results show that 22Na+ influx in the absence of a pH gradient is inhibited by amiloride as well as by complete replacement of Cl- by an impermeable anion, such as isethionate. Dissipation of cell membrane potential by increasing the potassium concentration of the extracellular medium in the presence of valinomycin also inhibited Na+ influx, whereas sodium influx induced by an H+ gradient was not affected. Inhibition of Na+ influx by different maneuvers produced hyperpolarization of the plasma cell membrane, as would be expected if the sodium movement involved net displacement of charges. Calcium and other divalent and trivalent cations also inhibited Na+ influx measured in the absence of an H+ gradient. Na+ influx induced by a pH gradient, however, was not affected. Like the Na+-H+-exchange system, the conductive Na+ pathway is localized in the apical membrane of the epithelial cells. From these results, the authors conclude that at least a fraction of transepithelial Na+ transport in LLC-PK1 monolayers occurs through a simple rheogenic transport system

  16. Interference of a short-chain phospholipid with ion transport pathways in frog skin

    DEFF Research Database (Denmark)

    Unmack, M A; Frederiksen, O; Willumsen, N J

    1997-01-01

    The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport was mea...... the frog skin epithelium and opens a paracellular tight junction pathway. Both effects may be caused by incorporation of DDPC in the apical cell membrane.......The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport was...... G by DDPC, these results suggest that the DDPC-induced increase in G represents an increase in the paracellular shunt conductance. The effects of mucosal DDPC were almost fully reversible within 8 h. The results indicate that DDPC inhibits amiloride-sensitive Na+ channels in the apical membrane of...

  17. Active K transport across rabbit distal colon: relation to Na absorption and Cl secretion

    International Nuclear Information System (INIS)

    The authors measured isotopic unidirectional fluxes of K to elucidate the mechanisms of active K transport across the distal colon of the rabbit. Separate pathways for active K absorption and active K secretion were detected using various transport inhibitors and stimulators. The rate and direction of net 42K transport depend on the activities of these two pathways. K absorption was reduced by orthovanadate (both solutions) or serosal Ba, consistent with ATPase-dependent uptake of K across the apical membrane and exit via a Ba-sensitive basolateral K conductance. K secretion was inhibited by serosal ouabain or mucosal Ba, indicating that K secretion involves basolateral uptake via the Na-K pump and apical exit via a Ba-sensitive K conductance. Active K secretion appears to be electrogenic, since inhibition by ouabain produced equivalent changes in the net K flux and short-circuit current. Addition of bumetanide to the serosal solution or the removal of either Na or Cl from the serosal solution inhibited K secretion; mucosal solutions amiloride was without effect. These results indicate that this K secretory process is independent of electrogenic Na absorption but is mechanistically similar to 36Cl secretory processes. Both epinephrine and prostaglandin E2 (PGE2) stimulate K secretion, but only PGE2 also stimulates Cl secretion. The response to these secretogogues suggest that the mechanisms underlying K and Cl secretion are closely linked but can be regulated independently

  18. Diabetes insipidus: The other diabetes

    Science.gov (United States)

    Kalra, Sanjay; Zargar, Abdul Hamid; Jain, Sunil M.; Sethi, Bipin; Chowdhury, Subhankar; Singh, Awadhesh Kumar; Thomas, Nihal; Unnikrishnan, A. G.; Thakkar, Piya Ballani; Malve, Harshad

    2016-01-01

    Diabetes insipidus (DI) is a hereditary or acquired condition which disrupts normal life of persons with the condition; disruption is due to increased thirst and passing of large volumes of urine, even at night. A systematic search of literature for DI was carried out using the PubMed database for the purpose of this review. Central DI due to impaired secretion of arginine vasopressin (AVP) could result from traumatic brain injury, surgery, or tumors whereas nephrogenic DI due to failure of the kidney to respond to AVP is usually inherited. The earliest treatment was posterior pituitary extracts containing vasopressin and oxytocin. The synthetic analog of vasopressin, desmopressin has several benefits over vasopressin. Desmopressin was initially available as intranasal preparation, but now the oral tablet and melt formulations have gained significance, with benefits such as ease of administration and stability at room temperature. Other molecules used for treatment include chlorpropamide, carbamazepine, thiazide diuretics, indapamide, clofibrate, indomethacin, and amiloride. However, desmopressin remains the most widely used drug for the treatment of DI. This review covers the physiology of water balance, causes of DI and various treatment modalities available, with a special focus on desmopressin. PMID:26904464

  19. Diabetes insipidus: The other diabetes

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available Diabetes insipidus (DI is a hereditary or acquired condition which disrupts normal life of persons with the condition; disruption is due to increased thirst and passing of large volumes of urine, even at night. A systematic search of literature for DI was carried out using the PubMed database for the purpose of this review. Central DI due to impaired secretion of arginine vasopressin (AVP could result from traumatic brain injury, surgery, or tumors whereas nephrogenic DI due to failure of the kidney to respond to AVP is usually inherited. The earliest treatment was posterior pituitary extracts containing vasopressin and oxytocin. The synthetic analog of vasopressin, desmopressin has several benefi ts over vasopressin. Desmopressin was initially available as intranasal preparation, but now the oral tablet and melt formulations have gained significance, with benefits such as ease of administration and stability at room temperature. Other molecules used for treatment include chlorpropamide, carbamazepine, thiazide diuretics, indapamide, clofibrate, indomethacin, and amiloride. However, desmopressin remains the most widely used drug for the treatment of DI. This review covers the physiology of water balance, causes of DI and various treatment modalities available, with a special focus on desmopressin.

  20. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    International Nuclear Information System (INIS)

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1μM), cyproheptadine (1μH) and ibuprofen (1μg/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca0) or addition of 1μM nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10μM to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca0. More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects

  1. Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Rentsch, Maria L; Ossum, Carlo G; Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    , p38 mitogen-activated protein kinase (MAPK), ERK1/2, p53, and Akt activity, and cell death, after chemical anoxia in NIH3T3 fibroblasts. The NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (EIPA) (5 muM), as well as removal of extracellular Na(+) [replaced by N-methyl-D: -glucamine (NMDG......(+))], prevented recovery of intracellular pH (pH(i)) during chemical anoxia (10 mM NaN(3) +/- 10 mM glucose), indicating that activation of NHE was the dominating mechanism of pH(i) regulation under these conditions. NHE activation by chemical anoxia was unaffected by inhibitors of p38 MAPK (SB203580) and...... extracellular signal-regulated kinase (ERK) (PD98059). In contrast, chemical anoxia activated p38 MAPK in an NHE-dependent manner, while ERK1/2 activity was unaffected. Anoxia-induced cell death was caspase-3-independent, mildly attenuated by EIPA, potently exacerbated by SB203580, and unaffected by PD98059...

  2. p-aminohippurate transport in the airways: Role of Na sup + and HCO sub 3 -

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, M.M. (Univ. of Connecticut Health Center, Farmington (USA))

    1989-12-01

    The role of Na{sup +} and HCO{sub 3}- in the transport of p-aminohippurate (PAH) across the canine tracheal epithelium was investigated using Ussing chamber techniques and radiolabeled PAH. Under control conditions, net PAH absorption or a tendency toward net PAH absorption was observed. Neither amiloride (10(-4) M), furosemide (10(-3) M), ouabain (2 x 10(-4) M), nor Na+ substitution of the Ringer solution with choline had any effect on unidirectional PAH fluxes. When the Ringer solution was replaced with a HCO{sub 3}(-)-free solution, net PAH absorption was consistently observed. In HCO{sub 3}(-)-free experiments, unidirectional PAH absorptive fluxes were inhibited by mucosal addition of either of the stilbene derivatives, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 10(-4) M) or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS, 10(-4) M). DIDS was more effective than SITS and was also effective in inhibiting PAH absorption in tissues bathed in Ringer solution. Submucosal DIDS or SITS had no effect on PAH fluxes either in HCO{sub 3}(-)-free or Ringer experiments. We conclude that PAH transport in canine tracheal epithelium occurs by a HCO{sub 3}(-)-PAH exchange process located on the luminal membrane. PAH transport is not Na{sup +} dependent but is inhibited by both DIDS and SITS.

  3. SPAK Sensitive Regulation of the Epithelial Na+ Channel ENaC

    Directory of Open Access Journals (Sweden)

    Musaab Ahmed

    2015-06-01

    Full Text Available Background/Aims: The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK participates in the regulation of NaCl and Na+,K+,2Cl- cotransport and thus renal salt excretion. The present study explored whether SPAK has similarly the potential to regulate the epithelial Na+ channel (ENaC. Methods: ENaC was expressed in Xenopus oocytes with or without additional expression of wild type SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK or catalytically inactive D212ASPAK, and ENaC activity estimated from amiloride (50 µM sensitive current (Iamil in dual electrode voltage clamp experiments. Moreover, Ussing chamber was employed to determine Iamil in colonic tissue from wild type mice (spakwt/wt and from gene targeted mice carrying WNK insensitive SPAK (spaktg/tg. Results: Iamil was observed in ENaC-expressing oocytes, but not in water-injected oocytes. In ENaC expressing oocytes Iamil was significantly increased following coexpression of wild-type SPAK and T233ESPAK, but not following coexpression of T233ASPAK or D212ASPAK. Colonic Iamil was significantly higher in spakwt/wt than in spaktg/tg mice. Conclusion: SPAK has the potential to up-regulate ENaC.

  4. Activation of Chloride Secretion by Isoflavone Genistein in Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Chatsri Deachapunya

    2013-11-01

    Full Text Available Background /Aim: Genistein, the most active isoflavone found primarily in soybeans, alters ion transport functions in intestinal and airway epithelia. The present study aims to investigate the acute effects and mechanisms of action of genistein in immortalized porcine endometrial epithelial cells. Methods: Ussing chamber technique was used for transepithelial electrical measurements. Results: Genistein increased short-circuit currents (Isc which were inhibited by glibenclamide, NPPB, CFTRinh-172, DIDS or bumetanide, but not amiloride. In experiments with amphotericin B-permeabilized monolayers, genistein activated the apical Cl- current and barium-sensitive basolateral K+ current while inhibiting the apical K+ current. Genistein failed to increase the Isc in the presence of forskolin or IBMX, but did increase the Isc in UTP. Pretreatment with genistein also abolished the increase in the Isc when induced by forskolin, IBMX or UTP. However, Ca2+-chelating BAPTA-AM did not affect the genistein-induced increase in the Isc. The genistein-stimulated Isc was reduced by tyrosine kinase inhibitors, tyrphostin A23 or AG490. However, vanadate, a tyrosine phosphatase inhibitor, failed to inhibit the genistein response. Estrogen receptor antagonist ICI182,780 did not alter the genistein's action. Conclusion: The soy isoflavone, genistein, stimulates Cl- secretion in endometrial epithelial cells possibly via a direct activation of CFTR which appears to be modulated through a tyrosine kinase-dependent pathway. The present findings may be of benefit for the therapeutic application of genistein in the treatment of electrolyte transport disorders in the epithelia.

  5. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine

    Science.gov (United States)

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species. PMID:27479072

  6. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis.

    Science.gov (United States)

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  7. Interrelationship between growth factor-induced pH changes and intracellular Ca/sup 2 +/

    Energy Technology Data Exchange (ETDEWEB)

    Ives, H.E.; Daniel, T.O.

    1987-04-01

    Many mitogens cause rapid changes in intracellular pH and Ca/sup 2 +/. The authors studied the patterns of pH and Ca/sup 2 +/ changes after exposure of murine fibroblasts to platelet-derived growth factor (PDGF), bombesin, phorbol 12-myristate 13-acetate (PMA), and the vasoactive peptide bradykinin. Intracellular pH and Ca/sup 2 +/ were measured by using the fluorescent dyes 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2. Three distinct patterns of intracellular pH change were observed. (i) PDGF and bombesin caused a rapid cytoplasmic acidification of 0.03 pH unit followed by a slower alkalinization of approx. = 0.11 pH unit above the resting pH of 6.88. (ii) PMA caused alkalinization without causing the early acidification. (iii) Bradykinin caused rapid acidification without the slower net alkalinization. All acidification responses were amiloride resistant. Patterns of intracellular Ca/sup 2 +/ response were also determined for each agent. In Ca/sup 2 +/-buffered cells, PDGF, bombesin, bradykinin, and ionomycin failed to induce cellular acidification, but alkalinization responses to PDGF, bombesin, and PMA persisted. They propose that the transient acidification seen with PDGF, bombesin, and other agents is the result of increased intracellular Ca/sup 2 +/. However, growth factor-induced alkalinization via the Na/sup +//H/sup +/ exchanger is independent of changes in Ca/sup 2 +/.

  8. Effects of ozone on transepithelial potential of mouse trachea

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M.; Kleeberger, S.R.; Croxton, T.L. (Johns Hopkins Medical Institutions, Baltimore, MD (United States))

    1993-07-01

    The effects of ozone on tracheal electrical potential were investigated in inbred strains of mice that are differentially susceptible to ozone-induced inflammation. In male mice (9-13 wk), a tracheostomy was made under pentobarbital anesthesia for spontaneous breathing and tracheal potential was measured in the cephalad portion of the bisected trachea using Hanks' salt/agar-capped KCl bridges connected to a pair of calomel half cells. The mean tracheal potentials of five different strains of mice (C3H/HeJ, DBA/2J, C57BL/6J, BALB/cJ, and 129/J) were approximately 10 mV (lumen negative) with no significant interstrain difference. Amiloride reduced mouse tracheal potentials by approximately 70% in both C3H/HeJ and C57BL/6J mice, indicating that sodium absorption is the predominant ion transport across this tissue. Relative to air-exposed controls, acute ozone exposure (2 ppm for 3 h) significantly attenuated tracheal potential of inflammation-susceptible C57BL/6J mice by approximately 50% at 6 h and 40% at 24 h postexposure but had no effect immediately after exposure. The mean tracheal potential of C3H/HeJ mice was not changed by ozone. The differential effect of acute ozone exposure on tracheal potential in C57BL/6J and C3H/HeJ mice is consistent with differential susceptibility to ozone-induced increases in epithelial permeability in these strains.

  9. Stimulation of Na+/H+ antiport is an early event in hypertrophy of renal proximal tubular cells

    International Nuclear Information System (INIS)

    Renal hypertrophy in vivo is achieved by an increase in protein content per cell and an increase in cell size with minimal hyperplasia. Hypertrophied renal tubular cells remain quiescent and demonstrate an increase in transcellular transport rates. This situation was simulated in vitro by exposing a confluent, quiescent primary culture of rabbit renal proximal tubular cells to either insulin, prostaglandin E1, or hypertonic NaCl for 24 or 48 hr. Protein per cell increased by 20-30% with little or no increase in [3H]thymidine incorporation into DNA. Mean cell volume was also increased in insulin- and hypertonic NaCl-treated but not in prostaglandin E1-treated cells. Two hours of exposure to the growth stimuli increased amiloride-sensitive Na+ uptake, Na-dependent H+ efflux, and ouabain-sensitive Rb+ uptake, indicating that stimulation of Na+/H+ antiport (exchange) occurs as an early event in their action. Hypertrophied cells continued to demonstrate enhanced Na+/H+ antiport after the growth stimuli were removed for 3 hr, by which time their acute effects are reversed

  10. Early effects of aldosterone on Na-K pump in rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Sustained exposure to aldosterone (Aldo) increases the abundance and activity of the Na-K pump in cortical collecting tubules (CCT). However, the onset and mechanism of the early interaction of Aldo with the CCT pump, especially in adrenal-intact animals, are unclear. We evaluated the short-term effects of the hormone on Na-K-adenosinetriphosphatase (ATPase) activity and on ouabain-sensitive 86Rb uptake, a measure of the transporting rate of the pump, in microdissected CCT from adrenal-intact rats. Incubation with Aldo (10(-8) M, 2 h) had no effect on Na-K-ATPase activity (Vmax), whereas it produced at least a twofold increase in 86Rb uptake. This effect was generated by physiological concentrations of the hormone (threshold 10(-10) M; apparent K1/2 approximately 10(-9) M), after a short lag of less than or equal to 30 min. Incubation with Aldo in the presence of amiloride or nystatin or in a Na-free medium (choline chloride) did not prevent the enhanced 86Rb uptake seen after Aldo alone; possible interpretations of these observations are discussed. We conclude that Aldo produces a rapid stimulation of pump function in CCT that precedes its induction of new pump synthesis; the physiological significance of this effect is suggested by its occurrence in tubules from adrenal-intact animals within the time frame and concentration range of the hormone's effects on electrolyte transport

  11. The effect of long-term lithium treatment on kidney function [Wpływ długotrwałego podawania litu na czynność nerek

    Directory of Open Access Journals (Sweden)

    Rybakowski, Janusz

    2012-08-01

    Full Text Available In 1963 it was first demonstrated that long-term lithium administration exerts a “mood-stabilising” effect, preventing recurrences of mania and depression in bipolar affective disorder. Despite the introduction of many other drugs having mood-stabilising effect, lithium still remains the first choice drug for the prophylaxis of affective episodes in mood disorder. Lithium is eliminated nearly exclusively by the kidneys: lithium clearance is proportional to creatinine clearance and is influenced by natriuretic and antinatriuretic factors. Nowadays, nearly 40-year experience with long-term lithium treatment point to a possibility of nephrotoxic effects of this ion. Impaired urinary concentrating ability, which, in a few patients can reach an intensity of diabetes insipidus, can occur after several weeks of lithium administration. Favourable results in the treatment of diabetes insipidus have been obtained with amiloride, the drug which block epithelial sodium channel. However, after 10-20 years of treatment, lithium-induced interstitial nephropathy may be demonstrated in some patients, which, in small proportion of the latter may lead to end-stage renal disease. Lithium-induced hipercalcemia and nephrotic syndrome are rare complications of lithium therapy. In patients on long-term lithium therapy periodic monitoring of kidney function by measuring serum creatinine concentration and glomerular filtration rate is necessary. In case of detecting nephropathy, a discontinuation of lithium should be considered. The patient in whom lithium was discontinued due to nephropathy should remain in nephrological treatment.

  12. SFE/SFHTA/AFCE primary aldosteronism consensus: Introduction and handbook.

    Science.gov (United States)

    Amar, Laurence; Baguet, Jean Philippe; Bardet, Stéphane; Chaffanjon, Philippe; Chamontin, Bernard; Douillard, Claire; Durieux, Pierre; Girerd, Xaxier; Gosse, Philippe; Hernigou, Anne; Herpin, Daniel; Houillier, Pascal; Jeunemaitre, Xavier; Joffre, Francis; Kraimps, Jean-Louis; Lefebvre, Hervé; Ménégaux, Fabrice; Mounier-Véhier, Claire; Nussberger, Juerg; Pagny, Jean-Yves; Pechère, Antoinette; Plouin, Pierre-François; Reznik, Yves; Steichen, Olivier; Tabarin, Antoine; Zennaro, Maria-Christina; Zinzindohoue, Franck; Chabre, Olivier

    2016-07-01

    The French Endocrinology Society (SFE) French Hypertension Society (SFHTA) and Francophone Endocrine Surgery Association (AFCE) have drawn up recommendations for the management of primary aldosteronism (PA), based on an analysis of the literature by 27 experts in 7 work-groups. PA is suspected in case of hypertension associated with one of the following characteristics: severity, resistance, associated hypokalemia, disproportionate target organ lesions, or adrenal incidentaloma with hypertension or hypokalemia. Diagnosis is founded on aldosterone/renin ratio (ARR) measured under standardized conditions. Diagnostic thresholds are expressed according to the measurement units employed. Diagnosis is established for suprathreshold ARR associated with aldosterone concentrations >550pmol/L (200pg/mL) on 2 measurements, and rejected for aldosterone concentrationhistory. The patient should be informed of the results expected from medical and surgical treatment of PA before exploration for lateralization is proposed. Lateralization is explored by adrenal vein sampling (AVS), except in patients under 35 years of age with unilateral adenoma on imaging. If PA proves to be lateralized, unilateral adrenalectomy may be performed, with adaptation of medical treatment pre- and postoperatively. If PA is non-lateralized or the patient refuses surgery, spironolactone is administered as first-line treatment, replaced by amiloride, eplerenone or calcium-channel blockers if insufficiently effective or poorly tolerated. PMID:27315757

  13. Mechanisms underlying turgor regulation in the estuarine alga Vaucheria erythrospora (Xanthophyceae) exposed to hyperosmotic shock.

    Science.gov (United States)

    Muralidhar, Abishek; Shabala, Lana; Broady, Paul; Shabala, Sergey; Garrill, Ashley

    2015-08-01

    Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor-regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em ) measurements. Turgor recovery was inhibited by Gd(3+) , tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl-induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na(+) but not K(+) and Cl(-) in the incubation media. Na(+) uptake was strongly decreased by amiloride and changes in net Na(+) and H(+) fluxes were oppositely directed. This suggests active uptake of Na(+) in V. erythrospora mediated by an antiport Na(+) /H(+) system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K(+) efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress. PMID:25546818

  14. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  15. Volume-regulatory K+ fluxes in the isolated perfused rat liver: characterization by ion transport inhibitors.

    Science.gov (United States)

    Haddad, P; Graf, J

    1989-09-01

    Net hepatic release and uptake of K+ were examined in isolated perfused rat livers subjected to a 10-min period of hypotonic stress. Effluent Na+, K+, and Ca2+ activities were monitored throughout. Initiation and termination of hypotonic stress triggered sharp transient (less than 1 min) changes in effluent ion activities that indicated net water movement into and out of the liver, respectively. In addition, hypotonic stress caused a large transient net release of hepatic K+, whereas return to isotonicity triggered a transient net hepatic K+ uptake. The hypotonically induced K+ release was inhibited by 2 mM barium (95%) and by 1 mM quinine (60%). Net K+ influx, on the other hand, was inhibited by 1 mM ouabain (100%) and by 1 mM amiloride (50%). Osmotically induced K+ fluxes were not significantly affected by bicarbonate removal and were only partially inhibited by 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or bumetanide. The results suggest that K+ conductance increases during hypotonic stress, whereas return to isotonicity induces a ouabain-sensitive K+ uptake partly because of increased Na+-H+ exchange. These mechanisms probably participate in regulatory volume decrease and regulatory volume increase, respectively. PMID:2551180

  16. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Teresa Maria Creanza

    2016-06-01

    Full Text Available Differential gene expression analyses to investigate multiple sclerosis (MS molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1 that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment.

  17. Tubular transport and metabolism of cimetidine in chicken kidneys

    International Nuclear Information System (INIS)

    Renal tubular transport and renal metabolism of [14C]cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). [14C]CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of [14C]CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of [14C]thiamine, [14C]amiloride and [14C]tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion

  18. Antiporter Gene from Hordum brevisubulatum (Trin.) Link and Its Overexpression in Transgenic Tobaccos

    Institute of Scientific and Technical Information of China (English)

    Shi-You Lü; Yu-Xiang JING; Shi-Hua SHEN; Hua-Yan ZHAO; Lan-Qing MA; Xiang-Juan ZHOU; Qing REN; Yan-Fang LI

    2005-01-01

    A vacuolar Na+/H+ antiporter cDNA gene was successfully isolated from Hordeum brevisubulatum (Trin.) Link using the rapid amplification of cDNA ends (RACE) method. The gene was named HbNHX1 and was found to consist of 1 916 bp encoding a predicted polypeptide of 540 amino acids with a conserved amiloride-binding domain. Phylogenetic tree analysis of the Na+/H+ antiporters showed that the HbNHX1gene shares 55.3%-74.8% similarity with the vacuolar-type Na+/H+ antiporters. Transgenic tobaccos that contain the HbNHX1 gene, integrated by forward insertion into the tobacco genome, were obtained via Agrobacterium tumerfaciens and characterized for the determination of the concentration of Na+ and K+ions, as well as proline, in the presence of 300 mmol/L NaCl. The T1 transgenic plants showed more tolerance to salt and drought than did wild-type plants. Our data suggest that overexpression of the HbNHX1 gene could improve the tolerance of transgenic tobaccos to salt and drought through the function of the vacuolar Na+/H+ antiporter.

  19. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    Science.gov (United States)

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  20. Influence on functional parameters of intestinal tract induced by short-term exposure to fumonisins contaminated corn chyme samples.

    Science.gov (United States)

    Minervini, F; Debellis, L; Garbetta, A; De Girolamo, A; Schena, R; Portincasa, P; Visconti, A

    2014-04-01

    The gut is a possible target toward mycotoxin fumonisins (FBs) exposure. The study aims to investigate the effects induced by FBs contaminated-corn chyme samples on functional parameters of human and rat intestine by using Ussing chamber. Fumonisins-contaminated corn and processed corn samples were undergone to in vitro digestion process and then added to luminal side. A reduction (about 90%) of short circuit current (Isc μA/cm(2)) during exposure of human colon tissues to fumonisins-free corn chyme samples was observed, probably related to increased chyme osmolality. This hyperosmotic stress could drain water towards the luminal compartment, modifying Na(+) and Cl(-) transports. The presence of FBs in corn chyme samples, independently to their concentration, did not affect significantly the Isc, probably related to their interference towards epithelial Na(+) transport, as assessed by using a specific inhibitor (Amiloride). The rat colon tract represents a more accessible model to study FBs toxicity showing a similar functional response to human. In the rat small intestine a significant reduction (about 15%) of Isc parameter during exposure to uncontaminated or FBs contaminated corn chyme samples was observed; therefore such model was not suitable to assess the FBs toxicity, probably because the prevalent glucose and amino acids electrogenic absorption overwhelmed the FBs influence on ionic transport. PMID:24480040

  1. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  2. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  3. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  4. HIV-gp120 activates large-conductance apamin-sensitive potassium channels in rat astrocytes.

    Science.gov (United States)

    Bubien, J K; Benveniste, E N; Benos, D J

    1995-06-01

    Central nervous system (CNS) involvement usually occurs in individuals infected with human immunodeficiency virus type 1 (HIV-1). Evidence is now accumulating that neurons and astrocytes may be functionally compromised by exposure to viral components or cellular factors released from HIV-1-infected macrophages and/or microglia. We have previously reported that the HIV coat protein gp120 stimulates Na+/H+ exchange in primary cultured rat astrocytes, which, ultimately, results in the activation of a K+ conductance. In this report we characterize the electrophysiological and biophysical properties of the channels responsible for the gp120-induced increase in K+ conductance. These K+ channels had a relatively large unitary conductance (147 pS), were not gated by voltage, were sensitive to changes in H+ concentration at their cytosolic face, were specifically inhibited by apamin, and were insensitive to charybdotoxin and tetraethylammonium. The activation of these channels by gp120 is referable to cellular alkalinization subsequent to Na+/H+ exchange stimulation; gp120 failed to activate these K+ channels in the absence of external Na+ or in the presence of amiloride, an inhibitor of Na+/H+ exchange. Subsequent K+ loss from the astrocyte into the restricted extracellular space surrounding neurons can then lead to neuronal depolarization, activation of voltage-sensitive Ca2+ channels, and, eventually, cell death. Thus abnormal activation of astrocyte K+ channels by gp120 may contribute to the CNS pathophysiology associated with HIV-1 infection. PMID:7611364

  5. Effect of Phenylephrine on Alveolar Fluid Clearance in Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Nai-jing Li; Xiu Gu; Wei Li; Yan Li; Sheng-qi Li; Ping He

    2013-01-01

    Objective To investigate the effect of phenylephrine (an α-adrenergic agonist) on alveolar fluid clearance (AFC) in ventilator-induced lung injury and the possible mechanism involved. Methods A total of 170 male Wistar rats were randomly allocated into 17 groups (n=10) using ran-dom number tables. Short-term (40 minutes) mechanical ventilation with high tidal volume (HVT) was per-formed to induce lung injury,impair active Na+ transport and lung liquid clearance in the rats. Unventilated rats served as controls. To demonstrate the effect of phenylephrine on AFC,phenylephrine at different con-centrations (1×10-5,1×10-6,1×10-7,1×10-8,and 1×10-9 mol/L) was injected into the alveolar space of the HVT ventilated rats. To identify the influence of adrenergic antagonists,Na+ channel,and microtubular sys-tem on the effect of phenylephrine,phenylephrine at 1×10-5 mol/L combined with prazosin (an α1-adrener-gic antagonist,1×10-4 mol/L),yohimbine (an α2-adrenergic antagonist,1×10-4 mol/L),atenolol (a β1-adrenergic antagonist,1×10-5 mol/L),ICI-118551 (an β2-adrenergic antagonist,1×10-5 mol/L),amiloride (a Na+ channel blocker,5×10-4 mol/L),ouabain (a Na+/K+-ATPase blocker,5×10-4 mol/L),colchicine (a mi-crotubular disrupting agent,0.25 mg/100 g body weight),or β-lumicolchicine (an isomer of colchicine,0.25 mg/100 g body weight) were perfused into the alveolar space of the rats ventilated with HVT for 40 minutes. AFC and total lung water content were measured. Results Basal AFC in control rats was (17.47±2.56)%/hour,which decreased to (9.64± 1.32)%/hour in HVT ventilated rats (P=0.003). The perfusion of phenylephrine at 1×10-8,1×10-7,1×10-6,and 1×10-5 mol/L significantly increased the AFC in HVT ventilated rats (all P<0.05). This effect of phenylephrine on AFC was suppressed by prazosin,atenolol,and ICI-118551 in HVT ventilated rats by 53%,31%,and 37%,respectively (all P<0.05). The AFC-stimulating effect of phenylephrine was lowered by 33% and 42% with

  6. Kinetics, stoichiometry, and anion selectivity of cAMP-stimulated Cl-HCO3 exchange in rabbit cortical collecting tubule (CCT)

    International Nuclear Information System (INIS)

    Cyclic AMP stimulates net HCO3 secretion in rabbit CCT (Schuster, JCI 75:2056). Because cAMP induces Cl-independent (electrogenic) HCO3 secretion in several epithelia, I studied the anion dependence of the CCT cAMP effect. Tubules were perfused in vitro with lumen amiloride; bath cAMP was continuously present to stimulate HCO3 secretion. First, the dependence of HCO3 secretion on lumen [Cl] was determined. With bath [Cl]=O mM, perfusate [Cl] was varied (2-150 mM, gluconate substitution). Mean lumen [Cl] was determined either by a silver electrode in the collected fluid (2-12 mM perfusate) or by 36Cl (12-150 mM). Total bath-to-lumen HCO3 flux, J/sup Ib//sub HCO3/, was measured (bath HCO3=25 mM, perfusate HCO3=O), Passive J/sub HCO3/ was estimated from the GHK equation using a previously-determined HCO3 permeability = 1.9 x 10-6 cm/s. Mediated J/sub HCO3/ vs. mean lumen [Cl] showed saturation kinetics, apparent K/sub m/ = 5.8 mM and V/sub max/ = 8.7 pmol/mm/min. Second, the stoichiometry was estimated. When bath HCO3 was replaced by HEPES at various perfusate [Cl] (12-150 mM), ΔJ/sub HCO3/ varied linearly with ΔJ/sup Ib/sub Cl/ (slope = .85 +- .27). Third, in anion selectivity studies Br supported HCO3 secretion (89% rate with Cl) but I- and SO4/sup =/ did not. In rabbit CCT, as opposed to several other HCO3-secreting epithelia, cAMP stimulates 1:1 Cl-HCO3 exchange

  7. Stimulation of chloride transport by HCO3-CO2 in rabbit cortical collecting tubule

    International Nuclear Information System (INIS)

    The authors examined both the role of HCO3-CO2 in Cl transport as well as the effect of in vivo acid-base status on Cl transport by the rabbit cortical collecting tubule. The lumen-to-bath 36Cl tracer flux, expressed as the rate coefficient K/sub Cl/, was measured in either HEPES-buffered (CO2-free) or HCO3-CO2-containing solutions. Amiloride was added to the perfusate to minimize the transepithelial voltage and thus the electrical driving force for Cl diffusion. Because K/sub Cl/ fell spontaneously with time in HCO3-CO2 solutions in the absence but not the presence of cAMP, they used cAMP throughout to avoid time-dependent changes. Acute in vitro removal of bath HCO3-CO2 reduced K/sub Cl/. Acetazolamide addition in HEPES-buffered solutions also lowered K/sub Cl/; K/sub Cl/ could be restored to control values by adding exogenous HCO3-CO2 in the presence of acetazolamide. In vivo acid-base effects on Cl transport were determined by dissecting tubules from either NaHCO3-loaded or NH4Cl-loaded rabbits. Most of this effect of HCO3-CO2 addition on K/sub Cl/ could not be accounted for by Cl-HCO3 exchange; rather, it appeared due to stimulation of Cl self exchange. The data are consistent with 36Cl transport occurring via Cl-HCO3 exchange as well as Cl self exchange. Both processes are acutely stimulated by HCO3 and/or CO2, and both are chronically regulated by in vivo acid-base status

  8. Effect of tetramethylpyrazine on exocrine pancreatic and bile secretion

    Institute of Scientific and Technical Information of China (English)

    Wen-Chao Zhao; Jin-Xia Zhu; Ning Tang; Yu-Lin Gou; Dewi Kenneth Rowlands; Yiu-Wa Chung; Ying Xing; Hsiao-Chang Chan

    2003-01-01

    AIM: To investigate the effect of tetramethylpyrazine (ligustrazine, TMP) on the secretion of exocrine pancreas (and biliary).METHODS: In in vivo study, we investigated the effect of TMP on the secretion of pancreatic-bile juice (PBJ) in rats.Using human pancreatic duct cell line, CAPAN-1, combined with the short-circuit current (ISC) technique we further studied the effect of TMP on the pancreatic anion secretion.RESULTS: Administration of TMP (80 mg/kg, ip) significantly increased the secretion of PBJ (P<0.05), but the pH of PBJ and the secretion of pancreatic protein were not significantly affected. Basolateral addition of TMP produced a dosedependent increase in ISC(EC50=1.56 mmol/L), which contained a fast transient ISC response followed by a slow decay. Apical application of Cl- channel blockers, DPC (1 mmol/L),decreased the response by about 67.1% (P<0.001), whereas amiloride (100 μmol/L), a epithelial sodium channel blockers,had no effect. Removal of extracellular HCO3- abolished TMP-induced increase in ISC by about 74.4 % (P<0.001),but the removal of external Cl- did not. Pretreatment with phosphodiesterase inhibitor, TBMX(0.5 mmol/L), decreased the TMP-induced ISC by 91% (P<0.001).CONCLUSION: TMP could stimulate the secretion of PBJ,especially pancreatic ductal HCO3- secretion via cAvlp or cGMP-dependent pathway. It need further study to investigate the roles of cAMP or cGMP in the effect of TMP on the secretion of exocrine pancreas.

  9. Vanilloid receptor activation by 2- and 10-μm particles induces responses leading to apoptosis in human airway epithelial cells

    International Nuclear Information System (INIS)

    Exposure to airborne particulate matter (PM) is associated with increased mortality and morbidity. It has been previously shown that PMs and synthetic particles (PC10 and PC2) that have similar characteristics to PMs induced depolarizing currents and increases in intracellular calcium ([Ca2+]i) in capsaicin- and acid-sensitive sensory neurons and in TRPV1-expressing HEK 293 cells. To determine whether such mechanisms also underlie PM-induced toxicity in epithelial cells lining the human airways, we tested the responses of PCs on BEAS-2B (immortalized human bronchial epithelial cells), NHBE (normal human bronchial/tracheal epithelial cells), and SAEC (normal human small airway epithelial cells from the distal airways). RT-PCR revealed that all these cell types expressed TRPV1 (VR1), ASIC1a, and ASIC3 subunits of proton-gated ion channels. Calcium imaging studies revealed that in all three cell types ∼30% were activated by both capsaicin and acid. In these cells, PCs induced an increase in [Ca2+]i that was inhibited by capsazepine, a TRPV1 antagonist, and/or by amiloride, an ASIC antagonist. The capsazepine-sensitive contribution to PC-induced increases in [Ca2+]i was ∼70%. Measurements of apoptosis revealed that exposure to PCs induced a time-dependent increase in the number of apoptotic cells. After incubation for 24 (PC10) or 48 h (PC2) ∼60% of these cells were apoptotic. Pretreatment with capsazepine as well as removal of external calcium completely (∼100%) prevented PC-induced apoptosis. These data suggest that pharmacological inhibition of calcium-permeable vanilloid receptors could be used to prevent some of the pathological actions of PMs

  10. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex

    International Nuclear Information System (INIS)

    The mechanism whereby thyroid hormones modulate the transport properties of luminal brush border membrane (BBM) of renal proximal tubules was studied in thyroparathyroidectomized rats. Administration of both T4 and T3 increased BBM capacity for Na+ gradient-dependent uptake of phosphate (P /sub i/) by BBM vesicles (BBMV). This effect of thyroid hormones was present in thyroparathyroidectomized and hypophysectomized rats, and it was not blocked by a saturating dose of propranolol. The stimulatory effect of T3 and T4 on BBM transport of P /sub i/ was dose dependent in the range of 5.2-520 nmol/100 g BW. Pretreatment of rats with inhibitors of 5'-monodeiodinase (5'-DI), iopanoic acid or ipodate, prevented the increase in serum T3 in rats injected with T4, but it did not diminish the increase in BBM transport of P /sub i/. Administration of iopanoic acid and ipodate also prevented a 5-fold increase in 5'-DI activity in renal cortical tissue elicited by T4 administration. Treatment with T3 resulted in an increase of Pi transport across BBM from kidneys of rats subjected to dietary P /sub i/ deprivation due either to total fasting or to feeding of a low P /sub i/ diet. Further, T3 administration enhanced amiloride-sensitive Na+-H+ countertransport across BBM, but the uptake of 22Na+ by BBMV in the absence of pH gradient was not changed. The Na+ gradient-dependent uptake of L-[3H]proline by BBMV was slightly decreased, but the uptake of [14C]citrate was not changed in response to T3. Administration of T3 increased P /sub i/ transport in BBMV prepared from juxtamedullary cortex, but not in BBMV from superficial cortex. Conversely, the rate of Na+-H+ countertransport was enhanced, and the enzymatic activity of alkaline phosphatase was decreased in BBMV from superficial cortex; no changes in these parameters were found in BBMV from juxtamedullary cortex

  11. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl

    International Nuclear Information System (INIS)

    Adult rat heart myocytes were labeled rapidly with exogenous [45Ca2+]. Addition of 2.5 mM H2O2 to the heart cell suspension raised the content of rapidly exchangeable intracellular Ca2+ twofold, whereas addition of 1-30 mM HOCl decreased the Ca2+ content. The H2O2-induced increase in Ca2+ content was dependent on the medium Na+, pH, and temperature but was not significantly affected by addition of verapamil, diltiazem, amiloride, or 3-aminobenzamide. The [3H]ouabain binding to myocytes was suppressed by H2O2, whereas the Ca2+ efflux from myocytes was not influenced. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, reduced Ca2+ content, implying that the H2O2-induced change in Ca2+ content was not directly related to ATP depletion. On the other hand, the H2O2-induced Ca2+ accumulation in myocytes was prevented by deferoxamine or o-phenanthroline. These results suggest that H2O2 inhibited Na+-K+-ATPase, resulting in an increase in intracellular Na+ concentration and stimulation of sarcolemmal Na+-Ca2+ exchange activity, which caused a transient net Ca2+ influx into myocytes. By contrast, HOCl decreased the Ca2+ content of the rapidly exchangeable pool below control levels and this action of HOCl was antagonized by 1,4-dithiothreitol. HOCl accelerated Ca2+ efflux from myocytes. Ca2+ uptake and Ca2+-ATPase of the isolated sarcoplasmic reticular (SR) fraction were highly sensitive to the action of HOCl. Ca2+ uptake by intracellular sites, studied with myocytes permeabilized with digitonin, was inhibited by both H2O2 and HOCl. Thus these results suggest that HOCl inhibits the SR Ca2+ pump, resulting in the observed acceleration of Ca2+ efflux from and decline in Ca2+ content of myocytes

  12. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    International Nuclear Information System (INIS)

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  13. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  14. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with a large number of high affinity binding sites in the cell membrane. Binding of 125I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected. The response (elevation of cellular cAMP) is linear with time for 40 to 50 min and causes a six- to eight-fold increase over control levels (10 to 15 picomole cAMP/mg cellular protein) at steady state. cAMP and agents that increase cAMP production inhibit Cl--independent Na+ influx into the isolated enterocytes whereas chlorpromazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na+ entry. Correlation between cellular cAMP levels and the magnitude of Na+ influx provides evidence for a cAMP-mediated control of intestinal Na+ uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na+ during induction of intestinal secretion. The effect of cAMP on Na+ but not Cl- influx preparations can be partially explained in terms of a cAMP-regulated Na+/H+ neutral exchange system. Data on the coupling relationship between Na+ transport and the intra- and extracellular pH in the enterocytes show that an amiloride-sensitive electroneutral Na+/H+ exchange process occurs. This coupling between Na+ and H+ is partially inhibited by CT and dbcAMP, suggesting that the Na+/H+ exchange may be a cAMP-regulated process. 31 references, 32 figures, 5 tables

  15. [Modelling of myocardial hypertrophy in vitro for solving problems of medicinal correction].

    Science.gov (United States)

    Moiseeva, O M; Semenova, E G; Polevaia, E V; Selivanova, G V; Vlasova, T D; Khirmanov, V N; Pinaev, G P

    1998-01-01

    The work has been done on primary heart culture from neonatal rat ventricle. Cardiomyocyte hypertrophy was modelled using noradrenaline (NA), angiotensin II (AII) and fetal serum, respectively. Cell hypertrophy of primary heart cultures was assessed by measuring the surface area, the scope of protein synthesis estimated by 3H-leucine autoradiography and the contents of nucleic acids in gallocyanin-chromalum stained cardiomyocytes. The structure of myofibrillar apparatus was studied by rhodamine-conjugated phalloidin and indirect immunofluorescence of muscle alpha-actinin. Treatment with 10(-6) M NA increased 3H-leucine incorporation in 9-day old heart culture by 42% without changing cell size. AII in a dose 1 microM stimulated protein synthesis activity by 1.3 fold and the surface area by 1.7 fold, both in 2- and 9-day old primary heart cultures. The maximum stimulation of cell hypertrophy was provided by the medium supplemented with fetal serum. RNA contents in the cytoplasm of cardiomyocytes increased by 7.8 fold and the myocardial cell size by 2.9 fold in serum-supplemented culture by 9 days of cultivation. In the medium with fetal serum, amounts of cardiomyocytes with tetraploid nuclei reached 33%, against 14% in control. Coculturing of myocardiocytes and fibroblasts rendered effects of fetal serum on the growth of myocardiocytes. Cultivation in the presence of 1 microM enalapril, an ACE inhibitor, suppressed the development of cardiac muscle cells hypertrophy. The effect of enalapril depended on the degree of cellular hypertrophy. Addition of 10 microM amiloride to the medium lowered the protein synthesis by 29% independently on the initial cellular hypertrophy. PMID:10188217

  16. Tetramethylpyrazine stimulates cystic fibrosis transmembrane conductance regulator-mediated anion secretion in distal colon of rodents

    Institute of Scientific and Technical Information of China (English)

    Qiong He; Jin-Xia Zhu; Ying Xing; Lai-Ling Tsang; Ning Yang; Dewi Kenneth Rowlands; Yiu-Wa Chung; Hsiao-Chang Chan

    2005-01-01

    AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustiun Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.METHODS: The short-circuit current (ISC) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.RESULTS: TMP stimulated a concentration-dependent rise in ISC, which was dependent on both Cl- and HCO3-, and inhibited by apical application of diphenylamine-2,2'-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). Removal of Na+ from basolateral solution almost completely abolished the ISC response to TMP, but it was insensitive to apical Na+ replacement or apical Na+channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+chelator, did not significantly alter the TMP-induced ISC. No additive effect of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was observed on the TMP-induced ISc, but it was significantly reduced by a protein kinase A inhibitor, H89.RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10 μmol/L). The TMP-elicited ISC as well as forskolin- or IBMX-induced ISC were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl- and HCO3- secretion. This may have implications in the future development of alternative treatment for constipation.

  17. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  18. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus.

    Science.gov (United States)

    Yu, Xiaoyun; Hu, Youtian; Yu, Shaoyong

    2014-08-15

    Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases. PMID:24994852

  19. Involvement of prostaglandins F/sub 2α/ and E1 with rabbit endometrium

    International Nuclear Information System (INIS)

    Several growth factors and hormones are thought to play a role in the growth control of endometrial cells. The authors have shown that prostaglandin F/sub 2→/ (PGF/sub 2α/) is a growth factor for primary cultures of rabbit endometrium cultured in chemically-defined serum-free medium and that prostaglandin E1 (PGE1) antagonizes the PGF/sub 2→/ induction of growth. Both [3H]PGF/sub 2α/ and [3H]PGE1 bind in a time and temperature dependent, dissociable, saturable and specific manner. The binding of [3H]PGF/sub 2α/ and [3H]PGE1 can be both down and up regulated and is enzyme sensitive. PGE 1 stimulates intracellular cAMP synthesis and accumulation in a time and concentration dependent manner. PGF/sub 2α/ probably exerts its effects through an amiloride-sensitive intermediate. Both PGF/sub 2α/ and PGE1 are constitutively synthesized by these primary cultures, and they have shown this synthesis to be both drug and hormone sensitive. They hypothesize that it is the ratio, rather than the absolute quantities, of PGF/sub 2α/ and PGE1 which is of more importance in the regulation of endometrial cell growth. Furthermore, they believe this regulation of endometrial growth plays a role in control of proliferation during the decidual response and that a derangement in the ratio of these prostaglandins may lead to either infertility or hyperplasia. The ability of these cultures to synthesize prostaglandins in a hormonally regulatable manner may be of importance in the study of dysmenorrhea and uterine cramping as caused by the myometrial contracting prostaglandin, PGF/sub 2α/

  20. Involvement of prostaglandins F/sub 2. cap alpha. / and E/sub 1/ with rabbit endometrium

    Energy Technology Data Exchange (ETDEWEB)

    Orlicky, D.J.

    1985-01-01

    Several growth factors and hormones are thought to play a role in the growth control of endometrial cells. The authors have shown that prostaglandin F/sub 2..-->../ (PGF/sub 2..cap alpha../) is a growth factor for primary cultures of rabbit endometrium cultured in chemically-defined serum-free medium and that prostaglandin E/sub 1/ (PGE/sub 1/) antagonizes the PGF/sub 2..-->../ induction of growth. Both (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ bind in a time and temperature dependent, dissociable, saturable and specific manner. The binding of (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ can be both down and up regulated and is enzyme sensitive. PGE /sub 1/ stimulates intracellular cAMP synthesis and accumulation in a time and concentration dependent manner. PGF/sub 2..cap alpha../ probably exerts its effects through an amiloride-sensitive intermediate. Both PGF/sub 2..cap alpha../ and PGE/sub 1/ are constitutively synthesized by these primary cultures, and they have shown this synthesis to be both drug and hormone sensitive. They hypothesize that it is the ratio, rather than the absolute quantities, of PGF/sub 2..cap alpha../ and PGE/sub 1/ which is of more importance in the regulation of endometrial cell growth. Furthermore, they believe this regulation of endometrial growth plays a role in control of proliferation during the decidual response and that a derangement in the ratio of these prostaglandins may lead to either infertility or hyperplasia. The ability of these cultures to synthesize prostaglandins in a hormonally regulatable manner may be of importance in the study of dysmenorrhea and uterine cramping as caused by the myometrial contracting prostaglandin, PGF/sub 2..cap alpha../.

  1. A Differential Role for Macropinocytosis in Mediating Entry of the Two Forms of Vaccinia Virus into Dendritic Cells

    Science.gov (United States)

    Sandgren, Kerrie J.; Wilkinson, John; Miranda-Saksena, Monica; McInerney, Gerald M.; Byth-Wilson, Karen; Robinson, Phillip J.; Cunningham, Anthony L.

    2010-01-01

    Vaccinia virus (VACV) is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells (DCs) are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the intracellular mature virus (MV) and extracellular enveloped virus (EV) forms of VACV into vesicular compartments of monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3)K), and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway, failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of recombinant vaccinia vectors through effects on antigen presentation. PMID:20421949

  2. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland.

    Science.gov (United States)

    Huber, Sandra; Remberger, Mikael; Kaj, Lennart; Schlabach, Martin; Jörundsdóttir, Hrönn Ó; Vester, Jette; Arnórsson, Mímir; Mortensen, Inge; Schwartson, Richard; Dam, Maria

    2016-08-15

    A screening of a broad range of pharmaceuticals and additives in personal care products (PPCPs) in sub-arctic locations of the Faroe Islands (FO), Iceland (IS) and Greenland (GL) was conducted. In total 36 pharmaceuticals including some metabolites, and seven additives in personal care products were investigated in influent and effluent waters as well as sludge of waste water treatment plants (WWTPs) and in water and sediment of recipients. Concentrations and distribution patterns for PPCPs discharged via sewage lines (SLs) to the marine environment were assessed. Of the 36 pharmaceuticals or metabolites analysed 33 were found close to or above the limit of detection (LOD) in all or a part of the samples. All of the seven investigated additives in personal care products were detected above the LOD. Some of the analysed PPCPs occurred in every or almost every sample. Among these were diclofenac, ibuprofen, lidocaine, naproxen, metformin, citalopram, venlafaxine, amiloride, furosemide, metoprolol, sodium dodecyl sulphate (SDS) and cetrimonium salt (ATAC-C16). Additionally, the study encompasses ecotoxicological risk assessment of 2/3 of the analysed PPCPs in recipient and diluted effluent waters. For candesartan only a small margin to levels with inacceptable risks was observed in diluted effluent waters at two locations (FO). Chronical risks for aquatic organisms staying and/or living around WWTP effluent pipe-outlets were indicated for 17β-estradiol and estriol in the three countries. Additives in PCPs were found to pose the largest risk to the aquatic environment. The surfactants CAPB and ATAC-C16 were found in concentrations resulting in risk factors up to 375 for CAPB and 165 for ATAC-C16 in recipients for diluted effluents from Iggia, Nuuk (GL) and Torshavn (FO) respectively. These results demonstrates a potentially high ecological risk stemming from discharge of surfactants as used in household and industrial detergents as well as additives in personal care

  3. Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Hellekant Göran

    2003-03-01

    Full Text Available Abstract Background Recent progress in discernment of molecular pathways of taste transduction underscores the need for comprehensive phenotypic information for the understanding of the influence of genetic factors in taste. To obtain information that can be used as a base line for assessment of effects of genetic manipulations in mice taste, we have recorded the whole-nerve integrated responses to a wide array of taste stimuli in the chorda tympani (CT and glossopharyngeal (NG nerves, the two major taste nerves from the tongue. Results In C57BL/6J mice the responses in the two nerves were not the same. In general sweeteners gave larger responses in the CT than in the NG, while responses to bitter taste in the NG were larger. Thus the CT responses to cyanosuosan, fructose, NC00174, D-phenylalanline and sucrose at all concentrations were significantly larger than in the NG, whereas for acesulfame-K, L-proline, saccharin and SC45647 the differences were not significant. Among bitter compounds amiloride, atropine, cycloheximide, denatonium benzoate, L-phenylalanine, 6-n-propyl-2-thiouracil (PROP and tetraethyl ammonium chloride (TEA gave larger responses in the NG, while the responses to brucine, chloroquine, quinacrine, quinine hydrochloride (QHCl, sparteine and strychnine, known to be very bitter to humans, were not significantly larger in the NG than in the CT. Conclusion These data provide a comprehensive survey and comparison of the taste sensitivity of the normal C57BL/6J mouse against which the effects of manipulations of its gustatory system can be better assessed.

  4. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  5. Regulation of dopamine D2 receptors by sodium and pH

    International Nuclear Information System (INIS)

    The role of Na+ and H+ in the regulation of D2 receptor affinity for ligands was studied to determine the molecular mechanisms of this phenomenon. The potency of substituted benzamide derivatives and agonists at D2 receptors depended on the concentration of Na+ and H+, whereas the potency of other antagonists was relatively unaltered by changes in pH or Na+ concentration. The potency of agonists was generally decreased in the presence of NaCl or lowered pH. For example, in the absence of sodium the affinity of D2 receptors for dopamine was decreased 17-fold by lowering of the pH from 8.0 to pH 6.8. Addition of NaCl caused 2-4-fold decreases in affinity for most agonists. The affinity of the receptors for two substituted benzamide derivatives, on the other hand, was reduced 6-44-fold by elevated concentrations of H+ but was enhanced 7-24-fold in the presence of Na+. The regulation by H+ of the potency of dopamine was selective for D2 receptors, because binding of dopamine to neostriatal D1 receptors was unaffected by changes in pH. Decreasing of the pH from 8.0 or 7.3 to 6.8 facilitated the dissociation of the substituted benzamide ligand 125I epidepride from D2 receptors but inhibited dissociation of 3H spiperone. Furthermore, the presence of NaCl or lowered pH slowed inactivation of D2 receptors by N-ethylmaleimide. Together, these data suggest that the conformation of D2 receptors is regulated by both Na+ and H+. The affinity of D2 receptors for agonists and substituted benzamide antagonists varies according to the conformational state of the receptors, whereas other antagonists bind to both forms with approximately equal potency. Amiloride is a compound that interacts with many sodium-binding macromolecules

  6. Regulation of dopamine D2 receptors by sodium and pH

    Energy Technology Data Exchange (ETDEWEB)

    Neve, K.A. (VA Medical Center, Portland, OR (USA))

    1991-04-01

    The role of Na+ and H+ in the regulation of D2 receptor affinity for ligands was studied to determine the molecular mechanisms of this phenomenon. The potency of substituted benzamide derivatives and agonists at D2 receptors depended on the concentration of Na+ and H+, whereas the potency of other antagonists was relatively unaltered by changes in pH or Na+ concentration. The potency of agonists was generally decreased in the presence of NaCl or lowered pH. For example, in the absence of sodium the affinity of D2 receptors for dopamine was decreased 17-fold by lowering of the pH from 8.0 to pH 6.8. Addition of NaCl caused 2-4-fold decreases in affinity for most agonists. The affinity of the receptors for two substituted benzamide derivatives, on the other hand, was reduced 6-44-fold by elevated concentrations of H+ but was enhanced 7-24-fold in the presence of Na+. The regulation by H+ of the potency of dopamine was selective for D2 receptors, because binding of dopamine to neostriatal D1 receptors was unaffected by changes in pH. Decreasing of the pH from 8.0 or 7.3 to 6.8 facilitated the dissociation of the substituted benzamide ligand {sup 125}I epidepride from D2 receptors but inhibited dissociation of {sup 3}H spiperone. Furthermore, the presence of NaCl or lowered pH slowed inactivation of D2 receptors by N-ethylmaleimide. Together, these data suggest that the conformation of D2 receptors is regulated by both Na+ and H+. The affinity of D2 receptors for agonists and substituted benzamide antagonists varies according to the conformational state of the receptors, whereas other antagonists bind to both forms with approximately equal potency. Amiloride is a compound that interacts with many sodium-binding macromolecules.

  7. A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells.

    Directory of Open Access Journals (Sweden)

    Kerrie J Sandgren

    2010-04-01

    Full Text Available Vaccinia virus (VACV is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells (DCs are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the intracellular mature virus (MV and extracellular enveloped virus (EV forms of VACV into vesicular compartments of monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3K, and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway, failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of recombinant vaccinia vectors through effects on antigen presentation.

  8. Syndromes that Mimic an Excess of Mineralocorticoids.

    Science.gov (United States)

    Sabbadin, Chiara; Armanini, Decio

    2016-09-01

    Pseudohyperaldosteronism is characterized by a clinical picture of hyperaldosteronism with suppression of renin and aldosterone. It can be due to endogenous or exogenous substances that mimic the effector mechanisms of aldosterone, leading not only to alterations of electrolytes and hypertension, but also to an increased inflammatory reaction in several tissues. Enzymatic defects of adrenal steroidogenesis (deficiency of 17α-hydroxylase and 11β-hydroxylase), mutations of mineralocorticoid receptor (MR) and alterations of expression or saturation of 11-hydroxysteroid dehydrogenase type 2 (apparent mineralocorticoid excess syndrome, Cushing's syndrome, excessive intake of licorice, grapefruits or carbenoxolone) are the main causes of pseudohyperaldosteronism. In these cases treatment with dexamethasone and/or MR-blockers is useful not only to normalize blood pressure and electrolytes, but also to prevent the deleterious effects of prolonged over-activation of MR in epithelial and non-epithelial tissues. Genetic alterations of the sodium channel (Liddle's syndrome) or of the sodium-chloride co-transporter (Gordon's syndrome) cause abnormal sodium and water reabsorption in the distal renal tubules and hypertension. Treatment with amiloride and thiazide diuretics can respectively reverse the clinical picture and the renin aldosterone system. Finally, many other more common situations can lead to an acquired pseudohyperaldosteronism, like the expansion of volume due to exaggerated water and/or sodium intake, and the use of drugs, as contraceptives, corticosteroids, β-adrenergic agonists and FANS. In conclusion, syndromes or situations that mimic aldosterone excess are not rare and an accurate personal and pharmacological history is mandatory for a correct diagnosis and avoiding unnecessary tests and mistreatments. PMID:27251484

  9. Demonstration of the mineralocorticoid hormone receptor and action in human leukemic cell lines.

    Science.gov (United States)

    Mirshahi, M; Mirshahi, S; Golestaneh, N; Mishal, Z; Nicolas, C; Hecquet, C; Agarwal, M K

    2000-06-01

    We studied the expression of the mineralocorticoid receptor (MCR), and of the amiloride-sensitive sodium channel (ASSC) regulated by the MCR, in human leukemic cell lines. Cell extracts from TF1 (proerythroblastic), HEL (human erythroblastic leukemia) and U937 (myeloblastic) cell line were positive for the ASSC, as a 82 kDa band in Western blots developed with the aid of a polyclonal antibody raised against the peptide QGLGKGDKREEQGL, corresponding to the region 44-58 of the alpha subunit of the epithelial sodium channel (ENaC) cloned from rat colon, linked to KLH. The polyclonal antibody against the MCR revealed a single band of about 102 kDa in extracts from HEL and TF1 cells. The immunofluorescent labelling of the MCR in all cell lines showed a nucleocytoplasmic localization of the receptor but the ASSC was exclusively membrane-bound and these results were confirmed by confocal microscopy. The expression of the MCR in the HEL cells was evident as a predicted band of 843 bp (234 amino acids) in electrophoresis of the PCR product obtained after total RNA had been reverse transcribed and then amplified using the primers 5'-AGGCTACCACAGTCTCCCTG-3' and 5'-GCAGTGTAAAATCTCCAGTC-3' (sense and antisense, respectively). The ENaC was similarly evident with the aid of the primers 5'-CTGCCmATG GATGATGGT-3' (sense) and 5'-GTTCAGCTCGAAGAAGA-3' (antisense) as a predicted band of 520 bp. In both cases, 100% identity was observed between the sequences of the PCR products compared to those from known human sources. The multiplication of the HEL cells was influenced by antagonists (RU 26752, ZK 91587) targeted for specificity to the MCR and this was selectively reversed by the natural hormone aldosterone. These steroids also provoked chromatin condensation in the HEL population. These permit new and novel possibilities to understand the pathobiology of human leukemia and to delineate sodium-water homeostasis in nonepithelial cells. PMID:10865975

  10. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19.

    Science.gov (United States)

    Boscardin, Emilie; Alijevic, Omar; Hummler, Edith; Frateschi, Simona; Kellenberger, Stephan

    2016-09-01

    Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles. PMID:27278329

  11. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Directory of Open Access Journals (Sweden)

    Petter Storm

    Full Text Available Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2, preventing the changes in free cellular Na(+ and K(+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  12. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii).

    Science.gov (United States)

    Fan, Chunxin; Zou, Sha; Wang, Jian; Zhang, Bo; Song, Jiakun

    2016-05-01

    The lateral line found in some amphibians and fishes has two distinctive classes of sensory organs: mechanoreceptors (neuromasts) and electroreceptors (ampullary organs). Hair cells in neuromasts can be damaged by aminoglycoside antibiotics and they will regenerate rapidly afterward. Aminoglycoside sensitivity and the capacity for regeneration have not been investigated in ampullary organs. We treated Siberian sturgeon (Acipenser baerii) larvae with neomycin and observed loss and regeneration of sensory hair cells in both organs by labeling with DASPEI and scanning electron microscopy (SEM). The numbers of sensory hair cells in both organs were reduced to the lowest levels at 6 hours posttreatment (hpt). New sensory hair cells began to appear at 12 hpt and were regenerated completely in 7 days. To reveal the possible mechanism for ampullary hair cell regeneration, we analyzed cell proliferation and the expression of neural placodal gene eya1 during regeneration. Both cell proliferation and eya1 expression were concentrated in peripheral mantle cells and both increased to the highest level at 12 hpt, which is consistent with the time course for regeneration of the ampullary hair cells. Furthermore, we used Texas Red-conjugated gentamicin in an uptake assay following pretreatment with a cation channel blocker (amiloride) and found that entry of the antibiotic was suppressed in both organs. Together, our results indicate that ampullary hair cells in Siberian sturgeon larvae can be damaged by neomycin exposure and they can regenerate rapidly. We suggest that the mechanisms for aminoglycoside uptake and hair cell regeneration are conserved for mechanoreceptors and electroreceptors. J. Comp. Neurol. 524:1443-1456, 2016. © 2015 Wiley Periodicals, Inc. PMID:26502298

  13. Comparison of mechanisms and cellular uptake of cell-penetrating peptide on different cell lines%不同细胞系对细胞穿透肽的摄取和机制比较

    Institute of Scientific and Technical Information of China (English)

    马冬旭; 齐宪荣

    2010-01-01

    细胞穿透肽(cell-penetrating peptide,CPP)作为一种潜在的药物输送高效转运载体一直得到研究者的广泛关注.本文中采用4种肿瘤细胞系(MCF-7、MDA-MB-231、C6和B16F10)分别摄取异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记的CPP,观察到CPP入胞,并具有时间和浓度的依赖性,同时发现了C6细胞对CPP的胞吐作用,其胞吐动力学符合零级方程;在低温(4℃)和内吞抑制剂存在条件下探讨了CPP入胞的机制.低温条件对CPP的入胞未产生抑制作用;肝素钠作为细胞表面硫酸糖蛋白受体抑制剂对CPP的入胞有较强抑制作用,肝素组对CPP的摄取只达到对照组的3%~10%;而氯丙嗪、氯喹和N-乙酰基-N-异丙基阿米洛利[5-(N-ethyL-N-isopropyl)-amiloride,EIPA]对CPP的入胞影响不大.本研究表明,CPP穿透细胞没有选择性,即缺乏细胞特异性,但CPP的摄取量与细胞种类有关.硫酸蛋白聚糖的吸附介导在CPP穿透细胞中发挥了重要作用.

  14. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pHi) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pHiin vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pHi of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na+/H+-antiporter, corroborating an important role of the pHi in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pHi may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  15. Cytotoxic mechanisms of Zn2+ and Cd2+ involve Na+/H+ exchanger (NHE) activation by ROS

    International Nuclear Information System (INIS)

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in ·O2- production, with Cd to be more potent (216 ± 15%) than Zn (150 ± 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na+/H+ exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on ·O2- production was mediated via the interaction of metal ions with α1- and β-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi (ΔpHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi (ΔpHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O2- production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-γ receptors. In addition, differences between the two metals concerning NHE activation, O2- production and interaction with adrenergic receptors were observed

  16. Paracellular pathway of rabbit cortical collecting tubule (CCT): a high resistance, non-selective barrier

    International Nuclear Information System (INIS)

    Previous studies have suggested that the paracellular pathway of CCT is Cl selective. We reassessed this issue under conditions in which the cellular Na and K conductive pathways were blocked by lumen amiloride (50 μM) and Ba++ (4 mM). The residual transepithelial conductance (G/sub T/, 1.10 +- 0.09 mS cm-2) is a reasonable estimate of the paracellular conductance. Three independent assessments of the barrier selectivity were used. First, the effect of symmetrical replacement of Na (TMA, bis (2-hydroxy ethyl) dimethylammonium) or Cl (NO3, gluconate) on G/sub T/ was determined. All test solutions decreased G/sub T/, and in each case the decrease could be accounted for by the lower conductivity of the test solution relative to NaCl. Thus, the pathway does not select one cation or one anion over another. Second, lumen-to-bath 22Na and 36Cl fluxes were measured with 0 Cl/0 HCO3 bath to eliminate cellular Cl flux. The ratio J/sub Na/J/sub Cl/ (0.75 +- 0.14) was not different from the ratio of Na/Cl mobilities in water (0.65), and the sum of the calculated partial ionic conductances of Na and Cl adequately approximated the measured G/sub T/. Third, NaCl concentration was sequentially lowered in lumen or bath. In the presence of bath ouabain, P/sub Na//P/sub Cl/, calculated from dilution voltages was 0.67 +- .02. The paracellular pathway of CCT is non-selective for anions over cations

  17. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  18. Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors.

    Science.gov (United States)

    Kotecha, Jignesh; Shah, Shailesh; Rathod, Ishwarsinh; Subbaiah, Gunta

    2008-08-01

    The purpose of the present study was to examine the human oral absorption (HOA) predictability of the experimentally determined immobilized artificial membrane (IAM) chromatography capacity factor (log k'IAM) in conjunction with physicochemical descriptors. Transcellular permeation was modeled based on determination of log k'IAM considering pH partition hypothesis, and the independent variables were polar surface area (PSA) and molecular weight (MW). The correlation between log k'IAM determined at different pH and n-octanol/water partition coefficient (log P) and contribution of polarity (PSA) and size (MW) in the transcellular permeation model were the extension to the previous work. A data set of 37 compounds with partition coefficient values taken from the literature was employed to show importance of ionic interaction in oral absorption prediction. The highest log k'IAM value among screened pH 4.5, 5.5, 6.5 and 7.4 (log k'IAM4.5-7.4) in conjunction with PSA predicted HOA with coefficient of determination (CD) of 0.9001 compare to log k'IAM4.5-7.4 alone with CD of 0.8454 after excluding bretylium from the set of 28 structurally diverse drugs for known reason. PSA helped to avoid over estimation of HOA for amiloride, famotidine and furosemide. The model was tested for its applicability in drug development program and found to predict oral absorption using physically meaningful and structurally related properties making them relatively straightforward for a medicinal chemist to interpret. PMID:18524510

  19. How to overcome osmotic stress? Marine crabs conquer freshwater. New insights from modern electrophysiology

    Science.gov (United States)

    Onken, H.; Graszynski, K.; Johannsen, A.; Putzenlechner, M.; Riestenpatt, S.; Schirmer, C.; Siebers, D.; Zeiske, W.

    1995-03-01

    In the present article we review our findings on split lamella preparations of crab gills mounted in modified Ussing-chambers with respect to mechanistic and ecophysiological aspects. The leaky gill epithelium of shore crabs adapted to brackish water absorbs Na+ and Cl- in a coupled mode, and shows similarities to other salt-absorbing epithelia exposed to moderately diluted media. The results so far obtained for NaCl uptake across the gills of the shore crab are compatible with a transport model where two cell types operate in parallel, one displaying cotransport-like NaCl absorption, similar to that in the thick ascending limb of Henle's loop of the mammalian mephron, and the other one with characteristics of amiloride-sensitive, channel-mediated Na+ uptake by frog skin. Although there is no clear evidence for the apical mechanisms in this model, it may serve as a good basis for more detailed studies in the future. The moderately tight gill epithelium of freshwater adapted Chinese crabs absorbs Na+ and Cl- independently from each other, and shows similarities to other salt-absorbing epithelia exposed to freshwater. The characteristics of a positive, Na+-dependent short-circuit current with externally Cl--free saline indicate that active Na+ uptake proceeds in a frog-skin-like mode via apical Na+-channels and the basolateral Na+/K+-pump. The nature of a negative short-circuit current with external Cl--saline indicates that active and Na+-independent Cl- uptake is driven by an apical V-type H+-pump and proceeds via apical Cl-/ HCO3 --exchange and basolateral Cl--channels.

  20. Chloroquine stimulates Cl- secretion by Ca2+ activated Cl- channels in rat ileum.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chloroquine (CQ, a bitter tasting drug widely used in treatment of malaria, is associated gastrointestinal side effects including nausea or diarrhea. In the present study, we investigated the effect of CQ on electrolyte transport in rat ileum using the Ussing chamber technique. The results showed that CQ evoked an increase in short circuit current (ISC in rat ileum at lower concentration (≤5×10(-4 M but induced a decrease at higher concentrations (≥10(-3 M. These responses were not affected by tetrodotoxin (TTX. Other bitter compounds, such as denatoniumbenzoate and quinine, exhibited similar effects. CQ-evoked increase in ISC was partly reduced by amiloride(10(-4 M, a blocker of epithelial Na(+ channels. Furosemide (10(-4 M, an inhibitor of Na(+-K(+-2Cl(- co-transporter, also inhibited the increased ISC response to CQ, whereas another Cl(- channel inhibitor, CFTR(inh-172(10(-5 M, had no effect. Intriguingly, CQ-evoked increases were almost completely abolished by niflumic acid (10(-4 M, a relatively specific Ca(2+-activated Cl(- channel (CaCC inhibitor. Furthermore, other CaCC inhibitors, such as DIDS and NPPB, also exhibited similar effects. CQ-induced increases in ISC were also abolished by thapsigargin(10(-6 M, a Ca(2+ pump inhibitor and in the absence of either Cl(- or Ca(2+ from bathing solutions. Further studies demonstrated that T2R and CaCC-TMEM16A were colocalized in small intestinal epithelial cells and the T2R agonist CQ evoked an increase of intracelluar Ca(2+ in small intestinal epithelial cells. Taken together, these results demonstrate that CQ induces Cl(- secretion in rat ileum through CaCC at low concentrations, suggesting a novel explanation for CQ-associated gastrointestinal side-effects during the treatment of malaria.

  1. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR.

    Directory of Open Access Journals (Sweden)

    Katia Cortese

    Full Text Available BACKGROUND: The urokinase receptor (uPAR/CD87 is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. CONCLUSIONS/SIGNIFICANCE: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.

  2. Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study

    Directory of Open Access Journals (Sweden)

    Sobkowiak Paulina

    2010-11-01

    Full Text Available Abstract Background Histamine-metabolizing enzymes (N-methyltransferase and amiloride binding protein 1 are responsible for histamine degradation, a biogenic amine involved in allergic inflammation. Genetic variants of HNMT and ABP1 genes were found to be associated with altered enzyme activity. We hypothesized that alleles leading to decreased enzyme activity and, therefore, decreased inactivation of histamine may be responsible for altered susceptibility to asthma. Methods The aim of this study was to analyze polymorphisms within the HNMT and ABP1 genes in the group of 149 asthmatic children and in the group of 156 healthy children. The genetic analysis involved four polymorphisms of the HNMT gene: rs2071048 (-1637T/C, rs11569723 (-411C/T, rs1801105 (Thr105Ile = 314C/T and rs1050891 (1097A/T and rs1049793 (His645Asp polymorphism for ABP1 gene. Genotyping was performed with use of PCR-RFLP. Statistical analysis was performed using Statistica software; linkage disequilibrium analysis was done with use of Haploview software. Results We found an association of TT genotype and T allele of Thr105Ile polymorphism of HNMT gene with asthma. For other polymorphisms for HNMT and ABP1 genes, we have not observed relationship with asthma although the statistical power for some SNPs might not have been sufficient to detect an association. In linkage disequilibrium analysis, moderate linkage was found between -1637C/T and -411C/T polymorphisms of HNMT gene. However, no significant differences in haplotype frequencies were found between the group of the patients and the control group. Conclusions Our results indicate modifying influence of histamine N-methyltransferase functional polymorphism on the risk of asthma. The other HNMT polymorphisms and ABP1 functional polymorphism seem unlikely to affect the risk of asthma.

  3. Biochemical analysis of SV40 small t mediated theophylline resistance in CV-1 cells

    International Nuclear Information System (INIS)

    The papovavirus SV40 encodes for the two tumor antigens, large T and small t. While much is known about large T, little information is available about the role of small t in the viral life cycle. The authors have developed a system for studying small t antigen based on its ability to overcome the G0 growth arrest induced by the methylxanthine, theophylline. Uninfected CV-1 cells, the permissive host for SV40, are arrested by 1-2mM theophylline. In contrast, Wt-infected cells are not arrested by the same concentrations of this drug. Biochemical studies were designed to analyze the effects of theophylline and the means by which small t can overcome the growth arrest of CV-1 cells. Theophylline, a cyclic AMP analogue, does not appear to arrest CV-1 cells by a cAMP-dependent mechanism. Theophylline appears to arrest CV-1 cells by inhibiting sodium influx. Both 86Rb+ and 22Na+ uptake were inhibited by theophylline. Amiloride and TMB-8, drugs which are known to inhibit the plasma membrane Na+/H+ antiporter, decreased 86Rb+ and 22Na+ uptake to the same degree as theophylline. Because these drugs also arrested mock and D1- but not Wt-infected cells it is possible that theophylline inhibits sodium uptake by inhibiting this antiporter. Furthermore, because Wt-infected cells are resistant to the growth arrest induced by these drugs, it is possible that small t acts either by directly altering this antiporter or by bypassing the step which requires the activity of the antiporter

  4. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Directory of Open Access Journals (Sweden)

    Steven M Rowe

    Full Text Available Nasal potential difference (NPD is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR and epithelial sodium channel (ENaC activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770 in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1 the average of both nostrils; (2 the most-polarized nostril at each visit; and (3 the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity, the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity, and the delta NPD (measuring CFTR and ENaC activity. The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV. Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  5. Correction of chloride transport and mislocalization of CFTR protein by vardenafil in the gastrointestinal tract of cystic fibrosis mice.

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    Full Text Available Although lung disease is the major cause of mortality in cystic fibrosis (CF, gastrointestinal (GI manifestations are the first hallmarks in 15-20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5 inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF

  6. High Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra

    Science.gov (United States)

    Dürrnagel, Stefan; Falkenburger, Björn H.

    2012-01-01

    Degenerin/epithelial Na+ channels (DEG/ENaCs) are Na+ channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca2+ or have a very low permeability for Ca2+. We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na+ channel (HyNaC), is highly permeable for Ca2+ (PCa/PNa = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca2+-activated Cl− channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on–off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca2+ permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca2+ to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca2+ permeability. PMID:23008433

  7. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia.

    Science.gov (United States)

    Willumsen, N J; Boucher, R C

    1989-02-01

    Cystic fibrosis (CF) airway epithelia express a defect in adenosine 3',5'-cyclic monophosphate (cAMP)-dependent regulation of apical membrane Cl- channels. Recent patch-clamp studies have raised the possibility that Ca2+ -dependent mechanisms for the activation of Cl- secretion may be preserved in CF airway epithelia. To determine 1) whether intact normal (N1) and CF airway epithelia exhibit a Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanism for activation of Cl- secretion and 2) whether Ca2+ -dependent mechanisms initiate Cl- secretion via activation of an apical membrane Cl- conductance (GCl-), nasal epithelia from N1 and CF subjects were cultured on collagen membranes, and responses to isoproterenol or Ca2- ionophores [A23187 10(-6) M; ionomycin (10(-5)M)] were measured with transepithelial and intracellular techniques. Isoproterenol induced activation of an apical membrane GCl- in N1 cultures but was ineffective in CF. In contrast, in both N1 and CF amiloride-pretreated cultures, A23187 induced an increase in the equivalent short-circuit current that was associated with an activation of an apical membrane Gc1- and was bumetanide inhibitable. A23187 addition during superfusion of the lumen with a low Cl- (3 mM) solution reduced intracellular Cl- activity of CF cells. A Ca2+ ionophore of different selectivity properties, ionomycin, was also an effective Cl- secretagogue in both N1 and CF cultures. We conclude that 1) the A23187 induced Cl- secretion via activation of an apical GCl- in N1 human nasal epithelium, and 2) in contrast to an isoproterenol-dependent path, a Ca2+ -dependent path for GCl- activation is preserved in CF epithelia. PMID:2465689

  8. Role for Na/sup +/, H/sup +/, and Ca/sup 2 +/ during (/sup 3/H)-serotonin release from rat basophilic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Stump, R.F.; Oliver, J.M.; Deanin, G.G.

    1986-03-05

    The authors have investigated the roles of Na/sup +/, pH, and Ca/sup 2 +/ in the release of (/sup 3/H)-serotonin from RBL-2H3 cells. The importance of extracellular Ca/sup 2 +/ for antigen-induced mediator release is well known. The authors report that mediator release also depends on extracellular Na/sup +/ and that the Na/sup +/ ionophore, monensin, like the Ca/sup 2 +/ ionophores A23187 and ionomycin, mimics antigen in causing release. Amiloride suppresses serotonin release, indicating that antigen activates the Na/sup +//H/sup +/ antiport. Antigen-stimulated Na/sup +//H/sup +/ exchange (and/or the resulting cytoplasmic alkalinization) may affect mediator release in part by controlling cytoplasmic free Ca/sup 2 +/ levels. The authors report that antigen normally causes a spike followed by a plateau of Ca/sup 2 +/-Quin 2 fluorescence. Only the spike occurs when cells are incubated with antigen in low Na/sup +/ medium. Conversely, monensin produces a Ca/sup 2 +/ plateau without a spike phase. In addition, cytoplasmic alkalinization due to increased Na/sup +//H/sup +/ exchange may directly cause secretion. Both NH/sub 4/Cl and monensin cause mediator release in Ca/sup 2 +/-free medium: these reagents increase pH by about 0.1 units as measured by the fluorescent dye, BCECF. TPA that stimulates Na/sup +//H/sup +/ exchange in other cells does not cause release directly but it potentiates both antigen and Ca/sup 2 +/ ionophore-induced release in RBL-2h3 cells. This further suggests synergistic roles for Na/sup +//H/sup +/ exchange and Ca/sup 2 +/ mobilization in the control of mediator release.

  9. A comparison between diuretics and angiotensin-receptor blocker agents in patients with stage I hypertension (PREVER-treatment trial: study protocol for a randomized double-blind controlled trial

    Directory of Open Access Journals (Sweden)

    Figueiredo Neto José A

    2011-02-01

    Full Text Available Abstract Background Cardiovascular disease is the leading cause of death in Brazil, and hypertension is its major risk factor. The benefit of its drug treatment to prevent major cardiovascular events was consistently demonstrated. Angiotensin-receptor blockers (ARB have been the preferential drugs in the management of hypertension worldwide, despite the absence of any consistent evidence of advantage over older agents, and the concern that they may be associated with lower renal protection and risk for cancer. Diuretics are as efficacious as other agents, are well tolerated, have longer duration of action and low cost, but have been scarcely compared with ARBs. A study comparing diuretic and ARB is therefore warranted. Methods/design This is a randomized, double-blind, clinical trial, comparing the association of chlorthalidone and amiloride with losartan as first drug option in patients aged 30 to 70 years, with stage I hypertension. The primary outcomes will be variation of blood pressure by time, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new subclinical atherosclerosis and sudden death. The study will last 18 months. The sample size will be of 1200 participants for group in order to confer enough power to test for all primary outcomes. The project was approved by the Ethics committee of each participating institution. Discussion The putative pleiotropic effects of ARB agents, particularly renal protection, have been disputed, and they have been scarcely compared with diuretics in large clinical trials, despite that they have been at least as efficacious as newer agents in managing hypertension. Even if the null hypothesis is not rejected, the information will be useful for health care policy to treat hypertension in Brazil. Clinical trials

  10. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  11. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia.

    Science.gov (United States)

    Undem, Clark; Luke, Trevor; Shimoda, Larissa A

    2016-03-01

    In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i). In this study, we explored the interaction between pHi and [Ca(2+)]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca(2+)]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca(2+)]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca(2+)]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca(2+) or blockade of Ca(2+) entry with NiCl2 or SKF 96365 decreased [Ca(2+)]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca(2+)]i. We also examined the roles of Na(+)/Ca(2+) exchange (NCX) and Na(+)/H(+) exchange (NHE) in mediating the elevated basal [Ca(2+)]i and Ca(2+)-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca(2+)]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca(2+)]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca(2+)]i. Our findings indicate that, during CH, the elevation in basal [Ca(2+)]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE. PMID:27076907

  12. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  13. The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes

    International Nuclear Information System (INIS)

    The activity of melanosome-associated tyrosinase in human melanocytes differs based on racial skin type. In melanocytes from Black skin, tyrosinase activity is high while in White melanocytes the activity of the enzyme is low. Recent studies suggest that low tyrosinase activity in White melanocytes may be due to an acidic pH environment within the melanosome. Because sodium/hydrogen (Na+/H+) exchangers (NHEs) are known to regulate intracellular pH, melanocytes were treated with NHE inhibitors to determine what effect this inhibition might have on tyrosinase activity. Treatment of Black melanocytes with ethyl-isopropyl amiloride (EIPA) caused a rapid dose-dependent inhibition of tyrosinase activity. This inhibition was not due to either direct enzyme inhibition or to a decrease in tyrosinase abundance. In contrast, treatment of White melanocytes with EIPA, cimetidine, or clonidine resulted in little inhibition of tyrosinase activity. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis showed that both Black and White melanocytes expressed mRNA and protein for NHE-1, NHE-3, NHE-5, NHE-6, and NHE-7. Immunohistochemical analysis showed that NHE-7 and NHE-3 co-localized with the melanosomal protein, Tyrosinase Related Protein-1 (TRP-1). In addition, the vesicular proton pump, vesicular ATPase (V-ATPase), was found to be present in both White and Black melanosomes, indicating that organelles from both racial skin types are capable of being acidified. The results suggest that one or more NHEs may help regulate melanosome pH and tyrosinase activity in human melanocytes

  14. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    Science.gov (United States)

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  15. Suppression of PKC-α attenuates TNF-α-evoked cerebral barrier breakdown via regulations of MMP-2 and plasminogen-plasmin system.

    Science.gov (United States)

    Abdullah, Zuraidah; Bayraktutan, Ulvi

    2016-07-01

    Ischaemic stroke, accompanied by neuroinflammation, impairs blood-brain barrier integrity through a complex mechanism involving both protein kinase C (PKC) and urokinase. Using an in vitro model of human blood-brain barrier (BBB) composed of brain microvascular endothelial cells (HBMEC) and astrocytes, this study assessed the putative roles of these elements in BBB damage evoked by enhanced availability of pro-inflammatory cytokine, TNF-α. Treatment of HBMEC with TNF-α significantly increased the mRNA and protein expressions of all plasminogen-plasmin system (PPS) components, namely tissue plasminogen activator, urokinase, urokinase plasminogen activator receptor and plasminogen activator inhibitor-1 and also the activities of urokinase, total PKC and extracellular MMP-2. Inhibition of urokinase by amiloride abated the effects of TNF-α on BBB integrity and MMP-2 activity without affecting that of total PKC. Conversely, pharmacological inhibition of conventional PKC isoforms dramatically suppressed TNF-α-induced overactivation of urokinase. Knockdown of PKC-α gene via specific siRNA in HBMEC suppressed the stimulatory effects of TNF-α on protein expression of all PPS components, MMP-2 activity, DNA fragmentation rates and pro-apoptotic caspase-3/7 activities. Establishment of co-cultures with BMEC transfected with PKC-α siRNA attenuated the disruptive effects of TNF-α on BBB integrity and function. This was partly due to elevations observed in expression of a tight junction protein, claudin-5 and partly to prevention of stress fibre formation. In conclusion, specific inhibition of PKC-α in cerebral conditions associated with exaggerated release of pro-inflammatory cytokines, notably TNF-α may be of considerable therapeutic value and help maintain endothelial cell viability, appropriate cytoskeletal structure and basement membrane. PMID:27094771

  16. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    Science.gov (United States)

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  17. The Na+/H+ exchanger isoform 3 is required for active paracellular and transcellular Ca2+ transport across murine cecum

    Science.gov (United States)

    Rievaj, Juraj; Pan, Wanling; Cordat, Emmanuelle; Alexander, R. Todd

    2016-01-01

    Intestinal calcium (Ca2+) absorption occurs via paracellular and transcellular pathways. Although the transcellular route has been extensively studied, mechanisms mediating paracellular absorption are largely unexplored. Unlike passive diffusion, secondarily active paracellular Ca2+ uptake occurs against an electrochemical gradient with water flux providing the driving force. Water movement is dictated by concentration differences that are largely determined by Na+ fluxes. Consequently, we hypothesized that Na+ absorption mediates Ca2+ flux. NHE3 is central to intestinal Na+ absorption. NHE3 knockout mice (NHE3−/−) display impaired intestinal Na+, water, and Ca2+ absorption. However, the mechanism mediating this latter abnormality is not clear. To investigate this, we used Ussing chambers to measure net Ca2+ absorption across different segments of wild-type mouse intestine. The cecum was the only segment with net Ca2+ absorption. Quantitative RT-PCR measurements revealed cecal expression of all genes implicated in intestinal Ca2+ absorption, including NHE3. We therefore employed this segment for further studies. Inhibition of NHE3 with 100 μM 5-(N-ethyl-N-isopropyl) amiloride decreased luminal-to-serosal and increased serosal-to-luminal Ca2+ flux. NHE3−/− mice had a >60% decrease in luminal-to-serosal Ca2+ flux. Ussing chambers experiments under altered voltage clamps (−25, 0, +25 mV) showed decreased transcellular and secondarily active paracellular Ca2+ absorption in NHE3−/− mice relative to wild-type animals. Consistent with this, cecal Trpv6 expression was diminished in NHE3−/− mice. Together these results implicate NHE3 in intestinal Ca2+ absorption and support the theory that this is, at least partially, due to the role of NHE3 in Na+ and water absorption. PMID:23764894

  18. Regulation of chloride self exchange by cAMP in cortical collecting tubule

    International Nuclear Information System (INIS)

    The hormonal control of Cl transport was examined in rabbit cortical collecting tubules using the lumen-to-bath 36Cl tracer rate coefficient (K/sub Cl/, nm/s). Tracer movement via Sl-HCO3 exchange was minimized by using HCO3-CO2-free solutions. The electrical driving force was minimized by treating with amiloride. Under these conditions, net Cl transport was zero, yet there was a large K/sub Cl/ that fell 88% on removing bath (trans) Cl. These results are consistent with the mechanism of tracer flux being predominantly Cl self exchange. K/sub Cl/ fell spontaneously with time in vitro; after this decline K/sub Cl/ could be stimulated with 8-bromo-cAMP. cAMP present from the onset of perfusion prevented the time-dependent fall in K/sub Cl/. When tracer movement was restricted to diffusion by eliminating Cl self exchange (0 Cl bath), cAMP had no effect on K/sub Cl/. Although both isoproterenol and vasopressin are known to stimulate adenylate cyclase in this epithelium, only isoproterenol mimicked the cAMP effect on K/sub Cl/. The isoproterenol effect was blocked by either propranolol or prostaglandin E2. Lumen addition of the disulfonic stilbene DIDS had no effect on K/sub Cl/. Lumen addition of furosemide or trichloromethiazide had minimal or no effect. Taken together, these results indicate that Cl self exchange is regulated by β-adrenergic agents acting via cAMP. The lack of an effect of vasopressin suggests cellular heterogeneity in this response to cAMP

  19. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  20. Agonist-mediated changes in intracellular pH: role in vascular smooth muscle cell function

    International Nuclear Information System (INIS)

    Changes in intracellular pH (pHi) are likely to play an important role in regulation of vascular smooth muscle cell (VSMC) function. In most blood vessels, acidification is associated with decreased contractile tone and alkalinization with increased tone. However, the nature of agonist-mediated alterations in pHi and the role of pHi in other VSMC responses has been little studied. We have used the pH sensitive dye, BCECF, to study pHi in cultured rat aortic VSMC. Basal pHi at 37 degrees C in physiologic saline buffer (pH 7.3) was 7.08 in suspended VSMC and 7.26 in substrate-attached VSMC. An amiloride-sensitive Na+/H+ exchanger mediated pHi recovery following an acid load. Angiotensin II- and platelet-derived growth factor typified one class of VSMC agonists, causing an initial transient (less than 5 min) acidification followed by a sustained (greater than 20 min) alkalinization. The acidification phase was associated with increased Ca2+ mobilization as demonstrated by increases in intracellular Ca2+ and 45Ca2+ efflux. The alkalinization was associated with Na+ influx and H+ efflux consistent with Na+/H+ exchange. Epidermal growth factor and phorbol esters typified another class of agonists which stimulated only a sustained alkalinization. Alterations in regulation of VSMC pHi may play an important role in VSMC hypertrophy and/or proliferation as suggested by the finding of increased cell growth and Na+/H+ exchange in spontaneously hypertensive rat VSMC compared to Wistar-Kyoto VSMC. Although no functional correlate for initial acidification has been identified, cytoplasmic alkalinization appears to be required for the sustained formation of diacylglycerol following angiotensin II stimulation. These findings suggest that alterations in pHi may regulate several VSMC functions such as agonist-mediated signal transduction, excitation-response coupling, and growth

  1. Cytotoxic mechanisms of Zn{sup 2+} and Cd{sup 2+} involve Na{sup +}/H{sup +} exchanger (NHE) activation by ROS

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Evangelinos, Nikolaos [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koliakos, George [Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, P.O. Box 17034, 54124 Thessaloniki (Greece); Kaloyianni, Martha [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)]. E-mail: kaloyian@bio.auth.gr

    2006-07-20

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in {center_dot}O{sub 2} {sup -} production, with Cd to be more potent (216 {+-} 15%) than Zn (150 {+-} 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na{sup +}/H{sup +} exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on {center_dot}O{sub 2} {sup -} production was mediated via the interaction of metal ions with {alpha}{sub 1}- and {beta}-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi ({delta}pHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi ({delta}pHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O{sub 2} {sup -} production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-{gamma} receptors. In addition, differences between the two metals concerning NHE activation, O{sub 2} {sup -} production and interaction with adrenergic receptors were observed.

  2. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    International Nuclear Information System (INIS)

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days' irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs

  3. Cadmium trapping in an epithelial sodium channel pore mutant.

    Science.gov (United States)

    Takeda, Armelle-Natsuo; Gautschi, Ivan; van Bemmelen, Miguel X; Schild, Laurent

    2007-11-01

    The putative selectivity filter of the epithelial sodium channel (ENaC) comprises a three-residue sequence G/SXS, but it remains uncertain whether the backbone atoms of this sequence or whether their side chains are lining the pore. It has been reported that the S589C mutation in the selectivity filter of alphaENaC renders the channel sensitive to block by externally applied Cd2+; this was interpreted as evidence for Cd2+ coordination with the thiol group of the side chain of alpha589C, pointing toward the pore lumen. Because the alphaS589C mutation alters the monovalent to divalent cation selectivity ratio of ENaC and because internally applied Cd2+ blocks wild-type ENaC with high affinity, we hypothesized that the inhibition of alphaS589C ENaC by Cd2+ results rather from the coordination of this cation with native cysteine residues located in the internal pore of ENaC. We show here that Cd2+ inhibits not only ENaC alphaS589C and alphaS589D but also alphaS589N mutants and that Ca2+ weakly interacts with the S589D mutant. The block of alphaS589C, -D, and -N mutants is characterized by a slow on-rate, is nearly irreversible, is voltage-dependent, and can be prevented by amiloride. The C546S mutation in the second transmembrane helix of gamma subunit in the background of the ENaC alphaS589C, -D, or -N mutants reduces the sensitivity to block by Cd2+ and renders the block rapidly reversible. We conclude therefore that the block by Cd2+ of the alphaS589C, -D, and -N mutants results from the trapping of Cd2+ ions in the internal pore of the channel and involves Cys-546 in the second transmembrane helix of the gammaENaC subunit. PMID:17804416

  4. Improvement of barrier function and stimulation of colonic epithelial anion secretion by Menoease Pills

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Gui-Hong Zhang; Lai-Ling Tsang; Yu-Lin Gou; Hau-Yan Connie Wong; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Menoease Pills (MP), a Chinese medicine-based new formula for postmenopausal women, has been shown to modulate the endocrine and immune systems[1]. The present study investigated the effects of MP and one of its active ingredients, ligustrazine, on epithelial barrier and ion transport function in a human colonic cell line, T84.METHODS: Colonic transepithelial electrophysiological characteristics and colonic anion secretion were studied using the short circuit current (ISC) technique. RT-PCR was used to examine the expression of cytoplasmic proteins associated with the tight junctions, ZO-1(zonula occludens-1) and ZO-2 (zonula occludens-2).RESULTS: Pretreatment of T84 cells with MP (15 μg/mL) for 72 h significantly increased basal potential difference,transepithelial resistance and basal ISC. RT-PCR results showed that the expressions of ZO-1 and ZO-2 were significantly increased after MP treatment, consistent with improved epithelial barrier function. Results of acute stimulation showed that apical addition of MP produced a concentrationdependent (10-5 000 μg/mL, EC50 = 293.9 μg/mL) increase in ISC. MP-induced ISC was inhibited by basolateral treatment with bumetanide (100 μmol/L), an inhibitor of the Na+-K+-2Cl- cotransporter, apical addition of Cl-channel blockers, diphenylamine-2, 2'-dicarboxylic acid (1 mmol/L) or glibenclamide (1 mmol/L), but not 4, 4'-diisothiocyanostilbene2, 2'-disulfonic acid or epithelial Na+ channel blocker,amiloride. The effect of MP on ZO-1 and ZO-2 was mimicked by Ligustrazine and the ligustrazine-induced ISC was also blocked by basolateral application of bumetanide and apical addition of diphenylamine-2, 2'-dicarboxylic acid or glibenclamide, and reduced by a removal of extracellular Cl-.CONCLUSION: The results of the present study suggest that MP and lligustrazine may improve epithelial barrier function and exert a stimulatory effect on colonic anion secretion, indicating the potential use of MP and its active ingredients

  5. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Directory of Open Access Journals (Sweden)

    Stähler Frauke

    2009-03-01

    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  6. Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Carmen Aravena

    Full Text Available Arsenic main inorganic compound is arsenic trioxide (ATO presented in solution mainly as arsenite. ATO increases intracellular pH (pHi, cell proliferation and tumor growth. Sodium-proton exchangers (NHEs modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0-48 hours in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5-100 µmol/L, NHEs inhibitor, PD-98059 (30 µmol/L, MAPK1/2 inhibitor, Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor, or Schering 28080 (10 µmol/L, H(+/K(+ATPase inhibitor plus concanamycin (0.1 µmol/L, V type ATPases inhibitor. Incorporation of [(3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na(+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44(mapk were also determined. Lowest ATO (0.05 µmol/L, ~0.01 ppm used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1-like transport dependent-increased pHi requiring p42/44(mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and

  7. Factors affecting ammonium uptake by C11 clone of MDCK cells.

    Science.gov (United States)

    Tararthuch, A L; Fernandez, R; Ramirez, M A; Malnic, G

    2002-11-01

    In several tissues ammonium ions are able to use the transport pathways of other ions, particularly of K+. We investigated this possibility in the C11 clone of MDCK cells, thought to represent intercalated cells, in control and 0 Cl- conditions. Cell pH was measured by ratiometric fluorescence microscopy using the pH indicator BCECF. After preincubating the cells for 10 min in control or 0 Cl- (substituted by gluconate) Ringer, an ammonium pulse was applied to induce cell acidification. The magnitude of the initial alkalinization (DeltapH) was 0.24+/-0.03 ( n=28) pH units in controls, which fell to 0.023+/-0.01 ( n=12) in 0 Cl-, suggesting uptake of NH4+ balancing the alkalinization by NH3. Addition of 10(-3) M bumetanide or furosemide to the 0 Cl- medium, or 10(-4 )M hexamethylene amiloride, did not alter DeltapH. However, with 5 mM Ba+, DeltapH increased to 38% of control. When 2.5x10(-4) M ouabain, an inhibitor of Na+-K+ ATPase, was used, DeltapH increased to 46% of control. Inhibition of H+-K+ ATPase by SCH28080 or by omeprazol caused significant increase in DeltapH. In 0 Cl- solution, these cells underwent a mean volume reduction (-d V) of -10.24+/-1.96% per 10 min as measured by confocal microscopy. To investigate if NH4+ influx was regulated by cell volume or by cell Cl-, volume reduction was avoided by two procedures. When preincubating with NPPB, a Cl- channel blocker, in 0 Cl-, volume reduction was inhibited (d V=-2.12% per 10 min), and DeltapH was 0.24+/-0.04 ( n=5). When the cells were preincubated in hypotonic 0 Cl- (260 mosmol/l), cell volume reduction was abolished (d V=+2.6% per 10 min) and DeltapH was 0.52+/-0.07 ( n=7). Thus, activation of NH4+ influx by several transporters was due to volume reduction rather than to [Cl-] alteration. PMID:12457240

  8. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    Science.gov (United States)

    Moroz, Leonid L; Kohn, Andrea B

    2015-12-01

    transcriptomes from 10 different ctenophores did not detect recognized orthologs of synthetic enzymes encoding several classical, low-molecular-weight (neuro)transmitters; glutamate signaling machinery is one of the few exceptions. Novel peptidergic signaling molecules were predicted for ctenophores, together with the diversity of putative receptors including SCNN1/amiloride-sensitive sodium channel-like channels, many of which could be examples of a lineage-specific expansion within this group. In summary, our analysis supports the hypothesis of independent evolution of neurons and, as corollary, a parallel evolution of synapses. We suggest that the formation of synaptic machinery might occur more than once over 600 million years of animal evolution. PMID:26454853

  9. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Sá, M.G. [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, Sao Paulo 04044-020 (Brazil)

    2013-11-15

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl{sub 2} (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V{sub max} for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10{sup 4} cells{sup −1} × 300 s{sup −1} respectively and K{sub m} values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K{sub m} for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that

  10. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Deng Wang

    2012-03-01

    Full Text Available Abstract Background Stimulation of epithelial sodium channel (ENaC increases Na+ transport, a driving force of alveolar fluid clearance (AFC to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI. It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. Methods A model of ALI (LPS at a dose of 5.0 mg/kg with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF, total lung water content(TLW, and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR and western blotting. Results In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Conclusions Our study

  11. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  12. The Effects of Ultrasound on Biological Systems: Site

    Science.gov (United States)

    El-Karmi, Anan M.

    Earlier studies (Dinno et al., Ultrasound Med. Biol. 15:461 -470; 1989) demonstrated that ultrasound at therapeutic intensities causes large increases in total conductance (G_{rm t}) of frog skin. These changes were attributed to non-thermal mechanisms, primarily, cavitation. In this study, the site(s) and mechanism(s) of action of ultrasound for the increase in G_{rm t} were examined. The reversible changes in G_{rm t } and sodium current were monitored in real time as a function of ultrasound exposure. Amiloride, a sodium channel blocker, was used to differentiate between cellular (G_{rm c}) and paracellular (G_{rm s}) pathways in the presence and absence of ultrasound. No significant changes were detected in G_ {rm c}. However, changes in G _{rm s} were significant. These results demonstrate that most of the increase in G _{rm t} due to ultrasound is taking place in the paracellular pathways. Sodium channels were not significantly affected by ultrasound. Thus, the changes in G_{rm c} are not specific. The effects of ultrasound were examined in the presence of radical scavengers and antioxidants. The increase in G_{rm t} due to ultrasound was significantly minimized in the presence of cystamine, cysteamine, and sodium ascorbate. This demonstrates that free radicals and other reactive species generated by cavitation are causing the increase in G_ {rm t}, possibly by acting from inside the cells. Radical scavengers and antioxidants are providing protection from oxidative damage but are not involved in the recovery of G_{ rm t} towards steady state values after sonication. The role of Ca^{2+} in the effects of ultrasound was examined since many of the cellular reactions involved in tissue recovery are dependent on the intracellular availability of free Ca^{2+}. The percentage increase in G_{rm t} in the presence of Ca^{2+} was larger than in its absence (140% vs. 27%). The time constant for G_{rm t} to return to steady state was longer in calcium-free solutions (122

  13. Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells.

    Science.gov (United States)

    Yusef, Yamil R; Thomas, Warren; Harvey, Brian J

    2014-05-01

    The most active estrogen, 17β-estradiol (E2), has previously been shown to stimulate a female sex-specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short-circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na(+) absorption could occur in the kidney. Experiments were carried out on murine M1-CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid-onset (<15 min) and sustained increase in the amiloride-sensitive Na(+) current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm(2); E2, 4.7 ± 0.3 μA/cm(2); n = 43, P < 0.001), without affecting the ouabain-sensitive Na(+)/K(+) pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U-73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI-182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ-ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid "nongenomic" function of estrogen to stimulate ENa

  14. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2012-04-01

    Full Text Available Desde hace más de cuarenta años que el litio es usado para el tratamiento de la enfermedad bipolar; recientes estudios sugieren también su utilidad en el trastorno cognitivo mínimo tipo amnésico. El litio es filtrado en el glomérulo y un 65-75% del mismo es reabsorbido en el túbulo contorneado proximal y en el asa ascendente de Henle por el transportador Na+, K+, 2Cl- y vía paracelular. Una pequeña fracción del litio entra en las células principales del túbulo colector por medio del canal epitelial de sodio sensible al amiloride (ENaC localizado en la membrana apical de la célula. Luego de 10- 20 años de tratamiento con litio los enfermos pueden desarrollar poliuria, acidosis tubular e insuficiencia renal crónica que puede terminar en una forma de diabetes que no responde a la arginina vasopresina llamada diabetes insípida nefrogénica. Se cree que estas fallas renales son consecuencias de una reducción en el número de moléculas de acuaporina 2 en la membrana apical. Las causas para esto son complejas. El litio es un poderoso inhibidor de la isoforma beta de la enzima glicógeno sintetasa quinasa y esto está asociado a una menor actividad de la adenilato ciclasa que lleva a una disminución en la concentración intracelular de cAMP. Esto finalmente interferiría con la síntesis de nuevas moléculas de acuaporina 2 y con el tráfico de ellas desde la zona subapical de la célula hacia la membrana celular, causando la disminución en la reabsorción de agua en la parte distal del nefrón.

  15. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. PMID:26632606

  16. The CF-CIRC study: a French collaborative study to assess the accuracy of Cystic Fibrosis diagnosis in neonatal screening

    Directory of Open Access Journals (Sweden)

    Bellon Gabriel

    2006-10-01

    Full Text Available Abstract Background Cystic fibrosis (CF is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR protein, which acts as a chloride channel after activation by cyclic AMP (cAMP. Newborn screening programs for CF usually consist of an immunoreactive trypsinogen (IRT assay, followed when IRT is elevated by testing for a panel of CF-causing mutations. Some children, however, may have persistent hypertrypsinogenemia, only one or no identified CFTR gene mutation, and sweat chloride concentrations close to normal values. In vivo demonstration of abnormal CFTR protein function would be an important diagnostic aid in this situation. Measurements of transepithelial nasal potential differences (NPD in adults accurately characterize CFTR-related ion transport. The aim of the present study is to establish reference values for NPD measurements for healthy children and those with CF aged 3 months to 3 years, the age range of most difficult-to-diagnose patients with suspected CF. The ultimate goal of our study is to validate NPD testing as a diagnostic tool for children with borderline results in neonatal screening. Methods/Design We adapted the standard NPD protocol for young children, designed a special catheter for them, used a slower perfusion rate, and shortened the protocol to include only measurement of basal PD, transepithelial sodium (Na+ transport in response to the Na+ channel inhibitor amiloride, and CFTR-mediated chloride (Cl- secretion in response to isoproterenol, a β-agonist in a Cl- free solution. The study will include 20 children with CF and 20 healthy control children. CF children will be included only if they carry 2 CF-causing mutations in the CFTR gene or have sweat chloride concentrations > 60 mEq/L or both. The healthy children will be recruited among the siblings of the CF patients, after verification that they do not carry the familial mutation. Discussion A preliminary study of 3 adult control

  17. High-mobility group box 1 inhibits HCO(3)(-) absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway.

    Science.gov (United States)

    Good, David W; George, Thampi; Watts, Bruns A

    2015-10-15

    High-mobility group box 1 (HMGB1) is a damage-associated molecule implicated in mediating kidney dysfunction in sepsis and sterile inflammatory disorders. HMGB1 is a nuclear protein released extracellularly in response to infection or injury, where it interacts with Toll-like receptor 4 (TLR4) and other receptors to mediate inflammation. Previously, we demonstrated that LPS inhibits HCO(3)(-) absorption in the medullary thick ascending limb (MTAL) through a basolateral TLR4-ERK pathway (Watts BA III, George T, Sherwood ER, Good DW. Am J Physiol Cell Physiol 301: C1296-C1306, 2011). Here, we examined whether HMGB1 could inhibit HCO(3)(-) absorption through the same pathway. Adding HMGB1 to the bath decreased HCO(3)(-) absorption by 24% in isolated, perfused rat and mouse MTALs. In contrast to LPS, inhibition by HMGB1 was preserved in MTALs from TLR4(-/-) mice and was unaffected by ERK inhibitors. Inhibition by HMGB1 was eliminated by the receptor for advanced glycation end products (RAGE) antagonist FPS-ZM1 and by neutralizing anti-RAGE antibody. Confocal immunofluorescence showed expression of RAGE in the basolateral membrane domain. Inhibition of HCO(3)(-) absorption by HMGB1 through RAGE was additive to inhibition by LPS through TLR4 and to inhibition by Gram-positive bacterial molecules through TLR2. Bath amiloride, which selectively prevents inhibition of MTAL HCO(3)(-) absorption mediated through Na⁺/H⁺ exchanger 1 (NHE1), eliminated inhibition by HMGB1. We conclude that HMGB1 inhibits MTAL HCO(3)(-) absorption through a RAGE-dependent pathway distinct from TLR4-mediated inhibition by LPS. These studies provide new evidence that HMGB1-RAGE signaling acts directly to impair the transport function of renal tubules. They reveal a novel paradigm for sepsis-induced renal tubule dysfunction, whereby exogenous pathogen-associated molecules and endogenous damage-associated molecules act directly and independently to inhibit MTAL HCO(3)(-) absorption through

  18. Evidence for Active Electrolyte Transport by Two-Dimensional Monolayers of Human Salivary Epithelial Cells.

    Science.gov (United States)

    Hegyesi, Orsolya; Földes, Anna; Bori, Erzsébet; Németh, Zsolt; Barabás, József; Steward, Martin C; Varga, Gábor

    2015-12-01

    Functional reconstruction of lost tissue by regenerative therapy of salivary glands would be of immense benefit following radiotherapy or in the treatment of Sjogren's syndrome. The purpose of this study was to develop primary cultures of human salivary gland cells as potential regenerative resources and to characterize their acinar/ductal phenotype using electrophysiological measurements of ion transport. Human salivary gland cultures were prepared either from adherent submandibular gland cells (huSMG) or from mixed adherent and nonadherent cells (PTHSG) and were cultivated in Hepato-STIM or minimum essential medium (MEM). Expression of key epithelial marker proteins was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). Transepithelial electrical resistance (TER) was monitored following seeding the cells on Transwell membranes. Transepithelial ion transport was estimated by short-circuit current (Isc) measurements in an Ussing chamber. Both huSMG and PTHSG cells showed epithelial characteristics when cultivated in Hepato-STIM, while fibroblast-like elements dominated in MEM. Compared to intact tissue, cultivation of the cells resulted in substantial decreases in AQP5 and NKCC1 expression and moderate increases in claudin-1 and ENaC expression. Both cultures achieved high TER and transepithelial electrolyte movement in Hepato-STIM, but not in MEM. The Isc was substantially reduced by basolateral Cl(-) and bicarbonate withdrawal, indicating the involvement of basolateral-to-apical anion transport, and by the blockade of apical ENaC by amiloride, indicating the involvement of apical-to-basolateral Na(+) transport. An almost complete inhibition was observed following simultaneous ENaC block and withdrawal of the two anions. Isc was enhanced by either apical adenosine triphosphate (ATP) or basolateral carbachol application, but not by forskolin, confirming the expected role of Ca(2+)-activated regulatory pathways in electrolyte

  19. Prevention of hypertension in patients with pre-hypertension: protocol for the PREVER-prevention trial

    Directory of Open Access Journals (Sweden)

    Neto José

    2011-03-01

    Full Text Available Abstract Background Blood pressure (BP within pre-hypertensive levels confers higher cardiovascular risk and is an intermediate stage for full hypertension, which develops in an annual rate of 7 out of 100 individuals with 40 to 50 years of age. Non-drug interventions to prevent hypertension have had low effectiveness. In individuals with previous cardiovascular disease or diabetes, the use of BP-lowering agents reduces the incidence of major cardiovascular events. In the absence of higher baseline risk, the use of BP agents reduces the incidence of hypertension. The PREVER-prevention trial aims to investigate the efficacy, safety and feasibility of a population-based intervention to prevent the incidence of hypertension and the development of target-organ damage. Methods This is a randomized, double-blind, placebo-controlled clinical trial, with participants aged 30 to 70 years, with pre-hypertension. The trial arms will be chlorthalidone 12.5 mg plus amiloride 2.5 mg or identical placebo. The primary outcomes will be the incidence of hypertension, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new sub-clinical atherosclerosis, and sudden death. The study will last 18 months. The sample size was calculated on the basis of an incidence of hypertension of 14% in the control group, a size effect of 40%, power of 85% and P alpha of 5%, resulting in 625 participants per group. The project was approved by the Ethics committee of each participating institution. Discussion The early use of blood pressure-lowering drugs, particularly diuretics, which act on the main mechanism of blood pressure rising with age, may prevent cardiovascular events and the incidence of hypertension in individuals with hypertension. If this intervention shows to be effective and safe

  20. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    International Nuclear Information System (INIS)

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl2 (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (Vmax for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.104 cells−1 × 300 s−1 respectively and Km values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected Km for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that could also drive Cu to the gill cell

  1. Characterization of H+ and HCO3- transporters in CFPAC-1 human pancreatic duct cells

    Institute of Scientific and Technical Information of China (English)

    Zoltán Rakonczay Jr; Amy Fearn; Péter Hegyi; Imre Boros; Michael A Gray; Barry E Argent

    2006-01-01

    AIM: To characterize H+ and HCO3- transporters in polarized CFPAC-1 human pancreatic duct cells, which were derived from a cystic fibrosis patient with the AF508 CFTR mutation.METHODS: CFPAC-1 cells were seeded at high density onto permeable supports and grown to confluence. The cells were loaded with the pH-sensitive fluorescent dye BCECF, and mounted into a perfusion chamber, which allowed the simultaneous perfusion of the basolateral and apical membranes. Transmembrane base flux was calculated from the changes in intracellular pH and the buffering capacity of the cells.RESULTS: Our results showed differential permeability to HCO3-/CO2 at the apical and basolateral membranes of CFPAC-1 cells. Na+/HCO3- co-transporters (NBCs)and Cl-/HCO3- exchangers (Aes) were present on the basolateral membrane, and Na+/H+ exchangers (NHEs) on both the apical and basolateral membranes of the cells. Basolateral HCO3- uptake was sensitive to variations of extracellular K+ concentration, the membrane permeable carbonic anhydrase (CA) inhibitors acetazolamide (100 μmol/L) and ethoxyzolamide (100μmol/L), and was partially inhibited by H2-DIDS (600μmol/L). The membrane-impermeable CA inhibitor 1-N-(4-sulfamoylphenylethyl)-2,4,6-trimethylpyridine perchlorate did not have any effect on HCO3- uptake.The basolateral AE had a much higher activity than that in the apical membrane, whereas there was no such difference with the NHE under resting conditions.Also, 10 μmol/L forskolin did not significantly influence Cl-/HCO3- exchange on the apical and basolateral membranes. The administration of 250 μmol/L H2-DIDS significantly inhibited the basolateral AE. Amiloride (300μmol/L) completely inhibited NHEs on both membranes of the cells. RT-PCR revealed the expression of pNBC1,AE2, and NHE1 mRNA.CONCLUSION: These data suggest that apart from the lack of CFTR and apical Cf/HCO3- exchanger activity,CFPAC-1 cells express similar H+ and HCO3- transporters to those observed in native animal

  2. Cyclic AMP-and beta-agonist-activated chloride conductance of a toad skin epithelium.

    Science.gov (United States)

    Willumsen, N J; Vestergaard, L; Larsen, E H

    1992-04-01

    1. The control by intracellular cyclic AMP and beta-adrenergic stimulation of chloride conductance was studied in toad skin epithelium mounted in a chamber on the stage of an upright microscope. Impalement of identified principal cells from the serosal side with single-barrelled conventional or double-barrelled Cl(-)-sensitive microelectrodes was performed at x500 magnification. For blocking the active sodium current 50 microM-amiloride was present in the mucosal bath. 2. When clamped at transepithelial potential difference V = 0 mV, the preparations generated clamping currents of 0.9 +/- 1 microA/cm2 (mean +/- S.E.M.; number of observations n = 55). The intracellular potential of principal cells (Vb) was -96 +/- 2 mV with a fractional resistance of the basolateral membrane (fRb) of 0.016 +/- 0.003 (n = 54), and an intracellular Cl- activity of 40 +/- 2 mM (n = 24). 3. At V = 0 mV, serosal application of a cyclic AMP analogue, dibutyryl cyclic AMP (500 microM) or a beta-adrenergic agonist, isoprenaline (5 microM) resulted in a sixfold increase in transepithelial Cl- conductance identified by standard 36Cl- tracer technique. 4. The clamping current at V = 0 mV was unaffected by cyclic AMP (short-circuit current Isc = 0.1 +/- 0.3 microA/cm2, n = 16) indicating that subepidermal Cl(-)-secreting glands are not functioning in our preparations obtained by collagenase treatment. 5. Cyclic AMP- or isoprenaline-induced chloride conductance (Gcl) activation (V = 0 mV) was not reflected in membrane potential and intracellular Cl- activity in principal cells. Intracellular chloride activity was constant at approximately 40 mM at membrane potentials between -90 and -100 mV. Therefore, it can be concluded that the principal cells are not contributing to activated Cl- currents. 6. At V = -100 mV where the voltage-dependent chloride conductance of mitochondria-rich (MR) cells was already fully activated, GCl was unaffected by cyclic AMP or isoprenaline. The major effect of these

  3. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    Directory of Open Access Journals (Sweden)

    Alejandra G. Palma

    2014-04-01

    Full Text Available La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR, un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC. Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.

  4. Cell volume regulation in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions: Roles of inorganic ions and taurine

    Indian Academy of Sciences (India)

    Carina Goswami; Nirmalendu Saha

    2006-12-01

    The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (–80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures, respectively, which gradually decreased/increased near to the control level due to release/uptake of water within a period of 25–30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 ± 0.54 mol/g liver) due to activation of Ba2+- and quinidine-sensitive K+ channel, and to a lesser extent due to enhanced efflux of Cl¯ (4.35 ± 0.25 mol/g liver) and Na+ (3.68 ± 0.37 mol/g liver). Conversely, upon hypertonic exposure, there was amiloride- and ouabain-sensitive uptake of K+ (9.78 ± 0.65 mol/g liver), and also Cl¯ (3.72 ± 0.25 mol/g liver). The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine, an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 ± 0.38 mol/g liver) and uptake (6.38 ± 0.45 mol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures, thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.

  5. Mechanisms of electrolyte transport across the endometrium. II. Regulation by GRP and substance P.

    Science.gov (United States)

    Vetter, A E; O'Grady, S M

    1997-07-01

    The purpose of this study was to investigate the regulation of electrolyte transport across the porcine endometrium by gastrin-releasing peptide (GRP) and substance P (SP). Luminal addition of GRP, neuromedin B (NMB), SP, or neurokinin A(NKA) to mucosal tissues mounted in Ussing chambers produced a multiphasic change in short-circuit current (Isc) characterized by an initial rapid increase and subsequent decrease in current. A similar response was obtained after addition of ionomycin or thapsigargin to the tissues. The Isc response to the peptides or Ca ionophore was inhibited by pretreatment of the tissues with luminal amiloride or benzamil. GRP and SP were more potent [50% effective concentration (EC50) of 3 nM] than NMB or NKA (EC50 values of 46 and 26 nM, respectively) in producing the decrease in Isc. Pretreatment with the GRP receptor antagonist 3-Phe-His-Trp-Ala-Val-D-Ala-His-D-Pro-psi Phe-NH2 blocked the Isc response to GRP and NMB but not to SP or NKA, whereas the NMB receptor antagonist D-Nal-[Cys-Try-D-Trp-Orn-Val-Cys]-Nal-NH2 was ineffective in inhibiting the Isc response to any of the peptides. In contrast, pretreatment of the tissue with the nonpeptide SP receptor antagonist CP-99,994 blocked the Isc response to SP and NKA but not to GRP or NMB. Experiments with amphotericin B-permeabilized tissues showed that GRP, SP, ionomycin, and thapsigargin increased current through an outwardly rectifying K conductance located on the apical membrane of the cells. The K-to-Na selectivity ratio of this conductance was calculated to be 2.5:1. These experiments showed that GRP and SP, acting through different receptors, produced an increase in K efflux through a Ca-dependent K conductance present in the apical membrane of surface endometrial epithelial cells. In addition, immunohistochemistry data showed that GRP-like immunoreactivity was localized to surface and glandular epithelial cells, whereas GRP receptor antibody labeling was observed in both epithelial and

  6. Identification by a Digital Gene Expression Displayer (DGED) and test by RT-PCR analysis of new mRNA candidate markers for colorectal cancer in peripheral blood.

    Science.gov (United States)

    Lauriola, Mattia; Ugolini, Giampaolo; Rosati, Giancarlo; Zanotti, Simone; Montroni, Isacco; Manaresi, Alessio; Zattoni, Davide; Rivetti, Stefano; Mattei, Gabriella; Coppola, Domenico; Strippoli, Pierluigi; Taffurelli, Mario; Solmi, Rossella

    2010-08-01

    Evidence from the literature widely supports the efficacy of screening for colorectal cancer (CRC) in reducing mortality. A blood-based assay, potentially, represents a more accessible early detection tool for the identification of circulating tumour cells originating from a primary tumour site in the body. The present work aimed at identifying a set of specific mRNAs expressed in colon tissue but not in blood cells. These mRNAs may represent useful markers for early detection of circulating colon cancer cells by a simple, qualitative RT-PCR assay, following RNA extraction from peripheral blood samples. Using a data-mining tool called cDNA digital gene expression displayer (DGED), based on serial analysis of gene expression (SAGE) from the Cancer Genome Anatomy Project (CGAP) database, 4-colon and 14-blood cDNA libraries were analyzed. We selected 7 genes expressed in colon tissue but not in blood and were able to test 6 of them by RT-PCR in peripheral blood of CRC patients and healthy controls. We present a relatively easy and highly reproducible technique for the detection of mRNA expression of genes as candidate markers of malignancy in blood samples of patients with colon cancer. SAGE DGED provided a list of the best candidate mRNAs predicted to detect colon cells in the blood, namely those encoding the following proteins: hypothetical protein LOC644844 (LOC644844, whose cDNA was not amplifiable), fatty acid binding protein 1 (FABP1), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), mucin 13 cell surface associated (MUC13), guanylate cyclase activator 2A (GUCA2A), amiloride binding protein 1 (ABP1), galactoside-binding, solute carrier family 26, member 3 (SLC26A3). The mRNA expression of these genes was evaluated in 8 samples from subjects diagnosed with CRC and 9 from healthy controls. We observed the expression of 2 of the 6 investigated genes in the blood samples of the vast majority of patients considered, but also in a subset of the

  7. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress.

    Science.gov (United States)

    Lu, Yanjun; Li, Niya; Sun, Jian; Hou, Peichen; Jing, Xiaoshu; Zhu, Huipeng; Deng, Shurong; Han, Yansha; Huang, Xuxin; Ma, Xujun; Zhao, Nan; Zhang, Yuhong; Shen, Xin; Chen, Shaoliang

    2013-01-01

    Using 3-month-old seedlings of Bruguiera gymnorrhiza (L.) Savigny and Kandelia candel (L.) Druce, we compared species differences in ionic homeostasis control between the two non-secretor mangrove species. A high salinity (400 mM NaCl, 4 weeks) resulted in a decline of the K(+)/Na(+) ratio in root and leaf tissues, and the reduction was more pronounced in K. candel (41-66%) as compared with B. gymnorrhiza (5-36%). Salt-altered flux profiles of Na(+), K(+), H(+) and Ca(2+) in roots and effects of exogenous hydrogen peroxide (H(2)O(2)), nitric oxide (NO) and Ca(2+) on root ion fluxes were examined in seedlings that were hydroponically treated short term with 100 mM NaCl (ST, 24 h) and long term with 200 mM NaCl (LT, 7 days). Short term and LT salinity resulted in Na(+) efflux and a correspondingly increased H(+) influx in roots of both species, although a more pronounced effect was observed in B. gymnorrhiza. The salt-enhanced exchange of Na(+) with H(+) was obviously inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or sodium orthovanadate (a plasma membrane H(+)-ATPase inhibitor), indicating that the Na(+) efflux resulted from active Na(+) exclusion across the plasma membrane. Short term and LT salinity accelerated K(+) efflux in the two species, but K. candel exhibited a higher flux rate. The salt-induced K(+) efflux was markedly restricted by the K(+) channel blocker, tetraethylammonium chloride, indicating that the K(+) efflux is mediated by depolarization-activated channels, e.g., KORCs (outward rectifying K(+) channels) and NSCCs (non-selective cation channels). Exogenous H(2)O(2) application (10 mM) markedly increased the apparent Na(+) efflux and limited K(+) efflux in ST-treated roots, although H(2)O(2) caused a higher Na(+) efflux in B. gymnorrhiza roots. CaCl(2) (10 mM) reduced the efflux of K(+) in salinized roots of the two mangroves, but its enhancement of Na(+) efflux was found only in B. gymnorrhiza. Under ST treatment, sodium nitroprusside

  8. Significance of the neurotensin receptor Na+/H+-exchanger 1 axis in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    buffer. Amiloride-sensitive proton flux effected by NHE1 was stimulated 2 - 2.7-fold by Lys8-Ψ-Lys9NT(8-13) in BxPC-3 and PANC-1 cells, respectively. NHE1 was phosphorylated in response to the NT analog in BxPC-3, however, not in MIA PaCa-2 cells, and screening of changes in the phosphorylation status of selected proteins in response to Lys8-Ψ-Lys9NT(8-13) revealed participation of ERK1/2, p38α MAPK and mitogen- and stress-activated kinase 1/2 (MSK1/2) in responses of BxPC-3 and HT-29 cells, whereas Src signaling was stimulated in MIA PaCa-2 cells. Functional involvement of ERK1/2, p38α MAPK and MSK1/2 in stimulation of NHE1 activity by the NT analog was proved by inhibition of these kinases using PD 98059, SC 68376 and dimethyl fumarate (DMF), respectively. Extracellular acidosis stimulates production of interleukin-8 (IL-8), a crucial metastatic factor, in pancreatic cancer cells and, accordingly, Lys8-Ψ-Lys9NT(8-13) was found to stimulate secretion of IL-8 in BxPC-3 and PANC-1 cells in an amiloride-sensitive manner and to enable PANC-1 cells to migrate through an extracellular matrix gel. Genome-wide microarray analysis revealed distinct alterations in gene expression patterns of BxPC-3 and MIA PaCa-2 cells, with genes upregulated by Lys8-Ψ-Lys9NT(8-13) in BxPC-3 cells coding for components of the cytoskeleton and cell adhesion, hypoxia-inducible factor-1α and glycolytic enzymes, among others. In conclusion, NT-NTR1 signaling was shown to contribute to the emergence of an increased invasive potential of pancreatic cancer cells by triggering intracellular alkalinization and localized extracellular acidification, activation of stress-associated MSK1/2 signaling and production of IL-8, besides its minor effect on cell proliferation. (author)

  9. Caracterización del canal epitelial de sodio en sinciciotrofoblasto de placenta humana preeclamptica Characterization of the epithelial sodium channel in human pre-eclampsia syncytiotrophoblast

    Directory of Open Access Journals (Sweden)

    Silvana del Mónaco

    2006-02-01

    Full Text Available El sinciciotrofoblasto (SCT de placenta humana regula la transferencia de solutos y agua entre la sangre fetal y materna. En el presente trabajo observamos que el canal de sodio ENaC (asociado a cuadros como el síndrome de Liddle y pseudohipoaldosteronismo está presente en la membrana apical del SCT y que la subunidad a del canal tiene una expresión reducida en placentas con hipertensión gestacional (preeclampsia. Realizamos estudios a nivel de expresión de ARN (RT-PCR y a nivel proteico (western blot e inmunohistoquímica. En la línea celular BeWo (modelo de SCT humano el canal se encuentra presente y la expresión del mismo es regulada por las hormonas aldosterona, vasopresina, estradiol y progesterona. Analizamos la actividad del ENaC por electrofisiología y observamos corrientes sensibles a amiloride (10 µM cuando las células BeWo se cultivaron 12 horas con aldosterona (100 nM. Esta corriente presentó una magnitud 20 veces mayor que las corrientes basales, un potencial de reversión cercano a 3 mV y una conductancia de 127 ± 26 pS/pF entre los pulsos de -60 y -140 mV aplicados. Las características de esta corriente son similares a las producidas por ENaC en otros tejidos y evidencian la presencia de un canal funcional. El papel del ENaC en el SCT es poco comprendido, aunque la diferencia de expresión en la preeclampsia podría tener consecuencias para el transporte placentario de agua y iones. Nuestros datos son un aporte para futuros estudios de los mecanismos involucrados en la patofisiología de la preeclampsia.The syncytiotrophoblast (SCT, a multinucleated epithelium forming the outer layer of chorionic villi, acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. Electrolyte homeostasis and extracellular fluid volume are maintained primarily by regulated Na+ transport. The present study was conducted to analyze the presence of the

  10. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    International Nuclear Information System (INIS)

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 370C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  11. Ion secretion and isotonic transport in frog skin glands.

    Science.gov (United States)

    Ussing, H H; Lind, F; Larsen, E H

    1996-07-01

    The aim of this study was to clarify the mechanism of isotonic fluid transport in frog skin glands. Stationary ion secretion by the glands was studied by measuring unidirectional fluxes of 24Na+, 42K+, and carrier-free 134Cs+ in paired frog skins bathed on both sides with Ringer's solution, and with 10(-5) M noradrenaline on the inside and 10(-4) M amiloride on the outside. At transepithelial thermodynamic equilibrium conditions, the 134Cs+ flux ratio, JoutCs/JinCs, varied in seven pairs of preparations from 6 to 36. Since carrier-free 134Cs+ entering the cells is irreversibly trapped in the cellular compartment (Ussing & Lind, 1996), the transepithelial net flux of 134Cs+ indicates that a paracellular flow of water is dragging 134Cs+ in the direction from the serosal- to outside solution. From the measured flux ratios it was calculated that the force driving the secretory flux of Cs+ varied from 30 to 61 mV among preparations. In the same experiments unidirectional Na+ fluxes were measured as well, and it was found that also Na+ was subjected to secretion. The ratio of unidirectional Na+ fluxes, however, was significantly smaller than would be predicted if the two ions were both flowing along the paracellular route dragged by the flow of water. This result indicates that Na+ and Cs+ do not take the same pathway through the glands. The flux ratio of unidirectional K+ fluxes indicated active secretion of K+. The time it takes for steady-state K+ fluxes to be established was significantly longer than that of the simultaneously measured Cs+ fluxes. These results allow the conclusion that - in addition to being transported between cells - K+ is submitted to active transport along a cellular pathway. Based on the recirculation theory, we propose a new model which accounts for stationary Na+, K+, Cl- and water secretion under thermodynamic equilibrium conditions. The new features of the model, as compared to the classical Silva-model for the shark-rectal gland, are: (i

  12. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC Lithium and its relation with the epithelial sodium channel and aquaporin-2

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2012-04-01

    Full Text Available Desde hace más de cuarenta años que el litio es usado para el tratamiento de la enfermedad bipolar; recientes estudios sugieren también su utilidad en el trastorno cognitivo mínimo tipo amnésico. El litio es filtrado en el glomérulo y un 65-75% del mismo es reabsorbido en el túbulo contorneado proximal y en el asa ascendente de Henle por el transportador Na+, K+, 2Cl- y vía paracelular. Una pequeña fracción del litio entra en las células principales del túbulo colector por medio del canal epitelial de sodio sensible al amiloride (ENaC localizado en la membrana apical de la célula. Luego de 10- 20 años de tratamiento con litio los enfermos pueden desarrollar poliuria, acidosis tubular e insuficiencia renal crónica que puede terminar en una forma de diabetes que no responde a la arginina vasopresina llamada diabetes insípida nefrogénica. Se cree que estas fallas renales son consecuencias de una reducción en el número de moléculas de acuaporina 2 en la membrana apical. Las causas para esto son complejas. El litio es un poderoso inhibidor de la isoforma beta de la enzima glicógeno sintetasa quinasa y esto está asociado a una menor actividad de la adenilato ciclasa que lleva a una disminución en la concentración intracelular de cAMP. Esto finalmente interferiría con la síntesis de nuevas moléculas de acuaporina 2 y con el tráfico de ellas desde la zona subapical de la célula hacia la membrana celular, causando la disminución en la reabsorción de agua en la parte distal del nefrón.For more than 40 years lithium has been used to treat bipolar disorder and recent trials suggest a potential efficacy also in the treatment of the amnestic mild cognitive impairment. Lithium is filtered by the glomerulus and 65% - 75% of the filtered amount is reabsorbed along the proximal tubule and in the thick ascending limb of Henle's loop by the Na+, K+, 2Cl- transporter and via paracellular. A small fraction of lithium is reabsorbed in

  13. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    microscopy and flow cytometry we studied the cell uptake of magnetic SLNs derivatized with a fluorescent reporter molecule and of L-DOPA-TRITC coated NPs. Inhibition of the caveolae-mediated pathway by preincubation with filipin and nystatin did not modify the cellular uptake of these NPs in both cell lines. Furthermore a mild decrease of the NPs cell uptake was obtained after chlorpromazine and NaN3 pretreatment, which interferes with clathrin and energy-dependent endocytosis, and cytochalasin and amiloride pretreatment which interfere with macropinocytosis. NPs particle size as such can strongly affect the efficiency of cellular uptake and the mode of endocytosis. Considering that our L-DOPA and magnetic SLNs display a medium hydrodynamic size of 120 nm with a polydispersity index of 0.3, we can assume that the cell uptake process of these NPs may develop, depending the particle size, both via clathrin mediated endocytosis and macropinocytosis and only to less extent via the pathway of caveolae-mediated endocytosis. Taken together these results let us to conclude that SLNs iron loaded and iron based L-DOPA coated NPs are internalized into brain endothelial and choroidal plexus epithelial cells and this might provide the first step of an intracellular trafficking to transport these NPs between blood and brain.

  14. pH buffering of single rat skeletal muscle fibers in the in vivo environment.

    Science.gov (United States)

    Tanaka, Yoshinori; Inagaki, Tadakatsu; Poole, David C; Kano, Yutaka

    2016-05-15

    Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 μM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) μl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to

  15. Cloning and Expression to Salt Stress of Na +/H +Antiporter Gene (MnNHX1) in Mulberry Tree%桑树Na+/H+逆向转运蛋白基因(MnNHX1)的克隆与耐盐力表达

    Institute of Scientific and Technical Information of China (English)

    边晨凯; 龙定沛; 刘雪琴; 魏从进; 龚加红; 赵爱春

    2015-01-01

    ;连续浇灌含高浓度 NaCl 营养液的转基因拟南芥生长状态更为优良。【结论】MnNHX1为优良的植物耐盐基因,在桑树中为组成型表达,并受NaCl胁迫诱导,表现出组织特异性。过量表达 MnNHX1的拟南芥耐盐能力显著提高,生存在盐胁迫环境中,依然具有良好的生长和发育能力。%Objective] To study the function of Na + /H +antiporter ( NHX) in vacuolar membrane from mulberry tree Morus notabilis,and to explore the mechanism of salt tolerance in mulberry,and to provide an excellent candidate gene for the screening of plant resistance gene engineering. [Method]In this study,a Na + /H +antiporter gene named as MnNHX1 was identified based on the M. notabilis genomic database and other homologous sequences. The MnNHX1 was cloned using the cDNA from M. notabilis leaves as template. The analysis of the primary structure and functional domains from MnNHX1 was completed by the bioinformatics analysis. The phylogenetic tree was generated to analyse the relationships between mulberry NHX1 and other species. Quantitative PCR was conducted to analyse the expression profiles of mulberry NHX1 in different tissues of M. multicaulis‘Husang No. 32’and treatment time under NaCl stress. The overexpression vector was constructed and transformed into Arabidopsis thaliana. The seed germination rate,the growth of roots and the survival rate of seedlings of the transgenic A. thaliana were analyzed under NaCl stress. Furthermore,the transgenic A. thaliana was continuously irrigated with the nutrient solution containing high concentration of NaCl to study the functional effects of MnNHX1 gene in the transgenic A. thaliana. [Result]We cloned a Na + /H + antiporter gene designated as MnNHX1(GenBank accession No. KJ720637). The open reading frame (ORF) of MnNHX1 is 1 644 bp and encodes a protein of 547 amino acid with a Na + /H + exchange pump. At the upstream of this pump,there are some domains such as inhibitors amiloride binding sites