WorldWideScience

Sample records for amiloride

  1. Amiloride interacts with renal α- and β-adrenergic receptors

    International Nuclear Information System (INIS)

    Howard, M.J.; Mullen, M.D.; Insel, P.A.

    1987-01-01

    The authors have used radioligand binding techniques to assess whether amiloride and certain analogues of amiloride (ethylisopropyl amiloride and benzamil) can bind to adrenergic receptors in the kidney. They found that amiloride could compete for [ 3 H]rauwolscine (α 2 -adrenergic receptors), [ 3 H]prazosin (α 1 -adrenergic receptors), and [ 125 I]iodocyanopindolol (β-adrenergic receptors) binding in rat renal cortical membranes with inhibitor constants of 13.6 /plus minus/ 5.7, 24.4 /plus minus/ 7.4, and 8.36 /plus minus/ 13.5 μM, respectively. Ethylisopropyl amiloride and benzamil were from 2- to 25-fold more potent than amiloride in competing for radioligand binding sites in studies with these membranes. In addition, amiloride and the two analogues competed for [ 3 H]prazosin sites on intact Madin-Darby canine kidney cells and amiloride blocked epinephrine-stimulated prostaglandin E 2 production in these cells. They conclude that amiloride competes for binding to several classes of renal adrenergic receptors with a rank order of potency of α 2 > α 1 > β. Binding to, and antagonism of, adrenergic receptors occurs at concentrations of amiloride that are lower than previously observed nonspecific interactions of this agent

  2. Limitation on the use of amiloride in early renal failure.

    Science.gov (United States)

    Knauf, H; Reuter, K; Mutschler, E

    1985-01-01

    The effect of a single oral dose of 10 mg amiloride was studied on urinary excretion of Na+, K+, Ca++ and Mg++ in healthy subjects and in patients with varying degrees of renal impairment. Amiloride produced a moderate diuresis and sodium excretion, and a slight calciuresis. Urinary excretion of potassium was significantly reduced as compared to the controls. Despite its diuretic and natriuretic effects, amiloride did not change the excretion of Mg++ as compared to the pretreatment period. When the creatinine clearance was below 50 ml/min, the net excretion of Na+ and Ca++ was drastically reduced. However, K+ retention and neutrality of Mg++ excretion were maintained down to end-stage renal disease. In the healthy volunteers the mean elimination half-life of amiloride was 20 h, and it rose to about 100 h in end-stage renal disease. This was because about 3/4 of native amiloride was eliminated through the kidney. Nonrenal elimination of amiloride was calculated to amount to only 1/4 of the total elimination. Therefore, the anticaliuretic amiloride is a valuable comedication in subjects with normal kidney function to prevent K+ and Mg++ loss. However, its use is hazardous if plasma creatinine is raised.

  3. Intracellular accumulation of potent amiloride analogues by human neutrophils

    International Nuclear Information System (INIS)

    Simchowitz, L.; Woltersdorf, O.W. Jr.; Cragoe, E.J. Jr.

    1987-01-01

    The mechanism of uptake of a series of amiloride derivatives by human neutrophils was investigated using [ 14 C]amiloride and the 14 C-labeled 5-(1-hexahydroazepinyl)-6-bromo analogue (BrMM) which is approximately 500-fold more potent than the parent compound at inhibiting Na+/H+ exchange. At an external concentration of 2 microM, the influx of BrMM at 37 degrees C was rapid, reaching a steady state by approximately 20 min. The rate of BrMM uptake (approximately 25 mumol/liter.min) was approximately 90-fold faster than for the same concentration of amiloride, a finding which correlates with differences in lipid partitioning of the two compounds. Uptake was unrelated to specific binding to Na+/H+ exchange transport sites: influx of either drug was nonsaturable whereas amiloride- and BrMM-mediated inhibition of Na+/H+ countertransport obeyed Michaelis-Menten kinetics with apparent Ki values of approximately 75 and approximately 0.2 microM. Entry occurred exclusively via the neutral (uncharged) forms (pK'a 8.40-8.55). Influx was markedly pH-dependent: it was enhanced by extracellular alkalinization and reduced by acidification. Influx was, however, insensitive to large changes in membrane voltage, thereby implying the protonated (charged) species to be impermeant. About 75% of the total intracellular pool of amiloride, but only approximately 25% of BrMM, is contained within the lysosomes, an expected consequence of the partitioning and subsequent trapping of a weak base within this strongly acidic subcellular compartment. With BrMM, there was a relative approximately 60-fold enrichment in the internal/external water concentration ratio of the drug; the value for amiloride was much less, approximately 4. This disparity is consistent with substantial binding of BrMM to internal constituents, presumably to proteins and/or nucleic acids

  4. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kortenoeven, M.L.A.; Li, Y.; Shaw, S.M.; Gaeggeler, H.P.; Rossier, B.C.; Wetzels, J.F.M.; Deen, P.M.T.

    2009-01-01

    Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site

  5. Effect of amiloride on experimental acid-induced heartburn in non-erosive reflux disease.

    Science.gov (United States)

    Bulsiewicz, William J; Shaheen, Nicholas J; Hansen, Mark B; Pruitt, Amy; Orlando, Roy C

    2013-07-01

    Acid-sensing ion channels (ASICs) are esophageal nociceptors that are candidates to mediate heartburn in non-erosive reflux disease (NERD). Amiloride, a diuretic, is known to inhibit ASICs. For this reason, we sought a role for ASICs in mediating heartburn by determining whether amiloride could block heartburn in NERD induced by esophageal acid perfusion. In a randomized double-blind crossover study, we perfused the esophagus with amiloride or (saline) placebo prior to eliciting acid-induced heartburn in patients with a history of proton pump inhibitor-responsive NERD. Those with NERD and positive modified Bernstein test were randomized to perfusion with amiloride, 1 mmol/l, or placebo for 5 min, followed by repeat acid-perfusion. Heartburn severity and time to onset was measured and the process repeated following crossover to the alternative agent. 14 subjects completed the study. Amiloride did not reduce the frequency (100 vs. 100 %) or severity of acid-induced heartburn (Mean 2.50 ± SEM 0.33 vs. 2.64 ± 0.45), respectively. There was a trend towards longer time to onset of heartburn for amiloride versus placebo (Mean 2.93 ± SEM 0.3 vs. 2.36 ± 0.29 min, respectively), though these differences did not reach statistical significance (p > 0.05). Amiloride had no significant effect on acid-induced heartburn frequency or severity in NERD, although there was a trend towards prolonged time to onset of symptoms.

  6. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis.

    Science.gov (United States)

    Rodgers, H C; Knox, A J

    1999-09-01

    The electrochemical defect in the bronchial epithelium in cystic fibrosis (CF) consists of defective chloride secretion and excessive sodium reabsorption. The sodium channel blocker, amiloride, has been shown to reversibly correct the sodium reabsorption in CF subjects, but long term studies of amiloride have been disappointing due to its short duration of action. Benzamil, a benzyl substituted amiloride analogue, has a longer duration of action than amiloride in cultured human nasal epithelium. The results of the first randomized, placebo controlled, double blind, crossover study are reported here comparing the effects of benzamil and amiloride on nasal potential difference (nasal PD) in CF. Ten adults with CF attended on three occasions. At each visit baseline nasal PD was recorded, the drug (amiloride 1 x 10(-3) M, benzamil 1.7 x 10(-3) M, or 0.9% sodium chloride) was administered topically via a nasal spray, and nasal PD was measured at 15, 30 min, 1, 2, 4 and 8 h. Results were expressed as maximum change in nasal PD from baseline (PDmax), time for PDmax to return to 50% of baseline (t0.5), and the area under the curve (AUC). PDmax values for benzamil (20.6+/-0.9 mV) and amiloride (20.3+/-1.6 mV), were similar. The duration of effect was much longer for benzamil as measured as either AUC or t0.5 AUC values were 11.8+/-1.6 mV for benzamil, 2.8+/-0.4 mV for amiloride and 0.6+/-0.4 mV for placebo. The AUC value for benzamil was significantly greater than amiloride (95% confidence interval (CI) for the difference 5.3-12.7 mV, p<0.0001). t0.5 values were 4.3+/-0.7 h for benzamil and 0.6+/-0.1 h for amiloride (95% CI for the difference 2.0-5.3 h, p<0.001). It is concluded that benzamil has a similar maximal effect to amiloride but a more prolonged duration of action on nasal potential difference in cystic fibrosis. Benzamil may be a useful sodium channel blocker for the long-term treatment of the biochemical defect in the lungs of patients with cystic fibrosis.

  7. Studies on the mechanisms underlying amiloride enhancement of 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats.

    Science.gov (United States)

    Goñi-Allo, Beatriz; Puerta, Elena; Hervias, Isabel; Di Palma, Richard; Ramos, Maria; Lasheras, Berta; Aguirre, Norberto

    2007-05-21

    Amiloride and several of its congeners known to block the Na(+)/Ca(2+) and/or Na(+)/H(+) antiporters potentiate methamphetamine-induced neurotoxicity without altering methamphetamine-induced hyperthermia. We now examine whether amiloride also exacerbates 3,4-methylenedioxymethamphetamine (MDMA)-induced long-term serotonin (5-HT) loss in rats. Amiloride (2.5 mg/kg, every 2 h x 3, i.p.) given at ambient temperature 30 min before MDMA (5 mg/kg, every 2 h x 3, i.p.), markedly exacerbated long-term 5-HT loss. However, in contrast to methamphetamine, amiloride also potentiated MDMA-induced hyperthermia. Fluoxetine (10 mg/kg i.p.) completely protected against 5-HT depletion caused by the MDMA/amiloride combination without significantly altering the hyperthermic response. By contrast, the calcium channel antagonists flunarizine or diltiazem did not afford any protection. Findings with MDMA and amiloride were extended to the highly selective Na(+)/H(+) exchange inhibitor dimethylamiloride, suggesting that the potentiating effects of amiloride are probably mediated by the blockade of Na(+)/H(+) exchange. When the MDMA/amiloride combination was administered at 15 degrees C hyperthermia did not develop and brain 5-HT concentrations remained unchanged 7 days later. Intrastriatal perfusion of MDMA (100 microM for 8 h) in combination with systemic amiloride caused a small depletion of striatal 5-HT content in animals made hyperthermic but not in the striatum of normothermic rats. These data suggest that enhancement of MDMA-induced 5-HT loss caused by amiloride or dimethylamiloride depends on their ability to enhance MDMA-induced hyperthermia. We hypothesise that blockade of Na(+)/H(+) exchange could synergize with hyperthermia to render 5-HT terminals more vulnerable to the toxic effects of MDMA.

  8. Spectrophotometric method for estimation of amiloride in bulk and tablet dosage form

    Directory of Open Access Journals (Sweden)

    Aitha Vijaya Lakshmi

    2015-01-01

    Full Text Available Introduction: Amiloride chemically, 3,5-diamino-6-chloro-N-(diaminomethylene pyrazine-2-carboxamide. It is used in the management of congestive heart failure, available as Amifru tab, Amimide. It causes adverse effects like Nausea, diarrhea and dizziness. Materials: 0.1 N Hydrochloric acid, 0.1 N Sodium hydroxide and 1 mg/ml amiloride drug solution were required. Spectral and absorbance measurements were made using ELICO UV-160 double beam Spectrophotometer. Method: Amiloride drug solution concentration range of 25 to 125ug/ml in 0.1N HCl medium was scanned over the wave length range of 235-320 against blank prepared in 0.1N NaOH solution. Two wavelengths are selected one at positive peak 245 nm and another at negative peak 290 nm, the amplitude is calculated from these values. Results and Discussion: The sum of the absolute values at these wavelengths is called amplitude. The amplitude is proportional to the amount of drug. High accuracy, reproducibility and low t-values were reported from the calibration curve plotted with the amplitude verses amount of drug. So the proposed method is simple, less time consuming and it can be successfully adopted for the estimation of amiloride.

  9. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  10. Effect of the bases flanking an abasic site on the recognition of nucleobase by amiloride.

    Science.gov (United States)

    Rajendran, Arivazhagan; Zhao, Chunxia; Rajendar, Burki; Thiagarajan, Viruthachalam; Sato, Yusuke; Nishizawa, Seiichi; Teramae, Norio

    2010-06-01

    We explain here the various non-covalent interactions which are responsible for the different binding modes of a small ligand with DNA. The combination of experimental and theoretical methods was used. The interaction of amiloride with thymine was found to depend on the bases flanking the AP site and different binding modes were observed for different flanking bases. Molecular modeling, absorption studies and binding constant measurements support for the different binding patterns. The flanking base dependent recognition of AP site phosphates was investigated by (31)P NMR experiments. The thermodynamics of the ligand-nucleotide interaction was demonstrated by isothermal titration calorimetry. The emission behavior of amiloride was found to depend on the bases flanking the AP site. Amiloride photophysics in the context of AP-site containing DNA is investigated by time-dependent density functional theory. Flanking bases affect the ground and excited electronic states of amiloride when binding to AP site, which causes flanking base-dependent fluorescence signaling. The various noncovalent interactions have been well characterized for the determination of nucleic acid structure and dynamics, and protein-DNA interactions. However, these are not clear for the DNA-small molecule interactions and we believe that our studies will bring a new insight into such phenomena. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  12. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  13. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  14. NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Stine F; King, Scott A; Nygaard, Eva B

    2007-01-01

    NHE1). Although highly homologous to the amiloride- and HOE-sensitive human NHE1 (hNHE1), AtNHE1 is insensitive to HOE-type and PaNHE1 to both amiloride- and HOE-type compounds. Here we generated chimeras to "knock in" amiloride and HOE sensitivity to PaNHE1, and we thereby identified several NHE1...

  15. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  16. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A......23187, nerve growth factor (NGF), thapsigargin and compound 48/80. On the basis of the results obtained, a possible role for Na/H exchange in rat mast cell secretion is discussed....

  17. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  18. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    Directory of Open Access Journals (Sweden)

    Siguang Xu

    2016-01-01

    Full Text Available The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC and acid sensitive ionic channel (ASIC. ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+ across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  19. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double....... General linear model with repeated measures or related samples Friedman's two-way analysis was used to compare differences. Post hoc Bonferroni correction was used for multiple comparisons of post infusion periods to baseline within each treatment group. RESULTS: At baseline there were no differences in u...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  20. Dimethyl amiloride improves glucose homeostasis in mouse models of type 2 diabetes.

    Science.gov (United States)

    Gunawardana, Subhadra C; Head, W Steven; Piston, David W

    2008-06-01

    Dimethyl amiloride (DMA) enhances insulin secretion in the pancreatic beta-cell. DMA also enhances time-dependent potentiation (TDP) and enables TDP to occur in situations where it is normally absent. As we have demonstrated before, these effects are mediated in part through inhibition of neuronal nitric oxide synthase (nNOS), resulting in increased availability of arginine. Thus both DMA and arginine have the potential to correct the secretory defect in diabetes by enabling or enhancing TDP. In the current study we have demonstrated the ability of these agents to improve blood glucose homeostasis in three mouse models of type 2 diabetes. The pattern of TDP under different conditions indicates that inhibition of NOS is not the only mechanism through which DMA exerts its positive effects. Thus we also have explored another possible mechanism through which DMA enables/enhances TDP, via the activation of mitochondrial alpha-ketoglutarate dehydrogenase.

  1. Successful Management of Refractory Type 1 Renal Tubular Acidosis with Amiloride

    Directory of Open Access Journals (Sweden)

    Patrick Oguejiofor

    2017-01-01

    Full Text Available A 28-year-old female with history of hypothyroidism, Sjögren’s Syndrome, and Systemic Lupus Erythematosus (SLE presented with complaints of severe generalized weakness, muscle pain, nausea, vomiting, and anorexia. Physical examination was unremarkable. Laboratory test showed hypokalemia at 1.6 mmol/l, nonanion metabolic acidosis with HCO3 of 11 mmol/l, random urine pH of 7.0, and urine anion gap of 8 mmol/l. CT scan of the abdomen revealed bilateral nephrocalcinosis. A diagnosis of type 1 RTA likely secondary to Sjögren’s Syndrome was made. She was started on citric acid potassium citrate with escalating dosages to a maximum dose of 60 mEq daily and potassium chloride over 5 years without significant improvement in serum K+ and HCO3 levels. She had multiple emergency room visits for persistent muscle pain, generalized weakness, and cardiac arrhythmias. Citric acid potassium citrate was then replaced with sodium bicarbonate at 15.5 mEq every 6 hours which was continued for 2 years without significant improvement in her symptoms and electrolytes. Amiloride 5 mg daily was added to her regimen as a potassium sparing treatment with dramatic improvement in her symptoms and electrolyte levels (as shown in the figures. Amiloride was increased to 10 mg daily and potassium supplementation was discontinued without affecting her electrolytes. Her sodium bicarbonate was weaned to 7.7 mEq daily.

  2. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    Directory of Open Access Journals (Sweden)

    Juan Ramón Vanegas Sáenz

    Full Text Available Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP, the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8, which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC and human osteoblasts (hOB in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  3. Inhibitory effect of amiloride on the urokinase plasminogen activators in prostatic cancer.

    Science.gov (United States)

    Ray, P; Bhatti, R; Gadarowski, J; Bell, N; Nasruddin, S

    1998-01-01

    The diuretic drug amiloride (AMLD), which competitively inhibits the catalytic activity of urokinase plasminogen activators (UPA), was used to study its effects on the proteolytic enzymes implicated in the invasiveness and metastases in a prostatic tumor model carrying two different sublines of adenocarcinoma of the prostate. Our data showed that UPA activity was significantly higher, both in the cytosol and pellet of R3327-AT3, a fast-growing highly metastatic and androgen-insensitive tumor, as compared to the G3327-G subline, a slow-growing nonmetastatic tumor of the prostate. The UPA activity in AT3 tumor dropped when the rats were treated with AMLD for 3 weeks. The UPA activity in the sera and tumor effusions from rats with AT3 tumor was significantly higher as compared to those with G subline tumor. The number of pulmonary metastatic foci was the same in untreated rats as compared to those treated with AMLD. The lymph node inspection after 3 weeks revealed no secondary tumor in the AMLD-treated group. The role of UPA in the metastases of prostate cancer is discussed.

  4. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2011-04-01

    Full Text Available El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. Dos factores regulan la actividad del ENaC. 1 el número de canales insertos en la membrana celular y 2 la probabilidad de apertura o tiempo en que se encuentra abierto el canal. El número de canales es el resultado de un balance entre su síntesis y degradación. La probabilidad de apertura depende de la proteólisis de zonas específicas de las subunidades α y γ por múltiples proteasas dentro de la célula y en el espacio extracelular. Entre las proteasas más estudiadas se encuentran la furina, prostasina, elastasa, plasmina y tripsina. Existen sustancias endógenas que bloquean la actividad de estas proteasas como la aprotinina, la bikunina y la nexina-1 y la expresión de las proteasas y sus inhibidores es regulada a su vez por la aldosterona, la tasa de movimiento de Na y el TFGβ. En este trabajo presentamos algunos ejemplos de esta regulación y su potencial papel en condiciones normales y en ciertas enfermedades como la fibrosis quística, renales e hipertensión.

  5. A Localized Surface Plasmon Resonance Sensing Method for Simultaneous Determination of Atenolol and Amiloride in Pharmaceutical Dosage Forms and Urine Samples

    Directory of Open Access Journals (Sweden)

    Marwa R. El-Zahry

    2018-01-01

    Full Text Available This contribution describes a simple, fast, and sensitive application of localized surface plasmon resonance effect of silver nanoparticles for simultaneous determination of antihypertensive drugs’ mixture atenolol and amiloride in both pharmaceutical dosage forms and in biological samples (urine. Silver nanoparticles were prepared by chemical reduction of silver nitrate using hydroxylamine HCL in an alkaline medium. Application of silver-hydroxylamine nanoparticles (SH NPs provides many advantages including reproducibility, sensitivity, and cost effective way of analyte determination. Amiloride has four amino groups which act as attachment points on the surface of silver nanoparticles resulting in a synergistic effect on the absorption intensity of atenolol, leading to increase the sensitivity of the determination of both compounds. This method shows excellent advantages comparing with the previously reported methods, including accuracy, precision, and selectivity. The linear range of atenolol is 1 × 10−5–1 × 10−4 mol·L−1 and of amiloride is 1 × 10−6–1 × 10−5 mol·L−1. The limit of detection (LOD values of atenolol and amiloride are 0.89 × 10−5 and 0.42 × 10−6 mol·L−1, respectively.

  6. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  7. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies.

    Science.gov (United States)

    Williams, Bryan; MacDonald, Thomas M; Morant, Steve V; Webb, David J; Sever, Peter; McInnes, Gordon T; Ford, Ian; Cruickshank, J Kennedy; Caulfield, Mark J; Padmanabhan, Sandosh; Mackenzie, Isla S; Salsbury, Jackie; Brown, Morris J

    2018-04-11

    In the PATHWAY-2 study of resistant hypertension, spironolactone reduced blood pressure substantially more than conventional antihypertensive drugs. We did three substudies to assess the mechanisms underlying this superiority and the pathogenesis of resistant hypertension. PATHWAY-2 was a randomised, double-blind crossover trial done at 14 UK primary and secondary care sites in 314 patients with resistant hypertension. Patients were given 12 weeks of once daily treatment with each of placebo, spironolactone 25-50 mg, bisoprolol 5-10 mg, and doxazosin 4-8 mg and the change in home systolic blood pressure was assessed as the primary outcome. In our three substudies, we assessed plasma aldosterone, renin, and aldosterone-to-renin ratio (ARR) as predictors of home systolic blood pressure, and estimated prevalence of primary aldosteronism (substudy 1); assessed the effects of each drug in terms of thoracic fluid index, cardiac index, stroke index, and systemic vascular resistance at seven sites with haemodynamic monitoring facilities (substudy 2); and assessed the effect of amiloride 10-20 mg once daily on clinic systolic blood pressure during an optional 6-12 week open-label runout phase (substudy 3). The PATHWAY-2 trial is registered with EudraCT, number 2008-007149-30, and ClinicalTrials.gov, number NCT02369081. Of the 314 patients in PATHWAY-2, 269 participated in one or more of the three substudies: 126 in substudy 1, 226 in substudy 2, and 146 in substudy 3. Home systolic blood pressure reduction by spironolactone was predicted by ARR (r 2 =0·13, p<0·0001) and plasma renin (r 2 =0·11, p=0·00024). 42 patients had low renin concentrations (predefined as the lowest tertile of plasma renin), of which 31 had a plasma aldosterone concentration greater than the mean value for all 126 patients (250 pmol/L). Thus, 31 (25% [95% CI 17-33]) of 126 patients were deemed to have inappropriately high aldosterone concentrations. Thoracic fluid content was reduced by 6·8% from

  8. Comparative efficacy of amlodipine and hydrochlorthiazide-amiloride in cases of mild essential hypertension in outdoor patients at Combined Military Hospital Multan

    International Nuclear Information System (INIS)

    Ullah, M.U.; Khan, M.B.; Tahir, M.; Alamgir, W.; Yousif, M.A.

    2010-01-01

    To compare antihypertensive effect of fixed dose combination Hydrochlorothiazide-Amiloride and Amlodipine in patients of mild essential hypertension. After fulfilling the inclusion criteria of mild essential hypertension, defined as per recommendations of Seventh Joint National Committee (JNC 7) for treatment of Hypertension as stage 1 hypertension, systolic blood pressure (SBP) amlodipine and hydrochlorthiazide-amiloride 140-159-mmHg and Diastolic blood pressure(DBP) greater or equal to 90-99-mmHg, 100 patients were randomized into two study groups using a table of random numbers. Group 1 received tab amlodipine (5 mg) and Group 2 received tab hydrocholrthiazide-amiloride (25 mg-2.5mg). Informed written consent was taken. The patients were followed on subsequent visits (6 in total) for five months and systolic and diastolic blood pressure was recorded carefully. All the data thus obtained were processed and analyzed using SPSS version 10.0. Mean and standard deviation (SD) were calculated for age, diastolic and systolic blood pressure. In group 1 the drop in mean SBP between first and last visit was 15.42 mm Hg. In group 2 the drop in mean SBP between first and last visit was 18.34 mm Hg. In group 1, the drop in mean DBP between first and last visit was 10.08 mm Hg. In group 2 the drop in mean DBP between first and last visit was 14.65 mmHg. Mean drop in SBP of both the groups were compared with each other and found to be significantly different (P=0.003). Similarly mean drop in DBP of both the groups were compared with each other and found to be significant statistically (P=0.001). Hydrochlorothiazide-Amiloride had significantly better antihypertensive effect than Amlodipine in patients of mild essential hypertension at the end of five months therapy. (author)

  9. A study of pH-dependent photodegradation of amiloride by a multivariate curve resolution approach to combined kinetic and acid-base titration UV data.

    Science.gov (United States)

    De Luca, Michele; Ioele, Giuseppina; Mas, Sílvia; Tauler, Romà; Ragno, Gaetano

    2012-11-21

    Amiloride photostability at different pH values was studied in depth by applying Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to the UV spectrophotometric data from drug solutions exposed to stressing irradiation. Resolution of all degradation photoproducts was possible by simultaneous spectrophotometric analysis of kinetic photodegradation and acid-base titration experiments. Amiloride photodegradation showed to be strongly dependent on pH. Two hard modelling constraints were sequentially used in MCR-ALS for the unambiguous resolution of all the species involved in the photodegradation process. An amiloride acid-base system was defined by using the equilibrium constraint, and the photodegradation pathway was modelled taking into account the kinetic constraint. The simultaneous analysis of photodegradation and titration experiments revealed the presence of eight different species, which were differently distributed according to pH and time. Concentration profiles of all the species as well as their pure spectra were resolved and kinetic rate constants were estimated. The values of rate constants changed with pH and under alkaline conditions the degradation pathway and photoproducts also changed. These results were compared to those obtained by LC-MS analysis from drug photodegradation experiments. MS analysis allowed the identification of up to five species and showed the simultaneous presence of more than one acid-base equilibrium.

  10. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Charuk, J.H.M.; Blumwald, E.; Cragoe, E.J. Jr.

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na + /H + antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na + /H + exchange in a competitive manner with a K i of 2.5 and 5.9 micromolar for ΔpH-dependent 22 Na + influx in tonoplast vesicles and Na + -dependent H + efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [ 3 H]MIA to tonoplast membranes revealed a high affinity binding component with a K d of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na + /H + antiport. Photolabeling of the tonoplast with [ 3 H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  11. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    Science.gov (United States)

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  12. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Science.gov (United States)

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  13. Extractive liquid-liquid spectrophotometric procedure for the determination of thiocyanate ions employing the ion pair reagent amiloride monohydrochloride

    International Nuclear Information System (INIS)

    Bashammakh, A.S.; Bahaffi, S.O.; Al-Sibaai, A.A.; Al-Wael, H.O.; El-Shahawi, M.S.

    2007-01-01

    An accurate, inexpensive and less laborious liquid-liquid extractive spectrophotometric procedure for the determination of thiocyanate ions in aqueous media has been developed. The method has been based upon the formation of a yellow colored complex ion associate of the ion-pairing reagent 1-(3, 5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride hydrochloride, DPG + .Cl - and the thiocyanate ions in aqueous media containing HNO 3 (0.5 mol L -1 ) and subsequent extraction with 4-methyl-2-pentanone. The absorption electronic spectrum of the ion associate showed one well-defined peak at λ max 366 nm. The stoichiometric mole ratio of DPG + .Cl - to the thiocyanate ions is 1:1.The effective molar absorptivity (ε) of the ion associate at λ max 366 nm is 1.1 ± 0.1 x 10 4 L mol -1 cm -1 . The extraction constants (K d , K ex , and β) enabled a simple and convenient use of the developed binary ion associate for the extractive spectrophotometric determination of traces of thiocyanate ions in the aqueous media. Beer's law and Ringbom's plots are obeyed in the concentration range 0.05-10 and 0.1-7 μg mL -1 of the thiocyanate ions, respectively with a relative standard deviation of ±2.3%. The calculated lower limits of detection (LOD) and quantitation (LOQ) of the developed procedure for the thiocyanate ions were found equal to 0.02 and 0.066 μg mL -1 , respectively. The developed method has been applied for the determination of trace amounts of thicyanate ions in tap-, waste- and natural water samples and compared successfully with the reported methods at the 95% confidence level. The proposed method was also applied successfully for the determination of thiocyanate ions in saliva samples

  14. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor.

    Science.gov (United States)

    Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji

    2016-03-30

    We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.

  16. In Acute IgA Nephropathy, Proteinuria and Creatinine Are in the Spot, but Podocyturia Operates in Silence: Any Place for Amiloride?

    Directory of Open Access Journals (Sweden)

    H. Trimarchi

    2017-01-01

    Full Text Available IgA nephropathy is the most frequent cause of primary glomerulonephritis, portends erratic patterns of clinical presentation, and lacks specific treatment. In general, it slowly progresses to end-stage renal disease. The clinical course and the response to therapy are usually assessed with proteinuria and serum creatinine. Validated biomarkers have not been identified yet. In this report, we present a case of acute renal injury with proteinuria and microscopic hematuria in a young male. A kidney biopsy disclosed IgA nephropathy. Podocyturia was significantly elevated compared to normal subjects. Proteinuria, renal function, and podocyturia improved promptly after steroids and these variables remained normal after one year of follow-up, when steroids had already been discontinued and patient continued on valsartan and amiloride. Our report demonstrates that podocyturia is critically elevated during an acute episode of IgA nephropathy, and its occurrence may explain the grim long-term prognosis of this entity. Whether podocyturia could be employed in IgA nephropathy as a trustable biomarker for treatment assessment or even for early diagnosis of IgA nephropathy relapses should be further investigated.

  17. Simultaneous determination of hydrochlorothiazide and benazepril hydrochloride or amiloride hydrochloride in presence of hydrochlorothiazide impurities: chlorothiazide and salamide by HPTLC method.

    Science.gov (United States)

    Naguib, Ibrahim A; Abdelaleem, Eglal A; Zaazaa, Hala E; Draz, Mohammed E

    2015-01-01

    Simple, selective and sensitive high-performance thin layer chromatographic (HPTLC) method has been developed and validated for the simultaneous determination of hydrochlorothiazide (HCZ) in the presence of its impurities (chlorothiazide (CT) and salamide (DSA)), in two quaternary mixtures with benazepril hydrochloride (BZ) or amiloride hydrochloride (AM). The separation was carried out on HPTLC silica gel 60 F254 using ethyl acetate-methanol-glacial acetic acid (85:2:0.3 v/v/v) followed by densitometric measurement of bands at 240 nm for the first mixture containing HCZ, CT, DSA, BZ and by using ethyl acetate-methanol-water-ammonia (90:10:5:3 v/v/v) followed by densitometric measurement at 278 nm for the second mixture containing HCZ, CT, DSA, AM. Calibration curves were constructed in the range of (0.2-1.8 µg/band) and (0.4-2.2 µg/band) with good accuracy for HCZ and BZ, respectively, for the first mixture and in the range of (0.6-1.8 µg/band) and (0.4-2.4 µg/band) with good accuracy for HCZ and AM, respectively, for the second mixture. The developed method was validated according to ICH guidelines and demonstrated good accuracy and precision. Moreover, the methods were successfully applied for the determination of HCZ and BZ and AM in pure form and pharmaceutical dosage forms. The results were statically compared with the reported methods with no significant difference, indicating the ability of the proposed method to be used for routine analysis of drug product. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Untersuchungen zur Farbreaktion von Amilorid, Chlorhexidin und Proguanil mit Hypobromit

    OpenAIRE

    Huth, Silke

    2004-01-01

    Bei der Reaktion von Amiloridhydrochlorid (1· HCl) mit Brom in alkalischer Lösung wird ein gelbbraunes Dehydrierungsprodukt erhalten, daß als 3-(3-Amino-1,2,4-oxadiazol-5-yl)-5-chlor-2,6-pyrazindiamin (6) identifiziert werden konnte. Durch Vergleich von Massen- und NMR-Spektren der Verbindung 6 mit Spektren von 1· HCl und Referenzsubstanzen I-III konnte auf die verbindung 6 geschlossen werden. Die Struktur wurde durch eine Röntgenstrukturanalyse abgesichert. Erhitzen von Amiloridhydrochlorid ...

  19. Modulation of TRAIL Cytotoxicity by Amiloride in Prostate Cancer

    Science.gov (United States)

    2006-11-01

    Shen, J., Matsumoto, T., Yoshimi, N., and DiGiovanni, J. (2001) Constitutive expression of ErbB-2 in gallbladder epithelium results in development...aqueous extracts of propolis in combination with chemotherapeutic agents. Cancer Biother. Radiopharm., 17:553-562. Takeda, K., Hayakawa, Y

  20. Severe hyponatraemia in an amiloride/hydrochlorothiazide-treated patient

    NARCIS (Netherlands)

    Van Assen, S.; Mudde, A.H.

    1999-01-01

    A 85-year-old woman treated with, among other drugs, a thiazide diuretic presented with a severe hyponatraemia. She met several of the criteria for SIADH and, besides drugs, no cause for SIADH was found. After stopping the thiazide diuretic and restricting fluid intake the patient recovered fully.

  1. Amiloride-Sensitive Sodium Channels and Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Mike Althaus

    2011-01-01

    Full Text Available The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.

  2. A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Dahl, Hans A.; Buttenschön, Henriette N.

    2012-01-01

    Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factor...... of PD in a larger outbred population.European Journal of Human Genetics advance online publication, 3 August 2011; doi:10.1038/ejhg.2011.148....

  3. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  4. Nociceptin/orphanin FQ peptide receptor agonist Ac-RYYRWKKKKKKK-NH2 (ZP120) induces antinatriuresis in rats by stimulation of amiloride-sensitive sodium reabsorption

    DEFF Research Database (Denmark)

    van Deurs, Ulla S K; Hadrup, Niels; Petersen, Jørgen Søberg

    2008-01-01

    receptors are expressed in the distal convoluted tubules, the connecting tubules, and the collecting ducts. Using clearance techniques, we evaluated renal excretory function during acute administration of ZP120 (1 nmol/kg/min) in chronically catheterized, conscious rats (n = 8/group). To examine...

  5. Comparison of the effectiveness of seven amiloride congeners as inhibitors of Na/H and Na/Ca antiport in cultured smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, L.; Higgins, B.L.; Cragoe, E.J. Jr.; Smith, J.B.

    1987-01-01

    The authors cultured smooth muscle cells from rat aorta and assayed Na/Ca antiport by measuring the initial rate of 45 Ca influx in Na-loaded cells. Na/H antiport was assayed by measuring the initial rate of 22 Na influx in acid-loaded cells. The external medium was the same for both assays except Na was 10 mM for Na/H antiport and O for the Na/Ca antiport assay. The dose of each congener that caused 50% inhibition (I 50 ) was calculated using a log-log median effect plot. The linear regression coefficients ranged from 0.916 to 0.998. Of all the compounds tested only dimethylbenzamil is more potent as an inhibitor of Na/Ca compared to Na/H antiport

  6. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.

    2008-01-01

    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  7. Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel

    DEFF Research Database (Denmark)

    Svenningsen, Per; Bistrup, Claus; Friis, Ulla G

    2009-01-01

    stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC gamma subunit...

  8. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  9. Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole.

    NARCIS (Netherlands)

    Afeltra, J.; Vitale, R.G.; Mouton, J.W.; Verweij, P.E.

    2004-01-01

    To develop new approaches for the treatment of invasive infections caused by Aspergillus fumigatus, the in vitro interactions between itraconazole (ITZ) and seven different nonantimicrobial membrane-active compounds--amiodarone (AMD), amiloride, lidocaine, lansoprazole (LAN), nifedipine (NIF),

  10. Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Tsuchimochi, Hirotsugu; Kaufman, Marc P.

    2009-01-01

    The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arteri...

  11. Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization.

    Science.gov (United States)

    Lee, Hsiang-Chun; Rudy, Yoram; Po-Yuan, Phd; Sheu, Sheng-Hsiung; Chang, Jan-Gowth; Cui, Jianmin

    2013-08-01

    Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. With 50 μmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. Ursodeoxycholic acid choleresis: Relationship to biliary HCO-3 and effects of Na+-H+ exchange inhibitors

    International Nuclear Information System (INIS)

    Renner, E.L.; Lake, J.R.; Cragoe, E.J. Jr.; van Dyke, R.W.; Scharschmidt, B.F.

    1988-01-01

    The authors have recently shown that substitution of Li + for perfusate Na + eliminates the HCO 3 - -rich choleresis produced by ursodeoxycholic acid (UDCA) in isolated perfused rat liver and that the increase in bile flow produced by both UDCA and taurocholic acid is partially inhibited by 1 mM amiloride. Although these findings are consistent with a role for Na + -H + exchange in the choleresis produced by these bile acids, both Li + substitution and amiloride affect other cellular processes, including Na + -K + -ATPase activity. They have now further explored both the relationship between UDCA-stimulated bile flow and biliary HCO 3 - secretion and the possible role of Na + -H + exchange in this process by comparing the effects of amiloride with two of its more potent and presumably more specific analogues, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA). None of the inhibitors significantly altered biliary UDCA output or the relationship between UDCA-induced bile flow and either biliary [HCO 3 - ] or biliary HCO 3- output. Effects of these inhibitors did not appear attributable either to nonspecific toxicity, as reflected by hepatic release of lactate dehydrogenase or K + , or to inhibition of hepatic Na + -K + -ATPase, measured as Na + -dependent uptake of 86 Rb. These findings indicate that UDCA-induced but not basal bile formation is closely coupled to biliary HCO 3 - concentration and output, and they provide additional evidence that UDCA choleresis requires an intact Na + -H + exchange mechanism

  13. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Kashgarian, M.; Binder, H.J.

    1989-01-01

    Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats

  14. Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats.

    Science.gov (United States)

    Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P

    2007-06-15

    Although thin fibre muscle afferents possess acid sensing ion channels (ASICs), their contribution to the exercise pressor reflex is not known. This lack of information is partly attributable to the fact that there is no known selective in vivo antagonist for ASICs. Although amiloride has been shown to antagonize ASICs, it also has been shown to antagonize voltage-gated sodium channels, thereby impairing impulse conduction in sensory nerves. Our aim was to test the hypothesis that lactic acid accumulation in exercising muscle acted on ASICs located on thin fibre muscle afferents to evoke the metabolic component of the exercise pressor reflex. To test this hypothesis, we determined in decerebrate cats if amiloride attenuated the pressor and cardioaccelerator responses to static contraction, to tendon stretch and to arterial injections of lactic acid and capsaicin. We found a dose of amiloride (0.5 microg kg(-1); i.a.) that attenuated the pressor and cardioaccelerator responses to both contraction and lactic acid injection, but had no effect on the responses to stretch and capsaicin. A higher dose of amiloride (5 microg kg(-1), i.a.) not only blocked the pressor and cardioaccelerator responses to lactic acid and contraction, but also attenuated the responses to stretch and to capsaicin, manoeuvers in which ASICs probably play no significant role. In addition, we found that the low dose of amiloride (0.5 microg kg(-1)) had no effect on the responses of muscle spindles to tendon stretch and to succinylcholine, whereas the high dose (5 microg kg(-1)) attenuated the responses to both. Our data suggest the low dose of amiloride used in our experiments selectively blocked ASICs, whereas the high dose blocked ASICs and impulse conduction in muscle afferents. We conclude that ASICs play a role in the metabolic component of the exercise pressor reflex.

  15. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  16. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    OpenAIRE

    Barkla, B J; Blumwald, E

    1991-01-01

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antip...

  17. Serumelektrolytter og medikamentel behandling hos patienter indlagt på en geriatrisk afdeling

    DEFF Research Database (Denmark)

    Sørensen, I J; Matzen, L E

    1993-01-01

    . Risk factors for low sodium concentrations were treatment with the combination of thiazide+amiloride, potassium-sparing diuretics, thiazides, emergency hospitalization and low body weight. Risk factors for low potassium concentrations were treatment with the combination of thiazide+amiloride, thiazides...... and female gender. On an average, patients were given two different drugs from specified groups both on admission and on discharge, but changes in medical treatment were often performed during the hospital stay. Prehospital treatment with thiazide diuretics and the combination of thiazide...

  18. Sodium transport and intracellular sodium activity in cultured human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

     human nasal epithelium (HNE). Under control conditions, intracellular Na+ activity (acNa) was 23 +/- 1 mM (n = 44 preparations, 393 impalements).Amiloride (10(-4) M) hyperpolarized the apical membrane and increased the fractional apical membrane resistance but did not affect acNa. Exposure to...

  19. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

    Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na+ ...

  20. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    Science.gov (United States)

    Barkla, B J; Blumwald, E

    1991-12-15

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  1. Efficacy of COX-2 inhibitors in a case of congenital nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Soylu, A.; Kasap, B.; Ogun, N.; Ozturk, Y.; Turkmen, M.; Hoefsloot, L.H.; Kavukcu, S.

    2005-01-01

    A 17-month-old boy presented with failure to thrive, polyuria, and vomiting. He had been diagnosed clinically with nephrogenic diabetes insipidus and treated by amiloride and hydrochlorothiazide combination without a satisfactory outcome at another center since 1 year of age. The diagnosis was

  2. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus

    NARCIS (Netherlands)

    Christensen, B.M.; Zuber, A.M.; Loffing, J.; Stehle, J.C.; Deen, P.M.T.; Rossier, B.C.; Hummler, E.

    2011-01-01

    Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic

  3. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  4. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  5. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  6. AFRRI (Armed Forces Radiobiology Research Institute) Reports, January, February, March 1987.

    Science.gov (United States)

    1987-04-01

    POUYSS .GUR, J., J. C. CHAMBARD, A. FRANCHI , S. PARIS, AND E.a modifier site. J. Bio. ChAI. 258: 9710-9716,1983. VAN OBBERGHEN-SCHILLING. Growth...amiloride after reduction of the K* gradient). This observation (10-4 M, trace d). The steady-state acidification level rules out nonspecific effects of...not rule out the potential for other P( effects in the hippocampus. This possibility deserves further investigation. I BelluZi. 0.. Biondi. C

  7. Where have all the Na+ channels gone? In search of functional ENaC in exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Hansen, Mette R

    2002-01-01

    was to investigate if pancreatic ducts express functional ENaC. Membrane voltages (V) of ducts isolated from rat pancreas were measured with microelectrodes or whole-cell patch-clamp technique. Amiloride and benzamil given from bath or luminal sides did not hyperpolarize V. Lowering of extracellular Na...... with glucocorticoids had no effect on pancreatic fluid secretion evoked from ducts, or from acini. Hence, our study shows that pancreas especially pancreatic ducts do not express functional ENaC....

  8. University Research Initiative Program for Combat Readiness

    Science.gov (United States)

    1999-05-01

    microscope image of one of the lenses. This array was selected for testing because it is fabricated in a relatively inexpensive polyacrylic material, the...potent analogues of the potassium -sparing diuretic, amiloride. However, our results 179 University Reasearch Initiative for Combat Readiness Annual Report...for Combat Readiness Annual Report for the period June 1, 1998 - June 30, 1999 Roger H. Sawyer University of South Carolina Columbia, SC 29208 May

  9. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]-MIA, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Blumwald, E.

    1990-01-01

    A radiolabeled amiloride analog, [ 3 H]-MIA, was used for equilibrium binding studies and photolabeling of purified tonoplast vesicles. Scatchard analysis revealed a high affinity binding component with a K 4 of 1.4 μM which is closely related to constants of inhibition obtained for Na + -dependent H + efflux (5.9 μM) and pH-dependent 22 Na + influx (2.5 μM). This suggests that the high affinity component represents a class of sites associated with the Na + /H + antiport. Photolabeling of tonoplast with [ 3 H]-MIA in the presence of amiloride revealed the presence of two classes of receptors with distinct affinities for MIA, possibly representing the Na + /H + antiport and the Na + channel. In order to identify these receptors, amiloride analogues specific for the Na + /H + antiport or the Na + channel are being used to protect differentially against labeling of tonoplast proteins by photo-irradiation of [ 3 H]-MIA

  10. Characterization of Imidazoline Receptors in Blood Vessels for the Development of Antihypertensive Agents

    Directory of Open Access Journals (Sweden)

    Mei-Fen Chen

    2014-01-01

    Full Text Available It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R may reduce the blood pressure in spontaneously hypertensive rats (SHRs. Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s. Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.

  11. Effects of ethanol on calcium transport across the liver cell plasma membrane

    International Nuclear Information System (INIS)

    Bernstein, J.; Santacana, G.

    1987-01-01

    The effect of ethanol on calcium transport by the liver cell was studied by using a rat liver slice preparation. Ethanol was shown to decrease by about 30% the rate constant for 45 Ca efflux from the intracellular compartment. This inhibitory effect of ethanol was not observed in the absence of Ca 2+ or Na + from the incubation medium. Ethanol was also shown to greatly increase non-insulin calcium uptake by liver slices. This effect of ethanol appeared to be dose dependent and was not observed in the absence of Na + from the incubation medium. The ability of ethanol to increase calcium uptake by the hepatocyte was completely blocked by 1 mM Amiloride. Amiloride, however, did not affect the increased entry of either Na + or Ca 2+ produced by 10 mM Ouabain, a specific inhibitor of the sodium pump. Carbon tetrachloride (CCl 4 ), a well known hepatotoxin, also increased calcium uptake by the hepatocyte. Amiloride, however, was not able to block the CCl 4 -induced calcium uptake. These results suggest that ethanol activates a Na + entry pathway, probably represented by a Na + /H + exchanger, which in turn stimulates an entry of Ca 2+ through a Na + /Ca 2+ exchange mechanism located in the plasma membrane of the hepatocyte

  12. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells

    International Nuclear Information System (INIS)

    Tujulin, E.; Macellaro, A.; Norlander, L.; Liliehoeoek, B.

    1998-01-01

    The obligate intracellular rickettsia Coxiella burnetii has previously been reported to reach the intra-vacuolar compartment of host cells by phagocytosis. With the aim to further examine the mechanisms of C. burnetii internalisation, macrophage monolayers were treated with well characterised inhibitors of endocytosis. The treatment with two general inhibitors, colchicine and methylamine, resulted in a pronounced dose-dependent decrease of radiolabelled phase II rickettsiae retained from the intracellular fraction. A third inhibitor used, amiloride, has been reported to reduce effectively clathrin-independent pinocytic pathways. The internalisation of C. burnetii was shown to be substantially reduced also by amiloride and the effect was dependent on its concentration. The passive role of C. burnetii in the internalisation was verified by using heat-killed C. burnetii. Host cells treated with either of the three inhibitors (amiloride, colchicine and methylamine) showed a similar reduction of intracellular C. burnetii after exposure to killed as weal as live organisms. The data presented indicate that different endocytic mechanisms, pinocytosis as well as phagocytosis, may mediate the uptake of C. burnetii by a host cell. Key words: Coxiella burnetii; internalisation; endocytosis (authors)

  13. Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion.

    Science.gov (United States)

    Tsuchimochi, Hirotsugu; Yamauchi, Katsuya; McCord, Jennifer L; Kaufman, Marc P

    2011-12-15

    We found previously that static contraction of the hindlimb muscles of rats whose femoral artery was ligated evoked a larger reflex pressor response (i.e. exercise pressor reflex) than did static contraction of the contralateral hindlimb muscles which were freely perfused. Ligating a femoral artery in rats results in blood flow patterns to the muscles that are remarkably similar to those displayed by humans with peripheral artery disease. Using decerebrated rats, we tested the hypothesis that the augmented exercise pressor reflex in rats with a ligated femoral artery is attenuated by blockade of the acid sensing ion channel (ASIC) 3. We found that femoral arterial injection of either amiloride (5 and 50 μg kg(-1)) or APETx2 (100 μg kg(-1)) markedly attenuated the reflex in rats with a ligated femoral artery. In contrast, these ASIC antagonists had only modest effects on the reflex in rats with freely perfused hindlimbs. Tests of specificity of the two antagonists revealed that the low dose of amiloride and APETx2 greatly attenuated the pressor response to lactic acid, an ASIC agonist, but did not attenuate the pressor response to capsaicin, a TRPV1 agonist. In contrast, the high dose of amiloride attenuated the pressor responses to lactic acid, but also attenuated the pressor response to capsaicin. We conclude that ASIC3 on thin fibre muscle afferents plays an important role in evoking the exercise pressor reflex in rats with a compromised arterial blood supply to the working muscles.

  14. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  15. Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Reid, I.R.; Civitelli, R.; Avioli, L.V.; Hruska, K.A.

    1988-01-01

    It has recently become apparent that a number of hormones and growth factors modulate cytosolic pH (pH i ) and there is some evidence that this in turn may influence cell growth. The authors have examined the effects of parathyroid hormone (PTH) on both these parameters in an osteoblast-like cell line, UMR 106. Preliminary studies, using the pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,(6)-carboxyfluorescein indicated that these cells regulate pH i by means of an amiloride-inhibitable Na + -H + exchanger. Rat PTH-(1-34) (rPTH) caused a progressive dose-related decrease in pH i with a half-maximal effect at 10 -11 M. The diacylglycerol analogue, phorbol 12-myristate 13-acetate, increased both pH i and [ 3 H]thymidine incorporation, and amiloride reduced both indexes. However, rPTH remained a potent inhibitor of [ 3 H]thymidine incorporation in the presence of amiloride, even though it did not affect pH i in these circumstances. It is concluded that PTH decreases pH i and growth in UMR 106 cells but that these changes can be dissociated. Depression of pH i may have other important effects on bone metabolism, such as reducing cell-cell communication, and may be associated with alkalinization of the bone fluid compartment

  16. 布比卡因影响小鼠肺泡上皮液体清除的作用机制研究%Mechanism research on the effects of bupivacaine on alveolar fluid clearance in mice

    Institute of Scientific and Technical Information of China (English)

    于同; 崔湧; 付瑜; 杜杰; 聂宏光

    2012-01-01

    Objective To explore the effects of bupivacaine on alveolar fluid clearance ( AFC) in mice and its mechanism. Methods Total of 48 mice were divided into six groups, 0. 3 mL of iso-osmotic 5 % bovine serum albumine (BSA) was instilled intratracheally after anaesthesia. BSA of the control group, amiloride group, bupivacaine group, bupivacaine + amiloride group, terbutaline group, and bupivacaine + terbutaline group, include one of the followings; blank, 1 mmol/L amiloride, 1 mmol/L bupivacaine, 1 mmol/L bupivacaine + 1 mM amiloride, 0. 1 mM terbutaline and 1 mM bupivacaine +0.1 mM terbutaline, respectively. AFC was measured using bovine serum albumin protein assays in the extraction fluid after 30 min. Results Compared with the control group, AFC in the bupivacaine group , amiloride group and bupivacaine + amiloride group decreaseed significantly ( all P <0. 05) , no significant difference were found between the former two groups; Compared with the control group, AFC in the terbutaline group and bupivacaine + terbutaline group increased significantly,especially in the former group. Conclusions The reduction of AFC following application of bupivacaine may be the crucial step of the pathogenesis of pulmonary edema and terbutaline can reverse the inhibitory effects of bupivacaine.%目的 探讨布比卡因对小鼠肺泡液体清除率( AFC)的影响及机制.方法 将48只小鼠分为六组.麻醉后经气管插管注入0.3 mL等渗5%小牛血清白蛋白(BSA),对照组、阿米组、布比组、布比+阿米组、特布组及布比+特布组BSA液中分别含有空白液、1 mmol/L阿米洛利、1 mmol/L布比卡因、1 mmol/L布比卡因+1 mmol/L阿米洛利、0.1 mmol/L特布他林及1 mmol/L布比卡因+0.1 mmol/L特布他林.注射30 min后负压吸取肺泡内液体,测定小牛血清白蛋白浓度,计算AFC.结果 与对照组比较,布比组、阿米组及布比+阿米组AFC明显降低,P均<0.05;特布组AFC明显增加,特布+布比组AFC

  17. An immortal cell line to study the role of endogenous CFTR in electrolyte absorption.

    Science.gov (United States)

    Bell, C L; Quinton, P M

    1995-01-01

    The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad

    2018-02-15

    One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug

  19. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    Science.gov (United States)

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models.

    Science.gov (United States)

    Dwyer, Jason M; Rizzo, Stacey J Sukoff; Neal, Sarah J; Lin, Qian; Jow, Flora; Arias, Robert L; Rosenzweig-Lipson, Sharon; Dunlop, John; Beyer, Chad E

    2009-03-01

    Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.

  1. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.

    Science.gov (United States)

    Fedan, Jeffrey S; Thompson, Janet A; Meighan, Terence G; Zeidler-Erdely, Patti C; Antonini, James M

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7μg/cm 2 ) were applied apically to NHBEs. After 18h transepithelial potential difference (V t ), resistance (R t ), and short circuit current (I sc ) were measured. Particle effects on Na + and Cl¯ channels and the Na + ,K + ,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7μg/cm 2 ) increased basal V t . Only 16.7μg/cm 2 GMA-MS increased basal V t significantly. MMA-SS or GMA-MS exposure potentiated I sc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R t were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V t , R t , and I sc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na + transport and Na + ,K + ,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na + absorption and decreased airway surface liquid could compromise defenses against infection. Published by Elsevier Inc.

  2. Lithium absorption by the rabbit gall-bladder

    DEFF Research Database (Denmark)

    Hansen, C P; Holstein-Rathlou, N H; Skøtt, O

    1991-01-01

    Lithium (Li+) absorption across the low-resistance epithelium of the rabbit gall-bladder was studied in order to elucidate possible routes and mechanisms of Li+ transfer. Li+ at a concentration of 0.4 mM in both mucosal and serosal media did not affect isosmotic mucosa-to-serosa fluid absorption...... was elicited from the mucosal side and was not accounted for by compensatory Li+ absorption; water and Na+ absorption rates decreased nearly in parallel. The effects of 0.4 mM amiloride and of substitution with 20 mM Li+ were only partly additive. It is concluded that Li+ absorption in the rabbit gall...

  3. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  4. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen

    2005-01-01

    and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y......We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions...

  5. Screening of pharmacologic adulterant classes in herbal formulations using voltammetry of microparticles.

    Science.gov (United States)

    Doménech-Carbó, Antonio; Martini, Mariele; de Carvalho, Leandro Machado; Viana, Carine; Doménech-Carbó, María Teresa; Silva, Miguel

    2013-02-23

    A solid state electrochemical method for screening different families of adulterant chemicals illegally added to commercial phytotherapuetic formulations is described. The proposed method, based on the voltammetry of microparticles approach, permits a fast and sensitive way to distinguish between anorexics (amfepramone, fenproporex, sibutramine), benzozodiazepinic anxiolytics (clonazepam, flurazepam, alprazolam, midazolam, medazepam, chlordiazepoxide, diazepam), antidepressants (bupropione, fluoxetine, sertraline, paroxetine), diuretics (hydrochlorothiazide, furosemide, chlortalidone, amiloride, spironolactone), and hypoglycemics (glimepiride, chlorpropamide, glibenclamide) based on characteristic voltammetric signals recorded on solid micro- or nanosamples attached to graphite electrodes immersed into aqueous electrolytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedan, Jeffrey S., E-mail: jsf2@cdc.gov; Thompson, Janet A.; Meighan, Terence G.; Zeidler-Erdely, Patti C.; Antonini, James M.

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167–166.7 μg/cm{sup 2}) were applied apically to NHBEs. After 18 h transepithelial potential difference (V{sub t}), resistance (R{sub t}), and short circuit current (I{sub sc}) were measured. Particle effects on Na{sup +} and Cl¯ channels and the Na{sup +},K{sup +},2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167–16.7 μg/cm{sup 2}) increased basal V{sub t}. Only 16.7 μg/cm{sup 2} GMA-MS increased basal V{sub t} significantly. MMA-SS or GMA-MS exposure potentiated I{sub sc} responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R{sub t} were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V{sub t}, R{sub t}, and I{sub sc} at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na{sup +} transport and Na{sup +},K{sup +},2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na{sup +} absorption and decreased airway surface liquid could compromise defenses against infection. - Highlights: • Welding fume particle toxicity was investigated in human bronchial

  7. AcEST: BP916921 [AcEST

    Lifescience Database Archive (English)

    Full Text Available S11_ROTP5 Minor outer capsid protein OS=Rotavirus A (... 31 4.0 sp|Q28181|CNGB1_BOVIN Cyclic nucleotide-gate...3054|VS11_ROTPY Minor outer capsid protein OS=Rotavirus A (... 30 6.8 sp|Q92075|SCNNA_CHICK Amiloride-sensit...61 W+N P +S+ YY+L+ K WQ Sbjct: 178 WVNSPTRFSNQYYKLLLKLKWQ 199 >sp|P19715|VS11_ROTP5 Minor outer capsid protein OS=Rotavirus

  8. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  9. Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells.

    Science.gov (United States)

    Iordache, Claudiu; Duszyk, Marek

    2007-01-15

    Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.

  10. Gallic acid, a phenolic compound isolated from Mimosa bimucronata (DC.) Kuntze leaves, induces diuresis and saluresis in rats.

    Science.gov (United States)

    Schlickmann, Fabile; Boeing, Thaise; Mariano, Luisa Nathália Bolda; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; da Silva, Luisa Mota; de Andrade, Sérgio Faloni; de Souza, Priscila; Cechinel-Filho, Valdir

    2018-06-01

    Although present in the leaves of Mimosa bimucronata (DC.) and many other medicinal plants commonly used to augment urinary volume excretion, the effects of gallic acid as a diuretic agent remain to be studied. Wistar rats were orally treated with vehicle, hydrochlorothiazide, or gallic acid. The effects of gallic acid in the presence of hydrochlorothiazide, furosemide, amiloride, L-NAME, atropine, and indomethacin were also investigated. Diuretic index, pH, conductivity, and electrolyte excretion were evaluated at the end of the experiment (after 8 or 24 h). Gallic acid induced diuretic and saluretic (Na + and Cl - ) effects, without interfering with K + excretion, when orally given to female and male rats at a dose of 3 mg/kg. These effects were associated with increased creatinine and conductivity values while pH was unaffected by any of the treatments. Plasma Na + , K + , and Cl - levels were not affected by any of the acute treatments. The combination with hydrochlorothiazide or furosemide was unable to intensify the effects of gallic acid when compared with the response obtained with each drug alone. On the other hand, the treatment with amiloride plus gallic acid amplified both diuresis and saluresis, besides to a marked potassium-sparing effect. Its diuretic action was significantly prevented in the presence of indomethacin, a cyclooxygenase inhibitor, but not with the pretreatments with L-NAME or atropine. Although several biological activities have already been described for gallic acid, this is the first study demonstrating its potential as a diuretic agent.

  11. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies

    International Nuclear Information System (INIS)

    Luca, Michele De; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà

    2014-01-01

    Highlights: • A new MCR-ALS algorithm is proposed for the analysis of incomplete fused multiset. • Resolution of the data allowed the description of amiloride kinetic photodegradation. • The new MCR-ALS algorithm can be easily applied to other drugs and chemicals. - Abstract: An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described

  12. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Michele De, E-mail: michele.deluca@unical.it [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, CS 87036 (Italy); Ragno, Gaetano; Ioele, Giuseppina [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, CS 87036 (Italy); Tauler, Romà [Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, Barcelona 08034 (Spain)

    2014-07-21

    Highlights: • A new MCR-ALS algorithm is proposed for the analysis of incomplete fused multiset. • Resolution of the data allowed the description of amiloride kinetic photodegradation. • The new MCR-ALS algorithm can be easily applied to other drugs and chemicals. - Abstract: An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.

  13. Electrolyte transport in distal colon of sodium-depleted rats: Effect of sodium repletion

    International Nuclear Information System (INIS)

    Turnamian, S.G.; Binder, H.J.

    1988-01-01

    Dietary sodium depletion increases plasma aldosterone level and, as a result, induces amiloride-sensitive electrogenic sodium absorption and electrogenic potassium secretion and stimulates Na + -K + -ATPase activity in rat distal colon, while inhibiting electroneutral sodium chloride absorption. To assess the events that occur as the aldosterone-stimulated colon reverts to normal, unidirectional 22 Na and 36 Cl fluxes were measured under voltage-clamp conditions across isolated distal colonic mucosa of rats that were initially dietary sodium depleted for 7 days and then sodium repleted for varying periods of time before the study. Within 8 h of dietary sodium repletion, plasma aldosterone level and Na + -K + -ATPase activity declined to normal, amiloride-sensitive electrogenic sodium absorption decreased by >90%, and active electrogenic potassium secretion also decreased markedly. In contrast, electroneutral sodium chloride absorption did not completely return to levels seen in normal animals until ∼64-68 h. These results demonstrate that maintenance of electrogenic sodium absorption and potassium secretion are directly dependent on elevated plasma aldosterone levels. The inhibition of electroneutral sodium absorption, although initiated by excess aldosterone, persists after normalization of the plasma aldosterone level, thereby implying that the inhibition is dependent on additional factor(s)

  14. Hormonal regulation of Na+-K+-ATPase in cultured epithelial cells

    International Nuclear Information System (INIS)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-01-01

    Aldosterone and insulin stimulate Na + transport through mechanisms involving protein synthesis. Na + -K + -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na + -K + -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na + -K + -[ 32 P]ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na + -K + -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na + entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na + -K + -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/

  15. Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report.

    Science.gov (United States)

    Macau, Ricardo A; da Silva, Tiago Nunes; Silva, Joana Rego; Ferreira, Ana Gonçalves; Bravo, Pedro

    2018-01-01

    Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series). We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to a bowel obstruction and developed severe dehydration after surgery when she was water deprived. After desmopressin administration and unsuccessful thiazide and amiloride treatment, acetazolamide was administrated to control polyuria and hydroelectrolytic disorders without significant side effects. To our knowledge, this is the third publication on acetazolamide use in Li-NDI patients. Treatment of lithium-induced nephrogenic diabetes insipidus might be challenging.Vasopressin, amiloride and thiazide diuretics have been used in lithium-induced nephrogenic diabetes insipidus treatment.Acetazolamide might be an option to treat lithium-induced nephrogenic diabetes insipidus patients who fail to respond to standard treatment.The use of acetazolamide in lithium-induced nephrogenic diabetes insipidus must be monitored, including its effects on glomerular filtration rate.

  16. Pharmacological basis for the empirical use of Eugenia uniflora L. (Myrtaceae) as antihypertensive.

    Science.gov (United States)

    Consolini, A E; Baldini, O A; Amat, A G

    1999-07-01

    The rational basis for the use of Eugenia uniflora L. (Myrtaceae) as antihypertensive in Northeastern Argentina was assessed in normotensive rats. Intraperitoneal administration of the aqueous crude extract (ACE) decreased blood pressure (BP) of normotensive rats dose-dependently until 47.1 +/- 8.2% of control. The effective-dose 50 was 3.1 +/- 0.4 mg dried leaves/kg (d.l./kg) (yielding of ACE: 17% w/w). To determine the origin of hypotensive activity. Alpha-adrenergic antagonistic and vasorelaxant ACE activities were tested. The dose-response curve for phenylephrine on BP was inhibited non-competitively until 80% of its maximal effect (at 8 mg d.l. ACE/kg). Perfusion pressure (PP) of rat hindquarters (previously vasoconstricted by high-K+) was decreased by ACE in a concentration-dependent manner until -32.3 +/- 11.5% of tonic contraction at 1.2 g d.l. ACE/100 ml. In addition, A.C.E demonstrated diuretic activity at a dose (120 mg d.l./kg) higher than the hypotensive one. It was almost as potent as amiloride, but while amiloride induced loss of Na+ and saving of K+, ACE induced decrease in Na+ excretion. The results suggest that the empirical use of Eugenia uniflora L. (Myrtaceae) is mostly due to a hypotensive effect mediated by a direct vasodilating activity, and to a weak diuretic effect that could be related to an increase in renal blood flow.

  17. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    Science.gov (United States)

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  18. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  19. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-01-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive 86 Rb + uptake, a measure of the activity of the Na + /K + pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na + influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt 2 ) also enhanced ouabain sensitive 86 Rb + uptake and amiloride-sensitive 22 Na + influx. Prolonged treatment (40 hr) of 3T3 cells with PBt 2 at a saturating dose, which reduces the number of PBt 2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt 2 . They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na + /H + antiport activity, which, in turn, leads to Na + influx, intracellular pH modulation, and stimulation of the Na + /K + pump

  20. 布比卡因在人离体肺脏液体清除中的作用%Effect of bupivacaine on alveolar fluid clearance in ex vivo human lungs

    Institute of Scientific and Technical Information of China (English)

    崔湧; 姜学东; 于同; 丁炎; 聂宏光

    2017-01-01

    目的 探讨布比卡因在人离体肺段肺泡液体清除中的作用.方法 选取临床外科手术肺切除患者的肺段标本,采用随机数字表法分为对照组(6例)、布比卡因组(6例)、阿米洛利组(5例)、布比卡因±阿米洛利组(6例),将不同药物通过插管注入远端肺组织,其中对照组为单纯10 ml用0.9%氯化钠注射液配制的5%小牛血清白蛋白,余3组分别另加入对应药物.应用考马斯亮蓝法测定肺泡液体内小牛血清白蛋白浓度的方法测定人离体肺段肺泡液体清除率(AFC).用蛋白质印迹法和实时定量聚合酶链反应(PCR)的方法测定人H441细胞上皮钠通道α亚单位的蛋白和mRNA表达水平.结果 阿米洛利组、布比卡因组、布比卡因±阿米洛利组AFC均低于对照组,差异有统计学意义[(6.6±1.2)%、(9.6±0.9)%、(7.9±2.1)%比(14.0±0.7)%](P<0.05);布比卡因±阿米洛利组与2种药物单独使用组比较差异均无统计学意义(均P >0.05).蛋白质印迹法和实时定量PCR结果显示布比卡因能够时间依赖性降低H441细胞中上皮钠通道α亚单位的蛋白和mRNA表达水平,与对照组比较,24、48 h的表达差异均有统计学意义[(0.55±0.09)、(0.49±0.09)比(1.00 ±0.00),(0.28±0.06)、(0.26 ±0.04)比(1.00±0.00)](均P<0.01).结论 布比卡因能够抑制与阿米洛利敏感性上皮钠通道有关的AFC,降低其表达水平,从而阻碍肺泡上皮液体的清除.%Objective To explore the effect of bupivacaine on alveolar fluid clearance(AFC) in ex vivo human lungs.Methods Segmental bronchi separated from patients who had lobectomy were divided into amiloride group (5 cases),bupivacaine group (6 cases),amiloride plus bupivacaine group (6 cases) and control group (6 cases) by random number table to have corresponding drug interventions;the control group had 10 ml,5% calf serum albumin prepared with 0.9% sodium chloride injection,the other 3 groups were added

  1. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-01-01

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A 2 like domain in N-terminus of VP1. In this study we characterized the role of PLA 2 activity on CPV entry process. PLA 2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA 2 inhibitors inhibited the viral proliferation suggesting that PLA 2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA 2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A 1 , brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A 1 , brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA 2 activity of the virus. These results suggest that parvoviral PLA 2 activity is essential for productive infection and

  2. Endothelin‐1 mediates natriuresis but not polyuria during vitamin D‐induced acute hypercalcaemia

    Science.gov (United States)

    Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric

    2017-01-01

    Key points Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism.A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)‐1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia‐induced effects.In the present study, we demonstrate that, during vitamin D‐induced hypercalcaemia, the activation of ET system by increased ET‐1 is responsible for natriuresis but not for polyuria.Vitamin D‐treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited.We have identified an original pathway that specifically mediates the effects of vitamin D‐induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Abstract Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D‐induced hypercalcaemia increases the renal expression of endothelin (ET)‐1, we hypothesized that ET‐1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8‐week‐old, parathyroid hormone‐supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT‐treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET‐1 and the transcription factors CCAAT‐enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT‐treated mice. To examine the role of the ET system in hypercalcaemia‐induced natriuresis and polyuria, mice were treated with the ET‐1 receptor antagonist macitentan, with or without DHT. Mice treated with both

  3. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia.

    Science.gov (United States)

    Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric; Houillier, Pascal

    2017-04-15

    Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria

  4. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    International Nuclear Information System (INIS)

    Ye Jinhai; Gao Jun; Wu Yunong; Hu Yongjie; Zhang Chenping; Xu Tianle

    2007-01-01

    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na + current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells

  5. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys

    International Nuclear Information System (INIS)

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na + -H + exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of 22 Na + , and stimulated 22 Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H + gradient-dependent Na + uptake and Na + gradient-dependent H + flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na + gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin

  6. Regulation of electrolyte transport with IL-1β in rabbit distal colon

    Directory of Open Access Journals (Sweden)

    F. R. Homaidan

    1995-01-01

    Full Text Available Interletrkin-1β levels are elevated in inflammatory bowel disease. In this study the mechanism by which interleukin-1β affects electrolyte transport in the rabbit distal colon, was investigated. Interleukin-1β caused a delayed increase in short-circuit current (Isc which was attributed to protein synthesis since the effect was inhibited by cycloheximide. The interleukin-1β induced increase in Isc was not affected by amiloride treatment but was completely inhibited by bumetanide or in chloride-free buffer and by indomethacin. Prostaglandin E2 levels increased in tissue treated with interleukin-1β, but this increase was reversed by cycloheximide. These data suggest that interleukin-1β causes its effect via a yet to be identified second messenger, by increasing chloride secretion through a prostaglandin E2 mediated mechanism.

  7. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis.

    Science.gov (United States)

    Sun, Lin; Li, Bin; Su, Xiaohui; Chen, Ge; Li, Yaqin; Yu, Linqian; Li, Li; Wei, Wanguo

    2017-08-10

    Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.

  8. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the foll......Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  9. Macropinocytosis is the Entry Mechanism of Amphotropic Murine Leukemia Virus

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Vilhardt, Frederik

    2015-01-01

    of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutical schemes and methods of drug delivery. We show here that Murine Leukemia Virus (A-MLV) pseudotyped......, or NIH-3T3 cells knocked-down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH-3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional...... with the amphotropic (expands the host range to many mammalian cells) envelope protein gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following collapse of cell surface protrusions and membrane scission. We use drugs or introduction of mutant proteins...

  10. A photoactivatable probe for the Na+/H+ exchanger cross-links a 66-kDa renal brush border membrane protein

    International Nuclear Information System (INIS)

    Ross, W.; Bertrand, W.; Morrison, A.

    1990-01-01

    Earlier studies on LLC-PK1 cells have demonstrated two pharmacologically distinct Na+/H+ exchangers in renal epithelia. In addition, the cDNA clone for the human Na+/H+ antiporter which is growth factor activatable has been isolated and expressed. We report here the synthesis of an amiloride analogue that can be photoactivated and labeled with 125I. This analogue covalently cross-links a 66-kDa protein of bovine renal brush border membranes. A rabbit polyclonal antibody that was directed against a 20-amino acid peptide of the cytoplasmic domain of its human Na+/H+ antiporter also gives a positive Western against 66-kDa protein of bovine brush border membranes. Thus, the photoactive probe may be helpful in the isolation and purification of the brush border Na+/H+ exchanger

  11. Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge

    International Nuclear Information System (INIS)

    Renò, Filippo; Rizzi, Manuela; Pittarella, Pamela; Carniato, Fabio; Olivero, Francesco; Marchese, Leonardo

    2013-01-01

    Nanoparticles (NPs) entering the human body are immediately confronted with the innate part of human immune system. In particular, monocyte and neutrophil granulocytes readily clear particles by phagocytosis, even if in the case of NPs the uptake mechanism may be classified as macropinocytosis. Among engineered nanoparticles, in the last years, siliceous materials have emerged as promising materials for several applications ranging from catalysis to biomedical. The polyhedral oligomeric silsesquioxanes (POSS) are nanodimensional, easily synthesizable molecular compounds and POSS-based systems are promising carriers for biological molecules. In this work, the ability of human granulocytes to uptake positively and negatively charged POSS was measured using a simple flow cytometry analysis based on cell size modifications. The data obtained showed that after a 30 min exposure only positive NPs were uptaken by human granulocyte using both macropinocytosis and clathrin-mediated mechanisms as demonstrated by uptake inhibition mediated by amiloride and chlorpromazine. (paper)

  12. Preliminary clinical trial with a new hypotensive, guanabenz, in a group of hypertensive patients.

    Science.gov (United States)

    De Ridder, J H; Marchandise, P

    1980-01-01

    In a small preliminary clinical trial of guanabenz in 16 hypertensives also under treatment with diuretics (hydrochlorothiazide and amiloride), blood pressure was safely and completely controlled in 10 (64%), the criterion for "control" being a reduction to the strict level specified by the Society of Actuaries (130/85 m lambda Hg). The dosage of guanabenz was adjusted upward from 16 mg/day until blood pressure normalized or side effects intervened. The 16 patients accumulated 97 months of guanabenz treatment. The 6 unsuccessful cases included only 2 outright therapeutic failures; the other 4 patients discontinued treatment for various reasons: dry mouth and nausea (with good blood pressure reduction); aggravation of existing depression; or generalized urticaria. The fourth patient discontinued for reasons unknown.

  13. Congenital Nephrogenic Diabetes Insipidus Presented With Bilateral Hydronephrosis and Urinary Infection: A Case Report.

    Science.gov (United States)

    Zheng, Kewen; Xie, Yi; Li, Hanzhong

    2016-05-01

    Nephrogenic diabetes insipidus (NDI) is a condition resulting from the kidney's impaired response to circulating antidiuretic hormone (ADH), leading to polydipsia and polyuria. Urinary tract dilatation caused by NDI is a rare situation. Here, we report a case of congenital NDI presented with bilateral hydronephrosis.A 15-year-old boy complaining a history of intermittent fever was admitted to Peking Union Medical College Hospital. He voided 10 to 15 L of urine daily. Radiographic examination revealed severe dilatation of bilateral renal pelvis, ureter, and bladder. Urinalysis shows hyposthenuria.He was diagnosed NDI since born. Transient insertion of a urethral catheter helped to relieve fever. Medical therapy of hydrochlorothiazide and amiloride was prescribed and effective.Dilatation of urinary tract caused by diabetes insipidus is rare, but may be present in severe condition. Therefore, it is crucial for clinicians to perform early treatment to avoid impairment of renal function.

  14. Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report

    Directory of Open Access Journals (Sweden)

    Ricardo A Macau

    2018-02-01

    Full Text Available Lithium-induced nephrogenic diabetes insipidus (Li-NDI is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series. We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to a bowel obstruction and developed severe dehydration after surgery when she was water deprived. After desmopressin administration and unsuccessful thiazide and amiloride treatment, acetazolamide was administrated to control polyuria and hydroelectrolytic disorders without significant side effects. To our knowledge, this is the third publication on acetazolamide use in Li-NDI patients.

  15. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  16. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

    DEFF Research Database (Denmark)

    Rødgaard, Tina; Schou, Kenneth; Friis, Martin Barfred

    2008-01-01

    of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory volume...... decrease (RVD). Upon return to the original isotonic medium, cells shrank initially followed by a regulatory volume increase (RVI). To maintain cell shrinkage, the RVI process was inhibited as follows: Ethyl-isopropyl-amiloride (EIPA) inhibited the Na(+)/H(+) antiport, Bumetanide inhibited the Na(+)/K(+)/2......Cl(-) co-transporter, and Gadolinium inhibited shrinkage-activated Na(+) channels. Cells remained shrunken for at least 4 hours (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high NaCl hypertonic medium...

  17. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2018-03-01

    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  18. Influence of bicarbonate on the sensitivity of renin release to sodium chloride

    DEFF Research Database (Denmark)

    Skøtt, O; Jensen, B L

    1989-01-01

    glomeruli treated with bicarbonate/chloride exchange inhibitor (DNDS), NaCl/KCl cotransport inhibitor (bumetanide), or Na+/H+ antiport inhibitor (amiloride) in the presence or absence of bicarbonate. In addition, the sensitivity to increases in osmolality by addition of sucrose was tested in the presence...... or absence of bicarbonate. Renin release from time controls superfused with a bicarbonate-free Ringer was identical to release from glomeruli superfused with a bicarbonate Ringer. DNDS (0.11 or 1.1 mM) had no effect on renin release in a bicarbonate Ringer. 30 mM sucrose inhibited renin release independently...... of bicarbonate. 15 mM NaCl stimulated renin release when bicarbonate was absent, while it caused an inhibition in the presence of bicarbonate. When bicarbonate/chloride exchange was inhibited, addition of NaCl stimulated renin release even when bicarbonate was present. The effect of NaCl on renin release...

  19. Intravenous S-Ketamine Does Not Inhibit Alveolar Fluid Clearance in a Septic Rat Model

    Science.gov (United States)

    Weber, Nina C.; van der Sluijs, Koen; Hackl, Florian; Hotz, Lorenz; Dahan, Albert; Hollmann, Markus W.; Berger, Marc M.

    2014-01-01

    We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport. PMID:25386677

  20. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    Science.gov (United States)

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  2. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  3. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.

    Science.gov (United States)

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis

    2009-06-01

    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  4. Esophageal desalination is mediated by Na⁺, H⁺ exchanger-2 in the gulf toadfish (Opsanus beta).

    Science.gov (United States)

    Esbaugh, Andrew J; Grosell, Martin

    2014-05-01

    Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na(+) absorption is amiloride sensitive; however, it is as yet unclear if Na(+), H(+) exchangers (NHE) or Na(+) channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na(+) transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (I(sc)=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). (22)Na uptake (J(Na)(m→s)) was inhibited by 0.5 mM EIPA, with no effect of 0.1 mM amiloride, 1 mM furosemide or 1 mM thiazide. A Cl(-) free saline reduced J(Na)(m→s) by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na(+) transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60 ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori

    2006-01-01

    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins

  6. Intracellular pH regulation in hepatocytes isolated from three teleost species.

    Science.gov (United States)

    Furimsky, M; Moon, T W; Perry, S F

    1999-09-01

    The mechanisms of intracellular pH (pH(i)) regulation were studied in hepatocytes isolated from three species of teleost: rainbow trout (Oncorhynchus mykiss), black bullhead (Ameiurus melas) and American eel (Anguilla rostrata). Intracellular pH was monitored over time using the pH-sensitive fluorescent dye BCECF in response to acid loading under control conditions and in different experimental media containing either low Na(+) or Cl(-) concentrations, the Na(+)-H(+) exchanger blocker amiloride or the blocker of the V-type H(+)-ATPase, bafilomycin A(1). In trout and bullhead hepatocytes, recovery to an intracellular acid load occurred principally by way of a Na(+)-dependent amiloride-sensitive Na(+)-H(+) exchanger. In eel hepatocytes, the Na(+)-H(+) exchanger did not contribute to recovery to an acid load though evidence suggests that it is present on the cell membrane and participates in the maintenance of steady-state pH(i). The V-type H(+)-ATPase did not participate in recovery to an acid load in any species. A Cl(-)-HCO(3)(-) exchanger may play a role in recovery to an acid load in eel hepatocytes by switching off and retaining base that would normally be tonically extruded. Thus, it is clear that hepatocytes isolated from the three species are capable of regulating pH(i), principally by way of a Na(+)-H(+) exchanger and a Cl(-)-HCO(3)(-) exchanger, but do not exploit identical mechanisms for pH(i) recovery. J. Exp. Zool. 284:361-367, 1999. Copyright 1999 Wiley-Liss, Inc.

  7. Potassium transport across guinea pig distal colon

    International Nuclear Information System (INIS)

    Rechkemmer, G.; Halm, D.R.; Frizzell, R.A.

    1986-01-01

    Active absorption and secretion of K was studied by measuring bidirectional 42 K fluxes across short-circuited guinea pig distal colon. Tissues were pretreated with mucosal (m) and serosal (s) indomethacin (1 μM) and amiloride (0.1 mM, m) to suppress spontaneous, electrogenic Cl secretion and Na absorption. Under these conditions, the short-circuit current (I/sub sc/) was 0.4 μeq/cm 2 h while electroneutral K absorption was 2.8 μeq/cm 2 h. Epinephrine (5 μM, s) stimulated electrogenic K secretion, reducing net K absorption to 1.3 μeq/cm 2 h. Bumetanide (0.1 mM, s) abolished this K secretion and restored K absorption to control values, suggesting mechanistic similarities between K and Cl secretion. K absorption was inhibited 40% by the gastric H/K ATPase inhibitor, omeprazole (0.1 mM, m), and was abolished by ouabain (0.1 mM, m). Neutral K absorption does not appear to be mediated by an apical membrane Na/K pump since: the effect of mucosal ouabain on K absorption does not require the presence of mucosal or serosal Na, unidirectional Na fluxes are not influenced by mucosal ouabain, and K absorption is not affected when Na absorption is abolished by amiloride. Net K transport is determined by the balance between electroneutral K absorption and electrogenic K secretion. The ouabain sensitivity of K absorption suggests that colonic H/K ATPase differs from its gastric counterpart

  8. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    International Nuclear Information System (INIS)

    el-Din, M.M.; Malik, K.U.

    1987-01-01

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with [ 3 H]norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered

  9. The plant vacuolar Na+/H+ antiport.

    Science.gov (United States)

    Barkla, B J; Apse, M P; Manolson, M F; Blumwald, E

    1994-01-01

    Salt stress imposes severe limitations on plant growth, however, the extent of growth reduction depends upon the soil salinity level and the plant species. One of the mechanisms employed by salt tolerant plants is the effective vacuolar compartmentalization of sodium. The sequestration of sodium into the vacuole occurs by the operation of a Na+/H+ antiport located at the tonoplast. Evidence for a plant vacuolar Na+/H+ antiport has been demonstrated in tissues, intact vacuoles and isolated tonoplast vesicles. In sugar beet cell suspensions, the activity of the vacuolar Na+/H+ antiport increased with increasing NaCl concentrations in the growth medium. This increased activity was correlated with the increased synthesis of a 170 kDa tonoplast polypeptide. In vivo labelling of tonoplast proteins showed the enhanced synthesis of the 170 kDa polypeptide not only upon exposure of the cells to salt, but also when the cells were grown in the presence of amiloride. Exposure of the cells to amiloride also resulted in increased vacuolar Na+/H+ antiport activity. Polyclonal antibodies raised against the 170 kDa polypeptide almost completely inhibited the antiport activity, suggesting the association of this protein with the plant vacuolar Na+/H+ antiport. Antibodies against the Na+/H+ antiport-associated polypeptide were used to screen a Beta lambda ZAP expression library. A partial clone of 1.65 kb was sequenced and found to encode a polypeptide with a putative transmembrane domain and a large hydrophilic C terminus. This clone showed no homology to any previously cloned gene at either the nucleic acid or the amino acid level.

  10. Diuretics for Hypertension: A Review and Update.

    Science.gov (United States)

    Roush, George C; Sica, Domenic A

    2016-10-01

    This review and update focuses on the clinical features of hydrochlorothiazide (HCTZ), the thiazide-like agents chlorthalidone (CTDN) and indapamide (INDAP), potassium-sparing ENaC inhibitors and aldosterone receptor antagonists, and loop diuretics. Diuretics are the second most commonly prescribed class of antihypertensive medication, and thiazide-related diuretics have increased at a rate greater than that of antihypertensive medications as a whole. The latest hypertension guidelines have underscored the importance of diuretics for all patients, but particularly for those with salt-sensitive and resistant hypertension. HCTZ is 4.2-6.2 systolic mm Hg less potent than CTDN, angiotensin-converting enzyme inhibitors, beta blockers, and calcium channel blockers by 24-hour measurements and 5.1mm Hg systolic less potent than INDAP by office measurements. For reducing cardiovascular events (CVEs), HCTZ is less effective than enalapril and amlodipine in randomized trials, and, in network analysis of trials, it is less effective than CTDN and HCTZ-amiloride. Combined with thiazide-type diuretics, potassium-sparing agents decrease ventricular ectopy and reduce the risk for sudden cardiac death relative to thiazide-type diuretics used alone. A recent synthesis of 44 trials has shown that the relative potencies in milligrams among spironolactone (SPIR), amiloride, and eplerenone (EPLER) are approximately from 25 to 10 to 100, respectively, which may be important when SPIR is poorly tolerated. SPIR reduces proteinuria beyond that provided by other renin angiotensin aldosterone inhibitors. EPLER also reduces proteinuria and has beneficial effects on endothelial function. While guidelines often do not differentiate among specific diuretics, this review demonstrates that these distinctions are important for managing hypertension. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. ROMK inhibitor actions in the nephron probed with diuretics.

    Science.gov (United States)

    Kharade, Sujay V; Flores, Daniel; Lindsley, Craig W; Satlin, Lisa M; Denton, Jerod S

    2016-04-15

    Diuretics acting on specific nephron segments to inhibit Na + reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K + complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na + -K + -2Cl - cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na + channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na + excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K + secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca 2+ -activated K + channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. Copyright © 2016 the American Physiological Society.

  12. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  14. Different modes of electrogenic Na+ absorption in the coprodeum of the chicken embryo: role of extracellular Ca2+.

    Science.gov (United States)

    Heinz, M; Krattenmacher, R; Hoffmann, B; Clauss, W

    1991-01-01

    Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7 +/- 4.8 microA.cm-2 (n = 12) and 0.53 +/- 0.09 k omega.cm-2 (n = 12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-D-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8 +/- 4.7 microA.cm-2 (n = 12). Amiloride (100 mumol.l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an "apparent" order of selectivity Cs+ greater than Na+ = K+ greater than Rb+ greater than Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mumol.l-1. The IscCa could also be suppressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effects of sodium ions on rat thyrocyte (FRTL-5 cells) swelling- and thyrotropin-activated taurine efflux dependent on cAMP and Epac.

    Science.gov (United States)

    Fugelli, Kjell

    2016-03-01

    Cellular osmolyte release is important in preventing water accumulation and swelling. However, the signaling pathways that detect volume increase and activate solute efflux are still not fully understood. We investigated efflux activation of the osmolyte taurine which is actively accumulated in rat thyrocytes (FRTL-5). Efflux of accumulated [(3)H]taurine was stimulated by cellular swelling and thyrotropin (TSH). These effects were significantly diminished in cells having reduced TSH receptor concentrations. Phosphodiesterase inhibitors (IBMX, Rolipram) enhanced both responses. An analog of forskolin (FSK; 7-deacetyl-7-[O-(N-methylpiperazino)-γ-butyryl] dihydrochloride) and an analog of cAMP, specific for activating exchange protein activated directly by cAMP (Epac; 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester), significantly stimulated [(3)H]taurine efflux. A cAMP analog specific for activating protein kinase A (PKA; N6-benzoyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester) had no significant stimulatory effect on [(3)H]taurine efflux rate. The amiloride analog, 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits a TSH-stimulated Na(+)/H(+) exchanger, enhanced (100 %) and ouabain inhibited (50 %) the TSH-stimulated [(3)H]taurine efflux rate. The effect of FSK on efflux was strongly potentiated by Na(+)-free iso-osmotic conditions and by osmolality/cell volume that affected also the db-cAMP-stimulated efflux. The TSH receptors and downstream elements of the signaling pathway comprising adenylyl cyclase, cAMP and Epac appeared to mediate the hormone-induced signal for [(3)H]taurine efflux from FRTL-5 cells. With less evidence, the cell volume/osmolality-induced [(3)H]taurine efflux cascade appeared to share some of the hormone signaling elements and to modulate the hormone signaling pathway at two levels through cellular Na(+).

  16. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The role of periodontal ASIC3 in orofacial pain induced by experimental tooth movement in rats.

    Science.gov (United States)

    Gao, Meiya; Long, Hu; Ma, Wenqiang; Liao, Lina; Yang, Xin; Zhou, Yang; Shan, Di; Huang, Renhuan; Jian, Fan; Wang, Yan; Lai, Wenli

    2016-12-01

    This study aimed to clarify the roles of Acid-sensing ion channel 3 (ASIC3) in orofacial pain following experimental tooth movement. Sixty male Sprague-Dawley rats were divided into the experimental group (40g, n = 30) and the sham group (0g, n = 30). Closed coil springs were ligated between maxillary incisor and molars to achieve experimental tooth movement. Rat grimace scale (RGS) scores were assessed at 0, 1, 3, 5, 7, and 14 days after the placement of the springs. ASIC3 immunostaining was performed and the expression levels of ASIC3 were measured through integrated optical density/area in Image-Pro Plus 6.0. Moreover, 18 rats were divided into APETx2 group (n = 6), amiloride group (n = 6), and vehicle group (n = 6), and RGS scores were obtained compared among them to verify the roles of ASIC3 in orofacial pain following tooth movement. ASIC3 expression levels became significantly higher in the experimental group than in sham group on 1, 3, and 5 days and became similar on 7 and 14 days. Pain levels (RGS scores) increased in both groups and were significantly higher in the experimental group on 1, 3, 5, and 7 days and were similar on 14 days. Periodontal ASIC3 expression levels were correlated with orofacial pain levels following experimental tooth movement. Periodontal administrations of ASIC3 antagonists (APETx2 and amiloride) could alleviate pain. This study needs to be better evidenced by RNA interference of ASIC3 in periodontal tissues in rats following experimental tooth movement. Moreover, we hope further studies would concentrate on the pain perception of ASIC3 knockout (ASIC3 -/- ) mice. Our results suggest that periodontal ASIC3 plays an important role in orofacial pain induced by experimental tooth movement. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination.

    Science.gov (United States)

    Spector, Alan C; Blonde, Ginger; Garcea, Mircea; Jiang, Enshe

    2010-01-15

    Forty years have passed since it was demonstrated that a cross-regenerated gustatory nerve in the rat tongue adopts the stimulus-response properties of the taste receptor field it cross-reinnervates. Nevertheless, the functional consequences of channeling peripheral taste signals through inappropriate central circuits remain relatively unexplored. Here we tested whether histologically confirmed cross-regeneration of the chorda tympani nerve (CT) into the posterior tongue in the absence of the glossopharyngeal nerve (GL) (CT-PostTongue) or cross-regeneration of the GL into the anterior tongue in the absence of the CT (GL-AntTongue) would maintain presurgically trained performance in an operant NaCl vs. KCl taste discrimination task in rats. Before surgery all groups were averaging over 90% accuracy. Oral amiloride treatment dropped performance to virtually chance levels. During the first week after surgery, sham-operated rats, GL-transected rats, and rats with regenerated CTs displayed highly competent discrimination performance. In contrast, CT-transected rats were severely impaired (59% accuracy). Both the CT-PostTongue and the GL-AntTongue groups were impaired to a similar degree as CT-transected rats. These initially impaired groups improved their performance over the weeks of postsurgical testing, suggesting that the rats were capable of relearning the task with discriminable signals in the remaining taste nerves. This relearned performance was dependent on input from amiloride-sensitive receptors likely in the palate. Overall, these results suggest that normal competence in a salt discrimination task is dependent on the taste receptor field origin of the input as well as the specific nerve transmitting the signals to its associated circuits in the brain. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    Science.gov (United States)

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  20. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    Science.gov (United States)

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  1. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension.

    Science.gov (United States)

    Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro

    2017-07-01

    Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the

  2. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-01-01

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  3. Preeclampsia, migración celular y canales iónicos Preeclampsia, cellular migration and ion channels

    Directory of Open Access Journals (Sweden)

    Silvana M. del Mónaco

    2008-10-01

    Full Text Available En la placenta humana, el sinciciotrofoblasto es la barrera que regula el transporte de nutrientes, solutos y agua entre la sangre materna y fetal. Dentro de este movimiento transepitelial se encuentra el del Na+, su contribución a la presión osmótica es fundamental en la regulación del volumen de líquido extracelular. El canal epitelial de sodio sensible al amiloride (ENaC media el transporte de Na+ desde el lumen hacia el interior celular en numerosos epitelios absortivos. Está regulado por la aldosterona, vasopresina, catecolaminas, estrógenos y progesterona. Es bloqueado por el amiloride y sus análogos. Para su activación, diversas proteasas lo escinden en la membrana plasmática y esto a su vez es regulado por la aldosterona. El ENaC está expresado también en la placenta humana y aunque su función no es conocida, podría participar en la homeostasis de agua y electrolitos. El ENaC también es influenciado por el estado de las proteínas del citoesqueleto y los cambios en el volumen celular alteran a su vez a éste. De esta manera existe una relación entre el ENaC y el citoesqueleto. Además, las corrientes de Na+ por el ENaC y otros canales de sodio participan en la migración celular en células normales y cancerosas. Aquí presentamos evidencias que avalan la hipótesis que el ENaC es necesario para la migración celular en células BeWo, derivadas del trofoblasto humano, que sintetizan hormonas y expresan el ENaC. Las células BeWO han sido utilizadas como modelo experimental para estudiar el transporte en células de placenta.The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into

  4. Acidic pH facilitates peripheral αβmeATP-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia.

    Science.gov (United States)

    Seo, Hyoung-Sig; Roh, Dae-Hyun; Kwon, Soon-Gu; Yoon, Seo-Yeon; Kang, Suk-Yun; Moon, Ji-Young; Choi, Sheu-Ran; Beitz, Alvin J; Lee, Jang-Hern

    2011-03-01

    Peripheral ischemia is commonly associated with an increase in tissue ATP concentration and a decrease in tissue pH. Although in vitro data suggest that low tissue pH can affect ATP-binding affinities to P2 receptors, the mechanistic relationship between ATP and low pH on peripheral nociception has not been fully examined. This study was designed to investigate the potential role of an acidified environment on intraplantar αβmeATP-induced peripheral pain responses in rats. The mechanical allodynia (MA) produced by injection of αβmeATP was significantly increased in animals that received the drug diluted in pH 4.0 saline compared to those that received the drug diluted in pH 7.0 saline. Moreover, animals injected with αβmeATP (100 nmol) in pH 4.0 saline developed thermal hyperalgesia (TH), which did not occur in animals treated with αβmeATP diluted in pH 7.0 saline. To elucidate which receptors were involved in this pH-related facilitation of αβmeATP-induced MA and TH, rats were pretreated with PPADS (P2 antagonist), TNP-ATP (P2X antagonist), MRS2179 (P2Y1 antagonist), AMG9810 (TRPV1 antagonist) or amiloride (ASIC blocker). Both PPADS and TNP-ATP dose-dependently blocked pH-facilitated MA, while TH was significantly reduced by pre-treatment with MRS2179 or AMG9810. Moreover, amiloride injection significantly reduced low pH-induced facilitation of αβmeATP-mediated MA, but not TH. These results demonstrate that low tissue pH facilitates ATP-mediated MA via the activation of P2X receptors and ASICs, whereas TH induced by ATP under low pH conditions is mediated by the P2Y1 receptor and TRPV1, but not ASIC. Thus distinct mechanisms are responsible for the development of MA and TH under conditions of tissue acidosis and increased ATP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Effect of cAMP on short-circuit current in isolated human ciliary body.

    Science.gov (United States)

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  6. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    Science.gov (United States)

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  7. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis.

    Science.gov (United States)

    Huerta-García, Elizabeth; Márquez-Ramírez, Sandra Gissela; Ramos-Godinez, María Del Pilar; López-Saavedra, Alejandro; Herrera, Luis Alonso; Parra, Alberto; Alfaro-Moreno, Ernesto; Gómez, Erika Olivia; López-Marure, Rebeca

    2015-12-01

    Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their

  8. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  9. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons

    Directory of Open Access Journals (Sweden)

    Antonia eGonzález-Garrido

    2015-12-01

    Full Text Available Acid-sensing ion channels (ASICs are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4 that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs. These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations and N,N,N’,N’–tetrakis-(2-piridilmetil-etilendiamina (TPEN increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2 and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  10. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  11. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Altmann, Joseph B; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-08-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.

  12. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    International Nuclear Information System (INIS)

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-01-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself

  13. Correlation of open cell-attached and excised patch clamp techniques.

    Science.gov (United States)

    Filipovic, D; Hayslett, J P

    1995-11-01

    The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.

  14. Liddle Syndrome: Review of the Literature and Description of a New Case

    Directory of Open Access Journals (Sweden)

    Martina Tetti

    2018-03-01

    Full Text Available Liddle syndrome is an inherited form of low-renin hypertension, transmitted with an autosomal dominant pattern. The molecular basis of Liddle syndrome resides in germline mutations of the SCNN1A, SCNN1B and SCNN1G genes, encoding the α, β, and γ-subunits of the epithelial Na+ channel (ENaC, respectively. To date, 31 different causative mutations have been reported in 72 families from four continents. The majority of the substitutions cause an increased expression of the channel at the distal nephron apical membrane, with subsequent enhanced renal sodium reabsorption. The most common clinical presentation of the disease is early onset hypertension, hypokalemia, metabolic alkalosis, suppressed plasma renin activity and low plasma aldosterone. Consequently, treatment of Liddle syndrome is based on the administration of ENaC blockers, amiloride and triamterene. Herein, we discuss the genetic basis, clinical presentation, diagnosis and treatment of Liddle syndrome. Finally, we report a new case in an Italian family, caused by a SCNN1B p.Pro618Leu substitution.

  15. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  16. Ion transport by mitochondria-rich cells in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Ussing, H H; Spring, K R

    1987-01-01

    The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution....... Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From...... the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9 +/- 1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to -100 mV, serosa grounded) resulted in a cell volume increase with a time course...

  17. A review on the use of bulk specimen X-ray microanalysis in cancer research

    International Nuclear Information System (INIS)

    Zs-Nagy, I.

    1989-01-01

    The freeze-fracture, freeze-drying (FFFD) method of biological bulk specimen preparation combined with quantitative X-ray microanalysis is suitable for the measurement of intracellular concentrations of biologically relevant elements in human biopsy or experimental animal materials. Especially useful information can be obtained regarding the intracellular Na+/K+ ratios being independent of the actual (and unknown) water content of the cytoplasm. The sustained increase of this ratio indicates a sustained depolarization of the cell membrane. These data are of importance from the point of view of the membrane hypothesis of mitogenesis (MHM). It has been revealed that the distribution histograms of the intracellular Na+/K+ ratio display a very significant broadening and an increase of the average values in human urogenital, thyroid and laryngeal tumors, as well as in experimentally induced cell proliferation models. Although MHM has been claimed to be invalid on the basis of some atomic absorption measurements of the intracellular monovalent ion concentrations as well as of some in vitro results obtained with amiloride, this review paper demonstrates that MHM may still be a valid hypothesis for the explanation of mitotic regulation.97 references

  18. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  19. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    International Nuclear Information System (INIS)

    Mellas, J.; Hammerman, M.R.

    1986-01-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na + -H + exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using [ 14 C]-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 γ phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular [Na + ] > intracellular [Na + ], was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na + -H + exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells

  20. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-01-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3 H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22 Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  1. Crude venom from nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells

    Science.gov (United States)

    Morabito, Rossana; Costa, Roberta; Rizzo, Valentina; Remigante, Alessia; Nofziger, Charity; La Spada, Giuseppa; Marino, Angela; Paulmichl, Markus; Dossena, Silvia

    2017-01-01

    Cnidarians may negatively impact human activities and public health but concomitantly their venom represents a rich source of bioactive substances. Pelagia noctiluca is the most venomous and abundant jellyfish of the Mediterranean Sea and possesses a venom with hemolytic and cytolytic activity for which the mechanism is largely unknown. Here we show that exposure of mammalian cells to crude venom from the nematocysts of P. noctiluca profoundly alters the ion conductance of the plasma membrane, therefore affecting homeostatic functions such as the regulation and maintenance of cellular volume. Venom-treated cells exhibited a large, inwardly rectifying current mainly due to permeation of Na+ and Cl-, sensitive to amiloride and completely abrogated following harsh thermal treatment of crude venom extract. Curiously, the plasma membrane conductance of Ca2+ and K+ was not affected. Current-inducing activity was also observed following delivery of venom to the cytosolic side of the plasma membrane, consistent with a pore-forming mechanism. Venom-induced NaCl influx followed by water and consequent cell swelling most likely underlie the hemolytic and cytolytic activity of P. noctiluca venom. The present study underscores unique properties of P. noctiluca venom and provides essential information for a possible use of its active compounds and treatment of envenomation.

  2. Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NHX and Human Sodium Proton Exchanger (NHE Homologs in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    P. Hima Kumari

    2018-05-01

    Full Text Available Na+ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX and sodium-proton exchanger (NHE-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na+/H+ exchanger activity binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein–protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL- CBL interacting protein kinases (CIPK pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.

  3. Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions

    Directory of Open Access Journals (Sweden)

    Kristy L. Nowak-Lovato

    2012-01-01

    Full Text Available This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors that have both sensing and targeting functions. The addition of 2,4-ε-dinitrophenol-L-lysine (DNP as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+] concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1 at physiological temperature (37°C versus room temperature (25°C, (2 after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3 in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.

  4. Na(+) /H(+) exchanger 1 (NHE1) function is necessary for maintaining mammary tissue architecture.

    Science.gov (United States)

    Jenkins, Edmund C; Debnath, Shawon; Varriano, Sophia; Gundry, Stephen; Fata, Jimmie E

    2014-02-01

    The mammary gland is an ideal model to study the link between form and function in normal tissue. Perhaps as interesting as the cues necessary to generate this structure are the signals required to maintain its branched architecture over the lifetime of the organism, since likely these pathways are de-regulated in malignancies. Previously, we have shown that the Na(+) /H(+) exchanger 1 (NHE1), a critical regulator of intracellular pH, was necessary for mammary branching morphogenesis. Here we provide strong evidence that NHE1 function is also necessary for maintaining mammary branched architecture. Inhibition of NHE1 with 5-N-Methy-N-isobutyl amiloride (MIA) on branched structures resulted in a rapid (within 24 hr) and reversible loss of branched architecture that was not accompanied by any overt changes in cell proliferation or cell death. NHE1 inhibition led to a significant acidification of intracellular pH in the branched end buds that preceded a number of events, including altered tissue polarity of myoepithelial cells, loss of NHE1 basal polarity, F-actin rearrangements, and decreased E-cadherin expression. Our results implicate NHE1 function and intracellular pH homeostasis as key factors that maintain mammary tissue architecture, thus, indirectly allowing for mammary function as a milk-providing (form) and -producing (function) gland. Copyright © 2013 Wiley Periodicals, Inc.

  5. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    Directory of Open Access Journals (Sweden)

    Chenggu Cai

    Full Text Available Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2 and Tas1r3 (taste receptor type 1 member 3. Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  6. Diabetes insipidus: The other diabetes

    Science.gov (United States)

    Kalra, Sanjay; Zargar, Abdul Hamid; Jain, Sunil M.; Sethi, Bipin; Chowdhury, Subhankar; Singh, Awadhesh Kumar; Thomas, Nihal; Unnikrishnan, A. G.; Thakkar, Piya Ballani; Malve, Harshad

    2016-01-01

    Diabetes insipidus (DI) is a hereditary or acquired condition which disrupts normal life of persons with the condition; disruption is due to increased thirst and passing of large volumes of urine, even at night. A systematic search of literature for DI was carried out using the PubMed database for the purpose of this review. Central DI due to impaired secretion of arginine vasopressin (AVP) could result from traumatic brain injury, surgery, or tumors whereas nephrogenic DI due to failure of the kidney to respond to AVP is usually inherited. The earliest treatment was posterior pituitary extracts containing vasopressin and oxytocin. The synthetic analog of vasopressin, desmopressin has several benefits over vasopressin. Desmopressin was initially available as intranasal preparation, but now the oral tablet and melt formulations have gained significance, with benefits such as ease of administration and stability at room temperature. Other molecules used for treatment include chlorpropamide, carbamazepine, thiazide diuretics, indapamide, clofibrate, indomethacin, and amiloride. However, desmopressin remains the most widely used drug for the treatment of DI. This review covers the physiology of water balance, causes of DI and various treatment modalities available, with a special focus on desmopressin. PMID:26904464

  7. Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch.

    Science.gov (United States)

    Chorro, Francisco J; Canto, Irene Del; Brines, Laia; Such-Miquel, Luis; Calvo, Conrado; Soler, Carlos; Zarzoso, Manuel; Trapero, Isabel; Tormos, Álvaro; Such, Luis

    2015-12-01

    Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 μM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 μM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 μM, n = 9). EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [PII receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Tubular transport and metabolism of cimetidine in chicken kidneys

    International Nuclear Information System (INIS)

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-01-01

    Renal tubular transport and renal metabolism of [ 14 C]cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). [ 14 C]CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of [ 14 C]CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of [ 14 C]thiamine, [ 14 C]amiloride and [ 14 C]tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion

  9. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  10. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  11. An acid-sensing ion channel from shark (Squalus acanthias) mediates transient and sustained responses to protons.

    Science.gov (United States)

    Springauf, Andreas; Gründer, Stefan

    2010-03-01

    Acid-sensing ion channels (ASICs) are proton-gated Na(+) channels. They are implicated in synaptic transmission, detection of painful acidosis, and possibly sour taste. The typical ASIC current is a transient, completely desensitizing current that can be blocked by the diuretic amiloride. ASICs are present in chordates but are absent in other animals. They have been cloned from urochordates, jawless vertebrates, cartilaginous shark and bony fish, from chicken and different mammals. Strikingly, all ASICs that have so far been characterized from urochordates, jawless vertebrates and shark are not gated by protons, suggesting that proton gating evolved relatively late in bony fish and that primitive ASICs had a different and unknown gating mechanism. Recently, amino acids that are crucial for the proton gating of rat ASIC1a have been identified. These residues are completely conserved in shark ASIC1b (sASIC1b), prompting us to re-evaluate the proton sensitivity of sASIC1b. Here we show that, contrary to previous findings, sASIC1b is indeed gated by protons with half-maximal activation at pH 6.0. sASIC1b desensitizes quickly but incompletely, efficiently encoding transient as well as sustained proton signals. Our results show that the conservation of the amino acids crucial for proton gating can predict proton sensitivity of an ASIC and increase our understanding of the evolution of ASICs.

  12. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Schafer, J.A.; Troutman, S.L.

    1986-01-01

    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway

  13. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    International Nuclear Information System (INIS)

    Roberts, R.B.; Ku, D.D.

    1986-01-01

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1μM), cyproheptadine (1μH) and ibuprofen (1μg/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca 0 ) or addition of 1μM nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10μM to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca 0 . More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects

  14. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery.

    Science.gov (United States)

    Ghaffarian, Rasa; Muro, Silvia

    2014-12-01

    Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (drug delivery.

  15. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  16. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  17. Kidney in potassium depletion. II. K+ handling by the isolated perfused rat kidney

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    In a companion paper the authors reported a large increment in Na + -K + -ATPase activity and [ 3 H]ouabain binding the inner stripe of outer medullary collecting tubules from K-depleted rats. To test the hypothesis that the increased number of Na + -K + pumps in these animals may be involved in potassium reabsorption they examined the effect of ouabain on K excretion by isolated, perfused kidneys from rats fed a K-free diet for 3 wk. Kidneys from K-depleted rats retain potassium avidly, both the fractional (FE/sub K/) and absolute K excretion being approximately fivefold lower than in control kidneys. Ouabain (5 mM) increased FE/sub K/ in kidneys from each K-depleted rat; similar results were obtained when kidneys were perfused with low and high potassium concentrations. In contrast, ouabain produced a variable effect in control kidneys, that depended on the perfusate potassium concentration. In K-depleted rats amiloride did not significantly alter K excretion and did not block the ouabain-induced kaliuresis, suggesting that the latter is not due to enhanced secretion secondary to increased distal fluid delivery. These results provide evidence for ouabain-sensitive potassium reabsorption in kidneys of chronically K-depleted rats, and suggest an explanation for the increased Na + -K + -ATPase observed in such animals

  18. The effects of environmental deuterium on normal and neoplastic cultured cell development

    International Nuclear Information System (INIS)

    Bild, W.; Schuller, T.; Zhihai, Qin; Blankenstein, T.; Nastasa, V.; Haulica, I.

    2000-01-01

    The powdered culture media (RPMI - 1640) were reconstituted either with normal distilled water (150 ppm deuterium) either with deuterium - depleted water (DDW) in various concentrations (30, 60, 90 ppm) and sterilized by filtration with 0.2 μm filters. The cell lines used were NIH (normal mouse fibroblasts), RAG (mouse renal carcinoma) and TS/A (mouse mammary adenocarcinoma). In auxiliary tests, BAIBC mouse splenocytes in direct culture were used, stimulated for growth with concanavalin A or LPS (bacterial lipopolysaccharide). The estimation of the growth was made using the MTT assay or direct counting with trypan blue exclusion. The following results were obtained: Deuterium - depleted water had a stimulating effect on cell growth, the most important stimulating action being from the 90 ppm deuterium-water. The growth curves show, in a first phase, a stimulation of the rapid -growing neoplastic cells, followed by a slower growth of the normal cells. Amiloride 100 mM blocking of the Na + /K + membrane pump did not affect the cell growth curves, while the lansoprazole 100 mM blocking of the K + /H + ATP-ase brought the growth curves at the level of those with normal water. This might show an eventual involvement of the K + /H + antiport in the stimulating effects of the DDW. (authors)

  19. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Hanna M Vesterinen

    Full Text Available To develop and implement an evidence based framework to select, from drugs already licenced, candidate oral neuroprotective drugs to be tested in secondary progressive multiple sclerosis.Systematic review of clinical studies of oral putative neuroprotective therapies in MS and four other neurodegenerative diseases with shared pathological features, followed by systematic review and meta-analyses of the in vivo experimental data for those interventions. We presented summary data to an international multi-disciplinary committee, which assessed each drug in turn using pre-specified criteria including consideration of mechanism of action.We identified a short list of fifty-two candidate interventions. After review of all clinical and pre-clinical evidence we identified ibudilast, riluzole, amiloride, pirfenidone, fluoxetine, oxcarbazepine, and the polyunsaturated fatty-acid class (Linoleic Acid, Lipoic acid; Omega-3 fatty acid, Max EPA oil as lead candidates for clinical evaluation.We demonstrate a standardised and systematic approach to candidate identification for drug rescue and repurposing trials that can be applied widely to neurodegenerative disorders.

  20. Hypertension in the course of primary aldosteronism during pregnancy

    Directory of Open Access Journals (Sweden)

    Magdalena Wyskida

    2015-02-01

    Full Text Available Hypertension is one of the most common cardiovascular diseases during pregnancy. Primary hyperaldosteronism (PHA is the most frequent endocrinological, secondary cause of hypertension, rarely diagnosed in pregnant women. In the available literature about 50 cases of PHA in pregnant women have been described. PHA is often a cause of resistant hypertension. PHA can cause life-threatening complications both for the pregnant woman and the fetus. Diagnosis of PHA in pregnancy is difficult due to the antagonistic effect of progesterone on aldosterone, physiological increase of aldosterone release during gestation and frequent normokalaemic clinical course. Typical pharmacological treatment of PHA is limited due to the anti‑androgenic effect of spironolactone, lack of data concerning the safety of eplerenone and limited access to amiloride in Poland. Surgical treatment is a therapeutic option only in early pregnancy. This paper presents the current state of knowledge on diagnostic methods and treatment of PHA in pregnant women and a systematic review of cases described in the literature.

  1. [Diuretics in monotherapy and in combination with other diuretics and nondiuretics in the treatment of hypertension].

    Science.gov (United States)

    Spinar, J; Spinarová, L; Vítovec, J

    2013-06-01

    Diuretics belong to the basic group of medicines for the treatment of hypertension and heart failure. In the case of hypertension treatment, their main indication is higher age and isolated systolic hypertension. In the case of heart failure they are used for the treatment of swellings and shortness of breath. The most frequently prescribed group of diuretics is thiazides and similar products. In patients with renal insufficiency, loop diuretics are administered. In the case of hypertension, diuretics are mainly used in the combination treatment. The most frequently used diuretic in combination is again hydrochlorothiazide, which is combined with reninangiotensin system blockers. It is mainly the combination of an ACE inhibitor + indapamide that seems to be modern and promising, and it is, on the basis of large clinical trials, recommended also for diabetics (ADVANCE) or for secondary prevention following a cerebrovascular accident (PROGRESS) or for the elderly (HYVET). Also a combination of two diuretics is popular -  mainly hydrochlorothiazide + amiloride. A combination of a betablocker and diuretic is less suitable.

  2. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  3. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  4. Veneno de Latrodectus mactans de Chile (Araneae, Theridiidae: su efecto sobre músculo liso

    Directory of Open Access Journals (Sweden)

    Fernando Romero M.

    2003-06-01

    Full Text Available El veneno de arañas del género Latrodectus induce contracción de músculo liso de mamíferos, postulándose como posible mecanismo la liberación de mediadores adrenérgicos y colinérgicos. El veneno de Latrodectus mactans de Chile contiene neurotoxinas que inducen actividad contráctil en músculo liso en forma parcialmente independiente de actividades adrenérgicas y colinérgicas, lo que deja abiertas interrogantes sobre el mecanismo de acción del veneno. La respuesta tónica en músculo liso depende de la movilidad de los iones sodio (Na+ y calcio (Ca2+ y, más es-pecíficamente, de la concentración de Ca2+ citoplasmático. Una de las vías de ingreso del calcio al músculo liso, además de los canales tipo L de Ca2+ , es el intercambiador Na+/Ca2+ . En el presente trabajo se estudia la posible participación de este intercambiador en la respuesta tónica inducida por el veneno sobre músculo liso del conducto deferente de rata, en un modelo de órgano aislado. Utilizando bloqueadores de canales de Na+ (amiloride y Ca2+ (nifedipina y una solución estimuladora del intercambiador (Tyrode pobre en sodio, se realizaron registros de tensión isométrica inducida por el veneno. Simultáneamente al uso de nifedipina, se registraron las variaciones de la [Ca2+] citoplasmática mediante microfluorimetría. Se observó que la inhibición de la contracción en presencia de amiloride depende de su concentración, mostrando una participación de los canales de Ca2+ dependientes de voltaje en la contracción. En presencia de nifedipina, la contracción inducida por el veneno sólo fue parcialmente inhibida, y la microfluorimetría mostró un aumento de la concentración de Ca2+ citoplasmático en presencia del bloqueador, lo que indica una participación de otros mecanismos para el ingreso de Ca2+ a la célula. Por último, al disminuir la concentración de Na+ extracelular se estimuló la contracción tónica en un 30.7%, atribuible, al menos en

  5. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  6. Increased Asics Expression via the Camkii-CREB Pathway in a Novel Mouse Model of Trigeminal Pain

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2018-03-01

    Full Text Available Background/Aims: Migraine is a disabling condition that severely impacts socioeconomic function and quality of life. The focus of this study was to develop a mouse model of trigeminal pain that mimics migraine. Methods: After undergoing dural cannulation surgery, mice were treated with repeated dural doses of an acidic solution to induce trigeminal pain. Results: The method elicited intermittent, head-directed wiping and scratching as well as the expression of both the c-FOS gene in the spinal trigeminal nucleus caudalis and calcitonin gene related peptide (CGRP in the periaqueductal grey matter. Interestingly, the acid-induced trigeminal pain behaviour was inhibited by amiloride, an antagonist of acid-sensing ion channels (ASICs, but not by AMG-9810, an inhibitor of transient receptor potential cation channel V1(TRPV1. In addition, the relative mRNA and protein expression levels of ASIC1a and ASIC3 were increased in the acid-induced trigeminal nociceptive pathways. Furthermore, blocking CaMKII with KN-93 significantly reduced the acid-induced trigeminal pain behaviour and c-FOS gene expression. Conclusion: The data suggested that chronic intermittent administration of an acidic solution to mice resulted in trigeminal hypersensitivity and that dural acid-induced trigeminal pain behaviour in mice may mechanistically mimic migraine. The observations here identify an entirely novel treatment strategy for migraine.

  7. Pre- and post-treatment urinary tract findings in children with nephrogenic diabetes insipidus.

    Science.gov (United States)

    Caletti, María Gracia; Balestracci, Alejandro; Di Pinto, Diana

    2014-03-01

    Nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate urine, which causes intense polyuria that may lead to urinary tract dilation. We report the morphological findings of the urinary tract in ten boys with NDI specifically addressing the presence and changes of urinary tract dilation during treatment. Patients were diagnosed at a median age of 1.6 years (range, 0.16-6.33 years) and treated with a low osmotic diet, hydrochlorothiazide-amiloride and indomethacin, which decreased the diuresis from a median of 10.5 ml/kg/h to 4.4 ml/kg/h (p < 0.001). Three patients showed normal renal ultrasound before treatment until last control, while the remaining seven showed urinary tract dilation. In this second group, dilation was reduced with treatment in four patients and disappeared in the remaining three. Children without dilation or in whom the dilation disappeared were diagnosed and treated earlier than those with persistent dilation (median 1.66 versus 4.45 years, respectively). After a median of 10.4 (range, 2.3-20.3) years of follow-up, no patients showed urological complications. Medical treatment of the disease improved the dilation in all cases, preventing its potential complications. Regardless of the good outcome of our patients, periodic urologic follow-up is recommended in NDI patients.

  8. NH4+ secretion in the avian colon. An actively regulated barrier to ammonium permeation of the colon mucosa

    DEFF Research Database (Denmark)

    Holtug, K.; Laverty, G.; Arnason, S.S.

    2009-01-01

    Experiments were designed to characterize an active, electrogenic transport of NH(4)(+) ions across the colonic epithelium of the domestic fowl (Gallus gallus). Colonic segments were isolated and stripped of underlying muscle. The mucosal epithelia were mounted in Ussing chambers and voltage......-clamped to measure the short-circuit currents (I(SC)) associated with transport. Bilateral addition of NH(4)(+) caused a dose-dependent outward current (negative I(SC)), with a Km of 34+/-8 mM and a maximal current response of 311+/-47 microA cm(-2) (12+/-2 microEq cm(-2) h(-1)). A similar effect was seen...... with unilateral addition of NH(4)(+) to the serosal (s) side, but not with mucosal (m) addition. Pre-treatment with 10(-4) M amiloride exposed a net outward (negative) I(SC), and serosal NH(4)(+) addition further increased this outward current with a Km of 53+/-24 mM. Decreasing the bath pH from 7.3 to 6.0 did...

  9. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  10. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    Science.gov (United States)

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Novel Role of Dickkopf-Related Protein 3 in Macropinocytosis in Human Bladder Cancer T24 Cells

    Directory of Open Access Journals (Sweden)

    Nonoka Tsujimura

    2016-11-01

    Full Text Available Dickkopf-related protein 3 (Dkk-3 is a potential tumor suppressor reported in various cancer entities. However, we found that Dkk-3 was exceptionally upregulated in bladder cancer T24 cells. To validate the biological role of Dkk-3 other than a tumor suppressor, we examined the function of Dkk-3 in T24 cells. Gene silencing of Dkk-3 inhibited cell growth through inducing G0/G1 cell-cycle arrest. Furthermore, Dkk-3 knock-down caused macropinocytosis accompanied by autophagy, which were canceled in part by their inhibitors 5-(N-ethyl-N-isopropyl amiloride (EIPA and 3-methyladenine (3-MA. The macropinocytosis was induced by the Dkk-3 knock-down when there were sufficient extracellular nutrients. On the other hand, when the nutritional condition was poor, the autophagy was mainly induced by the Dkk-3 knock-down. These data indicated that Dkk-3 has a role in modulating macropinocytotic and autophagic pathways, a distinct function other than a Wnt antagonist.

  12. A Novel Role of Dickkopf-Related Protein 3 in Macropinocytosis in Human Bladder Cancer T24 Cells

    Science.gov (United States)

    Tsujimura, Nonoka; Yamada, Nami O.; Kuranaga, Yuki; Kumazaki, Minami; Shinohara, Haruka; Taniguchi, Kohei; Akao, Yukihiro

    2016-01-01

    Dickkopf-related protein 3 (Dkk-3) is a potential tumor suppressor reported in various cancer entities. However, we found that Dkk-3 was exceptionally upregulated in bladder cancer T24 cells. To validate the biological role of Dkk-3 other than a tumor suppressor, we examined the function of Dkk-3 in T24 cells. Gene silencing of Dkk-3 inhibited cell growth through inducing G0/G1 cell-cycle arrest. Furthermore, Dkk-3 knock-down caused macropinocytosis accompanied by autophagy, which were canceled in part by their inhibitors 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and 3-methyladenine (3-MA). The macropinocytosis was induced by the Dkk-3 knock-down when there were sufficient extracellular nutrients. On the other hand, when the nutritional condition was poor, the autophagy was mainly induced by the Dkk-3 knock-down. These data indicated that Dkk-3 has a role in modulating macropinocytotic and autophagic pathways, a distinct function other than a Wnt antagonist. PMID:27827955

  13. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na-selective membrane.2. In this state, the transepithelial voltage (V...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... of the inward facing membranes but reflects the true behaviour of P(Na).6. The steady-state P(Na) at a given (Na)(o) is smaller than the transient P(Na) observed right after a stepwise increase of (Na)(o) to this value. The time constant of P(Na)-relaxation is in the order of seconds.7. In conclusion, Na...

  14. The effect of the size of fluorescent dextran on its endocytic pathway.

    Science.gov (United States)

    Li, Lei; Wan, Tao; Wan, Min; Liu, Bei; Cheng, Ran; Zhang, Rongying

    2015-05-01

    Fluorescent dextrans are commonly used as macropinocytic probes to study the properties of endocytic cargoes; however, the effect of the size of dextrans on endocytic mechanisms has not been carefully analyzed. By using chemical and siRNA inhibition of individual endocytic pathways, we evaluated the internalization of two commonly used dextrans, Dex10 (dextran 10 kDa) and Dex70 (dextran 70 kDa), in mammalian HeLa cells and Caenorhabditis elegans coelomocytes. We revealed that Dex70 enters these two cell types predominantly via clathrin- and dynamin-independent and amiloride-sensitive macropinocytosis process; Dex10, on the other hand, enters the two cell types through clathrin-/dynamin-dependent micropinocytosis in addition to macropinocytosis. In addition, although different-sized dextrans follow different endocytic processes, they share common post-endocytic events. Herein, though straightforward, our studies support that the size of nanomaterials could play a paramount role in their inclusion into endocytic vesicles and suggest that care should be taken while selecting endocytic pathway markers. Based on our results, we propose that Dex70 is a better probe for macropinocytosis, whereas Dex10 and smaller molecules are better for probing general fluid-phase endocytosis, which includes macropinocytic and micropinocytic processes. © 2015 International Federation for Cell Biology.

  15. Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro.

    Science.gov (United States)

    Lionetto, S; Little, A; Moriceau, G; Heymann, D; Decurtins, M; Plecko, M; Filgueira, L; Cadosch, D

    2013-04-01

    In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS. Copyright © 2012 Wiley Periodicals, Inc.

  16. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  17. Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes I and II.

    Science.gov (United States)

    Takano, Tomomi; Nakano, Kenta; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2015-05-01

    Feline infectious peritonitis virus (FIP virus: FIPV), a feline coronavirus of the family Coronaviridae, causes a fatal disease called FIP in wild and domestic cat species. The genome of coronaviruses encodes a hydrophobic transmembrane protein, the envelope (E) protein. The E protein possesses ion channel activity. Viral proteins with ion channel activity are collectively termed "viroporins". Hexamethylene amiloride (HMA), a viroporin inhibitor, can inhibit the ion channel activity of the E protein and replication of several coronaviruses. However, it is not clear whether HMA and other viroporin inhibitors affect replication of FIPV. We examined the effect of HMA and other viroporin inhibitors (DIDS [4,4'-disothiocyano-2,2'-stilbenedisulphonic acid] and amantadine) on infection by FIPV serotypes I and II. HMA treatment drastically decreased the titers of FIPV serotype I strains Black and KU-2 in a dose-dependent manner, but it only slightly decreased the titer of FIPV serotype II strain 79-1146. In contrast, DIDS treatment decreased the titer of FIPV serotype II strain 79-1146 in dose-dependent manner, but it only slightly decreased the titers of FIPV serotype I strains Black and KU-2. We investigated whether there is a difference in ion channel activity of the E protein between viral serotypes using E. coli cells expressing the E protein of FIPV serotypes I and II. No difference was observed, suggesting that a viroporin other than the E protein influences the differences in the actions of HMA and DIDS on FIPV serotypes I and II.

  18. p-aminohippurate transport in the airways: Role of Na sup + and HCO sub 3 -

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, M.M. (Univ. of Connecticut Health Center, Farmington (USA))

    1989-12-01

    The role of Na{sup +} and HCO{sub 3}- in the transport of p-aminohippurate (PAH) across the canine tracheal epithelium was investigated using Ussing chamber techniques and radiolabeled PAH. Under control conditions, net PAH absorption or a tendency toward net PAH absorption was observed. Neither amiloride (10(-4) M), furosemide (10(-3) M), ouabain (2 x 10(-4) M), nor Na+ substitution of the Ringer solution with choline had any effect on unidirectional PAH fluxes. When the Ringer solution was replaced with a HCO{sub 3}(-)-free solution, net PAH absorption was consistently observed. In HCO{sub 3}(-)-free experiments, unidirectional PAH absorptive fluxes were inhibited by mucosal addition of either of the stilbene derivatives, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 10(-4) M) or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS, 10(-4) M). DIDS was more effective than SITS and was also effective in inhibiting PAH absorption in tissues bathed in Ringer solution. Submucosal DIDS or SITS had no effect on PAH fluxes either in HCO{sub 3}(-)-free or Ringer experiments. We conclude that PAH transport in canine tracheal epithelium occurs by a HCO{sub 3}(-)-PAH exchange process located on the luminal membrane. PAH transport is not Na{sup +} dependent but is inhibited by both DIDS and SITS.

  19. Pharmacological evaluation of NSAID-induced gastropathy as a "Translatable" model of referred visceral hypersensitivity.

    Science.gov (United States)

    Hummel, Michele; Knappenberger, Terri; Reilly, Meghan; Whiteside, Garth T

    2017-09-07

    To evaluate whether non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastropathy is a clinically predictive model of referred visceral hypersensitivity. Gastric ulcer pain was induced by the oral administration of indomethacin to male, CD1 mice ( n = 10/group) and then assessed by measuring referred abdominal hypersensitivity to tactile application. A diverse range of pharmacological mechanisms contributing to the pain were subsequently investigated. These mechanisms included: transient receptor potential (TRP), sodium and acid-sensing ion channels (ASICs) as well as opioid receptors and guanylate cyclase C (GC-C). Results showed that two opioids and a GC-C agonist, morphine, asimadoline and linaclotide, respectively, the TRP antagonists, AMG9810 and HC-030031 and the sodium channel blocker, carbamazepine, elicited a dose- and/or time-dependent attenuation of referred visceral hypersensitivity, while the ASIC blocker, amiloride, was ineffective at all doses tested. Together, these findings implicate opioid receptors, GC-C, and sodium and TRP channel activation as possible mechanisms associated with visceral hypersensitivity. More importantly, these findings also validate NSAID-induced gastropathy as a sensitive and clinically predictive mouse model suitable for assessing novel molecules with potential pain-attenuating properties.

  20. Early effects of aldosterone on Na-K pump in rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Fujii, Y.; Takemoto, F.; Katz, A.I.

    1990-01-01

    Sustained exposure to aldosterone (Aldo) increases the abundance and activity of the Na-K pump in cortical collecting tubules (CCT). However, the onset and mechanism of the early interaction of Aldo with the CCT pump, especially in adrenal-intact animals, are unclear. We evaluated the short-term effects of the hormone on Na-K-adenosinetriphosphatase (ATPase) activity and on ouabain-sensitive 86Rb uptake, a measure of the transporting rate of the pump, in microdissected CCT from adrenal-intact rats. Incubation with Aldo (10(-8) M, 2 h) had no effect on Na-K-ATPase activity (Vmax), whereas it produced at least a twofold increase in 86Rb uptake. This effect was generated by physiological concentrations of the hormone (threshold 10(-10) M; apparent K1/2 approximately 10(-9) M), after a short lag of less than or equal to 30 min. Incubation with Aldo in the presence of amiloride or nystatin or in a Na-free medium (choline chloride) did not prevent the enhanced 86Rb uptake seen after Aldo alone; possible interpretations of these observations are discussed. We conclude that Aldo produces a rapid stimulation of pump function in CCT that precedes its induction of new pump synthesis; the physiological significance of this effect is suggested by its occurrence in tubules from adrenal-intact animals within the time frame and concentration range of the hormone's effects on electrolyte transport

  1. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex.

    Science.gov (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P

    2008-10-01

    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  2. The mechanism of fluid secretion in the rabbit pancreas studied by means of various inhibitors.

    Science.gov (United States)

    Kuijpers, G A; Van Nooy, I G; De Pont, J J; Bonting, S L

    1984-12-05

    In order to increase our understanding of the mechanism of pancreatic fluid secretion we have studied the effects of various transport inhibitors on this process in the isolated rabbit pancreas. In this preparation, a high rate of unstimulated fluid secretion occurs, which probably originates from the ductular cells. Inhibitory are ouabain, furosemide, bumetanide, piretanide, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and acetazolamide, with their half-inhibitory concentrations: 2 X 10(-6) M (ouabain), 1.3 X 10(-3) M (furosemide), 2.2 X 10(-3) M (bumetanide and piretanide) and 1.4 X 10(-4) M (SITS). With acetazolamide a maximal inhibition of only 20% is found at 10(-3) M. Amiloride (10(-3) M) has no effect on pancreatic fluid secretion. The inhibitory effects on HCO-3 output are always larger and those on Cl- output lower than those on fluid secretion. The results suggest that the ouabain-sensitive (Na+ + K+)-ATPase system provides the energy for a Na+-gradient-driven Cl--HCO-3-exchange transport system, sensitive to the loop diuretics furosemide, bumetanide and piretanide and to SITS. This system would drive the transcellular transport of HCO-3 and secondarily that of cations, Cl- and water.

  3. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    Science.gov (United States)

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  4. Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport

    DEFF Research Database (Denmark)

    Nielsen, Robert; Larsen, Erik Hviid

    2007-01-01

    (V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased delta......C(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.......Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1...

  5. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle

    International Nuclear Information System (INIS)

    Clausen, T.; Flatman, J.A.

    1987-01-01

    To identify possible cause-effect relationships between changes in active Na + -K + transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in 14 C-labeled sugar transport. Ouabain, at a concentration (10 -3 M) sufficient to block active Na + -K + transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na + loading in K + -free buffer, the return to K + -containing standard buffer caused marked stimulation of active 22 Na + - 42 K + transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the 22 Na + - 42 K + pump leads to decreased intracellular 22 Na + concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na + -K + transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na + influx via the Na + /H + -exchange system

  6. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    Science.gov (United States)

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  7. Apparent mineralocorticoid excess: time of manifestation and complications despite treatment.

    Science.gov (United States)

    Knops, Noël B B; Monnens, Leo A; Lenders, Jacques W; Levtchenko, Elena N

    2011-06-01

    Here we describe the case of a patient followed from birth because of a positive family history for apparent mineralocorticoid excess (AME) in an older brother. The patient, a girl, had normal serum electrolyte and blood pressure measurements in the first months after birth. Not until the age of 11 months did she develop anorexia and failure to thrive in combination with hypertension, hypokalemia, and metabolic alkalosis, which are consistent with the diagnosis of AME. This diagnosis was confirmed by mutation analysis of the HSD11B2 gene (C1228T). Treatment with amiloride and furosemide electrolyte disturbances normalized her blood pressure. At the age of 19 years she unexpectedly suffered a stroke. Additional investigations revealed no accepted risk factor for stroke. We discuss the possible underlying mechanisms for the delayed manifestation of hypertension and electrolyte disturbances in AME, propose an additional explanation for the stroke in this patient, and advise treatment with a mineralocorticoid receptor antagonist to reduce stroke risk in patients with AME.

  8. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    Science.gov (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Restoration of normal pH triggers ischemia-reperfusion injury in lung by Na+/H+ exchange activation.

    Science.gov (United States)

    Moore, T M; Khimenko, P L; Taylor, A E

    1995-10-01

    The effects of acidotic extracellular pH and Na+/H+ exchange inhibition on ischemia-reperfusion (I/R)-induced microvascular injury were studied in the isolated, buffer-perfused rat lung. When lungs were subjected to 45 min of ischemia followed by 30 min of reperfusion, the capillary filtration coefficient (Kfc) increased significantly, resulting in a change in Kfc (delta Kfc) of 0.360 +/- 0.09 ml.min-1.cmH2O-1.100 g-1. Addition of hydrochloric acid to the perfusate before ischemia at a concentration sufficient to reduce perfusate pH from 7.38 +/- 0.03 to 7.09 +/- 0.04 completely prevented the increase in Kfc associated with I/R (delta Kfc = 0.014 +/- 0.034 ml.min-1.cmH2O-1.100 g-1). Addition of a Na+/H+ exchange inhibitor, 5-(N,N-dimethyl)-amiloride, to the perfusate either before ischemia or at reperfusion also prevented the I/R-induced permeability increase (delta Kfc = 0.01 +/- 0.02 and -0.001 +/- 0.02 ml.min-1.cmH2O-1.100 g-1, respectively). We conclude that restoration of flow at physiological pH to the postischemic lung activates the Na+/H+ exchange system, which may represent the "triggering mechanism" responsible for initiating reperfusion-induced microvascular injury.

  10. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    Science.gov (United States)

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.

  11. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-08-30

    Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.

  12. Update in diagnosis and management of primary aldosteronism.

    Science.gov (United States)

    Dick, Sofia M; Queiroz, Marina; Bernardi, Bárbara L; Dall'Agnol, Angélica; Brondani, Letícia A; Silveiro, Sandra P

    2018-02-23

    Primary aldosteronism (PA) is a group of disorders in which aldosterone is excessively produced. These disorders can lead to hypertension, hypokalemia, hypervolemia and metabolic alkalosis. The prevalence of PA ranges from 5% to 12% around the globe, and the most common causes are adrenal adenoma and adrenal hyperplasia. The importance of PA recognition arises from the fact that it can have a remarkably adverse cardiovascular and renal impact, which can even result in death. The aldosterone-to-renin ratio (ARR) is the election test for screening PA, and one of the confirmatory tests, such as oral sodium loading (OSL) or saline infusion test (SIT), is in general necessary to confirm the diagnosis. The distinction between adrenal hyperplasia (AH) or aldosterone-producing adenoma (APA) is essential to select the appropriate treatment. Therefore, in order to identify the subtype of PA, imaging exams such as computed tomography or magnetic ressonance imaging, and/or invasive investigation such as adrenal catheterization must be performed. According to the subtype of PA, optimal treatment - surgical for APA or pharmacological for AH, with drugs like spironolactone and amiloride - must be offered.

  13. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  14. TNF Lectin-Like Domain Restores Epithelial Sodium Channel Function in Frameshift Mutants Associated with Pseudohypoaldosteronism Type 1B

    Directory of Open Access Journals (Sweden)

    Anita Willam

    2017-05-01

    Full Text Available Previous in vitro studies have indicated that tumor necrosis factor (TNF activates amiloride-sensitive epithelial sodium channel (ENaC current through its lectin-like (TIP domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide, showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only β-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αβγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B, a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αβγ-ENaC, whereas membrane

  15. Involvement of prostaglandins F/sub 2. cap alpha. / and E/sub 1/ with rabbit endometrium

    Energy Technology Data Exchange (ETDEWEB)

    Orlicky, D.J.

    1985-01-01

    Several growth factors and hormones are thought to play a role in the growth control of endometrial cells. The authors have shown that prostaglandin F/sub 2..-->../ (PGF/sub 2..cap alpha../) is a growth factor for primary cultures of rabbit endometrium cultured in chemically-defined serum-free medium and that prostaglandin E/sub 1/ (PGE/sub 1/) antagonizes the PGF/sub 2..-->../ induction of growth. Both (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ bind in a time and temperature dependent, dissociable, saturable and specific manner. The binding of (/sup 3/H)PGF/sub 2..cap alpha../ and (/sup 3/H)PGE/sub 1/ can be both down and up regulated and is enzyme sensitive. PGE /sub 1/ stimulates intracellular cAMP synthesis and accumulation in a time and concentration dependent manner. PGF/sub 2..cap alpha../ probably exerts its effects through an amiloride-sensitive intermediate. Both PGF/sub 2..cap alpha../ and PGE/sub 1/ are constitutively synthesized by these primary cultures, and they have shown this synthesis to be both drug and hormone sensitive. They hypothesize that it is the ratio, rather than the absolute quantities, of PGF/sub 2..cap alpha../ and PGE/sub 1/ which is of more importance in the regulation of endometrial cell growth. Furthermore, they believe this regulation of endometrial growth plays a role in control of proliferation during the decidual response and that a derangement in the ratio of these prostaglandins may lead to either infertility or hyperplasia. The ability of these cultures to synthesize prostaglandins in a hormonally regulatable manner may be of importance in the study of dysmenorrhea and uterine cramping as caused by the myometrial contracting prostaglandin, PGF/sub 2..cap alpha../.

  16. Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Swenson, Alyssa; Barnard, John M; Hamilton, Gina; Chiposi, Rumbidzayi; Drummond, Heather A

    2010-05-01

    Recent studies suggest that certain acid-sensing ion channels (ASIC) are expressed in vascular smooth muscle cells (VSMCs) and are required for VSMC functions. However, electrophysiological evidence of ASIC channels in VSMCs is lacking. The purpose of this study was to test the hypothesis that isolated cerebral artery VSMCs express ASIC-like channels. To address this hypothesis, we used RT-PCR, Western blotting, immunolabeling, and conventional whole cell patch-clamp technique. We found extracellular H(+)-induced inward currents in 46% of cells tested (n = 58 of 126 VSMCs, pH 6.5-5.0). The percentage of responsive cells and the current amplitude increased as the external H(+) concentration increased (pH(6.0), n = 28/65 VSMCs responsive, mean current density = 8.1 +/- 1.2 pA/pF). Extracellular acidosis (pH(6.0)) shifted the whole cell reversal potential toward the Nernst potential of Na(+) (n = 6) and substitution of extracellular Na(+) by N-methyl-d-glucamine abolished the inward current (n = 6), indicating that Na(+) is a major charge carrier. The broad-spectrum ASIC blocker amiloride (20 microM) inhibited proton-induced currents to 16.5 +/- 8.7% of control (n = 6, pH(6.0)). Psalmotoxin 1 (PcTx1), an ASIC1a inhibitor and ASIC1b activator, had mixed effects: PcTx1 either 1) abolished H(+)-induced currents (11% of VSMCs, 5/45), 2) enhanced or promoted activation of H(+)-induced currents (76%, 34/45), or 3) failed to promote H(+) activation in nonresponsive VSMCs (13%, 6/45). These findings suggest that freshly dissociated cerebral artery VSMCs express ASIC-like channels, which are predominantly formed by ASIC1b.

  17. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?

    Science.gov (United States)

    Sadananda, Prajni; Kao, Felicity C L; Liu, Lu; Mansfield, Kylie J; Burcher, Elizabeth

    2012-05-15

    Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  19. Cytotoxic mechanisms of Zn{sup 2+} and Cd{sup 2+} involve Na{sup +}/H{sup +} exchanger (NHE) activation by ROS

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Evangelinos, Nikolaos [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koliakos, George [Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, P.O. Box 17034, 54124 Thessaloniki (Greece); Kaloyianni, Martha [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)]. E-mail: kaloyian@bio.auth.gr

    2006-07-20

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in {center_dot}O{sub 2} {sup -} production, with Cd to be more potent (216 {+-} 15%) than Zn (150 {+-} 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na{sup +}/H{sup +} exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on {center_dot}O{sub 2} {sup -} production was mediated via the interaction of metal ions with {alpha}{sub 1}- and {beta}-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi ({delta}pHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi ({delta}pHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O{sub 2} {sup -} production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-{gamma} receptors. In addition, differences between the two metals concerning NHE activation, O{sub 2} {sup -} production and interaction with adrenergic receptors were observed.

  20. Direct measurement of acid efflux from isolated guinea pig pancreatic ducts.

    Science.gov (United States)

    Hootman, Seth R; Hobbs, Errett C; Luckie, Douglas B

    2005-05-01

    The current studies used the technique of microphysiometry to directly determine the effects of stimulators and inhibitors of pancreatic duct secretion on acid efflux from isolated pancreatic ducts. Main and interlobular ducts were isolated from guinea pig pancreata by collagenase digestion and manual selection. Segments were placed in the chambers of a microphysiometer, which uses a silicon chip-based, light-addressable potentiometric sensor to determine the proton concentration in the superfusing solution. Isolated ducts were superfused with a low buffer capacity Ringer's solution at 37 degrees C and the extracellular acidification rate (EAR) was determined by computer-directed protocols. A survey of potential agonists demonstrated that both secretin and the cholinomimetic, carbachol, dramatically increased EAR, with EC50 of 3 nmol/L and 0.6 mumol/L, respectively. The changes in EAR induced by both secretagogues were rapid, peaking within 4-6 minutes, and then declining to a level below the peak but above basal EAR. The enhanced EAR was maintained for at least 30 minutes in the presence of either secretagogue. More modest increases in EAR were evoked by bombesin, substance P, and vasoactive intestinal peptide (VIP). Cholecystokinin and isoproterenol caused no significant change in pancreatic duct EAR. A combination of amiloride and bafilomycin A1, inhibitors, respectively, of Na/H exchange and of vacuolar type H-ATPase activity, caused a dramatic drop in EAR but did not fully inhibit the increase in EAR elicited by carbachol, suggesting that other mechanisms may contribute to agonist-stimulated EAR of pancreatic ducts. Thus, the results support the use of microphysiometry as a tool to study pancreatic duct physiology and in particular a method to measure acid efflux from the serosal surface.

  1. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    Science.gov (United States)

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  2. Cytotoxic mechanisms of Zn2+ and Cd2+ involve Na+/H+ exchanger (NHE) activation by ROS

    International Nuclear Information System (INIS)

    Koutsogiannaki, Sophia; Evangelinos, Nikolaos; Koliakos, George; Kaloyianni, Martha

    2006-01-01

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in ·O 2 - production, with Cd to be more potent (216 ± 15%) than Zn (150 ± 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na + /H + exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on ·O 2 - production was mediated via the interaction of metal ions with α 1 - and β-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi (ΔpHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi (ΔpHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O 2 - production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-γ receptors. In addition, differences between the two metals concerning NHE activation, O 2 - production and interaction with adrenergic receptors were observed

  3. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  5. Correction of enhanced Na(+)-H+ exchange of rat small intestinal brush-border membranes in streptozotocin-induced diabetes by insulin or 1,25-dihydroxycholecalciferol

    International Nuclear Information System (INIS)

    Dudeja, P.K.; Wali, R.K.; Klitzke, A.; Sitrin, M.D.; Brasitus, T.A.

    1991-01-01

    Diabetes was induced in rats by administration of a single i.p. injection of streptozotocin (50 mg/kg body wt). After 7 d, diabetic rats were further treated with insulin or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] for an additional 5-7 d. Control, diabetic, diabetic + insulin, and diabetic + 1,25(OH)2D3 rats were then killed, their proximal small intestines were removed, and villus-tip epithelial cells were isolated and used to prepare brush-border membrane vesicles. Preparations from each of these groups were then analyzed and compared with respect to their amiloride-sensitive, electroneutral Na(+)-H+ exchange activity, using 22 Na uptake as well as acridine orange techniques. The results of these experiments demonstrated that (a) H+ gradient-dependent 22 Na uptake as well as Na+ gradient-dependent transmembrane H+ fluxes were significantly increased in diabetic vesicles compared to their control counterparts, (b) kinetic studies demonstrated that this enhanced 22 Na uptake in diabetes was a result of increased maximal velocity (Vmax) of this exchanger with no change in apparent affinity (Km) for Na+, (c) serum levels of 1,25(OH)2D3 were significantly lower in diabetic animals compared with their control counterparts; and (d) insulin or 1,25(OH)2D3 treatment restored the Vmax alterations to control values, without any significant changes in Km, concomitant with significantly increasing the serum levels of 1,25(OH)2D3 in diabetic animals. These results indicate that Na(+)-H+ activity is significantly increased in proximal small intestinal luminal membranes of streptozotocin-induced diabetic rats. Moreover, alterations in the serum levels of 1,25(OH)2D3 may, at least in part, explain this enhanced antiporter activity and its correction by insulin

  6. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  7. Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Hellekant Göran

    2003-03-01

    Full Text Available Abstract Background Recent progress in discernment of molecular pathways of taste transduction underscores the need for comprehensive phenotypic information for the understanding of the influence of genetic factors in taste. To obtain information that can be used as a base line for assessment of effects of genetic manipulations in mice taste, we have recorded the whole-nerve integrated responses to a wide array of taste stimuli in the chorda tympani (CT and glossopharyngeal (NG nerves, the two major taste nerves from the tongue. Results In C57BL/6J mice the responses in the two nerves were not the same. In general sweeteners gave larger responses in the CT than in the NG, while responses to bitter taste in the NG were larger. Thus the CT responses to cyanosuosan, fructose, NC00174, D-phenylalanline and sucrose at all concentrations were significantly larger than in the NG, whereas for acesulfame-K, L-proline, saccharin and SC45647 the differences were not significant. Among bitter compounds amiloride, atropine, cycloheximide, denatonium benzoate, L-phenylalanine, 6-n-propyl-2-thiouracil (PROP and tetraethyl ammonium chloride (TEA gave larger responses in the NG, while the responses to brucine, chloroquine, quinacrine, quinine hydrochloride (QHCl, sparteine and strychnine, known to be very bitter to humans, were not significantly larger in the NG than in the CT. Conclusion These data provide a comprehensive survey and comparison of the taste sensitivity of the normal C57BL/6J mouse against which the effects of manipulations of its gustatory system can be better assessed.

  8. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF effects

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Fedan

    2013-10-01

    Full Text Available In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF, which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated, perfused tracheas (IPT. Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG chloride, Na gluconate (Glu, NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4' diisothiocyano 2,2' stilbenedisulfonic acid (DIDS inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro 9 (2 hydroxy 3 nonyladenine (EHNA, actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium .

  9. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl

    International Nuclear Information System (INIS)

    Kaminishi, T.; Matsuoka, T.; Yanagishita, T.; Kako, K.J.

    1989-01-01

    Adult rat heart myocytes were labeled rapidly with exogenous [45Ca2+]. Addition of 2.5 mM H2O2 to the heart cell suspension raised the content of rapidly exchangeable intracellular Ca2+ twofold, whereas addition of 1-30 mM HOCl decreased the Ca2+ content. The H2O2-induced increase in Ca2+ content was dependent on the medium Na+, pH, and temperature but was not significantly affected by addition of verapamil, diltiazem, amiloride, or 3-aminobenzamide. The [3H]ouabain binding to myocytes was suppressed by H2O2, whereas the Ca2+ efflux from myocytes was not influenced. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, reduced Ca2+ content, implying that the H2O2-induced change in Ca2+ content was not directly related to ATP depletion. On the other hand, the H2O2-induced Ca2+ accumulation in myocytes was prevented by deferoxamine or o-phenanthroline. These results suggest that H2O2 inhibited Na+-K+-ATPase, resulting in an increase in intracellular Na+ concentration and stimulation of sarcolemmal Na+-Ca2+ exchange activity, which caused a transient net Ca2+ influx into myocytes. By contrast, HOCl decreased the Ca2+ content of the rapidly exchangeable pool below control levels and this action of HOCl was antagonized by 1,4-dithiothreitol. HOCl accelerated Ca2+ efflux from myocytes. Ca2+ uptake and Ca2+-ATPase of the isolated sarcoplasmic reticular (SR) fraction were highly sensitive to the action of HOCl. Ca2+ uptake by intracellular sites, studied with myocytes permeabilized with digitonin, was inhibited by both H2O2 and HOCl. Thus these results suggest that HOCl inhibits the SR Ca2+ pump, resulting in the observed acceleration of Ca2+ efflux from and decline in Ca2+ content of myocytes

  10. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    International Nuclear Information System (INIS)

    Sawaya, R.; Rayford, A.; Kono, S.; Rao, J.S.; Ang, K.K.; Feng, Y.; Stephens, L.C.

    1994-01-01

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days' irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs

  11. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sawaya, R.; Rayford, A.; Kono, S.; Rao, J.S.; Ang, K.K.; Feng, Y.; Stephens, L.C. [Univ. of Texas, Houston, TX (United States)

    1994-06-01

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days` irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs.

  12. Lipopolysaccharide hyperpolarizes guinea pig airway epithelium by increasing the activities of the epithelial Na(+) channel and the Na(+)-K(+) pump.

    Science.gov (United States)

    Dodrill, Michael W; Fedan, Jeffrey S

    2010-10-01

    Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.

  13. Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal myotubes

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1988-01-01

    The purpose of this study was to characterize the effects of thyroid hormone on the Na-K pump and resting membrane potential (EM) of rat skeletal myotubes in culture. Myotubes were obtained from fetal (19-21 day) or neonatal rats (1-2 day) by serial trypsinization and maintained in culture for up to 10 days. Cells were treated with T4 or T3 on day 6 or 7, and measurements were made of EM, [ 3 H]ouabain binding, and ouabain-sensitive 86 Rb uptake at various times thereafter. Hormone treatment increased the values of all three variables within 24 h, plateau levels being attained by 48-72 h. Cycloheximide and actinomycin D totally blocked the effects of thyroid hormone when added together to the cells, thus suggesting that protein synthesis is necessary for the effects of these hormones. Scatchard analysis showed that the new receptors have lower ouabain affinity than those in control. Blockade of spontaneously occurring action potentials with tetrodotoxin, which blocks voltage-dependent Na channels, or Na/H antiporter with amiloride, abolished the hormone effects seen after 24 h and significantly reduced those obtained after 48 h of hormone treatment. The results demonstrate that thyroid hormone-induced increased amount and activity of the electrogenic Na-K pump in cultured myotubes occurs, at least in part, in response to an initial effect to increase Na influx. Moreover, the findings are consistent with the concept that the Na-K pump plays an important role in regulation of EM in this preparation

  14. Effects of thyroid hormone on Na+-K+ transport in resting and stimulated rat skeletal muscle

    International Nuclear Information System (INIS)

    Everts, M.E.; Clausen, T.

    1988-01-01

    The effects of hypothyroidism and 3,5,3'-triiodothyronine (T 3 ) treatment on passive Na + -K + fluxes and Na + -K + pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T 3 (20 μg/100 g body wt), K + efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na + influx but no significant increase in [ 3 H]ouabain binding site concentration. After 3 days of T 3 treatment, the stimulating effect on K + efflux and Na + influx in soleus reached a plateau ∼80 and 40% above control levels, respectively, whereas the maximum increase in [ 3 H]ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased 86 Rb efflux by 30%. The efflux of K + and the influx of Na + per contraction (both ∼7 nmol/g wet wt) as well as the net loss of K + induced by electrical stimulation were unaffected by T 3 treatment. The rise in resting K + efflux after 12-24 h of T 3 treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca 2+ concentration may contribute to the early rise in K + efflux. It is concluded that the early rise in the resting passive leaks of Na + and K + induced by T 3 is a major driving force for Na + -K + pump synthesis

  15. Effects of thyroid hormone on Na sup + -K sup + transport in resting and stimulated rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Everts, M.E.; Clausen, T. (Aarhus Univ. (Denmark))

    1988-11-01

    The effects of hypothyroidism and 3,5,3{prime}-triiodothyronine (T{sub 3}) treatment on passive Na{sup +}-K{sup +} fluxes and Na{sup +}-K{sup +} pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T{sub 3} (20 {mu}g/100 g body wt), K{sup +} efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na{sup +} influx but no significant increase in ({sup 3}H)ouabain binding site concentration. After 3 days of T{sub 3} treatment, the stimulating effect on K{sup +} efflux and Na{sup +} influx in soleus reached a plateau {approximately}80 and 40% above control levels, respectively, whereas the maximum increase in ({sup 3}H)ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased {sup 86}Rb efflux by 30%. The efflux of K{sup +} and the influx of Na{sup +} per contraction (both {approximately}7 nmol/g wet wt) as well as the net loss of K{sup +} induced by electrical stimulation were unaffected by T{sub 3} treatment. The rise in resting K{sup +} efflux after 12-24 h of T{sub 3} treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca{sup 2+} concentration may contribute to the early rise in K{sup +} efflux. It is concluded that the early rise in the resting passive leaks of Na{sup +} and K{sup +} induced by T{sub 3} is a major driving force for Na{sup +}-K{sup +} pump synthesis.

  16. Pharmacological characterization of the diuretic effect of Hibiscus sabdariffa Linn (Malvaceae) extract.

    Science.gov (United States)

    Alarcón-Alonso, Javier; Zamilpa, Alejandro; Aguilar, Francisco Alarcón; Herrera-Ruiz, Maribel; Tortoriello, Jaime; Jimenez-Ferrer, Enrique

    2012-02-15

    Hibiscus sabdariffa L. (Malvaceae) populary known in Mexico as "Jamaica", "flor de Jamaica", has widely used in Mexican Traditional Medicine as antihypertensive and diuretic, although the latter activity has been reported the present work show evidence about the diuretic, natriuretic and potassium-sparing effects. To evaluate the diuretic activity of Hibiscus sabdariffa aqueous extract on in vivo and in situ models. The Hibiscus sabdariffa aqueous extract was administrated in increasing doses and evaluated the diuresis produced and disposal of electrolytes. Moreover, in isolated kidney was determined the renal filtration rate with plant extract, furosemide and amiloride. The yield of Hibiscus sabdariffa aqueous extraction was 28.3% and the chemical standardization from 1 g of extract was: 56.5 mg delphinidin-3-O-sambubioside, 20.8 mg/g cyanidin-3-O-sambubioside, 3.2 mg/g quercetin, 2.1 mg/g rutin and 2.7 mg/g chlorogenic acid. The diuretic and natriuretic effect of Hibiscus sabdariffa aqueous extract showed a dose-dependent behavior. The pharmacological constants of natriuretic effect was ED50=86 mg/kg and Emax=0.9 mEq/100 g/5 h. In the model of kidney in situ was observed that renal filtration increased 48% with the aqueous extract of Hibiscus sabdariffa and an additive effect when was perfuse with furosemide. The compound presents in Hibiscus sabdariffa as quercetin had effect on the vascular endothelium causing oxide nitric release, increasing renal vasorelaxation by increasing kidney filtration. Therefore, the diuretic effect of Hibiscus sabdariffa may be mediated by nitric oxide release. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes

    International Nuclear Information System (INIS)

    Smith, Dustin R.; Spaulding, Deborah T.; Glenn, Hayden M.; Fuller, Bryan B.

    2004-01-01

    The activity of melanosome-associated tyrosinase in human melanocytes differs based on racial skin type. In melanocytes from Black skin, tyrosinase activity is high while in White melanocytes the activity of the enzyme is low. Recent studies suggest that low tyrosinase activity in White melanocytes may be due to an acidic pH environment within the melanosome. Because sodium/hydrogen (Na + /H + ) exchangers (NHEs) are known to regulate intracellular pH, melanocytes were treated with NHE inhibitors to determine what effect this inhibition might have on tyrosinase activity. Treatment of Black melanocytes with ethyl-isopropyl amiloride (EIPA) caused a rapid dose-dependent inhibition of tyrosinase activity. This inhibition was not due to either direct enzyme inhibition or to a decrease in tyrosinase abundance. In contrast, treatment of White melanocytes with EIPA, cimetidine, or clonidine resulted in little inhibition of tyrosinase activity. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis showed that both Black and White melanocytes expressed mRNA and protein for NHE-1, NHE-3, NHE-5, NHE-6, and NHE-7. Immunohistochemical analysis showed that NHE-7 and NHE-3 co-localized with the melanosomal protein, Tyrosinase Related Protein-1 (TRP-1). In addition, the vesicular proton pump, vesicular ATPase (V-ATPase), was found to be present in both White and Black melanosomes, indicating that organelles from both racial skin types are capable of being acidified. The results suggest that one or more NHEs may help regulate melanosome pH and tyrosinase activity in human melanocytes

  18. Evidence for the role of a Na(+)/HCO(3)(-) cotransporter in trout hepatocyte pHi regulation.

    Science.gov (United States)

    Furimsky, M; Moon, T W; Perry, S F

    2000-07-01

    The mechanisms of intracellular pH (pHi) regulation were examined in hepatocytes of the rainbow trout Oncorhynchus mykiss. pHi was monitored using the pH-sensitive fluorescent dye BCECF, and the effects of various media and pharmacological agents were examined for their influence on baseline pHi and recovery rates from acid and base loading. Rates of Na(+) uptake were measured using (22)Na, and changes in membrane potential were examined using the potentiometric fluorescent dye Oxonol VI. The rate of proton extrusion following acid loading was diminished by the blockade of either Na(+)/H(+) exchange (using amiloride) or anion transport (using DIDS). The removal of external HCO(3)(-) and the abolition of outward K(+) diffusion by the channel blocker Ba(2+) also decreased the rate of proton extrusion following acid load. Depolarization of the cell membrane with 50 mmol l(-)(1) K(+), however, did not affect pHi. The rate of recovery from base loading was significantly diminished by the blockade of anion transport, removal of external HCO(3)(-) and, to a lesser extent, by blocking Na(+)/H(+) exchange. The blockade of K(+) conductance had no effect. The decrease in Na(+) uptake rate observed in the presence of the anion transport blocker DIDS and the DIDS-sensitive hyperpolarization of membrane potential during recovery from acid loading suggest that a Na(+)-dependent electrogenic transport system is involved in the restoration of pHi after intracellular acidification. The effects on baseline pHi indicate that the different membrane exchangers are tonically active in the maintenance of steady-state pHi. This study confirms the roles of a Na(+)/H(+) exchanger and a Cl(-)/HCO(3)(-) exchanger in the regulation of trout hepatocyte pHi and provides new evidence that a Na(+)/HCO(3)(-) cotransporter contributes to pHi regulation.

  19. Intermittent Hypoxia Inhibits Na+-H+ Exchange-Mediated Acid Extrusion Via Intracellular Na+ Accumulation in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Huai-Ren Chang

    2018-04-01

    Full Text Available Background/Aims: Intermittent hypoxia (IH has been shown to exert preconditioning-like cardioprotective effects. It also has been reported that IH preserves intracellular pH (pHi during ischemia and protects cardiomyocytes against ischemic reperfusion injury. However, the exact mechanism is still unclear. Methods: In this study, we used proton indicator BCECF-AM to analyze the rate of pHi recovery from acidosis in the IH model of rat neonatal cardiomyocytes. Neonatal cardiomyocytes were first treated with repetitive hypoxia-normoxia cycles for 1-4 days. Cells were then acid loaded with NH4Cl, and the rate of pHi recovery from acidosis was measured. Results: We found that the pHi recovery rate from acidosis was much slower in the IH group than in the room air (RA group. When we treated cardiomyocytes with Na+-H+ exchange (NHE inhibitors (Amiloride and HOE642 or Na+-free Tyrode solution during the recovery, there was no difference between RA and IH groups. We also found intracellular Na+ concentration ([Na+]i significantly increased after IH exposure for 4 days. However, the phenomenon could be abolished by pretreatment with ROS inhibitors (SOD and phenanathroline, intracellular calcium chelator or Na+-Ca2+ exchange (NCX inhibitor. Furthermore, the pHi recovery rate from acidosis became faster in the IH group than in the RA group when inhibition of NCX activity. Conclusions: These results suggest that IH would induce the elevation of ROS production. ROS then activates Ca2+-efflux mode of NCX and results in intracellular Na+ accumulation. The rise of [Na+]i further inhibits the activity of NHE-mediated acid extrusion and retards the rate of pHi recovery from acidosis during IH.

  20. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  1. A comparison between diuretics and angiotensin-receptor blocker agents in patients with stage I hypertension (PREVER-treatment trial: study protocol for a randomized double-blind controlled trial

    Directory of Open Access Journals (Sweden)

    Figueiredo Neto José A

    2011-02-01

    Full Text Available Abstract Background Cardiovascular disease is the leading cause of death in Brazil, and hypertension is its major risk factor. The benefit of its drug treatment to prevent major cardiovascular events was consistently demonstrated. Angiotensin-receptor blockers (ARB have been the preferential drugs in the management of hypertension worldwide, despite the absence of any consistent evidence of advantage over older agents, and the concern that they may be associated with lower renal protection and risk for cancer. Diuretics are as efficacious as other agents, are well tolerated, have longer duration of action and low cost, but have been scarcely compared with ARBs. A study comparing diuretic and ARB is therefore warranted. Methods/design This is a randomized, double-blind, clinical trial, comparing the association of chlorthalidone and amiloride with losartan as first drug option in patients aged 30 to 70 years, with stage I hypertension. The primary outcomes will be variation of blood pressure by time, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new subclinical atherosclerosis and sudden death. The study will last 18 months. The sample size will be of 1200 participants for group in order to confer enough power to test for all primary outcomes. The project was approved by the Ethics committee of each participating institution. Discussion The putative pleiotropic effects of ARB agents, particularly renal protection, have been disputed, and they have been scarcely compared with diuretics in large clinical trials, despite that they have been at least as efficacious as newer agents in managing hypertension. Even if the null hypothesis is not rejected, the information will be useful for health care policy to treat hypertension in Brazil. Clinical trials

  2. Interaction and uptake of exosomes by ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Altevogt Peter

    2011-03-01

    Full Text Available Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific

  3. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT.

    Science.gov (United States)

    Lee, N-Y; Choi, H-M; Kang, Y-S

    2009-04-01

    Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.

  4. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Escrevente, Cristina; Keller, Sascha; Altevogt, Peter; Costa, Júlia

    2011-01-01

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  5. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Directory of Open Access Journals (Sweden)

    Steven M Rowe

    Full Text Available Nasal potential difference (NPD is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR and epithelial sodium channel (ENaC activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770 in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1 the average of both nostrils; (2 the most-polarized nostril at each visit; and (3 the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity, the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity, and the delta NPD (measuring CFTR and ENaC activity. The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV. Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  6. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    Science.gov (United States)

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform.

  7. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    Directory of Open Access Journals (Sweden)

    Lescaille Géraldine

    2012-03-01

    Full Text Available Abstract Backgrounds An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC progression. Methods Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. Results OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Conclusions Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  8. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression.

    Science.gov (United States)

    Lescaille, Géraldine; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste; Mourah, Samia

    2012-03-23

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  9. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    Science.gov (United States)

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  11. Diuretic exposure in premature infants from 1997–2011

    Science.gov (United States)

    Laughon, Matthew M.; Chantala, Kim; Aliaga, Sofia; Herring, Amy H.; Hornik, Christoph P.; Hughes, Rachel; Clark, Reese H.; Smith, P. Brian

    2014-01-01

    Objective Diuretics are often prescribed off-label to premature infants, particularly to prevent or treat bronchopulmonary dysplasia (BPD). We examined their use and safety in this group. Study Design Retrospective cohort study of infants diuretics in 333 neonatal intensive care units from 1997–2011. We examined use of acetazolamide, amiloride, bumetanide, chlorothiazide, diazoxide, ethacrynic acid, furosemide, hydrochlorothiazide, mannitol, metolazone, or spironolactone combination. Respiratory support and FiO2 on the first day of each course of diuretic use were identified. Results Thirty-seven percent (39,357/107,542) of infants were exposed to at least 1 diuretic; furosemide was the most commonly used (93% with ≥1 recorded dose), followed by spironolactone, chlorothiazide, hydrochlorothiazide, bumetanide, and acetazolamide. Seventy-four percent were exposed to 1 diuretic at a time, 19% to 2 diuretics simultaneously, and 6% to 3 diuretics simultaneously. The most common combination was furosemide/spironolactone, followed by furosemide/chlorothiazide and chlorothiazide/spironolactone. Many infants were not receiving mechanical ventilation on the first day of each new course of furosemide (47%), spironolactone (69%), chlorothiazide (61%), and hydrochlorothiazide (68%). Any adverse event occurred on 42 per 1000 infant-days for any diuretic and 35 per 1000 infant-days for furosemide. Any serious adverse event occurred in 3.8 for any diuretic and 3.2 per 1000 infant-days for furosemide. The most common laboratory abnormality associated with diuretic exposure was thrombocytopenia. Conclusion Despite no FDA indication and little safety data, over one third of premature infants in our population were exposed to a diuretic, many with minimal respiratory support. PMID:24801161

  12. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    Science.gov (United States)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  13. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    Science.gov (United States)

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice.

    Directory of Open Access Journals (Sweden)

    Sonja M Mueller-Tribbensee

    Full Text Available Various transient receptor potential (TRP channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin8 was suggested to be involved in murine colonic mechano-nociception.To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT were used. Visceromotor responses (VMR to colorectal distension (CRD in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA.Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM and stretch-activated channels (gadolinium, 50 μM. VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene.TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.

  15. Effects of antidiuretic hormone on kinetic and energetic determinants of active sodium transport in frog skin.

    Science.gov (United States)

    Lau, Y T; Lang, M A; Essig, A

    1981-10-02

    The effects of antidiuretic hormone (ADH) on the rate of transepithelial active Na transport JaNa and the rate of suprabasal O2 consumption of Jsbr were studied in paired hemiskins of frog. Within some 30 min following administration of ADH both JaNa and Jsbr increased to near-maximal levels and then remained stable for at least an hour. On symmetric perturbation of the transepithelial electrical potential delta psi at 6-min intervals, the dependence of JaNa and Jsbr on delta psi was near-linear, both in control and experimental hemi-skins. The stability and near-linearity of the system permitted systematic analysis of the parameters of linear non-equilibrium thermodynamic (NET) and electrical equivalent circuit (EC) formulations. ADH (100 mU/ml) stimulated two of the three NET phenomenological L coefficients, as well as A, the affinity (negative Gibbs free energy) of a metabolic reaction driving transport. Observations at partially depressed levels of transport indicated that the effects of kinetic and energetic factors are to some extent discrete. EC analysis showed stimulation of the amiloride-sensitive conductance Ka, but not of the apparent electromitive force of Na transport 'ENa'. Similar effects were produced by 10 mU/ml of ADH or by 10 mM dibutyryl cyclic AMP, although less marked effects on the L coefficients were noted with the lower concentration of hormone. It is suggested that, in contrast to EC analysis, the NET formulation distinguishes between kinetic and energetic determinants of transport, supporting a dual mechanism of action of ADH.

  16. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate

    Science.gov (United States)

    Molina, Anthony J A; Verzi, Michael P; Birnbaum, Andrea D; Yamoah, Ebenezer N; Hammar, Katherine; Smith, Peter J S; Malchow, Robert Paul

    2004-01-01

    Self-referencing H+-selective microelectrodes were used to measure extracellular H+ fluxes from horizontal cells isolated from the skate retina. A standing H+ flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H+ flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na+–H+ exchanger. Glutamate decreased H+ flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H+ flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H+ flux. Immunocytochemical localization of the plasmalemma Ca2+–H+-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H+ flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca2+–H+-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones. PMID:15272044

  17. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with a large number of high affinity binding sites in the cell membrane. Binding of 125 I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected. The response (elevation of cellular cAMP) is linear with time for 40 to 50 min and causes a six- to eight-fold increase over control levels (10 to 15 picomole cAMP/mg cellular protein) at steady state. cAMP and agents that increase cAMP production inhibit Cl - -independent Na + influx into the isolated enterocytes whereas chlorpromazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na + entry. Correlation between cellular cAMP levels and the magnitude of Na + influx provides evidence for a cAMP-mediated control of intestinal Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretion. The effect of cAMP on Na + but not Cl - influx preparations can be partially explained in terms of a cAMP-regulated Na + /H + neutral exchange system. Data on the coupling relationship between Na + transport and the intra- and extracellular pH in the enterocytes show that an amiloride-sensitive electroneutral Na + /H + exchange process occurs. This coupling between Na + and H + is partially inhibited by CT and dbcAMP, suggesting that the Na + /H + exchange may be a cAMP-regulated process. 31 references, 32 figures, 5 tables

  18. Involvement of prostaglandins F/sub 2α/ and E1 with rabbit endometrium

    International Nuclear Information System (INIS)

    Orlicky, D.J.

    1985-01-01

    Several growth factors and hormones are thought to play a role in the growth control of endometrial cells. The authors have shown that prostaglandin F/sub 2→/ (PGF/sub 2α/) is a growth factor for primary cultures of rabbit endometrium cultured in chemically-defined serum-free medium and that prostaglandin E 1 (PGE 1 ) antagonizes the PGF/sub 2→/ induction of growth. Both [ 3 H]PGF/sub 2α/ and [ 3 H]PGE 1 bind in a time and temperature dependent, dissociable, saturable and specific manner. The binding of [ 3 H]PGF/sub 2α/ and [ 3 H]PGE 1 can be both down and up regulated and is enzyme sensitive. PGE 1 stimulates intracellular cAMP synthesis and accumulation in a time and concentration dependent manner. PGF/sub 2α/ probably exerts its effects through an amiloride-sensitive intermediate. Both PGF/sub 2α/ and PGE 1 are constitutively synthesized by these primary cultures, and they have shown this synthesis to be both drug and hormone sensitive. They hypothesize that it is the ratio, rather than the absolute quantities, of PGF/sub 2α/ and PGE 1 which is of more importance in the regulation of endometrial cell growth. Furthermore, they believe this regulation of endometrial growth plays a role in control of proliferation during the decidual response and that a derangement in the ratio of these prostaglandins may lead to either infertility or hyperplasia. The ability of these cultures to synthesize prostaglandins in a hormonally regulatable manner may be of importance in the study of dysmenorrhea and uterine cramping as caused by the myometrial contracting prostaglandin, PGF/sub 2α/

  19. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  20. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  1. Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells

    Directory of Open Access Journals (Sweden)

    García-Pérez Blanca Estela

    2012-10-01

    Full Text Available Abstract Background The classical roles of B cells include the production of antibodies and cytokines and the generation of immunological memory, these being key factors in the adaptive immune response. However, their role in innate immunity is currently being recognised. Traditionally, B cells have been considered non-phagocytic cells; therefore, the uptake of bacteria by B cells is not extensively documented. In this study, we analysed some of the features of non-specific bacterial uptake by B lymphocytes from the Raji cell line. In our model, B cells were infected with Mycobacterium tuberculosis (MTB, Mycobacterium smegmatis (MSM, and Salmonella typhimurium (ST. Results Our observations revealed that the Raji B cells were readily infected by the three bacteria that were studied. All of the infections induced changes in the cellular membrane during bacterial internalisation. M. smegmatis and S. typhimurium were able to induce important membrane changes that were characterised by abundant filopodia and lamellipodia formation. These membrane changes were driven by actin cytoskeletal rearrangements. The intracellular growth of these bacteria was also controlled by B cells. M. tuberculosis infection also induced actin rearrangement-driven membrane changes; however, the B cells were not able to control this infection. The phorbol 12-myristate 13-acetate (PMA treatment of B cells induced filopodia and lamellipodia formation, the production of spacious vacuoles (macropinosomes, and the fluid-phase uptake that is characteristic of macropinocytosis. S. typhimurium infection induced the highest fluid-phase uptake, although both mycobacteria also induced fluid uptake. A macropinocytosis inhibitor such as amiloride was used and abolished the bacterial uptake and the fluid-phase uptake that is triggered during the bacterial infection. Conclusions Raji B cells can internalise S. typhimurium and mycobacteria through an active process, such as

  2. The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells.

    Directory of Open Access Journals (Sweden)

    Aaron Goldman

    Full Text Available Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA-induced apoptosis, specifically the role of Na(+/H(+ exchanger (NHE and Na(+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A to DCA (0.2 mM-0.5 mM caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na(+, subsequent loss of intracellular K(+, an increase of Ca(2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA, a selective inhibitor of NHE, prevented Na(+, K(+ and Ca(2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na(+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation. On the contrary, DCA-induced cell death was inhibited by medium with low a Na(+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na(+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis.

  3. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  4. High salt loading induces urinary storage dysfunction via upregulation of epithelial sodium channel alpha in the bladder epithelium in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Seiji Yamamoto

    2017-11-01

    Full Text Available We aimed to investigate whether high salt intake affects bladder function via epithelial sodium channel (ENaC by using Dahl salt-resistant (DR and salt-sensitive (DS rats. Bladder weight of DR + high-salt diet (HS, 8% NaCl and DS + HS groups were significantly higher than those of DR + normal-salt diet (NS, 0.3% NaCl and DS + NS groups after one week treatment. We thereafter used only DR + HS and DS + HS group. Systolic and diastolic blood pressures were significantly higher in DS + HS group than in DR + HS group after the treatment period. Cystometrogram showed the intercontraction intervals (ICI were significantly shorter in DS + HS group than in DR + HS group during infusion of saline. Subsequent infusion of amiloride significantly prolonged ICI in DS + HS group, while no intra-group difference in ICI was observed in DR + HS group. No intra- or inter-group differences in maximum intravesical pressure were observed. Protein expression levels of ENaCα in the bladder were significantly higher in DS + HS group than in DR + HS group. ENaCα protein was localized at bladder epithelium in both groups. In conclusion, high salt intake is considered to cause urinary storage dysfunction via upregulation of ENaC in the bladder epithelium with salt-sensitive hypertension, suggesting that ENaC might be a candidate for therapeutic target for urinary storage dysfunction.

  5. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Directory of Open Access Journals (Sweden)

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  6. The short-circuit current of the ileum, but not the colon, is altered in the streptozotocin diabetic rat.

    Science.gov (United States)

    Forrest, Abigail; Makwana, Rajesh; Parsons, Mike

    2006-02-01

    Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.

  7. Bumetanide increases Cl--dependent short-circuit current in late distal colon: Evidence for the presence of active electrogenic Cl- absorption.

    Science.gov (United States)

    Tang, Lieqi; Fang, Xiefan; Winesett, Steven P; Cheng, Catherine Y; Binder, Henry J; Rivkees, Scott A; Cheng, Sam X

    2017-01-01

    Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified. Since bumetanide inhibits basolateral Na+-K+-2Cl- cotransporter (NKCC) in crypt cells and basolateral K+-Cl- cotransporter (KCC) in surface epithelium, we proposed this stimulatory Isc could represent a KCC-mediated Cl- absorptive current. In support of this hypothesis, ion substitution experiments established Cl- dependency of this absorptive Isc and transport inhibitor studies demonstrated the involvement of an apical Cl- conductance. Current distribution and RNA sequencing analyses revealed that this Cl- absorptive Isc is closely associated with epithelial Na+ channel (ENaC) but is not dependent on ENaC activity. Thus, inhibition of ENaC by 10 μM amiloride or benzamil neither altered the direction nor its activity. Physiological studies suggested that this Cl- absorptive Isc senses dietary Cl- content; thus when dietary Cl- was low, Cl- absorptive Isc was up-regulated. In contrast, when dietary Cl- was increased, Cl- absorptive Isc was down-regulated. We conclude that an active Cl- extrusion mechanism exists in ENaC-expressing late distal colon and likely operates in parallel with ENaC to facilitate NaCl absorption.

  8. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin.

    Science.gov (United States)

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2011-02-01

    In adult amphibian skin, Na(+) crosses from outside to inside. This Na(+) transport can be measured as the amiloride-blockable short-circuit current (SCC) across the skin. We investigated the effects of arginine vasotocin (AVT) and mesotocin (MT), and those of antagonists of the vasopressin and oxytocin receptors, on the SCC across Hyla japonica skin. (1) Both AVT (100 pmol/L or more) and MT (1 nmol/L or more) increased the SCC. (2) The AVT- and MT-induced increases in SCC recovered with time (downregulation). (3) These AVT/MT-induced effects were blocked by application of OPC-31260 (vasopressin V(2)-receptor antagonist). (4) The OPC-31260 concentration needed to block the AVT-induced response was lower upon post-application (after application of agonist) than upon pre-application (before application of agonist), suggesting the number of receptors may have decreased after AVT application. (5) Upon repeated application of AVT (100 pmol/L), the induced SCC increase did not differ significantly between the 1st and 2nd applications. (6) The time to reach the half-maximum value of the AVT-induced or MT-induced increase in SCC was not significantly different between washout and post-application of OPC-31260, suggesting that post-application of OPC-31260 cleared AVT and MT from their receptors. The effects of AVT, MT, and their antagonists in H. japonica, which is adapted to a terrestrial habitat, are compared with our previously published data on Rana catesbeiana (=Lithobates catesbeianus), which is adapted to a semiaquatic habitat.

  9. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  10. A novel mutation in the AVPR2 gene (222delA) associated with X-linked nephrogenic diabetes insipidus in a boy with growth failure.

    Science.gov (United States)

    Abaci, Ayhan; Wood, Kent; Demir, Korcan; Büyükgebiz, Atilla; Böber, Ece; Kopp, Peter

    2010-01-01

    To study the case of a 2 10/12-year-old boy who had growth failure and delayed bone maturation. We reviewed the history, which revealed that he had had polyuria, polydipsia, lack of weight gain, and frequent vomiting since the age of 5 months. On physical examination, his height was 86 cm (-1.93 standard deviation [SD]), his weight 10.5 kg (-2.67 SD), and he had motor and mental retardation. His maternal great-grandfather also had polyuria and polydipsia (but not diabetes mellitus), suggesting X-linked nephrogenic diabetes insipidus as the underlying cause. The patient underwent a water deprivation-desmopressin test. The coding region of the AVPR2 gene was amplified by polymerase chain reaction and submitted to direct sequence analysis. The water deprivation test confirmed the diagnosis of diabetes insipidus, and administration of desmopressin did not diminish his water secretion. Direct sequencing of the AVPR2 gene revealed a novel deletion of adenine at position 222 (222delA) in exon 2. This mutation is predicted to lead to a frameshift beginning at amino acid 75 and a premature stop codon at position 115 (FS75>115X). His height and weight, as well as his motor skills, improved after initiation of therapy with hydrochlorothiazide and amiloride. Growth delay can be associated with diabetes insipidus. The X-linked nephrogenic diabetes insipidus in this boy is caused by a novel mutation in the AVPR2 gene that is predicted to truncate the receptor protein.

  11. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    Science.gov (United States)

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  12. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  13. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Science.gov (United States)

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  14. Response of copper deficient rats to inhibitors of renal sodium reabsorption

    Energy Technology Data Exchange (ETDEWEB)

    Noordewier, B.; Saari, J.T. (Northwestern College, Orange City, IA (United States) USDA/ARS, Grand Forks, ND (United States))

    1991-03-11

    This study examined the effects of furosemide (Furo), a Loop diuretic, and amiloride (Am), a potassium (K)-sparing diuretic, on the excretion of sodium (Na) and K in copper-adequate (CuAdeq) and copper-deficient (CuDef) rats. Weanling male Sprague Dawley rats were fed a CuDef or CuAdeq diet ad libitum and given deionized water to drink. After 5 weeks on the diets, rats were assigned to one of four treatment regimens: Furo, Am or Furo + Am. Rats were anesthetized and electrolyte excretion was measured in 2 {times} 15 min control periods followed by 3 {times} 15 min treatment periods. Furo increased Na excretion in a dose dependent manner in both the CuAdeq and the CuDef rats. The response of the CuAdeq rats was slightly greater than that of the CuDef rats in each of the 3 treatment groups in which Furo was given. K excretion following Furo increased to the same extent in the CuAdeq and CuDef rats. The natriuretic response to Am alone was slightly greater in the CuDef than the CuAdeq rats. The antikaliuretic response of the CuDef rats was similar to that of the CuAdeq rats whether Am was given alone or in combination with Furo. These data show that CuDef rats respond to Furo and Am in a manner which is similar to that of CuAdeq rats, this indicates that the sensitivity of the Na reabsorption mechanisms to inhibition by diuretics is not markedly affected by copper deficiency.

  15. Role of diacylglycerol in adrenergic-stimulated sup 86 Rb uptake by proximal tubules

    Energy Technology Data Exchange (ETDEWEB)

    Baines, A.D.; Drangova, R.; Ho, P. (Univ. of Toronto, Ontario (Canada))

    1990-05-01

    We used rat proximal tubule fragments purified by Percoll centrifugation to examine the role of diacylglycerol (DAG) in noradrenergic-stimulated Na+ reabsorption. Tubular DAG concentration and ouabain-inhibitable 86Rb uptake increased within 30 s after adding norepinephrine (NE) and remained elevated for at least 5 min. NE (1 microM) increased DAG content 17% and ouabain-inhibitable 86Rb uptake 23%. Cirazoline-stimulated 86Rb uptake was not inhibited by BaCl, quinidine, or bumetanide (1-10 microM) or by the omission of HCO3- or Cl- from the medium, but it was completely inhibited by ouabain and furosemide. Oleoyl-acetyl glycerol, L-alpha-1,2-dioctanoylglycerol, and L-alpha-1,2-dioleoylglycerol (DOG) increased total 86Rb uptake 8-11%. 12-O-tetradecanoylphorbol-13-acetate (TPA) (5 nM) increased uptake by only 4%. Staurosporine at 5 nM inhibited DOG stimulation completely, whereas 50 nM staurosporine was required to inhibit NE stimulation completely. Sphingosine inhibited DOG stimulation by 66% but did not inhibit NE stimulation. Amiloride (1 mM) completely blocked DOG stimulation. Monensin increased 86Rb uptake 31% and completely blocked the DOG effect but reduced the NE effect by only 26% (P = 0.08). In tubules from salt-loaded rats, NE did not increase DAG concentration, but NE-stimulated 86Rb uptake was reduced by only 23% (P = 0.15). Thus DAG released by NE may stimulate Na+ entry through Na(+)-H+ exchange. NE predominantly stimulates Na(+)-K(+)-adenosinetriphosphatase (ATPase) by activating a protein kinase that is insensitive to DAG and TPA and is inhibited by staurosporine but not by sphingosine. NE may also stimulate K+ efflux through a BaCl-insensitive K+ channel that is inhibited by millimolar furosemide.

  16. EBIO, an agent causing maintained epithelial chloride secretion by co-ordinate actions at both apical and basolateral membranes.

    Science.gov (United States)

    MacVinish, L J; Keogh, J; Cuthbert, A W

    2001-01-01

    The effect of 1-ethyl-2-benzimidazolone (EBIO) on electrogenic chloride secretion in murine colonic and nasal epithelium was investigated by the short-circuit technique. In the colon, EBIO produces a sustained current increase in the presence of amiloride, which is sensitive to furosemide. In nasal epithelium EBIO causes only a small, transient current increase. Sustained increases in current were obtained in response to forskolin in both epithelia. To examine the mechanisms by which EBIO increases chloride secretion, the effects on intracellular mediators were measured in colonic crypts. There was no effect on [Ca(2+)]i but cAMP content was increased, more so in the presence of IBMX, indicating a direct effect on adenylate cyclase. In colonic epithelia in which the apical surface was permeabilized by nystatin, and the tissue subjected to an apical to basolateral K(+) gradient, EBIO caused a current increase that was entirely sensitive to charybdotoxin (ChTX). In similarly permeabilized colons Br-cAMP caused a current increase that was entirely sensitive to 293B. Thus EBIO increases chloride secretion in the colon by coordinated actions at both the apical and basolateral faces of the cells. These include direct and indirect actions on Ca(2+)-sensitive and cAMP-sensitive K(+) channels respectively, and indirect actions on the basolateral cotransporter and apical CFTR chloride channels via cAMP. In CF colonic epithelia EBIO did not evoke chloride secretion. It is not clear why the nasal epithelium responds poorly to EBIO whereas it gives a sustained response to the related compound chlorzoxazone.

  17. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  18. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland.

    Science.gov (United States)

    Huber, Sandra; Remberger, Mikael; Kaj, Lennart; Schlabach, Martin; Jörundsdóttir, Hrönn Ó; Vester, Jette; Arnórsson, Mímir; Mortensen, Inge; Schwartson, Richard; Dam, Maria

    2016-08-15

    A screening of a broad range of pharmaceuticals and additives in personal care products (PPCPs) in sub-arctic locations of the Faroe Islands (FO), Iceland (IS) and Greenland (GL) was conducted. In total 36 pharmaceuticals including some metabolites, and seven additives in personal care products were investigated in influent and effluent waters as well as sludge of waste water treatment plants (WWTPs) and in water and sediment of recipients. Concentrations and distribution patterns for PPCPs discharged via sewage lines (SLs) to the marine environment were assessed. Of the 36 pharmaceuticals or metabolites analysed 33 were found close to or above the limit of detection (LOD) in all or a part of the samples. All of the seven investigated additives in personal care products were detected above the LOD. Some of the analysed PPCPs occurred in every or almost every sample. Among these were diclofenac, ibuprofen, lidocaine, naproxen, metformin, citalopram, venlafaxine, amiloride, furosemide, metoprolol, sodium dodecyl sulphate (SDS) and cetrimonium salt (ATAC-C16). Additionally, the study encompasses ecotoxicological risk assessment of 2/3 of the analysed PPCPs in recipient and diluted effluent waters. For candesartan only a small margin to levels with inacceptable risks was observed in diluted effluent waters at two locations (FO). Chronical risks for aquatic organisms staying and/or living around WWTP effluent pipe-outlets were indicated for 17β-estradiol and estriol in the three countries. Additives in PCPs were found to pose the largest risk to the aquatic environment. The surfactants CAPB and ATAC-C16 were found in concentrations resulting in risk factors up to 375 for CAPB and 165 for ATAC-C16 in recipients for diluted effluents from Iggia, Nuuk (GL) and Torshavn (FO) respectively. These results demonstrates a potentially high ecological risk stemming from discharge of surfactants as used in household and industrial detergents as well as additives in personal care

  19. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    Science.gov (United States)

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  1. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.

    Science.gov (United States)

    Canessa, M; Labarca, P; Leaf, A

    1976-12-25

    The possibility that sodium from the serosal bathing medium "back diffuses" into the active sodium transport pool within the mucosal epithelial cell of the isolated toad bladder was examined by determining the effect on the metabolism of the tissue of removing sodium from the serosal medium. It was expected that if recycling of serosal sodium did occur through the active transepithelial transport pathway of the isolated toad bladder, removal of sodium from the serosal medium would reduce the rate of CO2 production by the tissue and enhance of stoichiometric ratio of sodium ions transported across the bladder per molecula of sodium transport dependent CO2 produced simultaneously by the bladder (JNa/JCO2). The data revealed no significant change in this ratio (17.19 with serosal sodium and 16.13 after replacing serosal sodium with choline). Further, when transepithelial sodium transport was inhibited (a) by adding amiloride to the mucosal medium, or (b) by removing sodium from the mucosal medium, subsequent removal of sodium from the serosal medium, or (c) addition of ouabain failed to depress the basal rate of CO2 production by the bladder [(a)rate of basal, nontransport related, CO2 production (JbCO2) equals 1.54 +/- 0.52 with serosal sodium and 1.54 +/- 0.37 without serosal sodium; (b) Jb CO2 equals 2.18 +/- 0.21 with serosal sodium and 2.09 +/- 0.21 without serosal sodium; (c) 1.14 +/- 0.26 without ouabain and 1.13 +/- 0.25 with ouabain; unite of JbCO2 are nmoles mg d.w.-1 min-1]. The results support the hypothesis that little, if any, recycling of serosal sodium occurs in the total bladder.

  2. Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.

    Science.gov (United States)

    Dolz, María; O'Connor, José-Enrique; Lequerica, Juan L

    2004-10-01

    The Na(+)/H(+) exchanger (NHE) of mammalian cells is an integral membrane protein that extrudes H(+) ion in exchange for extracellular Na(+) and plays a crucial role in the regulation of intracellular pH (pHi). Thus, when pHi is lowered, NHE extrudes protons at a rate depending of pHi that can be expressed as pH units/s. To abolish the activity of other cellular pH-restoring systems, cells were incubated in bicarbonate-free Dulbecco's modified Eagle's medium buffered with HEPES. Flow cytometry was used to determine pHi with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester or 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester acetate, and the appropriate fluorescence ratios were measured. The calibration of fluorescence ratios versus pHi was established by using ionophore nigericin. The activity of NHE was calculated by a kinetic flow cytometric assay as the slope at time 0 of the best-fit curve of pHi recovery versus time after intracellular acidification with a pulse of exogenous sodium propionate. The kinetic method allowed determination of the pHi-dependent activity of NHE in cell lines and primary cell cultures. NHE activity values were demonstrated to be up to 0.016 pH units/s within the pHi range of 7.3 to 6.3. The inhibition of NHE activity by the specific inhibitor ethyl isopropyl amiloride was easily detected by this method. The assay conditions can be used to relate variations in pHi with the activity of NHE and provide a standardized method to compare between different cells, inhibitors, models of ischemia by acidification, and other relevant experimental or clinical situations.

  3. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    International Nuclear Information System (INIS)

    Lescaille, Géraldine; Mourah, Samia; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste

    2012-01-01

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  4. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii).

    Science.gov (United States)

    Fan, Chunxin; Zou, Sha; Wang, Jian; Zhang, Bo; Song, Jiakun

    2016-05-01

    The lateral line found in some amphibians and fishes has two distinctive classes of sensory organs: mechanoreceptors (neuromasts) and electroreceptors (ampullary organs). Hair cells in neuromasts can be damaged by aminoglycoside antibiotics and they will regenerate rapidly afterward. Aminoglycoside sensitivity and the capacity for regeneration have not been investigated in ampullary organs. We treated Siberian sturgeon (Acipenser baerii) larvae with neomycin and observed loss and regeneration of sensory hair cells in both organs by labeling with DASPEI and scanning electron microscopy (SEM). The numbers of sensory hair cells in both organs were reduced to the lowest levels at 6 hours posttreatment (hpt). New sensory hair cells began to appear at 12 hpt and were regenerated completely in 7 days. To reveal the possible mechanism for ampullary hair cell regeneration, we analyzed cell proliferation and the expression of neural placodal gene eya1 during regeneration. Both cell proliferation and eya1 expression were concentrated in peripheral mantle cells and both increased to the highest level at 12 hpt, which is consistent with the time course for regeneration of the ampullary hair cells. Furthermore, we used Texas Red-conjugated gentamicin in an uptake assay following pretreatment with a cation channel blocker (amiloride) and found that entry of the antibiotic was suppressed in both organs. Together, our results indicate that ampullary hair cells in Siberian sturgeon larvae can be damaged by neomycin exposure and they can regenerate rapidly. We suggest that the mechanisms for aminoglycoside uptake and hair cell regeneration are conserved for mechanoreceptors and electroreceptors. J. Comp. Neurol. 524:1443-1456, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  6. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N.

    1991-01-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  7. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.

    Science.gov (United States)

    Zhang, Shaoyan; Fortenberry, James A; Cohen, Noam A; Sorscher, Eric J; Woodworth, Bradford A

    2009-01-01

    The purpose of this study was to compare vectorial ion transport within murine trachea, murine nasal septa, and human sinonasal cultured epithelium. Our hypothesis is that murine septal epithelium, rather than trachea, will more closely mimic the electrophysiology properties of human sinonasal epithelium. Epithelium from murine trachea, murine septa, and human sinonasal tissue were cultured at an air-liquid interface to confluence and full differentiation. A limited number of homozygous dF508 epithelia were also cultured. Monolayers were mounted in modified Ussing chambers to investigate pharmacologic manipulation of ion transport. The change in forskolin-stimulated current (delta-I(SC), expressed as micro-A/cm(2)) in murine septal (n = 19; 16.84 +/- 2.09) and human sinonasal (n = 18; 12.15 +/- 1.93) cultures was significantly increased over murine tracheal cultures (n = 15; 6.75 +/- 1.35; p = 0.035 and 0.0005, respectively). Forskolin-stimulated I(SC) was inhibited by the specific cystic fibrosis transmembrane regulator (CFTR) inhibitor INH-172 (5 microM). No forskolin-stimulated I(SC) was shown in cultures of dF508 homozygous murine septal epithelium (n = 3). Murine septal I(SC) was largely inhibited by amiloride (12.03 +/- 0.66), whereas human sinonasal cultures had a very limited response (0.70 +/- 0.47; p < 0.0001). The contribution of CFTR to stimulated chloride current as measured by INH-172 was highly significantly different between all groups (murine septa, 19.51 +/- 1.28; human sinonasal, 11.12 +/- 1.58; murine trachea, 4.85 +/- 0.49; p < 0.0001). Human sinonasal and murine septal epithelial cultures represent a useful model for studying CFTR activity and may provide significant advantages over lower airway tissues for investigating upper and lower respiratory pathophysiology.

  8. Extracellular acidosis and very low [Na+ ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells.

    Science.gov (United States)

    Bonde, L; Boedtkjer, E

    2017-10-01

    The electroneutral Na + , HCO3- cotransporter NBCn1 and Na + /H + exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na + ]. We examined effects of low [Na + ] o and pH o on NBCn1 and NHE1 activity in VSMCs of small arteries. We measured pH i by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. NBCn1 activity - defined as Na + -dependent, amiloride-insensitive net base uptake with CO 2 /HCO3- present - was inhibited equally when pH o decreased from 7.4 (22 mm HCO3-/5% CO 2 ) by metabolic (pH o 7.1/11 mm HCO3-: 22 ± 8%; pH o 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pH o 7.1/10% CO 2 : 35 ± 11%; pH o 6.8/20% CO 2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na + -dependent net acid extrusion without CO 2 /HCO3- present - at both pH o 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pH o , lowering [Na + ] o from 140 to 70 mm reduced NBCn1 and NHE1 activity respiratory (ΔpH i /ΔpH o  = 71 ± 4%) than metabolic (ΔpH i /ΔpH o  = 30 ± 7%) acidosis. Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO 2 is raised or [HCO3-] o decreased. Lowering [Na + ] o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na + -dependent net acid extrusion at low pH o protects against cellular Na + overload at the cost of intracellular acidification. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    Full Text Available BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the

  10. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat.

    Science.gov (United States)

    Kullmann, F Aura; Shah, M A; Birder, L A; de Groat, W C

    2009-04-01

    Transient receptor potential (TRP) and acid-sensing ion channels (ASIC) are molecular detectors of chemical, mechanical, thermal, and nociceptive stimuli in sensory neurons. They have been identified in the urothelium, a tissue considered part of bladder sensory pathways, where they might play a role in bladder function. This study investigated functional properties of TRP and ASIC channels in cultured urothelial cells from the rat using patch-clamp and fura 2 Ca(2+) imaging techniques. The TRPV4 agonist 4alpha-phorbol-12,13 didecanoate (4alpha-PDD; 1-5 microM) and the TRPA1/TRPM8 agonist icilin (50-100 microM) elicited transient currents in a high percentage of cells (>70%). 4alpha-PDD responses were suppressed by the TRPV4 antagonist HC-010961 (10 microM). The TRPV1 agonist capsaicin (1-100 microM) and the TRPA1/TRPM8 agonist menthol (5-200 microM) elicited transient currents in a moderate percentage of cells ( approximately 25%). All of these agonists increased intracellular calcium concentration ([Ca(2+)](i)). Most cells responded to more than one TRP agonist (e.g., capsaicin and 4alpha-PDD), indicating coexpression of different TRP channels. In the presence of the TRPV1 antagonist capsazepine (10 microM), changes in pH induced by HCl elicited ionic currents (pH 5.5) and increased [Ca(2+)](i) (pH 6.5) in approximately 50% of cells. Changes in pH using acetic acid (pH 5.5) elicited biphasic-like currents. Responses induced by acid were sensitive to amiloride (10 microM). In summary, urothelial cells express multiple TRP and ASIC channels, whose activation elicits ionic currents and Ca(2+) influx. These "neuron-like" properties might be involved in transmitter release, such as ATP, that can act on afferent nerves or smooth muscle to modulate their responses to different stimuli.

  11. Participation of peripheral TRPV1, TRPV4, TRPA1 and ASIC in a magnesium sulfate-induced local pain model in rat.

    Science.gov (United States)

    Srebro, Dragana; Vučković, Sonja; Prostran, Milica

    2016-12-17

    We previously showed that magnesium sulfate (MS) has systemic antinociceptive and local peripheral pronociceptive effects. The role of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in the mechanism of action of MS has not been investigated in detail. The aim of this study was to explore the participation of TRP channels in the pronociceptive action of MS in rats after its intraplantar injection. The paw withdrawal threshold (PWT) to mechanical stimuli was measured by the electronic von Frey test. Drugs that were tested were either co-administered with an isotonic pH-unadjusted or pH-adjusted solution of MS intraplantarily, or to the contralateral paw to exclude systemic effects. We found that the subcutaneous administration of both pH-adjusted (7.4) and pH-unadjusted (about 6.0) isotonic (6.2% w/v in water) solutions of MS induce the pain at the injection site. The pH-unadjusted MS solution-induced mechanical hyperalgesia decreased in a dose-dependent manner as a consequence of co-injection of capsazepine, a selective TRPV1 antagonist (20, 100 and 500pmol/paw), RN-1734, a selective TRPV4 antagonist (1.55, 3.1 and 6.2μmol/paw), HC-030031, a selective TRPA1 antagonist (5.6, 28.1 and 140nmol/paw), and amiloride hydrochloride, a non-selective ASIC inhibitor (0.83, 2.5 and 7.55μmol/paw). In pH-adjusted MS-induced hyperalgesia, the highest doses of TRPV1, TRPV4 and TRPA1 antagonists displayed effects that were, respectively, either similar, less pronounced or delayed in comparison to the effect induced by administration of the pH-unadjusted MS solution; the ASIC antagonist did not have any effect. These results suggest that the MS-induced local peripheral mechanical hyperalgesia is mediated via modulation of the activity of peripheral TRPV1, TRPV4, TRPA1 and ASICs. Specific local inhibition of TRP channels represents a novel approach to treating local injection-related pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  12. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors.

    Science.gov (United States)

    Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H

    2016-04-01

    The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®

  13. The CF-CIRC study: a French collaborative study to assess the accuracy of Cystic Fibrosis diagnosis in neonatal screening

    Directory of Open Access Journals (Sweden)

    Bellon Gabriel

    2006-10-01

    Full Text Available Abstract Background Cystic fibrosis (CF is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR protein, which acts as a chloride channel after activation by cyclic AMP (cAMP. Newborn screening programs for CF usually consist of an immunoreactive trypsinogen (IRT assay, followed when IRT is elevated by testing for a panel of CF-causing mutations. Some children, however, may have persistent hypertrypsinogenemia, only one or no identified CFTR gene mutation, and sweat chloride concentrations close to normal values. In vivo demonstration of abnormal CFTR protein function would be an important diagnostic aid in this situation. Measurements of transepithelial nasal potential differences (NPD in adults accurately characterize CFTR-related ion transport. The aim of the present study is to establish reference values for NPD measurements for healthy children and those with CF aged 3 months to 3 years, the age range of most difficult-to-diagnose patients with suspected CF. The ultimate goal of our study is to validate NPD testing as a diagnostic tool for children with borderline results in neonatal screening. Methods/Design We adapted the standard NPD protocol for young children, designed a special catheter for them, used a slower perfusion rate, and shortened the protocol to include only measurement of basal PD, transepithelial sodium (Na+ transport in response to the Na+ channel inhibitor amiloride, and CFTR-mediated chloride (Cl- secretion in response to isoproterenol, a β-agonist in a Cl- free solution. The study will include 20 children with CF and 20 healthy control children. CF children will be included only if they carry 2 CF-causing mutations in the CFTR gene or have sweat chloride concentrations > 60 mEq/L or both. The healthy children will be recruited among the siblings of the CF patients, after verification that they do not carry the familial mutation. Discussion A preliminary study of 3 adult control

  14. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.

    Science.gov (United States)

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia

    2012-02-10

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis

  15. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production.

    Directory of Open Access Journals (Sweden)

    Ann L Wozniak

    2010-09-01

    Full Text Available The hepatitis C virus (HCV p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H(+ conductance in vesicles and was able to rapidly equilibrate H(+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5 vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H(+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H(+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection

  16. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Sá, M.G. [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, Sao Paulo 04044-020 (Brazil)

    2013-11-15

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl{sub 2} (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V{sub max} for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10{sup 4} cells{sup −1} × 300 s{sup −1} respectively and K{sub m} values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K{sub m} for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that

  17. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    International Nuclear Information System (INIS)

    Sá, M.G.; Zanotto, F.P.

    2013-01-01

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl 2 (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V max for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10 4 cells −1 × 300 s −1 respectively and K m values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K m for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that could also drive Cu to the gill cell

  18. Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Carmen Aravena

    Full Text Available Arsenic main inorganic compound is arsenic trioxide (ATO presented in solution mainly as arsenite. ATO increases intracellular pH (pHi, cell proliferation and tumor growth. Sodium-proton exchangers (NHEs modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0-48 hours in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5-100 µmol/L, NHEs inhibitor, PD-98059 (30 µmol/L, MAPK1/2 inhibitor, Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor, or Schering 28080 (10 µmol/L, H(+/K(+ATPase inhibitor plus concanamycin (0.1 µmol/L, V type ATPases inhibitor. Incorporation of [(3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na(+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44(mapk were also determined. Lowest ATO (0.05 µmol/L, ~0.01 ppm used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1-like transport dependent-increased pHi requiring p42/44(mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and

  19. Study population and treatment titration in the International Nifedipine GITS Study: Intervention as a Goal in Hypertension Treatment (INSIGHT).

    Science.gov (United States)

    Brown, M J; Castaigne, A; de Leeuw, P W; Mancia, G; Rosenthal, T; Ruilope, L M

    1998-12-01

    To ascertain the baseline characteristics of the high-risk hypertensive patients entering the International Nifedipine GITS Study: Intervention as a Goal in Hypertension Treatment (INSIGHT). To determine the success of single and combination therapy in achieving target blood pressures in such a population. INSIGHT is a double-blind, prospective outcome trial comparing the efficacy of the calcium channel blocker, nifedipine GITS, and the thiazide, co-amilozide, in preventing myocardial infarction and stroke. We recruited 2996 men and 3454 women, aged 55-80 years, with blood pressure during placebo run-in >150/95 mmHg or isolated systolic blood pressure >160 mmHg from nine countries. Treatment allocation to nifedipine GITS 30 mg daily or co-amilozide (hydrochlorothiazide 25 mg/amiloride 5 mg) once daily was performed by minimization rather than randomization to balance additional risk factors. This was followed by four optional increases in treatment: dose-doubling of the primary drug, addition of atenolol 25/50 mg or enalapril 5/10 mg, and then any other hypotensive drug excluding calcium blockers or diuretics. Target blood pressure was 140/90 mmHg or a fall > or = 20/10 mmHg. Blood pressure at randomization was 172+/-15 / 99+/-9 mmHg. Thirteen per cent of the patients were previously untreated. The proportions of each additional risk factors were: smoking > 10/day, 29%; cholesterol > 6.43 mmol/l, 52%; family history of premature myocardial infarction or stroke, 21%; diabetes mellitus 20%; left ventricular hypertrophy, 10%; previous myocardial infarction, other presentations of coronary heart disease, and peripheral vascular disease, each 6%; proteinuria, 3%. Fifty-five per cent of patients had one additional risk factor, whereas 33%, 9% and 3% had two, three or more additional risk factors, respectively. The blood pressure (and falls in blood pressure) at the end of titration and at 1 year after minimization was 139+/-12 / 82+/-7 mmHg (33+/-15 / 17+/-9) in the 5226

  20. Sodium-hydrogen exchanger inhibitory potential of Malus domestica, Musa × paradisiaca, Daucus carota, and Symphytum officinale.

    Science.gov (United States)

    Verma, Vivek; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-02-01

    The involvement of sodium-hydrogen exchangers (NHE) has been described in the pathophysiology of diseases including ischemic heart and brain diseases, cardiomyopathy, congestive heart failure, epilepsy, dementia, and neuropathic pain. Synthetic NHE inhibitors have not achieved much clinical success; therefore, plant-derived phytoconstituents may be explored as NHE inhibitors. In the present study, the NHE inhibitory potential of hydroalcoholic and alkaloidal fractions of Malus domestica, Musa × paradisiaca, Daucus carota, and Symphytum officinale was evaluated. The different concentrations of hydroalcoholic and alkaloidal extracts of the selected plants were evaluated for their NHE inhibitory activity in the platelets using the optical swelling assay. Among the hydroalcoholic extracts, the highest NHE inhibitory activity was shown by M. domestica (IC50=2.350 ± 0.132 μg/mL) followed by Musa × paradisiaca (IC50=7.967 ± 0.451 μg/mL), D. carota (IC50=37.667 ± 2.517 μg/mL), and S. officinale (IC50=249.330 ± 1.155 μg/mL). Among the alkaloidal fractions, the highest NHE inhibitory activity was shown by the alkaloidal fraction of Musa × paradisiacal (IC50=0.010 ± 0.001 μg/mL) followed by D. carota (IC50=0.024 ± 0.002 μg/mL), M. domestica (IC50=0.031 ± 0.005 μg/mL), and S. officinale (IC50=4.233 ± 0.379 μg/mL). The IC50 of alkaloidal fractions was comparable to the IC50 of synthetic NHE inhibitor, EIPA [5-(N-ethyl-N-isopropyl)amiloride] (IC50=0.033 ± 0.004 μg/mL). It may be concluded that the alkaloidal fractions of these plants possess potent NHE inhibitory activity and may be exploited for their therapeutic potential in NHE activation-related pathological complications.

  1. Comparison of single and combination diuretics on glucose tolerance (PATHWAY-3): protocol for a randomised double-blind trial in patients with essential hypertension.

    Science.gov (United States)

    Brown, Morris J; Williams, Bryan; MacDonald, Thomas M; Caulfield, Mark; Cruickshank, J Kennedy; McInnes, Gordon; Sever, Peter; Webb, David J; Salsbury, Jackie; Morant, Steve; Ford, Ian

    2015-08-07

    Thiazide diuretics are associated with increased risk of diabetes mellitus. This risk may arise from K(+)-depletion. We hypothesised that a K(+)-sparing diuretic will improve glucose tolerance, and that combination of low-dose thiazide with K(+)-sparing diuretic will improve both blood pressure reduction and glucose tolerance, compared to a high-dose thiazide. This is a parallel-group, randomised, double-blind, multicentre trial, comparing hydrochlorothiazide 25-50 mg, amiloride 10-20 mg and combination of both diuretics at half these doses. A single-blind placebo run-in of 1 month is followed by 24 weeks of blinded active treatment. There is forced dose-doubling after 3 months. The Primary end point is the blood glucose 2 h after oral ingestion of a 75 g glucose drink (OGTT), following overnight fasting. The primary outcome is the difference between 2 h glucose at weeks 0, 12 and 24. Secondary outcomes include the changes in home systolic blood pressure (BP) and glycated haemoglobin and prediction of response by baseline plasma renin. Eligibility criteria are: age 18-79, systolic BP on permitted background treatment ≥ 140 mm Hg and home BP ≥ 130 mm Hg and one component of the metabolic syndrome additional to hypertension. Principal exclusions are diabetes, estimated-glomerular filtration rate 200 mm Hg or DBP >120 mm Hg (box 2). The sample size calculation indicates that 486 patients will give 80% power at α=0.01 to detect a difference in means of 1 mmol/L (SD=2.2) between 2 h glucose on hydrochlorothiazide and comparators. PATHWAY-3 was approved by Cambridge South Ethics Committee, number 09/H035/19. The trial results will be published in a peer-reviewed scientific journal. Eudract number 2009-010068-41 and clinical trials registration number: NCT02351973. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury.

    Science.gov (United States)

    Deng, Wang; Li, Chang-Yi; Tong, Jin; Zhang, Wei; Wang, Dao-Xin

    2012-03-30

    Stimulation of epithelial sodium channel (ENaC) increases Na(+) transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. A model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Our study demonstrated that insulin alleviated pulmonary edema and

  3. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Deng Wang

    2012-03-01

    Full Text Available Abstract Background Stimulation of epithelial sodium channel (ENaC increases Na+ transport, a driving force of alveolar fluid clearance (AFC to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI. It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. Methods A model of ALI (LPS at a dose of 5.0 mg/kg with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF, total lung water content(TLW, and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR and western blotting. Results In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. Conclusions Our study

  4. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2012-04-01

    Full Text Available Desde hace más de cuarenta años que el litio es usado para el tratamiento de la enfermedad bipolar; recientes estudios sugieren también su utilidad en el trastorno cognitivo mínimo tipo amnésico. El litio es filtrado en el glomérulo y un 65-75% del mismo es reabsorbido en el túbulo contorneado proximal y en el asa ascendente de Henle por el transportador Na+, K+, 2Cl- y vía paracelular. Una pequeña fracción del litio entra en las células principales del túbulo colector por medio del canal epitelial de sodio sensible al amiloride (ENaC localizado en la membrana apical de la célula. Luego de 10- 20 años de tratamiento con litio los enfermos pueden desarrollar poliuria, acidosis tubular e insuficiencia renal crónica que puede terminar en una forma de diabetes que no responde a la arginina vasopresina llamada diabetes insípida nefrogénica. Se cree que estas fallas renales son consecuencias de una reducción en el número de moléculas de acuaporina 2 en la membrana apical. Las causas para esto son complejas. El litio es un poderoso inhibidor de la isoforma beta de la enzima glicógeno sintetasa quinasa y esto está asociado a una menor actividad de la adenilato ciclasa que lleva a una disminución en la concentración intracelular de cAMP. Esto finalmente interferiría con la síntesis de nuevas moléculas de acuaporina 2 y con el tráfico de ellas desde la zona subapical de la célula hacia la membrana celular, causando la disminución en la reabsorción de agua en la parte distal del nefrón.

  5. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  6. Colonic epithelial ion transport is not affected in patients with diverticulosis

    Directory of Open Access Journals (Sweden)

    Tilotta Maria C

    2007-09-01

    Full Text Available Abstract Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1 to investigate colonic epithelial ion transport in patients with diverticulosis and (2 to adapt a miniaturized Modified Ussing Air-Suction (MUAS chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls except for diverticulosis in 22 (D-patients. Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC was 43.8 μA·cm-2 (0.8 – 199 for controls and 59.3 μA·cm-2 (3.0 – 177.2 for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0 equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4 equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.

  7. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons.

    Science.gov (United States)

    Duzhyy, Dmytro E; Viatchenko-Karpinski, Viacheslav Y; Khomula, Eugen V; Voitenko, Nana V; Belan, Pavel V

    2015-05-20

    Previous studies have shown that increased excitability of capsaicin-sensitive DRG neurons and thermal hyperalgesia in rats with short-term (2-4 weeks) streptozotocin-induced diabetes is mediated by upregulation of T-type Ca(2+) current. In longer-term diabetes (after the 8th week) thermal hyperalgesia is changed to hypoalgesia that is accompanied by downregulation of T-type current in capsaicin-sensitive small-sized nociceptors. At the same time pain symptoms of diabetic neuropathy other than thermal persist in STZ-diabetic animals and patients during progression of diabetes into later stages suggesting that other types of DRG neurons may be sensitized and contribute to pain. In this study, we examined functional expression of T-type Ca(2+) channels in capsaicin-insensitive DRG neurons and excitability of these neurons in longer-term diabetic rats and in thermally hypoalgesic diabetic rats. Here we have demonstrated that in STZ-diabetes T-type current was upregulated in capsaicin-insensitive low-pH-sensitive small-sized nociceptive DRG neurons of longer-term diabetic rats and thermally hypoalgesic diabetic rats. This upregulation was not accompanied by significant changes in biophysical properties of T-type channels suggesting that a density of functionally active channels was increased. Sensitivity of T-type current to amiloride (1 mM) and low concentration of Ni(2+) (50 μM) implicates prevalence of Cav3.2 subtype of T-type channels in the capsaicin-insensitive low-pH-sensitive neurons of both naïve and diabetic rats. The upregulation of T-type channels resulted in the increased neuronal excitability of these nociceptive neurons revealed by a lower threshold for action potential initiation, prominent afterdepolarizing potentials and burst firing. Sodium current was not significantly changed in these neurons during long-term diabetes and could not contribute to the diabetes-induced increase of neuronal excitability. Capsaicin-insensitive low-pH-sensitive type

  8. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    Science.gov (United States)

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the

  9. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Directory of Open Access Journals (Sweden)

    Stähler Frauke

    2009-03-01

    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  10. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    Directory of Open Access Journals (Sweden)

    Alejandra G. Palma

    2014-04-01

    Full Text Available La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR, un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC. Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.

  11. Prevention of hypertension in patients with pre-hypertension: protocol for the PREVER-prevention trial

    Directory of Open Access Journals (Sweden)

    Neto José

    2011-03-01

    Full Text Available Abstract Background Blood pressure (BP within pre-hypertensive levels confers higher cardiovascular risk and is an intermediate stage for full hypertension, which develops in an annual rate of 7 out of 100 individuals with 40 to 50 years of age. Non-drug interventions to prevent hypertension have had low effectiveness. In individuals with previous cardiovascular disease or diabetes, the use of BP-lowering agents reduces the incidence of major cardiovascular events. In the absence of higher baseline risk, the use of BP agents reduces the incidence of hypertension. The PREVER-prevention trial aims to investigate the efficacy, safety and feasibility of a population-based intervention to prevent the incidence of hypertension and the development of target-organ damage. Methods This is a randomized, double-blind, placebo-controlled clinical trial, with participants aged 30 to 70 years, with pre-hypertension. The trial arms will be chlorthalidone 12.5 mg plus amiloride 2.5 mg or identical placebo. The primary outcomes will be the incidence of hypertension, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new sub-clinical atherosclerosis, and sudden death. The study will last 18 months. The sample size was calculated on the basis of an incidence of hypertension of 14% in the control group, a size effect of 40%, power of 85% and P alpha of 5%, resulting in 625 participants per group. The project was approved by the Ethics committee of each participating institution. Discussion The early use of blood pressure-lowering drugs, particularly diuretics, which act on the main mechanism of blood pressure rising with age, may prevent cardiovascular events and the incidence of hypertension in individuals with hypertension. If this intervention shows to be effective and safe

  12. The Effects of Ultrasound on Biological Systems: Site

    Science.gov (United States)

    El-Karmi, Anan M.

    Earlier studies (Dinno et al., Ultrasound Med. Biol. 15:461 -470; 1989) demonstrated that ultrasound at therapeutic intensities causes large increases in total conductance (G_{rm t}) of frog skin. These changes were attributed to non-thermal mechanisms, primarily, cavitation. In this study, the site(s) and mechanism(s) of action of ultrasound for the increase in G_{rm t} were examined. The reversible changes in G_{rm t } and sodium current were monitored in real time as a function of ultrasound exposure. Amiloride, a sodium channel blocker, was used to differentiate between cellular (G_{rm c}) and paracellular (G_{rm s}) pathways in the presence and absence of ultrasound. No significant changes were detected in G_ {rm c}. However, changes in G _{rm s} were significant. These results demonstrate that most of the increase in G _{rm t} due to ultrasound is taking place in the paracellular pathways. Sodium channels were not significantly affected by ultrasound. Thus, the changes in G_{rm c} are not specific. The effects of ultrasound were examined in the presence of radical scavengers and antioxidants. The increase in G_{rm t} due to ultrasound was significantly minimized in the presence of cystamine, cysteamine, and sodium ascorbate. This demonstrates that free radicals and other reactive species generated by cavitation are causing the increase in G_ {rm t}, possibly by acting from inside the cells. Radical scavengers and antioxidants are providing protection from oxidative damage but are not involved in the recovery of G_{ rm t} towards steady state values after sonication. The role of Ca^{2+} in the effects of ultrasound was examined since many of the cellular reactions involved in tissue recovery are dependent on the intracellular availability of free Ca^{2+}. The percentage increase in G_{rm t} in the presence of Ca^{2+} was larger than in its absence (140% vs. 27%). The time constant for G_{rm t} to return to steady state was longer in calcium-free solutions (122

  13. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    Science.gov (United States)

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Significance of the neurotensin receptor Na+/H+-exchanger 1 axis in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Olszewski, U.

    2009-01-01

    bicarbonate buffer. Amiloride-sensitive proton flux effected by NHE1 was stimulated 2 - 2.7-fold by Lys 8 -Ψ-Lys 9 NT(8-13) in BxPC-3 and PANC-1 cells, respectively. NHE1 was phosphorylated in response to the NT analog in BxPC-3, however, not in MIA PaCa-2 cells, and screening of changes in the phosphorylation status of selected proteins in response to Lys 8 -Ψ-Lys 9 NT(8-13) revealed participation of ERK1/2, p38α MAPK and mitogen- and stress-activated kinase 1/2 (MSK1/2) in responses of BxPC-3 and HT-29 cells, whereas Src signaling was stimulated in MIA PaCa-2 cells. Functional involvement of ERK1/2, p38α MAPK and MSK1/2 in stimulation of NHE1 activity by the NT analog was proved by inhibition of these kinases using PD 98059, SC 68376 and dimethyl fumarate (DMF), respectively. Extracellular acidosis stimulates production of interleukin-8 (IL-8), a crucial metastatic factor, in pancreatic cancer cells and, accordingly, Lys 8 -Ψ-Lys 9 NT(8-13) was found to stimulate secretion of IL-8 in BxPC-3 and PANC-1 cells in an amiloride-sensitive manner and to enable PANC-1 cells to migrate through an extracellular matrix gel. Genome-wide microarray analysis revealed distinct alterations in gene expression patterns of BxPC-3 and MIA PaCa-2 cells, with genes upregulated by Lys 8 -Ψ-Lys 9 NT(8-13) in BxPC-3 cells coding for components of the cytoskeleton and cell adhesion, hypoxia-inducible factor-1α and glycolytic enzymes, among others. In conclusion, NT-NTR1 signaling was shown to contribute to the emergence of an increased invasive potential of pancreatic cancer cells by triggering intracellular alkalinization and localized extracellular acidification, activation of stress-associated MSK1/2 signaling and production of IL-8, besides its minor effect on cell proliferation. (author) [de

  15. Caracterización del canal epitelial de sodio en sinciciotrofoblasto de placenta humana preeclamptica Characterization of the epithelial sodium channel in human pre-eclampsia syncytiotrophoblast

    Directory of Open Access Journals (Sweden)

    Silvana del Mónaco

    2006-02-01

    Full Text Available El sinciciotrofoblasto (SCT de placenta humana regula la transferencia de solutos y agua entre la sangre fetal y materna. En el presente trabajo observamos que el canal de sodio ENaC (asociado a cuadros como el síndrome de Liddle y pseudohipoaldosteronismo está presente en la membrana apical del SCT y que la subunidad a del canal tiene una expresión reducida en placentas con hipertensión gestacional (preeclampsia. Realizamos estudios a nivel de expresión de ARN (RT-PCR y a nivel proteico (western blot e inmunohistoquímica. En la línea celular BeWo (modelo de SCT humano el canal se encuentra presente y la expresión del mismo es regulada por las hormonas aldosterona, vasopresina, estradiol y progesterona. Analizamos la actividad del ENaC por electrofisiología y observamos corrientes sensibles a amiloride (10 µM cuando las células BeWo se cultivaron 12 horas con aldosterona (100 nM. Esta corriente presentó una magnitud 20 veces mayor que las corrientes basales, un potencial de reversión cercano a 3 mV y una conductancia de 127 ± 26 pS/pF entre los pulsos de -60 y -140 mV aplicados. Las características de esta corriente son similares a las producidas por ENaC en otros tejidos y evidencian la presencia de un canal funcional. El papel del ENaC en el SCT es poco comprendido, aunque la diferencia de expresión en la preeclampsia podría tener consecuencias para el transporte placentario de agua y iones. Nuestros datos son un aporte para futuros estudios de los mecanismos involucrados en la patofisiología de la preeclampsia.The syncytiotrophoblast (SCT, a multinucleated epithelium forming the outer layer of chorionic villi, acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. Electrolyte homeostasis and extracellular fluid volume are maintained primarily by regulated Na+ transport. The present study was conducted to analyze the presence of the

  16. Neural influences on human intestinal epithelium in vitro.

    Science.gov (United States)

    Krueger, Dagmar; Michel, Klaus; Zeller, Florian; Demir, Ihsan E; Ceyhan, Güralp O; Slotta-Huspenina, Julia; Schemann, Michael

    2016-01-15

    We present the first systematic and, up to now, most comprehensive evaluation of the basic features of epithelial functions, such as basal and nerve-evoked secretion, as well as tissue resistance, in over 2200 surgical specimens of human small and large intestine. We found no evidence for impaired nerve-evoked epithelial secretion or tissue resistance with age or disease pathologies (stomach, pancreas or colon cancer, polyps, diverticulitis, stoma reversal). This indicates the validity of future studies on epithelial secretion or resistance that are based on data from a variety of surgical specimens. ACh mainly mediated nerve-evoked and basal secretion in the small intestine, whereas vasoactive intestinal peptide and nitric oxide were the primary pro-secretory transmitters in the large intestine. The results of the present study revealed novel insights into regional differences in nerve-mediated secretion in the human intestine and comprise the basis by which to more specifically target impaired epithelial functions in the diseased gut. Knowledge on basic features of epithelial functions in the human intestine is scarce. We used Ussing chamber techniques to record basal tissue resistance (R-basal) and short circuit currents (ISC; secretion) under basal conditions (ISC-basal) and after electrical field stimulation (ISC-EFS) of nerves in 2221 resectates from 435 patients. ISC-EFS was TTX-sensitive and of comparable magnitude in the small and large intestine. ISC-EFS or R-basal were not influenced by the patients' age, sex or disease pathologies (cancer, polyps, diverticulitis). Ion substitution, bumetanide or adenylate cyclase inhibition studies suggested that ISC-EFS depended on epithelial cAMP-driven chloride and bicarbonate secretion but not on amiloride-sensitive sodium absorption. Although atropine-sensitive cholinergic components prevailed for ISC-EFS of the duodenum, jejunum and ileum, PG97-269-sensitive [vasoactive intestinal peptide (VIP) receptor 1

  17. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    International Nuclear Information System (INIS)

    Horiuchi, K.; Konno, A.; Nishio, S.; Fukuda, Y.; Saji, H.; Hashimoto, K.

    2002-01-01

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 37 0 C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  18. [Alpha but not beta-adrenergic stimulation has a positive inotropic effect associated with alkalinization of intracellular pH].

    Science.gov (United States)

    Gambassi, G; Lakatta, E G; Capogrossi, M C

    1991-01-01

    ethyl isopropyl-amiloride (10 microM), a selective Na+/H+ inhibitor (delta ES = 0.09 +/- 0.07, n = 6; NS and delta pH = -0.001 +/- 0.011, n = 6; NS). Thus, alpha-adrenergic stimulation in isolated cardiac cells exerts a positive inotropic effect and this is associated with a significant intracellular pH alkalinization. In contrast, the marked inotropic action of beta-stimulation does not involve any intracellular pH modulation. Therefore, it seems likely that, in myocardial cells, an increased myofilament responsiveness due to the alkalinization could represent a possible mechanism for the positive inotropic effect mediated by alpha-adrenergic stimulation.

  19. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC Lithium and its relation with the epithelial sodium channel and aquaporin-2

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2012-04-01

    Full Text Available Desde hace más de cuarenta años que el litio es usado para el tratamiento de la enfermedad bipolar; recientes estudios sugieren también su utilidad en el trastorno cognitivo mínimo tipo amnésico. El litio es filtrado en el glomérulo y un 65-75% del mismo es reabsorbido en el túbulo contorneado proximal y en el asa ascendente de Henle por el transportador Na+, K+, 2Cl- y vía paracelular. Una pequeña fracción del litio entra en las células principales del túbulo colector por medio del canal epitelial de sodio sensible al amiloride (ENaC localizado en la membrana apical de la célula. Luego de 10- 20 años de tratamiento con litio los enfermos pueden desarrollar poliuria, acidosis tubular e insuficiencia renal crónica que puede terminar en una forma de diabetes que no responde a la arginina vasopresina llamada diabetes insípida nefrogénica. Se cree que estas fallas renales son consecuencias de una reducción en el número de moléculas de acuaporina 2 en la membrana apical. Las causas para esto son complejas. El litio es un poderoso inhibidor de la isoforma beta de la enzima glicógeno sintetasa quinasa y esto está asociado a una menor actividad de la adenilato ciclasa que lleva a una disminución en la concentración intracelular de cAMP. Esto finalmente interferiría con la síntesis de nuevas moléculas de acuaporina 2 y con el tráfico de ellas desde la zona subapical de la célula hacia la membrana celular, causando la disminución en la reabsorción de agua en la parte distal del nefrón.For more than 40 years lithium has been used to treat bipolar disorder and recent trials suggest a potential efficacy also in the treatment of the amnestic mild cognitive impairment. Lithium is filtered by the glomerulus and 65% - 75% of the filtered amount is reabsorbed along the proximal tubule and in the thick ascending limb of Henle's loop by the Na+, K+, 2Cl- transporter and via paracellular. A small fraction of lithium is reabsorbed in