WorldWideScience

Sample records for amiloride-sensitive endocytic pathway

  1. Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway

    Directory of Open Access Journals (Sweden)

    Cheon Yong-Pil

    2009-08-01

    Full Text Available Abstract Background MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. Results We examined transduction of MPG-EGFP fusion protein by live imaging, flow cytometry, along with combination of cell biological and pharmacological methods. We show that MPG-EGFP fusion proteins efficiently enter various mammalian cells within a few minutes and are co-localized with FM4-64, a general marker of endosomes. The transduction of MPG-EGFP occurs rapidly and is inhibited at a low temperature. The entry of MPG-EGFP is inhibited by amiloride, but cytochalasin D and methyl-β-cyclodextrin did not inhibit the entry, suggesting that macropinocytosis is not involved in the transduction. Overexpression of a mutant form of dynamin partially reduced the transduction of MPG-EGFP. The partial blockade of MPG-EGFP transduction by a dynamin mutant is abolished by the treatment of amiloride. MPG-EGFP transduction is also observed in the mammalian oocytes. Conclusion The results show that the transduction of MPG fusion protein utilizes endocytic pathway(s which is amiloride-sensitive and partially dynamin-dependent. Collectively, the MPG fusion protein could be further developed as a novel tool of "protein therapeutics", with potentials to be used in various cell systems including mammalian oocytes.

  2. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin

    OpenAIRE

    1983-01-01

    The sodium flux ratio of the amiloride-sensitive Na+ channel in the apical membrane of in vitro Rana catesbeiana skin has been evaluated at different sodium concentrations and membrane potentials in sulfate Ringer solution. Amiloride-sensitive unidirectional influxes and effluxes were determined as the difference between bidirectional 22Na and 24Na fluxes simultaneously measured in the absence and presence of 10(-4) M amiloride in the external bathing solution. Amiloride- sensitive Na+ efflux...

  3. K+ transport across the lamprey erythrocyte membrane: characteristics of a Ba(2+)- and amiloride-sensitive pathway.

    Science.gov (United States)

    Kirk, K

    1991-09-01

    The characteristics of K+ transport in erythrocytes from the river lamprey (Lampetra fluviatilis) were investigated using standard radioisotope flux techniques. The cells were shown to have a ouabain-sensitive transport pathway that carried 43K+ and 86Rb+ into the cell at similar rates. Most of the ouabain-resistant 43K+ and 86Rb+ influx was via a pathway that was insensitive to cotransport inhibitors and to the replacement of extracellular Cl- or Na+. This pathway showed a strong selectivity for 43K+ over 86Rb+. It was inhibited fully by Ba2+ (I50 approximately 2.8 mumol l-1), amiloride (I50 approximately 150 mumol l-1) and ethylisopropylamiloride (I50 approximately 3.3 mumol l-1) and less effectively by quinine and by the tetraethylammonium ion. Inhibition by Ba2+ took full effect within a few minutes whereas the full inhibitory effect of amiloride took more than 1 h to develop. Experiments with the membrane potential probe [14C]tetraphenylphosphonium ion gave results consistent with the lamprey erythrocyte membrane having a Ba(2+)-sensitive K+ conductance that was significantly greater than the membrane Na+ conductance and which gave rise to a marked dependence of the membrane potential on the extracellular K+ concentration. The rate constants for Ba(2+)-sensitive 43K+ and 86Rb+ influx decreased (proportionally) with increasing extracellular K+ concentration in a manner that was consistent with the transport being via a conductive pathway. The decrease was attributed to a depolarisation of the membrane (in response to the increasing extracellular K+ concentration) and a consequent decrease in the driving force for the conductive movement of 43K+ and 86Rb+ into the cells. Ba(2+)-sensitive 86Rb+ influx increased significantly with decreasing cell volume and with increasing intracellular pH (at a constant extracellular pH) but increased only slightly with increasing extracellular pH. The pathway operated normally in the complete absence of extracellular Ca2+ but

  4. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laxton Kevin

    2010-05-01

    Full Text Available Abstract Background One pathological hallmark of Alzheimer's disease (AD is amyloid plaques, composed primarily of amyloid-β peptide (Aβ. Over-production or diminished clearance of the 42 amino acid form of Aβ (Aβ42 in the brain leads to accumulation of soluble Aβ and plaque formation. Soluble oligomeric Aβ (oAβ has recently emerged to be as a likely proximal cause of AD. Results Here we demonstrate that endocytosis is critical in mediating oAβ42-induced neurotoxicity and intraneuronal accumulation of Aβ. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAβ42-induced neurotoxicity or intraneuronal accumulation of Aβ. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Aβ accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Aβ42-induced neurotoxicity and intraneuronal Aβ accumulation.

  5. Decreased function of survival motor neuron protein impairs endocytic pathways.

    Science.gov (United States)

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  6. Endocytic Pathways and Recycling in Growing Pollen Tubes

    Directory of Open Access Journals (Sweden)

    Elisabetta Onelli

    2013-04-01

    Full Text Available Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have recently been demonstrated and partially characterized using FM (Fei Mao dyes or charged nanogold. Both these probes reveal that clathrin-dependent and -independent endocytosis occur in pollen tubes and are involved in distinct degradation pathways and membrane recycling. Exocytosis, internalization and sorting of PM proteins/lipids depend on the integrity of the actin cytoskeleton and are involved in actin filament organization. However, some kinds of endocytic and exocytic processes occurring in the central area of the tip still need to be characterized. Analysis of secretion dynamics and data derived from endocytosis highlight the complexity of events occurring in the tip region and suggest a new model of pollen tube growth.

  7. Bifurcation of the endocytic pathway into Rab5-dependent and -independent transport to the vacuole

    Science.gov (United States)

    Toshima, Junko Y.; Nishinoaki, Show; Sato, Yoshifumi; Yamamoto, Wataru; Furukawa, Daiki; Siekhaus, Daria Elisabeth; Sawaguchi, Akira; Toshima, Jiro

    2014-03-01

    The yeast Rab5 homologue, Vps21p, is known to be involved both in the vacuolar protein sorting (VPS) pathway from the trans-Golgi network to the vacuole, and in the endocytic pathway from the plasma membrane to the vacuole. However, the intracellular location at which these two pathways converge remains unclear. In addition, the endocytic pathway is not completely blocked in yeast cells lacking all Rab5 genes, suggesting the existence of an unidentified route that bypasses the Rab5-dependent endocytic pathway. Here we show that convergence of the endocytic and VPS pathways occurs upstream of the requirement for Vps21p in these pathways. We also identify a previously unidentified endocytic pathway mediated by the AP-3 complex. Importantly, the AP-3-mediated pathway appears mostly intact in Rab5-disrupted cells, and thus works as an alternative route to the vacuole/lysosome. We propose that the endocytic traffic branches into two routes to reach the vacuole: a Rab5-dependent VPS pathway and a Rab5-independent AP-3-mediated pathway.

  8. Brucella alters endocytic pathway in J774 macrophages.

    Science.gov (United States)

    Arenas, Graciela N; Grilli, Diego J; Samartino, Luis E; Magadán, Javier; Mayorga, Luis S

    2010-01-01

    Brucella is a facultative intracellular bacterium which causes chronic infections in mammals by surviving and replicating within host cells. The putative role of the endoplasmic reticulum (ER) in the formation of the phagosome in non-professional phagocytes is supported by several research groups, but still leaves open the question of the fate of Brucella inside professional phagocytes and its resistance mechanisms therein. Macrophages are particularly important for the survival and spreading of Brucella during infection. The intracellular transport of Brucella in these cells has not been thoroughly characterized. To study the maturation process of Brucella-containing phagosomes in phagocytes, we comparatively monitored the intracellular transport of a virulent strain (2308) with two vaccine strains (S19 and RB51) in J 774 macrophages. Then, we compared the behavior of all three strains studied through transmission electron microscopy. The results indicate that the virulent strain not only occupies two different kinds of compartments but also alters the endocytic pathway of the cell it parasitizes, unlike what has been reported for non-professional phagocytes, like HeLa cell. Besides, differences are observed in the behavior of both Brucella abortus vaccine strains. PMID:21178473

  9. Endocytic Pathways Involved in Filovirus Entry: Advances, Implications and Future Directions

    Directory of Open Access Journals (Sweden)

    Suchita Bhattacharyya

    2012-12-01

    Full Text Available Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.

  10. Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue

    OpenAIRE

    1996-01-01

    The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combinat...

  11. The convergent point of the endocytic and autophagic pathways in leydig cells

    Institute of Scientific and Technical Information of China (English)

    YIJING; XUEMINGTANG

    1999-01-01

    Endocytic tracers and marker enzyme of lysosomes were used in the present study to analyze the processes of autophagocytosis and endocytosis,and the convergent point of these two pathways in Leydig cells.The endocytic and autophagic compartments can be easily identified in Leydig cells,which makes easier to difine the stages of two pathways than was possible before.The evidences indicated that late endosomes (dense MVBs) deliver their endocytosed gold tracers together with lysosomal enzymes to the early autophagosomes and they are the convergent point of the two pathways.During this convergent process,the early autophadosomes transform into late autophagosomes and the late endosomes transform into mature lysosomes.

  12. The minute virus of mice exploits different endocytic pathways for cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2015-08-15

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.

  13. The minute virus of mice exploits different endocytic pathways for cellular uptake

    International Nuclear Information System (INIS)

    The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy and flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake

  14. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited.

    Directory of Open Access Journals (Sweden)

    Soheil Aghamohammadzadeh

    Full Text Available Clathrin-mediated endocytosis (CME is a well characterized pathway in both yeast and mammalian cells. An increasing number of alternative endocytic pathways have now been described in mammalian cells that can be both clathrin, actin, and Arf6- dependent or independent. In yeast, a single clathrin-mediated pathway has been characterized in detail. However, disruption of this pathway in many mutant strains indicates that other uptake pathways might exist, at least for bulk lipid and fluid internalization. Using a combination of genetics and live cell imaging, here we show evidence for a novel endocytic pathway in S. cerevisiae that does not involve several of the proteins previously shown to be associated with the 'classic' pathway of endocytosis. This alternative pathway functions in the presence of low levels of the actin-disrupting drug latrunculin-A which inhibits movement of the proteins Sla1, Sla2, and Sac6, and is independent of dynamin function. We reveal that in the absence of the 'classic' pathway, the actin binding protein Abp1 is now essential for bulk endocytosis. This novel pathway appears to be distinct from another described alternative endocytic route in S. cerevisiae as it involves at least some proteins known to be associated with cortical actin patches rather than being mediated at formin-dependent endocytic sites. These data indicate that cells have the capacity to use overlapping sets of components to facilitate endocytosis under a range of conditions.

  15. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited.

    Science.gov (United States)

    Aghamohammadzadeh, Soheil; Smaczynska-de Rooij, Iwona I; Ayscough, Kathryn R

    2014-01-01

    Clathrin-mediated endocytosis (CME) is a well characterized pathway in both yeast and mammalian cells. An increasing number of alternative endocytic pathways have now been described in mammalian cells that can be both clathrin, actin, and Arf6- dependent or independent. In yeast, a single clathrin-mediated pathway has been characterized in detail. However, disruption of this pathway in many mutant strains indicates that other uptake pathways might exist, at least for bulk lipid and fluid internalization. Using a combination of genetics and live cell imaging, here we show evidence for a novel endocytic pathway in S. cerevisiae that does not involve several of the proteins previously shown to be associated with the 'classic' pathway of endocytosis. This alternative pathway functions in the presence of low levels of the actin-disrupting drug latrunculin-A which inhibits movement of the proteins Sla1, Sla2, and Sac6, and is independent of dynamin function. We reveal that in the absence of the 'classic' pathway, the actin binding protein Abp1 is now essential for bulk endocytosis. This novel pathway appears to be distinct from another described alternative endocytic route in S. cerevisiae as it involves at least some proteins known to be associated with cortical actin patches rather than being mediated at formin-dependent endocytic sites. These data indicate that cells have the capacity to use overlapping sets of components to facilitate endocytosis under a range of conditions. PMID:25072293

  16. The endocytic uptake pathways of targeted toxins are influenced by synergistically acting Gypsophila saponins.

    Science.gov (United States)

    Bachran, Diana; Schneider, Stefanie; Bachran, Christopher; Weng, Alexander; Melzig, Matthias F; Fuchs, Hendrik

    2011-12-01

    The expression of the epidermal growth factor (EGF) receptor is upregulated in many human tumors. We developed the targeted toxin SE, consisting of the plant toxin saporin-3 and human EGF. The cytotoxic effect of SE drastically increases in a synergistic manner by a combined treatment with Saponinum album (Spn), a saponin composite from Gypsophila paniculata L. Here we analyzed which endocytic pathways are involved in the uptake of SE and which are mandatory for the Spn-mediated enhancement. We treated HER14 cells (NIH-3T3 cells transfected with human EGF receptor) with either chlorpromazine, dynasore, latrunculin A, chloroquine, bafilomycin A1 or filipin and analyzed the effect on the cytotoxicity of SE alone or in combination with Spn. We demonstrated that SE in combination with Spn enters cells via clathrin- and actin-dependent pathways and the acidification of the endosomes after endocytosis is relevant for the cytotoxicity of SE. Notably, our data suggest that SE without Spn follows a different endocytic uptake pathway. SE cytotoxicity is independent of blocking of clathrin or actin, and the decrease in endosomal pH is irrelevant for SE cytotoxicity. Furthermore, Spn has no influence on the retrograde transport. This work is important for the better understanding of the underlying mechanism of Spn-enhanced cytotoxicity and helps to describe the role of Spn better. PMID:21981719

  17. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo

    Science.gov (United States)

    Motley, Michael P.; Madsen, Daniel H.; Jürgensen, Henrik J.; Spencer, David E.; Szabo, Roman; Holmbeck, Kenn; Flick, Matthew J.; Lawrence, Daniel A.; Castellino, Francis J.; Weigert, Roberto

    2016-01-01

    Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways. PMID:26647393

  18. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes

    International Nuclear Information System (INIS)

    The endocytic entry of lymphocytic choriomeningitis virus (LCMV) into host cells was compared to the entry of viruses known to exploit clathrin or caveolae/raft-dependent pathways. Pharmacological inhibitors, expression of pathway-specific dominant-negative constructs, and siRNA silencing of clathrin together with electron and light microscopy provided evidence that although a minority population followed a classical clathrin-mediated mechanism of entry, the majority of these enveloped RNA viruses used a novel endocytic route to late endosomes. The pathway was clathrin, dynamin-2, actin, Arf6, flotillin-1, caveolae, and lipid raft independent but required membrane cholesterol. Unaffected by perturbation of Rab5 or Rab7 and apparently without passing through Rab5/EEA1-positive early endosomes, the viruses reached late endosomes and underwent acid-induced penetration. This membrane trafficking route between the plasma membrane and late endosomes may function in the turnover of a select group of surface glycoproteins such as the dystroglycan complex, which serves as the receptor of LCMV

  19. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila.

    Science.gov (United States)

    Politi, Yoav; Gal, Liron; Kalifa, Yossi; Ravid, Liat; Elazar, Zvulun; Arama, Eli

    2014-05-12

    Almost all animals contain mitochondria of maternal origin only, but the exact mechanisms underlying this phenomenon are still vague. We investigated the fate of Drosophila paternal mitochondria after fertilization. We demonstrate that the sperm mitochondrial derivative (MD) is rapidly eliminated in a stereotypical process dubbed paternal mitochondrial destruction (PMD). PMD is initiated by a network of vesicles resembling multivesicular bodies and displaying common features of the endocytic and autophagic pathways. These vesicles associate with the sperm tail and mediate the disintegration of its plasma membrane. Subsequently, the MD separates from the axoneme and breaks into smaller fragments, which are then sequestered by autophagosomes for degradation in lysosomes. We further provide evidence for the involvement of the ubiquitin pathway and the autophagy receptor p62 in this process. Finally, we show that the ubiquitin ligase Parkin is not involved in PMD, implying a divergence from the autophagic pathway of damaged mitochondria. PMID:24823375

  20. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway

    Institute of Scientific and Technical Information of China (English)

    Hongliang Wang; Peng Yang; Kangtai Liu; Feng Guo; Yanli Zhang; Gongyi Zhang; Chengyu Jiang

    2008-01-01

    While severe acute respiratory syndrome coronavirus (SARS-CoV)fwas initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.

  1. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  2. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.

    Science.gov (United States)

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-01-01

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667

  3. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway.

    Science.gov (United States)

    Möbius, W; van Donselaar, E; Ohno-Iwashita, Y; Shimada, Y; Heijnen, H F G; Slot, J W; Geuze, H J

    2003-04-01

    We employed our recently developed immuno-electron microscopic method (W. Möbius, Y. Ohno-Iwashita, E. G. van Donselaar, V. M. Oorschot, Y. Shimada, T. Fujimoto, H. F. Heijnen, H. J. Geuze and J. W. Slot, J Histochem Cytochem 2002; 50: 43-55) to analyze the distribution of cholesterol in the endocytic pathway of human B lymphocytes. We could distinguish 6 categories of endocytic compartments on the basis of morphology, BSA gold uptake kinetics and organelle marker analysis. Of all cholesterol detected in the endocytic pathway, we found 20% in the recycling tubulo-vesicles and 63% present in two types of multivesicular bodies. In the multivesicular bodies, most of the cholesterol was contained in the internal membrane vesicles, the precursors of exosomes secreted by B cells. Cholesterol was almost absent from lysosomes, that contained the bulk of the lipid bis(monoacylglycero)phosphate, also termed lysobisphosphatidic acid. Thus, cholesterol displays a highly differential distribution in the various membrane domains of the endocytic pathway. PMID:12694561

  4. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration.

    Science.gov (United States)

    Xu, Wei; Weissmiller, April M; White, Joseph A; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L; Zhao, Xiaobei; Sawa, Mariko; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C; Wu, Chengbiao

    2016-05-01

    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS. PMID:27064279

  5. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells.

    Science.gov (United States)

    Rigal, Adeline; Doyle, Siamsa M; Robert, Stéphanie

    2015-01-01

    Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64. PMID:25408447

  6. Caco-2 cell acquisition of dietary iron(III invokes a nanoparticulate endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Dora I A Pereira

    Full Text Available Dietary non-heme iron contains ferrous [Fe(II] and ferric [Fe(III] iron fractions and the latter should hydrolyze, forming Fe(III oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02 by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05 whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II.

  7. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways.

    Science.gov (United States)

    Inoue, Hiroki; Matsuzaki, Yuka; Tanaka, Ayaka; Hosoi, Kaori; Ichimura, Kaoru; Arasaki, Kohei; Wakana, Yuichi; Asano, Kenichi; Tanaka, Masato; Okuzaki, Daisuke; Yamamoto, Akitsugu; Tani, Katsuko; Tagaya, Mitsuo

    2015-08-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways. PMID:26101353

  8. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    Science.gov (United States)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  9. A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Dahl, Hans A.; Buttenschön, Henriette N.;

    2012-01-01

    Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors...... the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant...

  10. Endospanins regulate a postinternalization step of the leptin receptor endocytic pathway.

    Science.gov (United States)

    Séron, Karin; Couturier, Cyril; Belouzard, Sandrine; Bacart, Johan; Monté, Didier; Corset, Laetitia; Bocquet, Olivier; Dam, Julie; Vauthier, Virginie; Lecœur, Cécile; Bailleul, Bernard; Hoflack, Bernard; Froguel, Philippe; Jockers, Ralf; Rouillé, Yves

    2011-05-20

    Endospanin-1 is a negative regulator of the cell surface expression of leptin receptor (OB-R), and endospanin-2 is a homologue of unknown function. We investigated the mechanism for endospanin-1 action in regulating OB-R cell surface expression. Here we show that endospanin-1 and -2 are small integral membrane proteins that localize in endosomes and the trans-Golgi network. Antibody uptake experiments showed that both endospanins are transported to the plasma membrane and then internalized into early endosomes but do not recycle back to the trans-Golgi network. Overexpression of endospanin-1 or endospanin-2 led to a decrease of OB-R cell surface expression, whereas shRNA-mediated depletion of each protein increased OB-R cell surface expression. This increased cell surface expression was not observed with OB-Ra mutants defective in endocytosis or with transferrin and EGF receptors. Endospanin-1 or endospanin-2 depletion did not change the internalization rate of OB-Ra but slowed down its lysosomal degradation. Thus, both endospanins are regulators of postinternalization membrane traffic of the endocytic pathway of OB-R. PMID:21454707

  11. Endospanins Regulate a Postinternalization Step of the Leptin Receptor Endocytic Pathway*

    Science.gov (United States)

    Séron, Karin; Couturier, Cyril; Belouzard, Sandrine; Bacart, Johan; Monté, Didier; Corset, Laetitia; Bocquet, Olivier; Dam, Julie; Vauthier, Virginie; Lecœur, Cécile; Bailleul, Bernard; Hoflack, Bernard; Froguel, Philippe; Jockers, Ralf; Rouillé, Yves

    2011-01-01

    Endospanin-1 is a negative regulator of the cell surface expression of leptin receptor (OB-R), and endospanin-2 is a homologue of unknown function. We investigated the mechanism for endospanin-1 action in regulating OB-R cell surface expression. Here we show that endospanin-1 and -2 are small integral membrane proteins that localize in endosomes and the trans-Golgi network. Antibody uptake experiments showed that both endospanins are transported to the plasma membrane and then internalized into early endosomes but do not recycle back to the trans-Golgi network. Overexpression of endospanin-1 or endospanin-2 led to a decrease of OB-R cell surface expression, whereas shRNA-mediated depletion of each protein increased OB-R cell surface expression. This increased cell surface expression was not observed with OB-Ra mutants defective in endocytosis or with transferrin and EGF receptors. Endospanin-1 or endospanin-2 depletion did not change the internalization rate of OB-Ra but slowed down its lysosomal degradation. Thus, both endospanins are regulators of postinternalization membrane traffic of the endocytic pathway of OB-R. PMID:21454707

  12. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    OpenAIRE

    Roberto Weigert; Myo-Pale' Aye; Kamil Rechache; Natalie Porat-Shliom; Andrius Masedunskas

    2012-01-01

    Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. ...

  13. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    Directory of Open Access Journals (Sweden)

    Roberto Weigert

    2012-11-01

    Full Text Available Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. We found that the internalization of transferrin and dextran, two molecules that traffic via distinct mechanisms, is substantially altered in cultured cells, supporting the idea that the three dimensional organization of the tissue and the cues generated by the surrounding environment strongly affect membrane trafficking events.

  14. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available G protein-coupled receptors (GPCRs activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α(1A-adrenergic receptor (α(1A-AR-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2. Agonist-mediated endocytic traffic of α(1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A. α(1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α(1A-AR. α(1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent. Activation of protein kinase C (PKC and C-Raf by α(1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor and Ro 31-8220 (a PKC inhibitor inhibited α(1B-AR- but not α(1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α(1A-AR-induced ERK1/2 activation, which is independent of G(q/PLC/PKC signaling.

  15. Analysis of endocytic pathways in Drosophila cells reveals a conserved role for GBF1 in internalization via GEECs.

    Directory of Open Access Journals (Sweden)

    Gagan D Gupta

    Full Text Available In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs forms GEECs (GPI-AP enriched early endosomal compartments via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes. Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion.

  16. Characterization of a Nonclathrin Endocytic Pathway: Membrane Cargo and Lipid RequirementsD⃞

    OpenAIRE

    Naslavsky, Naava; Weigert, Roberto; Donaldson, Julie G.

    2004-01-01

    Clathrin-independent endocytosis internalizes plasma membrane proteins that lack cytoplasmic sequences recognized by clathrin adaptor proteins. There is evidence for different clathrin-independent pathways but whether they share common features has not been systematically tested. Here, we examined whether CD59, an endogenous glycosylphosphatidyl inositol-anchored protein (GPI-AP), and major histocompatibility protein class I (MHCI), an endogenous, integral membrane protein, entered cells thro...

  17. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    International Nuclear Information System (INIS)

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-β-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption

  18. Spatiotemporal Resolution of Rab9 and CI-MPR Dynamics in the Endocytic Pathway.

    Science.gov (United States)

    Kucera, Ana; Borg Distefano, Marita; Berg-Larsen, Axel; Skjeldal, Frode; Repnik, Urska; Bakke, Oddmund; Progida, Cinzia

    2016-03-01

    Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition. PMID:26663757

  19. Ephedrae herba stimulates hepatocyte growth factor-induced MET endocytosis and downregulation via early/late endocytic pathways in gefitinib-resistant human lung cancer cells.

    Science.gov (United States)

    Nishimura, Yukio; Hyuga, Sumiko; Takiguchi, Soichi; Hyuga, Masashi; Itoh, Kazuyuki; Hanawa, Toshihiko

    2016-05-01

    The MET tyrosine kinase receptor and its ligand, hepatocyte growth factor (HGF), are known to be overexpressed in a variety of malignant tumor cells, and are implicated in the development of gefitinib-resistance in human non-small cell lung cancer (NSCLC) cells. Ephedrae herba was previously reported to prevent HGF-induced cancer cell motility by directly suppressing HGF/MET signaling through the inhibition of MET tyrosine kinase, and treatment with its extract also considerably reduced MET protein levels. To further investigate the mechanism underlying the Ephedrae herba-induced inhibition of MET phosphorylation as well as its degradation and subsequent disappearance, we examined the effect of Ephedrae herba on HGF-stimulated MET endocytosis and downregulation via early/late endocytic pathways in an NSCLC cell line. Using immunofluorescence microscopy, we found that pretreatment of cells with Ephedrae herba extract dramatically changed the intracellular distribution of plasma membrane-associated MET, and that the resultant MET staining was distributed throughout the cytoplasm. Pretreatment of the cells with Ephedrae herba extract also led to the rapid loss of MET and phosphorylated (p)-MET in HGF-stimulated cells. In contrast, inefficient endocytic delivery of MET and p-MET from early to late endosomes was observed in the absence of Ephedrae herba extract, since considerable amounts of the internalized MET accumulated in the early endosomes and were not delivered to lysosomes up to 1 h after HGF-stimulation. Furthermore, large amounts of MET and p-MET that had accumulated in late endosomes of Ephedrae herba-pretreated cells after HGF stimulation were observed along with bafilomycin A1. Therefore, we inferred that degradation of MET occurred in the late endosome/lysosome pathway. Moreover, western blot analysis revealed the accelerated degradation of MET and p-MET proceeds in cells pretreated with Ephedrae herba extract. Collectively, our results suggest that

  20. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway.

    Science.gov (United States)

    Wijdeven, Ruud H; Janssen, Hans; Nahidiazar, Leila; Janssen, Lennert; Jalink, Kees; Berlin, Ilana; Neefjes, Jacques

    2016-01-01

    Autophagy is the main homeostatic pathway guiding cytosolic materials for degradation by the lysosome. Maturation of autophagosomes requires their transport towards the perinuclear region of the cell, with key factors underlying both processes still poorly understood. Here we show that transport and positioning of late autophagosomes depends on cholesterol by way of the cholesterol-sensing Rab7 effector ORP1L. ORP1L localizes to late autophagosomes and-under low-cholesterol conditions-contacts the ER protein VAP-A, forming ER-autophagosome contact sites, which prevent minus-end transport by the Rab7-RILP-dynein complex. ORP1L-mediated contact sites also inhibit localization of PLEKHM1 to Rab7. PLEKHM1, together with RILP, then recruits the homotypic fusion and vacuole protein-sorting (HOPS) complex for fusion of autophagosomes with late endosomes and lysosomes. Thus, ORP1L, via its liganding by lipids and the formation of contacts between autophagic vacuoles and the ER, governs the last steps in autophagy that lead to the lysosomal degradation of cytosolic material. PMID:27283760

  1. Benzyl-N-acetyl-alpha-D-galactosaminide induces a storage disease-like phenotype by perturbing the endocytic pathway.

    Science.gov (United States)

    Ulloa, Fausto; Real, Francisco X

    2003-04-01

    The sugar analog O-benzyl-N-acetyl-alpha-d-galactosaminide (BG) is an inhibitor of glycan chain elongation and inhibits alpha2,3-sialylation in mucus-secreting HT-29 cells. Long-term exposure of these cells to BG is associated with the accumulation of apical glycoproteins in cytoplasmic vesicles. The mechanisms involved therein and the nature of the vesicles have not been elucidated. In these cells, a massive amount of BG metabolites is synthesized. Because sialic acid is mainly distributed apically in epithelial cells, it has been proposed that the BG-induced undersialylation of apical membrane glycoproteins is responsible for their intracellular accumulation due to a defect in anterograde traffic and that sialic acid may constitute an apical targeting signal. In this work, we demonstrate that the intracellular accumulation of membrane glycoproteins does not result mainly from defects in anterograde traffic. By contrast, in BG-treated cells, endocytosed membrane proteins were retained intracellularly for longer periods of time than in control cells and colocalized with accumulated MUC1 and beta(1) integrin in Rab7/lysobisphosphatidic acid(+) vesicles displaying features of late endosomes. The phenotype of BG-treated cells is reminiscent of that observed in lysosomal storage disorders. Sucrose induced a BG-like, lysosomal storage disease-like phenotype without affecting sialylation, indicating that undersialylation is not a requisite for the intracellular accumulation of membrane glycoproteins. Our findings strongly support the notion that the effects observed in BG-treated cells result from the accumulation of BG-derived metabolites and from defects in the endosomal pathway. We propose that abnormal subcellular distribution of membrane glycoproteins involved in cellular communication and/or signaling may also take place in lysosomal storage disorders and may contribute to their pathogenesis. PMID:12538583

  2. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis[OPEN

    Science.gov (United States)

    Sparks, J. Alan; Renna, Luciana; Liao, Fuqi; Brandizzi, Federica

    2016-01-01

    The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants. PMID:26941089

  3. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe;

    2012-01-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it...... crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...

  4. The F-Box Protein Rcy1p Is Involved in Endocytic Membrane Traffic and Recycling Out of an Early Endosome in Saccharomyces cerevisiae

    OpenAIRE

    Wiederkehr, Andreas; Avaro, Sandrine; Prescianotto-Baschong, Cristina; Haguenauer-Tsapis, Rosine; Riezman, Howard

    2000-01-01

    In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the ac...

  5. DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus.

    Science.gov (United States)

    Wong, Athena W; Scales, Suzie J; Reilly, Dorothea E

    2007-08-01

    Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study. PMID:17562704

  6. Efficient Endocytic Uptake and Maturation in Drosophila Oocytes Requires Dynamitin/p50.

    Science.gov (United States)

    Liu, Guojun; Sanghavi, Paulomi; Bollinger, Kathryn E; Perry, Libby; Marshall, Brendan; Roon, Penny; Tanaka, Tsubasa; Nakamura, Akira; Gonsalvez, Graydon B

    2015-10-01

    Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation. PMID:26265702

  7. Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis

    Indian Academy of Sciences (India)

    Brandon Tenay; Evin Kimberlin; Michelle Williams; Juliette Denise; Joshua Fakilahyel; Kyoungtae Kim

    2013-06-01

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1tor2ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1tor2ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2ts and tor1tor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.

  8. Important relationships between Rab and MICAL proteins in endocytic trafficking

    Directory of Open Access Journals (Sweden)

    Juliati Rahajeng

    2010-08-01

    Full Text Available The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes, where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs and GTP exchange factors (GEFs. Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.

  9. Important relationships between Rab and MICAL proteins in endocytic trafficking

    Institute of Scientific and Technical Information of China (English)

    Juliati; Rahajeng; Sai; Srinivas; Panapakkam; Giridharan; Naava; Naslavsky; Steve; Caplan

    2010-01-01

    The internalization of essential nutrients,lipids and receptors is a crucial process for all eukaryotic cells.Accordingly,endocytosis is highly conserved across cell types and species.Once internalized,small cargocontaining vesicles fuse with early endosomes(also known as sorting endosomes),where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway.Although the mechanisms that regulate this sorting are still poorly understood,some receptors are directed to late endosomes and lysosomes for degradation,whereas other receptors are recycled back to the plasma membrane;either directly or through recycling endosomes.The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways.Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membraneassociated proteins,as a consequence of the activity of multiple specific GTPase-activating proteins(GAPs) and GTP exchange factors(GEFs).Once bound to GTP,Rabs interact with a multitude of effector proteins that carry out Rab-specific functions.Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology(EHD) proteins,which are also intimately involved in endocytic regulation.A particularly interesting example of common Rab-EHD interaction partners is the MICALlike protein,MICAL-L1.MICAL-L1 and its homolog,MICAL-L2,belong to the larger MICAL family of proteins,and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins,as well as controlling cytoskeletal rearrangement and neurite outgrowth.In this review,we summarize the functional roles of MICAL and Rab proteins,and focus on the significance of their interactions and the implications for endocytic transport.

  10. Isolation of functional, coated, endocytic vesicles

    OpenAIRE

    1991-01-01

    Brief internalization of [125I]transferrin was used to label coated endocytic vesicles, which were then purified using a combination of 2H2O and 2H2O/Ficoll density gradients. Purification was monitored using an assay measuring fusion of endocytic organelles, so as to isolate functional vesicles. Isolated vesicles had all the properties of clathrin-coated vesicles, being enriched for the major components of clathrin coats and uncoated by either 1 M Tris-HCl or an uncoating ATPase. Nearly half...

  11. EHBP-1 Functions with RAB-10 during Endocytic Recycling in Caenorhabditis elegans

    OpenAIRE

    Shi, Anbing; Chen, Carlos Chih-Hsiung; Banerjee, Riju; Glodowski, Doreen; Audhya, Anjon; Rongo, Christopher; Grant, Barth D.

    2010-01-01

    Caenorhabditis elegans RAB-10 functions in endocytic recycling in polarized cells, regulating basolateral cargo transport in the intestinal epithelia and postsynaptic cargo transport in interneurons. A similar role was found for mammalian Rab10 in MDCK cells, suggesting that a conserved mechanism regulates these related pathways in metazoans. In a yeast two-hybrid screen for binding partners of RAB-10 we identified EHBP-1, a calponin homology domain (CH) protein, whose mammalian homolog Ehbp1...

  12. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.

    Science.gov (United States)

    Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise

    2016-01-01

    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking. PMID:27578500

  13. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A2 like domain in N-terminus of VP1. In this study we characterized the role of PLA2 activity on CPV entry process. PLA2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA2 inhibitors inhibited the viral proliferation suggesting that PLA2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A1, brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A1, brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA2 activity of the virus. These results suggest that parvoviral PLA2 activity is essential for productive infection and presumably

  14. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling.

    Directory of Open Access Journals (Sweden)

    Nadja Drusenheimer

    2015-12-01

    Full Text Available CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family

  15. Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers.

    Science.gov (United States)

    Leonoudakis, Dmitri; Huang, Ge; Akhavan, Armin; Fata, Jimmie E; Singh, Manisha; Gray, Joe W; Muschler, John L

    2014-11-15

    The dynamic interactions between cells and basement membranes serve as essential regulators of tissue architecture and function in metazoans, and perturbation of these interactions contributes to the progression of a wide range of human diseases, including cancers. Here, we reveal the pathway and mechanism for the endocytic trafficking of a prominent basement membrane protein, laminin-111 (referred to here as laminin), and their disruption in disease. Live-cell imaging of epithelial cells revealed pronounced internalization of laminin into endocytic vesicles. Laminin internalization was receptor mediated and dynamin dependent, and laminin proceeded to the lysosome through the late endosome. Manipulation of laminin receptor expression revealed that the dominant regulator of laminin internalization is dystroglycan, a laminin receptor that is functionally perturbed in muscular dystrophies and in many cancers. Correspondingly, laminin internalization was found to be deficient in aggressive cancer cells displaying non-functional dystroglycan, and restoration of dystroglycan function strongly enhanced the endocytosis of laminin in both breast cancer and glioblastoma cells. These results establish previously unrecognized mechanisms for the modulation of cell-basement-membrane communication in normal cells and identify a profound disruption of endocytic laminin trafficking in aggressive cancer subtypes. PMID:25217627

  16. The HPV16 E5 oncogene inhibits endocytic trafficking

    DEFF Research Database (Denmark)

    Thomsen, P; van Deurs, B; Norrild, B;

    2000-01-01

    The small hydrophobic E5 protein of Human Papillomavirus type 16 (HPV16) binds to the 16-kDa subunit of the V-H+-ATPase. This binding has been suggested to interfere with acidification of late endocytic structures. We here used video microscopy, ratio imaging and confocal microscopy of living C127...... perturbs trafficking from early to late endocytic structures rather than acidification....

  17. Human B lymphoblastoid cells contain distinct patterns of cathepsin activity in endocytic compartments and regulate MHC class II transport in a cathepsin S-independent manner.

    Science.gov (United States)

    Lautwein, Alfred; Kraus, Marianne; Reich, Michael; Burster, Timo; Brandenburg, J; Overkleeft, Herman S; Schwarz, Gerold; Kammer, Winfried; Weber, Ekkehard; Kalbacher, Hubert; Nordheim, Alfred; Driessen, Christoph

    2004-05-01

    Endocytic proteolysis represents a major functional component of the major histocompatibility complex class II antigen-presentation machinery. Although transport and assembly of class II molecules in the endocytic compartment are well characterized, we lack information about the pattern of endocytic protease activity along this pathway. Here, we used chemical tools that visualize endocytic proteases in an activity-dependent manner in combination with subcellular fractionation to dissect the subcellular distribution of the major cathepsins (Cat) CatS, CatB, CatH, CatD, CatC, and CatZ as well as the asparagine-specific endoprotease (AEP) in human B-lymphoblastoid cells (BLC). Endocytic proteases were distributed in two distinct patterns: CatB and CatZ were most prominent in early and late endosomes but absent from lysosomes, and CatH, CatS, CatD, CatC, and AEP distributed between late endosomes and lysosomes, suggesting that CatB and CatZ might be involved in the initial proteolytic attack on a given antigen. The entire spectrum of protease activity colocalized with human leukocyte antigen-DM and the C-terminal and N-terminal processing of invariant chain (Ii) in late endosomes. CatS was active in all endocytic compartments. Surprisingly and in contrast with results from dendritic cells, inhibition of CatS activity by leucine-homophenylalanine-vinylsulfone-phenol prevented N-terminal processing of Ii but did not alter the subcellular trafficking or surface delivery of class II complexes, as deferred from pulse-chase analysis in combination with subcellular fractionation and biotinylation of cell-surface protein. Thus, BLC contain distinct activity patterns of proteases in endocytic compartments and regulate the intracellular transport and surface-delivery of class II in a CatS-independent manner. PMID:14966190

  18. The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wiederkehr, A; Avaro, S; Prescianotto-Baschong, C; Haguenauer-Tsapis, R; Riezman, H

    2000-04-17

    In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Delta is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Delta mutant is strongly defective in recycling. PMID:10769031

  19. CD13 restricts TLR4 endocytic signal transduction in inflammation.

    Science.gov (United States)

    Ghosh, Mallika; Subramani, Jaganathan; Rahman, M Mamunur; Shapiro, Linda H

    2015-05-01

    Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5(+) early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13(KO) dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13(KO) mice showed significantly enhanced IFNβ-mediated signal transduction via JAK-STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation. PMID:25801433

  20. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments

    Science.gov (United States)

    Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis

    2015-01-01

    Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602

  1. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling.

    Science.gov (United States)

    Lant, Benjamin; Yu, Bin; Goudreault, Marilyn; Holmyard, Doug; Knight, James D R; Xu, Peter; Zhao, Linda; Chin, Kelly; Wallace, Evan; Zhen, Mei; Gingras, Anne-Claude; Derry, W Brent

    2015-01-01

    The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients. PMID:25743393

  2. Endocytic proteins drive vesicle growth via instability in high membrane tension environment

    CERN Document Server

    Walani, Nikhil; Agrawal, Ashutosh

    2015-01-01

    Clathrin-mediated endocytosis (CME) is a key pathway for transporting cargo into cells via membrane vesicles. It plays an integral role in nutrient import, signal transduction, neurotransmission and cellular entry of pathogens and drug-carrying nanoparticles. As CME entails substantial local remodeling of the plasma membrane, the presence of membrane tension offers resistance to bending and hence, vesicle formation. Experiments show that in such high tension conditions, actin dynamics is required to carry out CME successfully. In this study, we build upon these pioneering experimental studies to provide fundamental mechanistic insights into the roles of two key endocytic proteins, namely, actin and BAR proteins in driving vesicle formation in high membrane tension environment. Our study reveals a new actin force induced `snap-through instability' that triggers a rapid shape transition from a shallow invagination to a highly invaginated tubular structure. We show that the association of BAR proteins stabilizes...

  3. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila

    Science.gov (United States)

    Nagy, Péter; Kovács, Laura; Sándor, Gyöngyvér O.

    2016-01-01

    ABSTRACT UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent) or late (Rab7-dependent) steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans. PMID:26921396

  4. Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila

    Directory of Open Access Journals (Sweden)

    Péter Nagy

    2016-05-01

    Full Text Available UV radiation resistance-associated gene (UVRAG is a tumor suppressor involved in autophagy, endocytosis and DNA damage repair, but how its loss contributes to colorectal cancer is poorly understood. Here, we show that UVRAG deficiency in Drosophila intestinal stem cells leads to uncontrolled proliferation and impaired differentiation without preventing autophagy. As a result, affected animals suffer from gut dysfunction and short lifespan. Dysplasia upon loss of UVRAG is characterized by the accumulation of endocytosed ligands and sustained activation of STAT and JNK signaling, and attenuation of these pathways suppresses stem cell hyperproliferation. Importantly, the inhibition of early (dynamin-dependent or late (Rab7-dependent steps of endocytosis in intestinal stem cells also induces hyperproliferation and dysplasia. Our data raise the possibility that endocytic, but not autophagic, defects contribute to UVRAG-deficient colorectal cancer development in humans.

  5. Effects of Paclitaxel on EGFR Endocytic Trafficking Revealed Using Quantum Dot Tracking in Single Cells

    OpenAIRE

    Li, Hui; Duan, Zhao-Wen; Xie, Ping; Liu, Yu-Ru; Wang, Wei-Chi; Dou, Shuo-Xing; Wang, Peng-Ye

    2012-01-01

    Paclitaxel (PTX), a chemotherapeutic drug, affects microtubule dynamics and influences endocytic trafficking. However, the mechanism and the dynamics of altered endocytic trafficking by paclitaxel treatment in single living cells still remain elusive. By labeling quantum dots (QDs) to the epidermal growth factor (EGF), we continuously tracked the endocytosis and post-endocytic trafficking of EGF receptors (EGFRs) in A549 cells for a long time interval. A single-cell analysis method was introd...

  6. Down Syndrome Fibroblast Model of Alzheimer-Related Endosome Pathology : Accelerated Endocytosis Promotes Late Endocytic Defects

    OpenAIRE

    Cataldo, Anne M.; Mathews, Paul M.; Boiteau, Anne Boyer; Hassinger, Linda C.; Peterhoff, Corrinne M.; Jiang, Ying; Mullaney, Kerry; Neve, Rachael L.; Gruenberg, Jean; Nixon, Ralph A.

    2008-01-01

    Endocytic dysfunction is an early pathological change in Alzheimer’s disease (AD) and Down’s syndrome (DS). Using primary fibroblasts from DS individuals, we explored the interactions among endocytic compartments that are altered in AD and assessed their functional consequences in AD pathogenesis. We found that, like neurons in both AD and DS brains, DS fibroblasts exhibit increased endocytic uptake, fusion, and recycling, and trafficking of lysosomal hydrolases to rab5-positive early endosom...

  7. Endocytic activity of Sertoli cells grown in bicameral culture chambers

    International Nuclear Information System (INIS)

    Immature rat Sertoli cells were cultured for 7 to 14 days on Millipore filters impregnated with a reconstituted basement membrane extract in dual-environment (bicameral) culture chambers. Electron microscopy of the cultured cells revealed the presence of rod-shaped mitochondria, Golgi apparatus, rough endoplasmic reticulum, and Sertoli-Sertoli tight junctions, typical of these cells in vivo. The endocytic activity of both the apical and basal surfaces of the Sertoli cells was examined by either adding alpha 2-macroglobulin (alpha 2-M) conjugated to 20 nm gold particles to the apical chamber or by adding 125I labeled alpha 2-M to the basal chamber. During endocytosis from the apical surface of Sertoli cells, the alpha 2-M-gold particles were bound initially to coated pits and then internalized into coated vesicles within 5 minutes. After 10 minutes, the alpha 2-M-gold was found in multi-vesicular bodies (MVBs) and by 30 minutes it was present in the lysosomes. The proportion of alpha 2-M-gold found within endocytic cell organelles after 1 hour of uptake was used to estimate the approximate time that this ligand spent in each type of organelle. The alpha 2-M-gold was present in coated pits, coated vesicles, multivesicular bodies, and lysosomes for approximately 3, 11, 22, and 24 minutes, respectively. This indicates that the initial stages of endocytosis are rapid, whereas MVBs and lysosomes are relatively long-lived

  8. Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects.

    Science.gov (United States)

    Cataldo, Anne M; Mathews, Paul M; Boiteau, Anne Boyer; Hassinger, Linda C; Peterhoff, Corrinne M; Jiang, Ying; Mullaney, Kerry; Neve, Rachael L; Gruenberg, Jean; Nixon, Ralph A

    2008-08-01

    Endocytic dysfunction is an early pathological change in Alzheimer's disease (AD) and Down's syndrome (DS). Using primary fibroblasts from DS individuals, we explored the interactions among endocytic compartments that are altered in AD and assessed their functional consequences in AD pathogenesis. We found that, like neurons in both AD and DS brains, DS fibroblasts exhibit increased endocytic uptake, fusion, and recycling, and trafficking of lysosomal hydrolases to rab5-positive early endosomes. Moreover, late endosomes identified using antibodies to rab7 and lysobisphosphatidic acid increased in number and appeared as enlarged, perinuclear vacuoles, resembling those in neurons of both AD and DS brains. In control fibroblasts, similar enlargement of rab5-, rab7-, and lysobisphosphatidic acid-positive endosomes was induced when endocytosis and endosomal fusion were increased by expression of either a rab5 or an active rab5 mutant, suggesting that persistent endocytic activation results in late endocytic dysfunction. Conversely, expression of a rab5 mutant that inhibits endocytic uptake reversed early and late endosomal abnormalities in DS fibroblasts. Our results indicate that DS fibroblasts recapitulate the neuronal endocytic dysfunction of AD and DS, suggesting that increased trafficking from early endosomes can account, in part, for downstream endocytic perturbations that occur in neurons in both AD and DS brains. PMID:18535180

  9. Endocytic Trafficking of Membrane-Bound Cargo: A Flotillin Point of View

    Directory of Open Access Journals (Sweden)

    Melanie Meister

    2014-07-01

    Full Text Available The ubiquitous and highly conserved flotillin proteins, flotillin-1 and flotillin-2, have been shown to be involved in various cellular processes such as cell adhesion, signal transduction through receptor tyrosine kinases as well as in cellular trafficking pathways. Due to the fact that flotillins are acylated and form hetero-oligomers, they constitutively associate with cholesterol-enriched lipid microdomains. In recent years, such microdomains have been appreciated as platforms that participate in endocytosis and other cellular trafficking steps. This review summarizes the current findings on the role of flotillins in membrane-bound cargo endocytosis and endosomal trafficking events. We will discuss the proposed function of flotillins in endocytosis in the light of recent findings that point towards a role for flotillins in a step that precedes the actual endocytic uptake of cargo molecules. Recent findings have also revealed that flotillins may be important for endosomal sorting and recycling of specific cargo molecules. In addition to these aspects, the cellular trafficking pathway of flotillins themselves as potential cargo in the context of growth factor signaling will be discussed.

  10. Proteomics of secretory and endocytic organelles in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Petra B Wampfler

    Full Text Available Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs, mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs, for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.

  11. Proteomics of secretory and endocytic organelles in Giardia lamblia.

    Science.gov (United States)

    Wampfler, Petra B; Tosevski, Vinko; Nanni, Paolo; Spycher, Cornelia; Hehl, Adrian B

    2014-01-01

    Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694. PMID:24732305

  12. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Grøvdal, Lene; Grandal, Michael;

    2008-01-01

    degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently...... associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti......-cancer therapy may induce endocytic downregulation of ErbB receptors....

  13. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  14. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  15. Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries

    Directory of Open Access Journals (Sweden)

    Giorgio eScita

    2015-02-01

    Full Text Available The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and posttranslational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among them, loss of cell polarity represents the nearly invariable feature of EMT that precedes the other traits or might even occur in their absence.Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and – unexpectedly – membrane trafficking. These results have highlighted a picture of great complexity. First the EMT transition is not an all-or-none response but rather a gradual process. Second EMT events are dynamic and frequently reversible, involving cell-autonomous and non-autonomous mechanisms. Endocytic circuitries have emerged as complex connectivity infrastructures for cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling certain aspects of EMT. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to microenvironmental cues, ultimately impacting on physiological and pathological processes

  16. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction.

    Science.gov (United States)

    Jean-Charles, Pierre-Yves; Rajiv, Vishwaesh; Shenoy, Sudha K

    2016-10-01

    The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790995

  17. Differential effects of EGFR ligands on endocytic sorting of the receptor

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Grandal, Michael Vibo; Henriksen, Lasse;

    2009-01-01

    signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic...... trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor...

  18. Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞

    OpenAIRE

    Strick, David J.; Elferink, Lisa A

    2005-01-01

    Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting end...

  19. The Endocytic Fate of the Transferrin Receptor Is Regulated by c-Abl Kinase.

    Science.gov (United States)

    Cao, Hong; Schroeder, Barbara; Chen, Jing; Schott, Micah B; McNiven, Mark A

    2016-08-01

    Clathrin-mediated endocytosis of transferrin (Tf) and its cognate receptor (TfR1) is a central pathway supporting the uptake of trophic iron. It has generally been assumed that this is a constitutive process. However, we have reported that the non-receptor tyrosine kinase, Src, is activated by Tf to facilitate the internalization of the Tf-TfR1 ligand-receptor complex. As an extension of these findings, we have tested whether subsequent trafficking steps might be regulated by additional kinase-dependent cascades, and we observed a significant endocytic block by inhibiting c-Abl kinase by a variety of methods. Importantly, Tf internalization was reduced significantly in all of these cell models and could be restored by re-expression of WT c-Abl. Surprisingly, this attenuated Tf-TfR1 endocytosis was due to a substantial drop in both the surface and total cellular receptor levels. Additional studies with the LDL receptor showed a similar effect. Surprisingly, immunofluorescence microscopy of imatinib-treated cells revealed a marked colocalization of internalized TfR1 with late endosomes/lysosomes, whereas attenuating the lysosome function with several inhibitors reduced this receptor loss. Importantly, inhibition of c-Abl resulted in a striking redistribution of the chaperone Hsc70 from a diffuse cytosolic localization to an association with the TfR1 at the late endosome-lysosome. Pharmacological inhibition of Hsc70 ATPase activity in cultured cells by the drug VER155008 prevents this chaperone-receptor interaction, resulting in an accumulation of the TfR1 in the early endosome. Thus, inhibition of c-Abl minimizes receptor recycling pathways and results in chaperone-dependent trafficking of the TfR1 to the lysosome for degradation. These findings implicate a novel role for c-Abl and Hsc70 as an unexpected regulator of Hsc70-mediated transport of trophic receptor cargo between the early and late endosomal compartments. PMID:27226592

  20. Phosphorylation Regulates the Endocytic Function of the Yeast Dynamin-Related Protein Vps1.

    Science.gov (United States)

    Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Palmer, Sarah E; Booth, Wesley I; Mishra, Ritu; Goldberg, Martin W; Ayscough, Kathryn R

    2016-03-01

    The family of dynamin proteins is known to function in many eukaryotic membrane fusion and fission events. The yeast dynamin-related protein Vps1 functions at several stages of membrane trafficking, including Golgi apparatus to endosome and vacuole, peroxisomal fission, and endocytic scission. We have previously shown that in its endocytic role, Vps1 functions with the amphiphysin heterodimer Rvs161/Rvs167 to facilitate scission and release of vesicles. Phosphoproteome studies of Saccharomyces cerevisiae have identified a phosphorylation site in Vps1 at serine 599. In this study, we confirmed this phosphorylation event, and we reveal that, like Rvs167, Vps1 can be phosphorylated by the yeast cyclin-associated kinase Pho85 in vivo and in vitro. The importance of this posttranslational modification was revealed when mutagenesis of S599 to a phosphomimetic or nonphosphorylatable form caused defects in endocytosis but not in other functions associated with Vps1. Mutation to nonphosphorylatable valine inhibited the Rvs167 interaction, while both S599V and S599D caused defects in vesicle scission, as shown by both live-cell imaging and electron microscopy of endocytic invaginations. Our data support a model in which phosphorylation and dephosphorylation of Vps1 promote distinct interactions and highlight the importance of such regulatory events in facilitating sequential progression of the endocytic process. PMID:26711254

  1. Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin.

    Science.gov (United States)

    Wong, Yu-Hui; Lee, Chia-Ming; Xie, Wenjun; Cui, Bianxiao; Poo, Mu-ming

    2015-08-11

    Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation. PMID:26216953

  2. Microinjecting FM4-64 validates it as a marker of the endocytic pathway in plants.

    NARCIS (Netherlands)

    Gisbergen, PA van; Esseling-Ozdoba, A.; Vos, J.W.

    2008-01-01

    The amphiphilic dye FM4-64 is used to investigate endocytosis and vesicle trafficking in living eukaryotic cells. The standing hypothesis is that it is inserted into the outer leaflet of the plasma membrane and, from there, is passed on to intracellular membrane compartments by endocytosis. We teste

  3. Microinjecting FM4-64 validates it as a marker of the endocytic pathway in plants

    NARCIS (Netherlands)

    Gisbergen, van P.A.C.; Esseling-Ozdoba, A.; Vos, J.W.

    2008-01-01

    The amphiphilic dye FM4-64 is used to investigate endocytosis and vesicle trafficking in living eukaryotic cells. The standing hypothesis is that it is inserted into the outer leaflet of the plasma membrane and, from there, is passed on to intracellular membrane compartments by endocytosis. We teste

  4. Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation.

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Barone

    Full Text Available BACKGROUND: Celiac Disease (CD is both a frequent disease (1:100 and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs

  5. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport.

    Science.gov (United States)

    Gaechter, Verena; Schraner, Elisabeth; Wild, Peter; Hehl, Adrian B

    2008-01-01

    Dynamins are universally conserved large guanosine triphosphatases, which function as mechanoenzymes in membrane scission. The primitive protozoan Giardia lamblia has a single dynamin-related protein (GlDRP) with an unusual domain structure. Giardia lacks a Golgi apparatus but generates transient Golgi-like delay compartments dubbed encystation-specific vesicles (ESVs), which serve to accumulate and mature cyst wall proteins during differentiation to infectious cyst forms. Here, we analyze the function of GlDRP during growth and encystation and demonstrate that it relocalizes from peripheral endosomal-lysosomal compartments to nascent ESVs. We show that GlDRP is necessary for secretion of the cyst wall material and ESV homeostasis. Expression of a dominant-negative GlDRP variant does not interfere with ESV formation but blocks cyst formation completely prior to regulated exocytosis. GlDRP colocalizes with clathrin at the cell periphery and is necessary for endocytosis of surface proteins to endosomal-lysosomal organelles in trophozoites. Electron microscopy and live cell imaging reveal gross morphological changes as well as functional impairment of the endocytic system in cells expressing the dominant-negative GlDRP. Thus, giardial DRP plays a key role in two distinct trafficking pathways and in organelle homeostasis, both essential functions for the proliferation of the parasite in the gut and its transmission to a new host. PMID:17892527

  6. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation.

    Directory of Open Access Journals (Sweden)

    Hichem Mahfouz

    Full Text Available Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.

  7. Interference of a short-chain phospholipid with ion transport pathways in frog skin

    DEFF Research Database (Denmark)

    Unmack, M A; Frederiksen, O; Willumsen, N J

    1997-01-01

    The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport was mea...... the frog skin epithelium and opens a paracellular tight junction pathway. Both effects may be caused by incorporation of DDPC in the apical cell membrane.......The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport was...... G by DDPC, these results suggest that the DDPC-induced increase in G represents an increase in the paracellular shunt conductance. The effects of mucosal DDPC were almost fully reversible within 8 h. The results indicate that DDPC inhibits amiloride-sensitive Na+ channels in the apical membrane of...

  8. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  9. ‘Fractional Recovery’ Analysis of a Presynaptic Synaptotagmin 1-Anchored Endocytic Protein Complex

    OpenAIRE

    Khanna, Rajesh; Li, Qi; Stanley, Elise F.

    2006-01-01

    Background The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The lo...

  10. Endosome-mediated endocytic mechanism replenishes the majority of synaptic vesicles at mature CNS synapses in an activity-dependent manner.

    Science.gov (United States)

    Park, Joohyun; Cho, Oh Yeon; Kim, Jung Ah; Chang, Sunghoe

    2016-01-01

    Whether synaptic vesicles (SVs) are recovered via endosome-mediated pathways is a matter of debate; however, recent evidence suggests that clathrin-independent bulk endocytosis (CIE) via endosomes is functional and preferentially replenishes SV pools during strong stimulation. Here, using brefeldin-A (BFA) to block CIE, we found that CIE retrieved a minority of SVs at developing CNS synapses during strong stimulation, but its contribution increased up to 61% at mature CNS synapses. Contrary to previous views, BFA not only blocked SV formation from the endosome but also blocked the endosome formation at the plasma membrane. Adaptor protein 1 and 3 (AP-1/3) have key roles in SV reformation from endosomes during CIE, and AP-1 also affects bulk endosome formation from the plasma membrane. Finally, temporary blocking of chronic or acute neuronal activity with tetrodotoxin in mature neurons redirected most SV retrieval to endosome-independent pathways. These results show that during high neuronal activity, CIE becomes the major endocytic pathway at mature CNS synapses. Moreover, mature neurons use clathrin-mediated endocytosis and the CIE pathway to different extents depending on their previous activity; this may result in activity-dependent alterations of the SV composition which ultimately influence transmitter release and contribute to synaptic plasticity. PMID:27534442

  11. Laminin and fibronectin treatment leads to generation of dendritic cells with superior endocytic capacity.

    Directory of Open Access Journals (Sweden)

    Samuel García-Nieto

    Full Text Available BACKGROUND: Sampling the microenvironment at sites of microbial exposure by dendritic cells (DC and their subsequent interaction with T cells in the paracortical area of lymph nodes are key events for initiating immune responses. Most of our knowledge of such events in human is based on in vitro studies performed in the absence of extracellular matrix (ECM proteins. ECM in basement membranes and interstitial spaces of different tissues, including lymphoid organs, plays an important role in controlling specific cellular functions such as migration, intracellular signalling and differentiation. The aim of this study was, therefore, to investigate the impact of two abundant ECM components, fibronectin and laminin, on the phenotypical and functional properties of DC and how that might influence DC induced T-cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Human monocyte derived DC were treated with laminin and fibronectin for up to 48 hours and their morphology and phenotype was analyzed using scanning electron microscopy, flow cytometry and real time PCR. The endocytic ability of DC was determined using flow cytometry. Furthermore, co-culture of DC and T cells were established and T cell proliferation and cytokine profile was measured using H(3-thymidine incorporation and ELISA respectively. Finally, we assessed formation of DC-T cell conjugates using different cell trackers and flow cytometry. Our data show that in the presence of ECM, DC maintain a 'more immature' phenotype and express higher levels of key endocytic receptors, and as a result become significantly better endocytic cells, but still fully able to mature in response to stimulation as evidenced by their superior ability to induce antigen-specific T cell differentiation. CONCLUSION: These studies underline the importance of including ECM components in in vitro studies investigating DC biology and DC-T cell interaction. Within the context of antigen specific DC induced T cell

  12. N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins.

    Science.gov (United States)

    Marion, Sébastien; Fralish, Gregory B; Laporte, Stéphane; Caron, Marc G; Barak, Larry S

    2007-06-29

    The highly homologous beta-arrestin1 and -2 adaptor proteins play important roles in the function of G protein-coupled receptors. Either beta-arrestin variant can function as a molecular chaperone for clathrin-mediated receptor internalization. This role depends primarily upon two distinct, contiguous C-terminal beta-arrestin motifs recognizing clathrin and the beta-adaptin subunit of AP2. However, a molecular basis is lacking to explain the different endocytic efficacies of the two beta-arrestin isoforms and the observation that beta-arrestin N-terminal substitution mutants can act as dominant negative inhibitors of receptor endocytosis. Despite the near identity of the beta-arrestins throughout their N termini, sequence variability is present at a small number of residues and includes tyrosine to phenylalanine substitutions. Here we show that corresponding N-terminal (Y/F)VTL sequences in beta-arrestin1 and -2 differentially regulate mu-adaptin binding. Our results indicate that the beta-arrestin1 Tyr-54 lessens the interaction with mu-adaptin and moreover is a Src phosphorylation site. A gain of endocytic function is obtained with the beta-arrestin1 Y54F substitution, which improves both the beta-arrestin1 interaction with mu-adaptin and the ability to enhance beta2-adrenergic receptor internalization. These data indicate that beta-arrestin2 utilizes mu-adaptin as an endocytic partner, and that the inability of beta-arrestin1 to sustain a similar degree of interaction with mu-adaptin may result from coordination of Tyr-54 by neighboring residues or its modification by Src kinase. Additionally, these naturally occurring variations in beta-arrestins may also differentially regulate the composition of the signaling complexes organized on the receptor. PMID:17456469

  13. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa.

    Science.gov (United States)

    Lara-Rojas, Fernando; Bartnicki-García, Salomón; Mouriño-Pérez, Rosa R

    2016-03-01

    The subapical endocytic collar is a prominent feature of hyphae of Neurospora crassa. It comprises a dynamic collection of actin patches associated with a number of proteins required for endocytosis, namely, ARP-2/3 complex, fimbrin, coronin, etc. We presently show that MYO-1 is another key component of this endocytic collar. A myo-1 sequence was identified in the genome of N. crassa and used it to generate a strain with a myo-1-sgfp allele under the ccg1 promoter. Examination of living hyphae by confocal microscopy, revealed MYO-1-GFP located mainly as a dynamic collection of small patches arranged in collar-like fashion in the hyphal subapex. Dual tagging showed MYO-1-GFP partially colocalized with two other endocytic proteins, fimbrin and coronin. MYO-1 was also present during septum formation. By recovering a viable strain, albeit severely inhibited, after deletion of myo-1, it was possible to investigate the phenotypic consequences of the elimination of MYO-1. Deletion of myo-1 caused a severe reduction in growth rate (95%), near absence of aerial mycelium and no conidiation. A reduced uptake of the lipophilic dye FM4-64 indicated a deficiency in endocytosis in the Δmyo-1 mutant. Hyphae were produced by the Δmyo-1 mutant but their morphogenesis was severely affected; hyphal morphology was distorted displaying irregular periods of isotropic and polarized growth. The morphological alterations were accompanied, and presumably caused, by a disruption in the organization and dynamics of a myosin-deprived actin cytoskeleton that, ultimately, compromised the stability and function of the Spitzenkörper as a vesicle supply center. PMID:26805950

  14. Aberrant glomerular filtration of urokinase-plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine

    DEFF Research Database (Denmark)

    Stæhr, Mette; Buhl, Kristian Bergholt; Andersen, René F;

    2015-01-01

    In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in pre-urine is thought to activate proteolytically ENaC and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator...

  15. Cl-, Na+, and H+ fluxes during the acidification of rabbit reticulocyte endocytic vesicles

    International Nuclear Information System (INIS)

    The ionic fluxes associated with the ATP-dependent acidification of endocytic vesicles were studied in a preparation isolated from rabbit reticulocytes enriched for transferrin-transferrin receptor complexes. No vesicle acidification was observed in the absence of intra- and extravesicular ions sucrose(in)/sucrose(out), while maximal acidification was observed with NaCl(in)/KCl(out).K+(in) was a poor substitute for Na+(in), and Cl-(out) could be replaced by other anions with the following efficacy of acidification: Cl- greater than Br- greater than I- greater than PO4(3-) greater than gluconate greater than SO4(2-). Flux studies using 36Cl- and 22Na+ showed that the vesicles had a permeability for Cl- and Na+, and that ATP-dependent H+ pumping was accompanied by a net influx of Cl- and a net efflux of Na+ provided that there was a Na+ concentration gradient. After 3 mins, the time necessary to maximal acidification, the electrical charge generated by the entrance of H+ was countered to about 45% by the Cl- influx and to about 42% by the Na+ efflux. These studies demonstrated that both Cl- and Na+ fluxes are necessary for optimal endocytic vesicle acidification

  16. Zebrafish kidney phagocytes utilize macropinocytosis and Ca+-dependent endocytic mechanisms.

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    Full Text Available BACKGROUND: The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. METHODOLOGY/PRINCIPAL FINDINGS: Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. CONCLUSIONS/SIGNIFICANCE: Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca(2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research.

  17. Protein kinase A stimulates Kv7.1 surface expression by regulating Nedd4-2-dependent endocytic trafficking

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Hefting, Louise Leth; Steffensen, Annette Buur;

    2015-01-01

    observed response. Instead, we found that PKA acted by regulating endocytic trafficking involving the ubiquitin ligase Nedd4-2. We show that a Nedd4-2 resistant Kv7.1-mutant displayed significantly reduced intracellular accumulation upon PKA inhibition. Similar effects were observed upon siRNA knockdown of...

  18. The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation.

    Science.gov (United States)

    Bright, N A; Lindsay, M R; Stewart, A; Luzio, J P

    2001-09-01

    Immunofluorescence and electron microscopy were used to evaluate the formation of swollen endosomes in NRK cells after treatment with wortmannin or sucrose and to study the relationship between lumenal and limiting membrane. Both treatments resulted in the formation of two populations of swollen late endocytic vacuoles, positive for lysosomal glycoproteins or cation-independent mannose 6-phosphate receptors, but those induced by wortmannin were characterised by time-dependent accumulation of lumenal vesicles, whereas those induced by sucrose uptake did not accumulate lumenal vesicles. In both cases, the distribution of the late endosomal marker, lysobisphosphatidic acid, remained unchanged and was present within the lumen of the swollen vacuoles. Consumption of plasma membrane and peripheral early endosomes, and the appearance of transferrin receptors in swollen late endosomes, indicated that continued membrane influx from early endocytic compartments, together with inhibition of membrane traffic out of the swollen compartments, is sufficient to account for the observed phenotype of cells treated with wortmannin. The accumulation of organelles with the characteristic morphology of endocytic carrier vesicles in cells that have taken up sucrose offers an explanation for the paucity of lumenal vesicles in swollen sucrosomes. Our data suggest that in fibroblast cells the swollen endosome phenotype induced by wortmannin is a consequence of endocytic membrane influx, coupled with the failure to recycle membrane to other cellular destinations, and not the inhibition of multivesicular body biogenesis. PMID:11555417

  19. Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes

    DEFF Research Database (Denmark)

    Fraile-Ramos, Alberto; Pelchen-Matthews, Annegret; Kledal, Thomas N;

    2002-01-01

    undergoes constitutive endocytosis and recycling. Here we studied the cellular distributions and trafficking of two other human cytomegalovirus chemokine receptor-like proteins, UL33 and US27, in transfected and human cytomegalovirus-infected cells. Immunofluorescence staining indicated that UL33 and US27......The human cytomegalovirus genome encodes four putative seven transmembrane domain chemokine receptor-like proteins. Although important in viral pathogenesis, little is known about the properties or functions of these proteins. We previously reported that US28 is located in endocytic vesicles and...... surface US27 undergoes endocytosis. By immunogold labeling of cryosections and electron microscopy, UL33 was seen to localize to multivesicular bodies (MVBs or multivesicular endosomes). Electron microscopy analysis of human cytomegalovirus-infected cells showed that most virus particles wrapped...

  20. Endocytic Trafficking towards the Vacuole Plays a Key Role in the Auxin Receptor SCFTIR-Independent Mechanism of Lateral Root Formation in A.thaliana

    Institute of Scientific and Technical Information of China (English)

    Patricio Pérez-Henríquez; Natasha V.Raikhel; Lorena Norambuena

    2012-01-01

    Plants' developmental plasticity plays a pivotal role in responding to environmental conditions.One of the most plastic plant organs is the root system.Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients.It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified.Using chemical biology,we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCFTIR.The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation,the mitotic activity.The compound did not display auxin activity.At the cellular level,Sortin2 accelerated endosomal trafficking,resulting in increased trafficking of plasma membrane recycling proteins to the vacuole.Sortin2 affected Late endosome/PVC/MVB trafficking and morphology.Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2induced SCFTIR-independent lateral root initiation.Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCFTIR.

  1. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Directory of Open Access Journals (Sweden)

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  2. The key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted during prolonged glucose starvation and is internalized following glucose re-feeding via the non-classical secretory and internalizing pathways in Saccharomyces cerevisiae

    OpenAIRE

    Giardina, Bennett J; Chiang, Hui-Ling

    2013-01-01

    In Saccharomyces cerevisia, the key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted into the periplasm during prolonged glucose starvation and is internalized into Vid/endosomes following glucose re-feeding. Fructose-1,6-bisphosphatase does not contain signal sequences required for the classical secretory and endocytic pathways. Hence, the secretion and internalization are mediated via the non-classical pathways.

  3. Endocytic Sorting of CFTR variants Monitored by Single Cell Fluorescence Ratio Image Analysis (FRIA) in Living Cells

    Science.gov (United States)

    Barriere, H.; Apaja, P.; Okiyoneda, T.; Lukacs, G. L.

    2016-01-01

    Summary The wild-type CFTR channel undergoes constitutive internalization and recycling at the plasma membrane. This process is initiated by the recognition of the Tyr- and di-Leu-based endocytic motifs of CFTR by the AP-2 adaptor complex, leading to the formation of clathrin-coated vesicles and the channel delivery to sorting/recycling endosomes. Accumulating evidence suggests that conformationally defective mutant CFTRs (e.g. rescued ΔF508 and glycosylation-deficient channel) are unstable at the plasma membrane and undergo augmented ubiquitination in post-Golgi compartments. Ubiquitination conceivably accounts for the metabolic instability at cell surface by provoking accelerated internalization, as well as rerouting the channel from recycling towards lysosomal degradation. We developed an in vivo fluorescence ratio imaging assay (FRIA) that in concert with genetic manipulation can be utilized to establish the post-endocytic fate and sorting determinants of mutant CFTRs. PMID:21594793

  4. Sterols Are Mainly in the Cytoplasmic Leaflet of the Plasma Membrane and the Endocytic Recycling Compartment in CHO Cells

    OpenAIRE

    Mondal, Mousumi; Mesmin, Bruno; Mukherjee, Sushmita; Maxfield, Frederick R.

    2009-01-01

    The transbilayer distribution of many lipids in the plasma membrane and in endocytic compartments is asymmetric, and this has important consequences for signaling and membrane physical properties. The transbilayer distribution of cholesterol in these membranes is not properly established. Using the fluorescent sterols, dehydroergosterol and cholestatrienol, and a variety of fluorescence quenchers, we studied the transbilayer distribution of sterols in the plasma membrane (PM) and the endocyti...

  5. Uptake of Helicobacter pylori Vesicles Is Facilitated by Clathrin-Dependent and Clathrin-Independent Endocytic Pathways

    OpenAIRE

    Olofsson, Annelie; Nygård Skalman, Lars; Obi, Ikenna; Lundmark, Richard; Arnqvist, Anna

    2014-01-01

    UNLABELLED: Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world's population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles from H. pylori are internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as ...

  6. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway

    OpenAIRE

    1990-01-01

    The folate receptor, also known as the membrane folate-binding protein, is maximally expressed on the surface of folate-depleted tissue culture cells and mediates the high affinity accumulation of 5- methyltetrahydrofolic acid in the cytoplasm of these cells. Recent evidence suggests that this receptor recycles during folate internalization and that it is anchored in the membrane by a glycosyl- phosphatidylinositol linkage. Using quantitative immunocytochemistry, we now show that (a) this rec...

  7. A Resealed-Cell System for Analyzing Pathogenic Intracellular Events: Perturbation of Endocytic Pathways under Diabetic Conditions

    OpenAIRE

    Kano, Fumi; Nakatsu, Daiki; Noguchi, Yoshiyuki; Yamamoto, Akitsugu; Murata, Masayuki

    2012-01-01

    Cell-based assay systems that can serve as cellular models of aberrant function in pathogenic organs would be novel and useful tools for screening drugs and clarifying the molecular mechanisms of various diseases. We constructed model cells that replicated the conditions in diabetic hepatocytes by using the cell resealing technique, which enables the exchange of cytosol. The plasma membrane of HeLa cells was permeabilized with the streptococcal toxin streptolysin O, and cytosol that had been ...

  8. The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast.

    Science.gov (United States)

    de León, Nagore; Hoya, Marta; Curto, M-Angeles; Moro, Sandra; Yanguas, Francisco; Doncel, Cristina; Valdivieso, M-Henar

    2016-05-01

    In metazoans the AP-2 complex has a well-defined role in clathrin-mediated endocytosis. By contrast, its direct role in endocytosis in unicellular eukaryotes has been questioned. Here, we report co- immunoprecipitation between the fission yeast AP-2 component Apl3p and clathrin, as well as the genetic interactions between apl3Δ and clc1 and sla2Δ/end4Δ mutants. Furthermore, a double clc1 apl3Δ mutant was found to be defective in FM4-64 uptake. In an otherwise wild-type strain, apl3Δ cells exhibit altered dynamics of the endocytic sites, with a heterogeneous and extended lifetime of early and late markers at the patches. Additionally, around 50% of the endocytic patches exhibit abnormal spatial dynamics, with immobile patches and patches that bounce backwards to the cell surface, showing a pervasive effect of the absence of AP-2. These alterations in the endocytic machinery result in abnormal cell wall synthesis and morphogenesis. Our results complement those found in budding yeast and confirm that a direct role of AP-2 in endocytosis has been conserved throughout evolution. PMID:26749213

  9. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells.

    Science.gov (United States)

    Kobayashi, T; Vischer, U M; Rosnoblet, C; Lebrand, C; Lindsay, M; Parton, R G; Kruithof, E K; Gruenberg, J

    2000-05-01

    In the present study, we show that in human endothelial cells the tetraspanin CD63/lamp3 distributes predominantly to the internal membranes of multivesicular-multilamellar late endosomes, which contain the unique lipid lysobisphosphatidic acid. Some CD63/lamp3 is also present in Weibel-Palade bodies, the characteristic secretory organelle of these cells. We find that CD63/lamp3 molecules can be transported from late endosomes to Weibel-Palade bodies and thus that CD63/lamp3 cycles between endocytic and biosynthetic compartments; however, movement of CD63/lamp3 is much slower than that of P-selectin, which is known to cycle between plasma membrane and Weibel-Palade bodies. When cells are treated with U18666A, a drug that mimics the Niemann-Pick type C syndrome, both proteins accumulate in late endosomes and fail to reach Weibel-Palade bodies efficiently, suggesting that P-selectin, like CD63/lamp3, cycles via late endosomes. Our data suggest that CD63/lamp3 partitions preferentially within late endosome internal membranes, thus causing its accumulation, and that this mechanism contributes to CD63/lamp3 retention in late endosomes; however, our data also indicate that the protein can eventually escape from these internal membranes and recycle toward Weibel-Palade bodies to be reused. Our observations thus uncover the existence of a selective trafficking route from late endosomes to Weibel-Palade bodies. PMID:10793155

  10. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia

    OpenAIRE

    Hernandez, Yunuen; Castillo, Cynthia; Roychowdhury, Sukla; Hehl, Adrian; Aley, Stephen B.; Das, Siddhartha

    2006-01-01

    Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are inv...

  11. Isolation of endocytic and exocytic populations of coated vesicles from perfused rat liver using an acetylcholinesterase mediated density shift technique

    International Nuclear Information System (INIS)

    Rat liver contains endogenous acetylcholinesterase (AChE). The authors have isolated rat liver coated vesicles (CVs) and incubated them with the Karnovsky-Roots reagents and the AChE substrate, acetylthiocholine. A dense iron-copper precipitate is deposited at hydrolysis sites. When the CVs are subjected to sucrose-Ficoll-D20 density gradient ultracentrifugation, the AChE containing CVs are shifted to a denser region of the gradient. The molecular forms of AChE present in the CVs resemble secretory AChE not serum AChE. CVs isolated from perfused liver, treated with diisopropylfluorophosphate (DFP), to inactivate endogenous AChE, and allowed to resynthesize AChE for 30 minutes, contain AChE which is shown to be exocytic. When 125I-insulin and gal-AChE are co-perfused into DFP treated liver for 3 minutes, the CVs isolated and density shifted, approximately 80% of both Gal-AChE and 125I-insulin are in the shifted fraction which also contains approximately 50% of the CVs. Similar experiments have been carried out using 35S-methionine to label newly synthesized secretory proteins. They have measured the diameter of the endocytic and exocytic CVs and have found that the endocytic CVs are significantly larger than the exocytic CVs and more heterogeneous in size. When the cholesterol/phospholipid ratio was compared in both populations, the endocytic CVs had a significantly higher ratio than the exocytic CVs. Finally both populations were subjected to one dimensional and two dimensional SDS gel electrophoresis and were found to be remarkably similar in protein composition

  12. Characterization and endocytic internalization of Epith-2 cell surface glycoprotein during the epithelial-to-mesenchymal transition in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    HidekiKatow

    2013-08-01

    Full Text Available The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT. Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary (PMC and secondary mesenchyme cells (SMC that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA, a protein tyrosine kinase (PTK inhibitor, and suramin, a growth factor receptor (GFR inhibitor, suggesting the involvement of the GFR/PTK (GP signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.

  13. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  14. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia.

    Science.gov (United States)

    Hernandez, Yunuen; Castillo, Cynthia; Roychowdhury, Sukla; Hehl, Adrian; Aley, Stephen B; Das, Siddhartha

    2007-01-01

    Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation. PMID:17087963

  15. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  16. Exocyst subunits Exo70 and Exo84 cooperate with small GTPases to regulate behavior and endocytic trafficking in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    Full Text Available The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70 and exoc-8 (exo84 in Caenorhabditis elegans. The mutants display pleiotropic behavior defects that resemble those observed in cilia mutants (slow growth, uncoordinated movement, defects in chemo-, mechano- and thermosensation. However, no obvious morphological defects in cilia were observed. A targeted RNAi screen for small GTPases identified eleven genes with enhanced phenotypes when combined with exoc-7, exoc-8 single and exoc-7;exoc-8 double mutants. The screen verified previously identified functional links between the exocyst complex and small GTPases and, in addition, identified several novel potential regulators of exocyst function. The exoc-8 and exoc-7;exoc-8 mutations caused a significant size increase in the rab-10 RNAi-induced endocytic vacuoles in the intestinal epithelial cells. In addition, exoc-8 and exoc-7;exoc-8 mutations resulted in up-regulation of RAB-10 expression and affected the accumulation of endocytic marker proteins in these cells in response to rab-10 RNAi. The findings identify novel, potential regulators for exocyst function and show that exoc-7 and exoc-8 are functionally linked to rab-10 in endosomal trafficking in intestinal epithelial cells in C. elegans.

  17. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC) Amiloride sensitive sodium channels (ENaC) and their regulation by proteases

    OpenAIRE

    Luciano Galizia; Alejandro Ojea; Basilio A. Kotsias

    2011-01-01

    El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven ...

  18. Regulación por proteasas del canal de sodio sensible al amiloride (ENaC Amiloride sensitive sodium channels (ENaC and their regulation by proteases

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2011-04-01

    Full Text Available El ENaC es un canal que permite el movimiento de Na+ desde el líquido luminal hacia las células en numerosos epitelios reabsortivos y también en otros tejidos como la placenta. ENaC juega un papel crucial en la homeostasis de los electrolitos y volumen de líquido extracelular. Es regulado por numerosas hormonas, incluyendo la aldosterona y bloqueado por el diurético amiloride. El ENaC está formado por tres subunidades homólogas α, β y γ que forman el poro por el cual se mueven los iones Na+. Dos factores regulan la actividad del ENaC. 1 el número de canales insertos en la membrana celular y 2 la probabilidad de apertura o tiempo en que se encuentra abierto el canal. El número de canales es el resultado de un balance entre su síntesis y degradación. La probabilidad de apertura depende de la proteólisis de zonas específicas de las subunidades α y γ por múltiples proteasas dentro de la célula y en el espacio extracelular. Entre las proteasas más estudiadas se encuentran la furina, prostasina, elastasa, plasmina y tripsina. Existen sustancias endógenas que bloquean la actividad de estas proteasas como la aprotinina, la bikunina y la nexina-1 y la expresión de las proteasas y sus inhibidores es regulada a su vez por la aldosterona, la tasa de movimiento de Na y el TFGβ. En este trabajo presentamos algunos ejemplos de esta regulación y su potencial papel en condiciones normales y en ciertas enfermedades como la fibrosis quística, renales e hipertensión.ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia and it is also expressed in human placenta. ENaC is crucial in the control of electrolyte and extracellular volume homeostasis. ENaC is regulated by several hormones, including aldosterone and blocked by amiloride and its analogs. ENaC channels are composed by three homologous subunits, α, β and γ that form the pore where Na ions are transported. Two factors regulate the activity of ENaC channels: 1 the number of channels inserted in the membrane and 2 the open probability of the channels or time that the channel is open. The number of channels is the result of a balance between the synthesis and degradation of ENaC channels. The open probability depends on the proteolysis of specific segments in the α and γ subunits of ENaC by multiple proteases inside of the cell or in the extracellular space. Among the most studied proteases are furin, prostasin, elastase, plasmin and trypsin. There are endogenous substances that block the activity of these proteases such as aprotinin, bikunin and nexin-1 and the expression of both, proteases and their inhibitors are controlled by the rate of Na+ movement, aldosterone and TFG-β levels. In this work we present some examples of this regulation and the potential role that this process may play under normal and pathological conditions such as cystic fibrosis, kidney diseases and hypertension.

  19. Nociceptin/orphanin FQ peptide receptor agonist Ac-RYYRWKKKKKKK-NH2 (ZP120) induces antinatriuresis in rats by stimulation of amiloride-sensitive sodium reabsorption

    DEFF Research Database (Denmark)

    van Deurs, Ulla S K; Hadrup, Niels; Petersen, Jørgen Søberg;

    2008-01-01

    The aim of the present study was to examine the mechanisms responsible for the antinatriuretic effect of the selective, peripherally acting, nociceptin/orphanin FQ peptide (NOP) receptor partial agonist Ac-RYYRWKKKKKKK-NH(2) (ZP120). Using immunohistochemistry, we showed that in the cortex NOP...... the hypothesis that ZP120 induces direct renal effects by modifying the activity of sodium transporters in the distal convoluted tubules or in the collecting ducts, ZP120-induced antinatriuresis was examined during coadministration of an inhibitor of the NaCl cotransporter, bendroflumethiazide, or a blocker...

  20. Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells

    DEFF Research Database (Denmark)

    Andersen, Henrik; Friis, Ulla G; Hansen, Pernille B L;

    2015-01-01

    by western immunoblotting, patch clamp and ELISA. Urine exosomes were isolated to elucidate potential cleavage of γENaC by a monoclonal antibody directed against the 'inhibitory' peptide tract. RESULTS: Compared with control, DN patients displayed significantly higher blood pressure and urinary excretion...... with controls. Immunoblotting of urine exosomes showed aquaporin 2 in all patient samples. Exosomes displayed a virtual absence of intact γENaC while moieties compatible with cleavage by furin only, were shown in both groups. Proteolytic cleavage by the extracellular serine proteases plasmin or prostasin...

  1. Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.

    Science.gov (United States)

    Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri

    2016-02-24

    Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. PMID:26911690

  2. Pre-cancerous changes in urothelial endocytic vesicle leakage, fatty acid composition, and As and associated element concentrations after arsenic exposure

    International Nuclear Information System (INIS)

    The urothelium covering the luminal surface of the urinary bladder has developed an efficient permeability barrier that protects it against the back-flow of toxins eliminated in the urine. The subapical endocytic vesicles containing the urinary bladder fluid phase are formed during the micturition cycle by endocytosis processes of the superficial cells. In normal conditions, the permeability barrier of the endocytic vesicles blocks the passage of the fluid phase to the cellular cytoplasm and the fluid is recycled to the bladder lumen. The aim of this work was to investigate the alteration of the endocytic vesicle membrane permeability barrier to toxins such as iAs (inorganic arsenic) administered in drinking water. By using an induced endocytosis model and the fluorescence requenching technique, it is shown that the exposure of rats to ingestion of water containing iAs not only induced pre-cancerous morphological changes, but allowed the differential leakage of an endocytosed fluorescent marker, HPTS, and its quencher, DPX, (hydroxypyrene-1,3,6-trisulfonic acid and p-xylene-bis-pyridinium bromide, respectively) out of the vesicular lumen. The leakage of the cationic DPX was almost complete, while the release of the anionic HPTS molecule was partial and higher in arsenic-treated-rats than in controls. Such membrane alteration would allow the toxins to elude the permeability barrier and to leak out of the endocytic vesicles, thus establishing a 'bypass' to the permeability barrier. The retention of As in the urinary bladder, assessed by synchrotron radiation X-ray fluorescence spectrometry (SR-μXRF), was lower than the kidney accumulation of arsenic previously observed by our group and was accompanied by altered concentrations of K, Ca, Fe, Cu and Zn, all ions related to cellular metabolism. The results support the hypothesis that low amounts of endocytosed As can accumulate in the interior of the urothelial superficial cells and initiate the cytotoxic effects

  3. Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments.

    Science.gov (United States)

    Brumell, J H; Tang, P; Mills, S D; Finlay, B B

    2001-09-01

    Salmonella typhimurium is a facultative intracellular pathogen that colonizes host cells throughout the course of infection. A unique feature of this pathogen is its ability to enter into (invade) epithelial cells and elongate the vacuole within which it resides into tubular structures called Salmonella-induced filaments (Sifs). In this study we sought to characterize the mechanism of Sif formation by immunofluorescence analysis using subcellular markers. The late endosomal lipid lysobisphosphatidic acid associated in a punctate pattern with the Salmonella-containing vacuole, starting 90 min after infection and increasing thereafter. Lysobisphosphatidic acid-rich vesicles were also found to interact with Sifs, at numerous sites along the tubules. Similarly, cholesterol-rich vesicles were also found in association with intracellular bacteria and Sifs. The lysosomal hydrolase cathepsin D was present in Sifs, both in a punctate pattern and, at later times, predominantly in an uninterrupted linear pattern. Rab7 associated with Sifs and expression of the N125I dominant negative mutant of this GTPase inhibited Sif formation. Transfection of HeLa cells with a vector encoding SifA fused to the green fluorescent protein caused swelling and aggregation of lysobisphosphatidic acid-containing compartments, suggesting that this virulence factor directs membrane fusion events involving late endosomes. Our findings demonstrate that Sif formation involves fusion of late endocytic compartments with the Salmonella-containing vacuole, and suggest that SifA modulates this event. PMID:11555418

  4. Vacuole import and degradation pathway:Insights into a specialized autophagy pathway

    Institute of Scientific and Technical Information of China (English)

    Abbas; A; Alibhoy; Hui-Ling; Chiang

    2011-01-01

    Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

  5. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation

    OpenAIRE

    Kawasaki, Norihito; Vela, Jose Luis; Nycholat, Corwin M.; Rademacher, Christoph; Khurana, Archana; van Rooijen, Nico; Crocker, Paul R.; Kronenberg, Mitchell; Paulson, James C.

    2013-01-01

    Invariant natural killer T (iNKT) cells induce a protective immune response triggered by foreign glycolipid antigens bound to CD1d on antigen-presenting cells (APCs). A limitation of using glycolipid antigens to stimulate immune responses in human patients has been the inability to target them to the most effective APCs. Recent studies have implicated phagocytic CD169+ macrophages as major APCs in lymph nodes for priming iNKT cells in mice immunized with glycolipid antigen in particulate form...

  6. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F; Gradini, R; Salcini, A E; Confalonieri, S; Pelicci, P G; Di Fiore, P P

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  7. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of...... fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  8. Emerging Roles for Intersectin (ITSN in Regulating Signaling and Disease Pathways

    Directory of Open Access Journals (Sweden)

    John P. O'Bryan

    2013-04-01

    Full Text Available Intersectins (ITSNs represent a family of multi-domain adaptor proteins that regulate endocytosis and cell signaling. ITSN genes are highly conserved and present in all metazoan genomes examined thus far. Lower eukaryotes have only one ITSN gene, whereas higher eukaryotes have two ITSN genes. ITSN was first identified as an endocytic scaffold protein, and numerous studies reveal a conserved role for ITSN in endocytosis. Subsequently, ITSNs were found to regulate multiple signaling pathways including receptor tyrosine kinases (RTKs, GTPases, and phosphatidylinositol 3-kinase Class 2beta (PI3KC2β. ITSN has also been implicated in diseases such as Down Syndrome (DS, Alzheimer Disease (AD, and other neurodegenerative disorders. This review summarizes the evolutionary conservation of ITSN, the latest research on the role of ITSN in endocytosis, the emerging roles of ITSN in regulating cell signaling pathways, and the involvement of ITSN in human diseases such as DS, AD, and cancer.

  9. Characterization of endocytic compartments after holo-high density lipoprotein particle uptake in HepG2 cells

    OpenAIRE

    Röhrl, Clemens; Pagler, Tamara A.; Strobl, Witta; Ellinger, Adolf; Neumüller, Josef; Pavelka, Margit; Stangl, Herbert; Meisslitzer-Ruppitsch, Claudia

    2009-01-01

    Holo-high density lipoprotein (HDL) particle uptake, besides selective lipid uptake, constitutes an alternative pathway to regulate cellular cholesterol homeostasis. In the current study, the cellular path of holo-HDL particles was investigated in human liver carcinoma cells (HepG2) using combined light and electron microscopical methods. The apolipoprotein moiety of HDL was visualized with different markers: horseradish peroxidase, colloidal gold and the fluorochrome Alexa568, used in fluore...

  10. Designing pathways

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones. The...... illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  11. The functional relationship between the Cdc50p-Drs2p putative aminophospholipid translocase and the Arf GAP Gcs1p in vesicle formation in the retrieval pathway from yeast early endosomes to the TGN.

    OpenAIRE

    Sakane, Hiroshi; Yamamoto, Takaharu; Tanaka, Kazuma

    2006-01-01

    Drs2p, the catalytic subunit of the Cdc50p-Drs2p putative aminophospholipid translocase, has been implicated in conjunction with the Arf1 signaling pathway in the formation of clathrin-coated vesicles (CCVs) from the TGN. Herein, we searched for Arf regulator genes whose mutations were synthetically lethal with cdc50Δ, and identified the Arf GAP gene GCS1. Most of the examined transport pathways in the Cdc50p-depleted gcs1Δ mutant were nearly normal, including endocytic transport to vacuoles,...

  12. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    OpenAIRE

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Dean D. Metcalfe

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdo...

  13. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway

    Directory of Open Access Journals (Sweden)

    Scheuring David

    2012-09-01

    Full Text Available Abstract Background In yeast and mammals, many plasma membrane (PM proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. Results Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. Conclusions Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route

  14. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs.

    Science.gov (United States)

    Kajiho, Hiroaki; Kajiho, Yuko; Frittoli, Emanuela; Confalonieri, Stefano; Bertalot, Giovanni; Viale, Giuseppe; Di Fiore, Pier Paolo; Oldani, Amanda; Garre, Massimiliano; Beznoussenko, Galina V; Palamidessi, Andrea; Vecchi, Manuela; Chavrier, Philippe; Perez, Frank; Scita, Giorgio

    2016-07-01

    The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination. PMID:27255086

  15. Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ramon O Echauri-Espinosa

    Full Text Available Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa, we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1 deletion in hyphal morphogenesis, Spitzenkörper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenkörper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.

  16. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae

    Indian Academy of Sciences (India)

    Chitra Kamble; Sandhya Jain; Erin Murphy; Kyoungtae Kim

    2011-03-01

    Eisosomes are large immobile assemblies at the cortex of a cell under the membrane compartment of Can1 (MCC) in yeast. Slm1 has recently been identified as an MCC component that acts downstream of Mss4 in a pathway that regulates actin cytoskeleton organization in response to stress. In this study, we showed that inactivation of Slm proteins disrupts proper localization of the primary eisosome marker Pil1, providing evidence that Slm proteins play a role in eisosome organization. Furthermore, we found that slmts mutant cells exhibit actin defects in both the ability to polarize cortical F-actin and the formation of cytoplasmic actin cables even at the permissive temperature (30°C). We further demonstrated that the actin defect accounts for the slow traffic of FM4-64-labelled endosome in the cytoplasm, supporting the notion that intact actin is essential for endosome trafficking. However, our real-time microscopic analysis of Abp1-RFP revealed that the actin defect in slmts cells was not accompanied by a noticeable defect in actin patch internalization during receptor-mediated endocytosis. In addition, we found that slmts cells displayed impaired membrane recycling and that recycling occurred in an actin-independent manner. Our data provide evidence for the requirement of Slm proteins in eisosome organization and endosome trafficking and recycling.

  17. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.

    Science.gov (United States)

    Cruse, Glenn; Beaven, Michael A; Music, Stephen C; Bradding, Peter; Gilfillan, Alasdair M; Metcalfe, Dean D

    2015-05-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1-enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  18. Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast.

    Science.gov (United States)

    Isasa, Marta; Suñer, Clara; Díaz, Miguel; Puig-Sàrries, Pilar; Zuin, Alice; Bichman, Anne; Gygi, Steven P; Rebollo, Elena; Crosas, Bernat

    2016-01-22

    Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway. PMID:26601941

  19. Activation of ERK and NF-κB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs.

    Science.gov (United States)

    Pandey, Madhu S; Miller, Colton M; Harris, Edward N; Weigel, Paul H

    2016-01-01

    Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis), which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is targeted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID 524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068-79, 2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hep-mediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A) lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respectively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•Hep•ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA, dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells. We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB signaling and that Tyr2519 is critical for these functions. PMID:27100626

  20. Numb is an endocytic protein

    DEFF Research Database (Denmark)

    Santolini, E; Puri, C; Salcini, A E;

    2000-01-01

    Numb is a protein that in Drosophila determines cell fate as a result of its asymmetric partitioning at mitosis. The function of Numb has been linked to its ability to bind and to biologically antagonize Notch, a membrane receptor that also specifies cell fate. The biochemical mechanisms underlying...

  1. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran.

    Science.gov (United States)

    Fisher, Katherine H; Stec, Wojciech; Brown, Stephen; Zeidler, Martin P

    2016-02-01

    Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms. PMID:26658615

  2. Immunomodulatory Pathways and Metabolism

    OpenAIRE

    Bhargava, Prerna

    2012-01-01

    Energy metabolism plays a vital role in normal physiology, adaptive responses and host defense mechanisms. Research throughout the last decade has shown evidence that immune pathways communicate with metabolic pathways to alter the metabolic status in response to physiological or pathological signals. In this thesis, I will explore how immunomodulatory molecules affect metabolic homeostasis and conversely, how metabolic sensing pathways modulate immune responses. The first part my work utiliz...

  3. The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway

    Science.gov (United States)

    Michard, Céline; Sperandio, Daniel; Baïlo, Nathalie; Pizarro-Cerdá, Javier; LeClaire, Lawrence; Chadeau-Argaud, Elise; Pombo-Grégoire, Isabel; Hervet, Eva; Vianney, Anne; Gilbert, Christophe; Faure, Mathias; Cossart, Pascale

    2015-01-01

    ABSTRACT Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses. PMID:25944859

  4. Migration pathways in soils

    International Nuclear Information System (INIS)

    This study looked at diffusive migration through three types of deformation; the projectile pathways, hydraulic fractures of the sediments and faults, and was divided into three experimental areas: autoradiography, the determination of diffusion coefficients and electron microscopy of model projectile pathways in clay. For the autoradiography, unstressed samples were exposed to two separate isotopes, Pm-147 (a possible model for Am behaviour) and the poorly sorbed iodide-125. The results indicated that there was no enhanced migration through deformed kaolin samples nor through fractured Great Meteor East (GME) sediment, although some was evident through the projectile pathways in GME and possibly through the GME sheared samples. The scanning electron microscopy of projectile pathways in clay showed that emplacement of a projectile appeared to have no effect on the orientation of particles at distances greater than two projectile radii from the centre of a projectile pathway. It showed that the particles were not simply aligned with the direction of motion of the projectile but that, the closer to the surface of a particular pathway, the closer the particles lay to their original orientation. This finding was of interest from two points of view: i) the ease of migration of a pollutant along the pathway, and ii) possible mechanisms of hole closure. It was concluded that, provided that there is no advective migration, the transport of radionuclides through sediments containing these defects would not be significantly more rapid than in undeformed sediments. (author)

  5. DMPD: Regulatory pathways in inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17967718 Regulatory pathways in inflammation. Mantovani A, Garlanda C, Locati M, Ro....html) (.csml) Show Regulatory pathways in inflammation. PubmedID 17967718 Title Regulatory pathways in infl

  6. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.

    Science.gov (United States)

    Firdessa, Rebuma; Oelschlaeger, Tobias A; Moll, Heidrun

    2014-01-01

    Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences. PMID:25224362

  7. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Kuksin Dmitry

    2005-04-01

    Full Text Available Abstract Background Simian virus 40 (SV40 enters cells via an atypical caveolae-mediated endocytic pathway, which delivers the virus to a new intermediary compartment, the caveosome. The virus then is believed to go directly from the caveosome to the endoplasmic reticulum. Cholera toxin likewise enters via caveolae and traffics to caveosomes. But, in contrast to SV40, cholera toxin is transported from caveosomes to the endoplasmic reticulum via the Golgi. For that reason, and because the caveosome and Golgi may have some common markers, we revisited the issue of whether SV40 might access the endoplasmic reticulum via the Golgi. Results We confirmed our earlier finding that SV40 co localizes with the Golgi marker β-COP. However, we show that the virus does not co localize with the more discriminating Golgi markers, golgin 97 and BODIPY-ceramide. Conclusion The caveolae-mediated SV40 entry pathway does not intersect the Golgi. SV40 is seen to co localize with β-COP because that protein is a marker for caveosomes as well as the Golgi. Moreover, these results are consistent with the likelihood that the caveosome is a sorting organelle. In addition, there are at least two distinct but related routes by which a ligand might traffic from the caveosome to the ER; one route involving transport through the Golgi, and another pathway that does not involve the Golgi.

  8. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  9. Pathways of tau fibrillization.

    Science.gov (United States)

    Kuret, Jeff; Chirita, Carmen N; Congdon, Erin E; Kannanayakal, Theresa; Li, Guibin; Necula, Mihaela; Yin, Haishan; Zhong, Qi

    2005-01-01

    New methods for analyzing tau fibrillization have yielded insights into the biochemical transitions involved in the process. Here we review the parallels between the sequential progression of tau fibrillization observed macroscopically in Alzheimer's disease (AD) lesions and the pathway of tau aggregation observed in vitro with purified tau preparations. In addition, pharmacological agents for further dissection of fibrillization mechanism and lesion formation are discussed. PMID:15615636

  10. New pathways into headship?

    OpenAIRE

    Higham, Rob; Early, Peter; Coldwell, Michael; Stevens, Anna; Brown, Chris

    2015-01-01

    There continues to be something of a conundrum in the recruitment of headteachers in England. While “a very large majority of headteachers report being satisfied with their jobs” (Micklewright et al 2014: 17), headteacher recruitment and retention remain major challenges for school governors and policy makers. In this context, the New Pathways into Headship project was commissioned by the National College for Teaching and Leadership (NCTL) in January 2013. Tasked with considering new or a...

  11. Pathway analysis of IMC

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik

    We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced into the...... syntax of IMC in order to make our analysis feasible. Finally we describe the analysis itself together with several theoretical results that we have proved for it....

  12. Pathways with PathWhiz.

    Science.gov (United States)

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  13. Aquatic pathway 1

    International Nuclear Information System (INIS)

    This first part of the study discusses problems of exposure due to the emission of radioactive substances into the environment via the water pathway. Discussion is started with a paper on the fundamentals of calculation and another paper on the results of preliminary radiological model calculations. The colloquium will assess the present state of knowledge, helps to find an agreement between divergent opinions and determine open questions and possible solutions. Ten main problems have been raised, most of which pertain to site conditions. They are trated as sub-investigations by individual participants or working groups. The findings will be discussed in further colloquia. (orig.)

  14. WikiPathways: capturing the full diversity of pathway knowledge.

    Science.gov (United States)

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R; Miller, Ryan; Coort, Susan L; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T; Pico, Alexander R

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  15. Columbia River pathway report

    International Nuclear Information System (INIS)

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab

  16. Signaling Pathways in Melanogenesis

    Directory of Open Access Journals (Sweden)

    Stacey A. N. D’Mello

    2016-07-01

    Full Text Available Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.

  17. Signaling Pathways in Melanogenesis.

    Science.gov (United States)

    D'Mello, Stacey A N; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  18. The Chordin Morphogenetic Pathway.

    Science.gov (United States)

    De Robertis, Edward M; Moriyama, Yuki

    2016-01-01

    The ancestral Chordin/bone morphogenetic protein (BMP) signaling pathway that establishes dorsal-ventral (D-V) patterning in animal development is one of the best understood morphogenetic gradients, and is established by multiple proteins that interact with each other in the extracellular space-including several BMPs, Chordin, Tolloid, Ont-1, Crossveinless-2, and Sizzled. The D-V gradient is adjusted redundantly by regulating the synthesis of its components, by direct protein-protein interactions between morphogens, and by long-range diffusion. The entire embryo participates in maintaining the D-V BMP gradient, so that for each action in the dorsal side there is a reaction in the ventral side. A gradient of Chordin is formed in the extracellular matrix that separates ectoderm from endomesoderm, called Brachet's cleft in Xenopus. The Chordin/BMP pathway is self-organizing and able to scale pattern in the dorsal half of bisected embryos or in Spemann dorsal lip transplantation experiments. PMID:26970622

  19. The Reactome pathway Knowledgebase.

    Science.gov (United States)

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  20. Pathways to Global Markets

    DEFF Research Database (Denmark)

    Smith, David E.; Mitry, Darryl J.

    2011-01-01

    . An important case study is McDonald‘s corporation, the world‘s largest fast food restaurant chain. This company has employed divergent marketing and economic strategies in both domestic and the international markets to become a leader in the global marketplace. An overview of the company‘s background......, organizational structures, mission and vision illustrate McDonald‘s strategic focus on its proactive evolution from a small drive-through operation to a global fast-food giant. The strategy is based on its ability to adapt to the cultural differences of the markets that McDonald‘s serves while preserving its......For marketing and economic researchers, an important aspect of globalization is the degree to which various consumer behavior dimensions and consumption patterns in different parts of the world are becoming similar, and how multinational companies have identified pathways to global success...

  1. Summer 2014 Pathways Report

    Science.gov (United States)

    Hand, Zachary

    2014-01-01

    Over the summer I had the exciting opportunity to work for NASA at the Kennedy Space Center as a Mission Assurance Engineering intern. When I was offered a position in mission assurance for the Safety and Mission Assurance directorate's Launch Services Division, I didn't really know what I would be doing, but I knew it would be an excellent opportunity to learn and grow professionally. In this report I will provide some background information on the Launch Services Division, as well as detail my duties and accomplishments during my time as an intern. Additionally, I will relate the significance of my work experience to my current academic work and future career goals. This report contains background information on Mission Assurance Engineering, a description of my duties and accomplishments over the summer of 2014, and relates the significance of my work experience to my school work and future career goals. It is a required document for the Pathways program.

  2. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90Sr and 137Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90Sr and 'Cs, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90Sr and 137Cs in 1986 are 1.7*10-5 Sv and 2.7*10-5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10-4 Sv and 5*10-3 Sv from 90Sr and 137Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED70) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED70 resulting from the use of water is 80%. The CCCED70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  3. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  4. The Alstrom syndrome protein, ALMS1, interacts with α-actinin and components of the endosome recycling pathway.

    Directory of Open Access Journals (Sweden)

    Gayle B Collin

    Full Text Available Alström syndrome (ALMS is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32 of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS.

  5. Pathways to man

    International Nuclear Information System (INIS)

    The study of radionuclide pathways leading to man generally has the goal of allowing us to predict human exposure from measurements of the radionuclide concentration in some segment of the environment. This modelling process provides a valuable tool in both the regulatory and health protection fields. However, most of the models in the regulatory field and in the health physics profession were designed to maximize exposure estimates. It is preferable to have scientifically defensible estimates and to add suitable safety factors at the end. Thus we are still faced with the development and validation of suitable models for many of the radionuclides of interest. The most useful models will include means of assessing variability and uncertainty. In this case variability might be considered as the differences in behavior due to age, sex or other factors in animals or man and those differences among plant species or animal species that determine their uptake factors. The uncertainty, on the other hand, would be the estimate of possible error in the experimental measurements. Model parameters would always have some variability even for site-specific cases and broad averages for population groups would have to include a factor expressing the possible variabilty and uncertainity. Thus any exposure calculation would have to be expressed with some range and valid assessments of this range are required

  6. Rabs, Rips, FIPs, and Endocytic Membrane Traffic

    OpenAIRE

    Rytis Prekeris

    2003-01-01

    Rab GTPases, proteins belonging to the Ras-like small GTP-binding protein superfamily, have emerged as master regulators of cellular membrane transport. Rab11 GTPase, a member of the Rab protein family, plays a role in regulating various cellular functions, including plasma membrane recycling, phagocytosis, and cytokinesis. Rab11 acts by forming mutually exclusive complexes with Rab11-family binding proteins, known as FIPs. Rab11-FIP complexes serve a role of �targeting complexes� by recruiti...

  7. Endocytic regulation of TGF-β signaling

    Institute of Scientific and Technical Information of China (English)

    Ye-Guang Chen

    2009-01-01

    Transforming growth factor-β(TGF-β)signaling is tightly regulated to ensure its proper physiological functions in diflferent cells and tissues.Like other cell surface receptors,TGF-β receptors are internalized into the cell,and this process plays an important regulatory role in TGF-βsignaling.It is well documented that TGF-β receptors are en-docytosed via clathrin-coated vesicles as TGF-β endocytosis can be blocked by potassium depletion and the GTPase-deficient dynamin K44A mutant.TGF-β receptors may also enter cells via cholesterol-rich membrane microdomain lipid rafts/caveolae and are found in caveolin-1-positive vesicles.Although receptor endocytosis is not essential for TGF-β signaling,clathrin-mediated endocytosis has been shown to promote TGF-β-induced Smad activation and transcriptional responses.Lipid rafts/caveolae are widely regarded as signaling centers for G protein-coupled recep-tors and tyrosine kinase receptors,but they are indicated to facilitate the degradation of TGF-β receptors and there-fore turnoff of TGF-β signaling.This review summarizes current understanding of TGF-β receptor endocytosis,thepossible mechanisms underlying this process,and the role of endocytosis in modulation of TGF-β signaling.

  8. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect the...... receptor calcium sites....

  9. Pathway Interaction Database (PID) —

    Science.gov (United States)

    The National Cancer Institute (NCI) in collaboration with Nature Publishing Group has established the Pathway Interaction Database (PID) in order to provide a highly structured, curated collection of information about known biomolecular interactions and key cellular processes assembled into signaling pathways.

  10. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin;

    2016-01-01

    We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression, for...... instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  11. Signaling pathways in diabetic nephropathy.

    Science.gov (United States)

    Kawanami, Daiji; Matoba, Keiichiro; Utsunomiya, Kazunori

    2016-10-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), however, specific treatment for DN has not yet been elucidated. Therefore, it is critically important to understand the molecular mechanism underlying DN to develop cause-related therapeutic strategy. To date, various factors such as hemodynamic changes and metabolic pathways have been shown to be involved in the pathogenesis of DN. Excessive glucose influx activates cellular signaling pathways, including the diacylglycerol (DAG)-protein kinase C (PKC) pathway, advanced glycation end-products (AGE), polyol pathway, hexosamine pathway and oxidative stress. These factors interact with one another, thereby facilitating inflammatory processes, leading to the development of glomerulosclerosis under diabetic conditions. In addition to metabolic pathways, Rho-kinase, an effector of small-GTPase binding protein Rho, has been implicated as an important factor in the pathogenesis of DN. A number of studies have demonstrated that Rho-kinase plays key roles in the development of DN by inducing endothelial dysfunction, mesangial excessive extracellular matrix (ECM) production, podocyte abnormality, and tubulointerstitial fibrosis. In this review article, we describe our current understanding of the signaling pathways in DN. PMID:27094540

  12. Metabolic pathway engineering of the toluene degradation pathway

    OpenAIRE

    Regan, L.

    1995-01-01

    This thesis addresses the problem of how to examine a metabolic pathway and identify what are the key elements, specifically with respect to rate-limitation. The aim is to be able to analyze a pathway, identify the bottlenecks and implement genetic modifications to remove these bottlenecks. This is done by defining the system of interest and developing a predictive model using kinetic data. The model predictions can then be verified using fermentation data and genetic technique...

  13. Pathways with PathWhiz

    OpenAIRE

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pa...

  14. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  15. Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi

    Directory of Open Access Journals (Sweden)

    Fasshauer Dirk

    2009-01-01

    Full Text Available Abstract Background In eukaryotic cells, directional transport between different compartments of the endomembrane system is mediated by vesicles that bud from a donor organelle and then fuse with an acceptor organelle. A family of integral membrane proteins, termed soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE proteins, constitute the key machineries of these different membrane fusion events. Over the past 30 years, the yeast Saccharomyces cerevisiae has served as a powerful model organism for studying the organization of the secretory and endocytic pathways, and a few years ago, its entire set of SNAREs was compiled. Results Here, we make use of the increasing amount of genomic data to investigate the history of the SNARE family during fungi evolution. Moreover, since different SNARE family members are thought to demarcate different organelles and vesicles, this approach allowed us to compare the organization of the endomembrane systems of yeast and animal cells. Our data corroborate the notion that fungi generally encompass a relatively simple set of SNARE proteins, mostly comprising the SNAREs of the proto-eukaryotic cell. However, all fungi contain a novel soluble SNARE protein, Vam7, which carries an N-terminal PX-domain that acts as a phosphoinositide binding module. In addition, the points in fungal evolution, at which lineage-specific duplications and diversifications occurred, could be determined. For instance, the endosomal syntaxins Pep12 and Vam3 arose from a gene duplication that occurred within the Saccharomycotina clade. Conclusion Although the SNARE repertoire of baker's yeast is highly conserved, our analysis reveals that it is more deviated than the ones of basal fungi. This highlights that the trafficking pathways of baker's yeast are not only different to those in animal cells but also are somewhat different to those of many other fungi.

  16. Signalling pathways in endometrial cancer

    OpenAIRE

    Markowska, Anna; Pawałowska, Monika; Lubin, Jolanta; Markowska, Janina

    2014-01-01

    Carcinogenesis is a multistage process, during which the activity of signalling pathways responsible for cell cycle regulation and division is disrupted which leads to inhibition of apoptosis and enhanced proliferation. Improper activation of Wnt/β-catenin and PI3K. Akt pathways play essential role in endometrial cancers (EC), mainly type I. Mutations in APC, axin or CTNBB1 may lead to β-catenin overactivation leading to excessive gene expression. PTEN inactivation, mutations in the PIK3CA or...

  17. Vestibular pathways involved in cognition

    Directory of Open Access Journals (Sweden)

    Martin Hitier

    2014-07-01

    Full Text Available Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projections areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: 1 the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; 2 the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of the head direction; 3 the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and 4 a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex, which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition.

  18. Coherence in electron transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Beratan, David N; Waldeck, David H

    2011-01-01

    Central to the view of electron-transfer reactions is the idea that nuclear motion generates a transition state geometry at which the electron/hole amplitude propagates coherently from the electron donor to the electron acceptor. In the weakly coupled or nonadiabatic regime, the electron amplitude tunnels through an electronic barrier between the donor and acceptor. The structure of the barrier is determined by the covalent and noncovalent interactions of the bridge. Because the tunneling barrier depends on the nuclear coordinates of the reactants (and on the surrounding medium), the tunneling barrier is highly anisotropic, and it is useful to identify particular routes, or pathways, along which the transmission amplitude propagates. Moreover, when more than one such pathway exists, and the paths give rise to comparable transmission amplitude magnitudes, one may expect to observe quantum interferences among pathways if the propagation remains coherent. Given that the effective tunneling barrier height and width are affected by the nuclear positions, the modulation of the nuclear coordinates will lead to a modulation of the tunneling barrier and hence of the electron flow. For long distance electron transfer in biological and biomimetic systems, nuclear fluctuations, arising from flexible protein moieties and mobile water bridges, can become quite significant. We discuss experimental and theoretical results that explore the quantum interferences among coupling pathways in electron-transfer kinetics; we emphasize recent data and theories associated with the signatures of chirality and inelastic processes, which are manifested in the tunneling pathway coherence (or absence of coherence). PMID:23833692

  19. Aberrant Signaling Pathways in Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Mitsutoshi, E-mail: nakada@ns.m.kanazawa-u.ac.jp; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Teng, Lei [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Department of Neurosurgery, The First Clinical College of Harbin Medical University, Nangang, Harbin 150001 (China); Pyko, Ilya V.; Hamada, Jun-Ichiro [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan)

    2011-08-10

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

  20. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  1. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  2. The Alström Syndrome Protein, ALMS1, Interacts with α-Actinin and Components of the Endosome Recycling Pathway

    Science.gov (United States)

    Collin, Gayle B.; Marshall, Jan D.; King, Benjamin L.; Milan, Gabriella; Maffei, Pietro; Jagger, Daniel J.; Naggert, Jürgen K.

    2012-01-01

    Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS. PMID:22693585

  3. BsdA(Bsd2) -dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy.

    Science.gov (United States)

    Evangelinos, Minoas; Martzoukou, Olga; Chorozian, Koar; Amillis, Sotiris; Diallinas, George

    2016-06-01

    Transmembrane proteins translocate cotranslationally in the endoplasmic reticulum (ER) membrane and traffic as vesicular cargoes, via the Golgi, in their final membrane destination. Misfolding in the ER leads to protein degradation basically through the ERAD/proteasome system. Here, we use a mutant version of the purine transporter UapA (ΔR481) to show that specific misfolded versions of plasma membrane cargoes undergo vacuolar turnover prior to localization in the plasma membrane. We show that non-endocytic vacuolar turnover of ΔR481 is dependent on BsdA(Bsd2) , an ER transmembrane adaptor of HulA(Rsp5) ubiquitin ligase. We obtain in vivo evidence that BsdA(Bsd2) interacts with HulA(Rsp5) and ΔR481, primarily in the ER. Importantly, accumulation of ΔR481 in the ER triggers delivery of the selective autophagy marker Atg8 in vacuoles along with ΔR481. Genetic block of autophagy (atg9Δ, rabO(ts) ) reduces, but does not abolish, sorting of ΔR481 in the vacuoles, suggesting that a fraction of the misfolded transporter might be redirected for vacuolar degradation via the Golgi. Our results support that multiple routes along the secretory pathway operate for the detoxification of Aspergillus nidulans cells from misfolded membrane proteins and that BsdA is a key factor for marking specific misfolded cargoes. PMID:26917498

  4. UniPathway: a resource for the exploration and annotation of metabolic pathways.

    Science.gov (United States)

    Morgat, Anne; Coissac, Eric; Coudert, Elisabeth; Axelsen, Kristian B; Keller, Guillaume; Bairoch, Amos; Bridge, Alan; Bougueleret, Lydie; Xenarios, Ioannis; Viari, Alain

    2012-01-01

    UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway. PMID:22102589

  5. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P;

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  6. Signalling pathways in endometrial cancer.

    Science.gov (United States)

    Markowska, Anna; Pawałowska, Monika; Lubin, Jolanta; Markowska, Janina

    2014-01-01

    Carcinogenesis is a multistage process, during which the activity of signalling pathways responsible for cell cycle regulation and division is disrupted which leads to inhibition of apoptosis and enhanced proliferation. Improper activation of Wnt/β-catenin and PI3K. Akt pathways play essential role in endometrial cancers (EC), mainly type I. Mutations in APC, axin or CTNBB1 may lead to β-catenin overactivation leading to excessive gene expression. PTEN inactivation, mutations in the PIK3CA or Akt result in increased transmission in the PI3K/Akt pathway, apoptosis inhibition, intensive cell division, mTOR excitation. In non-endometrioid cancers, key mutations include suppressor gene TP53 responsible for repairing damaged DNA or apoptosis initiation. Irregularities in gene P16, encoding a protein forming the p16-cyclinD/CDK-pRb have also been described. Understanding the complex relations between specific proteins taking part in signal transduction of the abovementioned pathways is key to research on drugs used in targeted therapy. PMID:25520571

  7. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique ro...

  8. Rapid prototype extruded conductive pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  9. Reverse Engineering Adverse Outcome Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  10. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Chen, Chen; van der Ende-Metselaar, Heidi; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2008-01-01

    Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, an

  11. Molecular Pathways: Targeting DNA Repair Pathway Defects Enriched in Metastasis.

    Science.gov (United States)

    Corcoran, Niall M; Clarkson, Michael J; Stuchbery, Ryan; Hovens, Christopher M

    2016-07-01

    The maintenance of a pristine genome, free from errors, is necessary to prevent cellular transformation and degeneration. When errors in DNA are detected, DNA damage repair (DDR) genes and their regulators are activated to effect repair. When these DDR pathways are themselves mutated or aberrantly downregulated, cancer and neurodegenerative disorders can ensue. Multiple lines of evidence now indicate, however, that defects in key regulators of DNA repair pathways are highly enriched in human metastasis specimens and hence may be a key step in the acquisition of metastasis and the ability of localized disease to disseminate. Some of the key regulators of checkpoints in the DNA damage response are the TP53 protein and the PARP enzyme family. Targeting of these pathways, especially through PARP inhibition, is now being exploited therapeutically to effect significant clinical responses in subsets of individuals, particularly in patients with ovarian cancer or prostate cancer, including cancers with a marked metastatic burden. Targeting DNA repair-deficient tumors with drugs that take advantage of the fundamental differences between normal repair-proficient cells and repair-deficient tumors offers new avenues for treating advanced disease in the future. Clin Cancer Res; 22(13); 3132-7. ©2016 AACR. PMID:27169997

  12. Reactome from a WikiPathways Perspective.

    Science.gov (United States)

    Bohler, Anwesha; Wu, Guanming; Kutmon, Martina; Pradhana, Leontius Adhika; Coort, Susan L; Hanspers, Kristina; Haw, Robin; Pico, Alexander R; Evelo, Chris T

    2016-05-01

    Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio's advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches. PMID:27203685

  13. Bactridine's effects on DUM cricket neurons under voltage clamp conditions.

    Science.gov (United States)

    Forsyth, P; Sevcik, C; Martínez, R; Castillo, C; D'Suze, G

    2012-12-01

    We describe the effects of six bactridines (150 nM) on cricket dorsal unpaired median (DUM) neurons. The addition of bactridine 2 to DUM neurons induced a large current component with a reversal potential more negative than -30 mV, most evident at the end of the pulses. This current was completely suppressed when 1 μM amiloride was applied before adding the bactridines. Since the amiloride sensitive current is able to distort the aim of our study, i.e. the effect of bactridines on sodium channels, all experiments were done in the presence of 1 μM amiloride. Most bactridines induced voltage shifts of V(1/2) of the Boltzmann inactivation voltage dependency curves in the hyperpolarizing direction. Bactridines 1, 4 and 6 reduced Na current peak by 65, 80 and 24% of the control, respectively. The sodium conductance blockage by bactridines was voltage independent at potentials >20 mV. Bactridines effect on cricket DUM neurons does not correspond to neither α- nor β-toxins. Most bactridines shifted the inactivation curves in the hyperpolarizing direction without any effects on the activation m(∞)-like curves. Also bactridines differ from other NaScpTx in that they increased an amiloride-sensitive conductance in DUM neurons. Our result suggest that the α/β classification of sodium scorpion toxins is not all encompassing. The present work shows that bactridines target more than one site: insect voltage dependent Na channels and an amiloride-sensitive ionic pathway which is under study. PMID:23085555

  14. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Stephen Vadia

    2011-11-01

    Full Text Available Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2. Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.

  15. Molecular pathways towards psychiatric disorders

    International Nuclear Information System (INIS)

    The observed fibrillar-neuronal organization of the cerebral cortex suggests that in the aetiology of certain psychiatric disorders the genomic response of the neuron to the challenge presented by stress or insults at various stages of development, is to set off a programmed chain of molecular events (or ''pathways''), as demonstrated in previous genetic studies. The understanding of these pathways is important in order to enhance our ability to influence these illnesses, and are hypothesized to be initiated by a nucleolar mechanism for inducing abnormal synthesis of the nerve growth factor (NGF). The hypothesis is used to approach tentatively the still open question regarding the pathogenesis of mental retardation (MR) and senile dementia (SD). (author). 25 refs

  16. Developmental pathways of motor dysfunction.

    Science.gov (United States)

    Kleven, Gale A; Bellinger, Seanceray A

    2015-05-01

    Recent evidence has revealed unique patterns of behavioral development after prenatal insult similar to those outlined in studies of adult metabolic dysfunction after prenatal malnutrition. The hallmark features of this Developmental Pathway include a prenatal insult to the nervous system (environmental or genetic) followed by a period of Silent Vulnerability, where no or few functional deficits are observed, and finally emergence of later dysfunction. Possible mechanisms leading to later dysfunction from prenatal insult may include secondary or cascade effects due to the timing of prenatal insults relative to later developing structures in the brain. Methods best employed to study the mechanisms of these pathways are microgenetic and longitudinal designs that include behavioral assessment during the prenatal period of development, and animal models such as the guinea pig. PMID:25864561

  17. Parkinson's disease: insights from pathways

    OpenAIRE

    Cookson, Mark R.; Bandmann, Oliver

    2010-01-01

    Parkinson's disease (PD) typically presents in sporadic fashion, but the identification of disease-causing mutations in monogenically inherited PD genes has provided crucial insight into the pathogenesis of this disorder. Mutations in autosomal recessively inherited genes, namely parkin, PINK1 and DJ-1, typically lead to early onset parkinsonism. At least two of these genes (PINK1 and parkin) appear to work in the same pathway related to maintenance of mitochondrial functional integrity under...

  18. Glycosyltransferase efficiently controls phenylpropanoid pathway

    OpenAIRE

    Kulma Anna; Korobczak-Sosna Alina; Aksamit-Stachurska Anna; Szopa Jan

    2008-01-01

    Abstract Background In a previous study, anthocyanin levels in potato plants were increased by manipulating genes connected with the flavonoid biosynthesis pathway. However, starch content and tuber yield were dramatically reduced in the transgenic plants, which over-expressed dihydroflavonol reductase (DFR). Results Transgenic plants over-expressing dihydroflavonol reductase (DFR) were subsequently transformed with the cDNA coding for the glycosyltransferase (UGT) of Solanum sogarandinum in ...

  19. New Pathways for Alimentary Mucositis

    OpenAIRE

    Keefe, Dorothy M. K.; Joanne M. Bowen

    2008-01-01

    Alimentary mucositis is a major dose-limiting toxicity associated with anticancer treatment. It is responsible for reducing patient quality of life and represents a significant economic burden in oncology. The pathobiology of alimentary mucositis is extremely complex, and an increased understanding of mechanisms and pathway interactions is required to rationally design improved therapies. This review describes the latest advances in defining mechanisms of alimentary mucositis pathobiology in ...

  20. Vestibular pathways involved in cognition

    OpenAIRE

    Martin Hitier

    2014-01-01

    Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projections areas”, defined as the cortical areas activated by vestibular stimulation, ha...

  1. Imbalanced kynurenine pathway in schizophrenia.

    Science.gov (United States)

    Kegel, Magdalena E; Bhat, Maria; Skogh, Elisabeth; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schwieler, Lilly; Engberg, Göran; Schuppe-Koistinen, Ina; Erhardt, Sophie

    2014-01-01

    Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia. PMID:25288889

  2. Fragmentation pathways of polymer ions.

    Science.gov (United States)

    Wesdemiotis, Chrys; Solak, Nilüfer; Polce, Michael J; Dabney, David E; Chaicharoen, Kittisak; Katzenmeyer, Bryan C

    2011-01-01

    Tandem mass spectrometry (MS/MS) is increasingly applied to synthetic polymers to characterize chain-end or in-chain substituents, distinguish isobaric and isomeric species, and determine macromolecular connectivities and architectures. For confident structural assignments, the fragmentation mechanisms of polymer ions must be understood, as they provide guidelines on how to deduce the desired information from the fragments observed in MS/MS spectra. This article reviews the fragmentation pathways of synthetic polymer ions that have been energized to decompose via collisionally activated dissociation (CAD), the most widely used activation method in polymer analysis. The compounds discussed encompass polystyrenes, poly(2-vinyl pyridine), polyacrylates, poly(vinyl acetate), aliphatic polyester copolymers, polyethers, and poly(dimethylsiloxane). For a number of these polymers, several substitution patterns and architectures are considered, and questions regarding the ionization agent and internal energy of the dissociating precursor ions are also addressed. Competing and consecutive dissociations are evaluated in terms of the structural insight they provide about the macromolecular structure. The fragmentation pathways of the diverse array of polymer ions examined fall into three categories, viz. (1) charge-directed fragmentations, (2) charge-remote rearrangements, and (3) charge-remote fragmentations via radical intermediates. Charge-remote processes predominate. Depending on the ionizing agent and the functional groups in the polymer, the incipient fragments arising by pathways (1)-(3) may form ion-molecule complexes that survive long enough to permit inter-fragment hydrogen atom, proton, or hydride transfers. PMID:20623599

  3. Dual Pathways to Prospective Remembering

    Directory of Open Access Journals (Sweden)

    Mark A Mcdaniel

    2015-07-01

    Full Text Available According to the multiprocess framework (McDaniel & Einstein, 2000, the cognitive system can support prospective memory (PM retrieval through two general pathways. One pathway depends on top-down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom-up spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically spontaneous retrieval is assumed to not require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom-up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM.

  4. Quantifying macromolecular conformational transition pathways

    Science.gov (United States)

    Seyler, Sean; Kumar, Avishek; Thorpe, Michael; Beckstein, Oliver

    2015-03-01

    Diverse classes of proteins function through large-scale conformational changes that are challenging for computer simulations. A range of fast path-sampling techniques have been used to generate transitions, but it has been difficult to compare paths from (and assess the relative strengths of) different methods. We introduce a comprehensive method (pathway similarity analysis, PSA) for quantitatively characterizing and comparing macromolecular pathways. The Hausdorff and Fréchet metrics (known from computational geometry) are used to quantify the degree of similarity between polygonal curves in configuration space. A strength of PSA is its use of the full information available from the 3 N-dimensional configuration space trajectory without requiring additional specific knowledge about the system. We compare a sample of eleven different methods for the closed-to-open transitions of the apo enzyme adenylate kinase (AdK) and also apply PSA to an ensemble of 400 AdK trajectories produced by dynamic importance sampling MD and the Geometrical Pathways algorithm. We discuss the method's potential to enhance our understanding of transition path sampling methods, validate them, and help guide future research toward deeper physical insights into conformational transitions.

  5. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.

    Science.gov (United States)

    Yang, Chen; Gao, Xiang; Jiang, Yu; Sun, Bingbing; Gao, Fang; Yang, Sheng

    2016-09-01

    Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The (13)C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0g/L isoprene with a yield of 0.267g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms. PMID:27174717

  6. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  7. Oxylipin Pathway in Rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    E. Wassim Chehab; John V. Perea; Banu Gopalan; Steve Theg; Katayoon Dehesh

    2007-01-01

    Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental information. The oxylipin pathway is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxylipin pathway induces the de novo synthesis of biologically active metabolltes called "oxylipins". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxylipln pathway, allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are responsible for production of the signaling compounds,jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways in rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations in monocots and dicots.

  8. [Clinical pathway "Acute Coronary Syndrome"].

    Science.gov (United States)

    Grimm, W; Maisch, B

    2006-07-01

    The clinical pathway "acute coronary syndrome" of the university hospital Marburg describes the guideline-conform and consented management of patients with ST-segment elevation infarct (STEMI), non-ST-segment elevation infarct (NSTEMI) and Troponin negative unstable angina. A 12-lead ECG recording is made and read in all patients within 10 minutes. All patients with STEMI undergo immediate revascularisation using primary percutanuous catheter intervention (PCI) after administration of basic medical therapy. Primary PCI is also used in all patients with NSTEMI, persistent chest pain, rhythm or hemodynamic instability. Patients with unstable angina, who became free of symptoms after application of basic medication, but who have additional risk factors undergo cardiac catheterisation within 48 hours. Acute myocardial infarction can be ruled out in patients with twofold negative cardiac troponin levels during 6-12 hours. In the absence of further symptoms, these patiens undergo differential diagnostic evaluation of cardiac and extracardiac causes of chest pain. The introduction of this clinical pathway 2 years ago, which was consented before by the hospital board and the clinical directors, has lead to a remarkable improvement in the clinical decision-making at the emergency room of the hospital and reduced the door to intervention time considerably. PMID:16763796

  9. Pathway analysis of coronary atherosclerosis.

    Science.gov (United States)

    King, Jennifer Y; Ferrara, Rossella; Tabibiazar, Raymond; Spin, Joshua M; Chen, Mary M; Kuchinsky, Allan; Vailaya, Aditya; Kincaid, Robert; Tsalenko, Anya; Deng, David Xing-Fei; Connolly, Andrew; Zhang, Peng; Yang, Eugene; Watt, Clifton; Yakhini, Zohar; Ben-Dor, Amir; Adler, Annette; Bruhn, Laurakay; Tsao, Philip; Quertermous, Thomas; Ashley, Euan A

    2005-09-21

    Large-scale gene expression studies provide significant insight into genes differentially regulated in disease processes such as cancer. However, these investigations offer limited understanding of multisystem, multicellular diseases such as atherosclerosis. A systems biology approach that accounts for gene interactions, incorporates nontranscriptionally regulated genes, and integrates prior knowledge offers many advantages. We performed a comprehensive gene level assessment of coronary atherosclerosis using 51 coronary artery segments isolated from the explanted hearts of 22 cardiac transplant patients. After histological grading of vascular segments according to American Heart Association guidelines, isolated RNA was hybridized onto a customized 22-K oligonucleotide microarray, and significance analysis of microarrays and gene ontology analyses were performed to identify significant gene expression profiles. Our studies revealed that loss of differentiated smooth muscle cell gene expression is the primary expression signature of disease progression in atherosclerosis. Furthermore, we provide insight into the severe form of coronary artery disease associated with diabetes, reporting an overabundance of immune and inflammatory signals in diabetics. We present a novel approach to pathway development based on connectivity, determined by language parsing of the published literature, and ranking, determined by the significance of differentially regulated genes in the network. In doing this, we identify highly connected "nexus" genes that are attractive candidates for therapeutic targeting and followup studies. Our use of pathway techniques to study atherosclerosis as an integrated network of gene interactions expands on traditional microarray analysis methods and emphasizes the significant advantages of a systems-based approach to analyzing complex disease. PMID:15942018

  10. Pulmonary gas conducting interstitial pathway

    International Nuclear Information System (INIS)

    In spite of the growing efforts oriented towards revealing different aspects of emphysema, the persistence of the emphysematous or emphysema-like changes (ELCs) is not explored yet in the open literature. In this study we demonstrate the persistence of an ELC for 22 years in a spontaneous pneumothorax (SP) patient which indicates a hitherto unknown gas supply to the ELC. For this purpose we used high resolution computed tomography (HRCT) images processed into three-dimensional (3D) geometry. By the same token, not only a long persistence but also the volume increase of this ELC between 2002 and 2010 was demonstrated. The 3D geometry visualized an aerated interstitial structure between the sites of supposed gas leakage at the wall of the third generation airways and the ELC. This potential gas conducting interstitial pathway is not a continuation and has neither the form nor the structure of a bronchus. The finding suggests that in this patient the intrabronchial gas passes through the bronchial wall and via a gas conducting interstitial pathway reaches the ELC. Despite the availability of the presently employed techniques for at least 15 years, such case and phenomenon have not been described previously. The retrieval of the patient suggests that the findings could be relevant for a considerable proportion of the population

  11. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  12. Transneuronal pathways to the vestibulocerebellum

    Science.gov (United States)

    Kaufman, G. D.; Mustari, M. J.; Miselis, R. R.; Perachio, A. A.

    1996-01-01

    The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included

  13. Post-Communist Welfare Pathways

    DEFF Research Database (Denmark)

    Cerami, Alfio; Vanhuysse, Pieter

    This collection adopts novel theoretical approaches to study the diverse welfare state pathways that have evolved across Central and Eastern Europe since the fall of communism in 1989. Going beyond existing path dependency and neo-institutionalist explanations, it highlights the role of explanatory...... factors such as micro-causal mechanisms, ideas, discourses, path departures, power politics, and elite strategies. This book includes contributions from leading international Experts such as Claus Offe, Robert Kaufman, Stefan Haggard, Tomasz Inglot, and Mitchell Orenstein, to examine welfare in specific...... lie ahead for welfare state regimes in Central and Eastern Europe. Praise and reviews “'In this conceptually-sophisticated, richly-informed volume, Cerami and Vanhuysse bring together an exceptional group of scholars to debate path dependence and institutional transformation in CEE welfare states. The...

  14. Shadows Along the Spiritual Pathway.

    Science.gov (United States)

    Humphrey, Caroline

    2015-12-01

    Contemporary spirituality discourses tend to assume that a canopy of light and love overarches all spiritual pathways. Unfortunately, the dark side of humanity cannot be spirited away so easily, and aberrations of personal spiritual development, interpersonal spiritual relationships and new spiritual movements can often be traced to the denial, repression and return of our dark side. Transpersonal psychology offers a way of approaching, reframing and redeeming the unconscious depths of our psyche, with its metaphors of shadows and daimons on the one hand, and its therapeutic practices for symbolically containing and transcending polarities on the other. In its absence, any spirituality which eulogises holistic growth is likely to engender the reverse effect. PMID:25794547

  15. [Stress and the kynurenine pathway].

    Science.gov (United States)

    Majláth, Zsófia; Vécsei, László

    2015-08-30

    The kynurenine pathway is the main route of tryptophan degradation which gives rise to several neuroactive metabolites. Kynurenic acid is an endogenous antagonist of excitatory receptors, which proved to be neuroprotective in the preclinical settings. Kynurenines have been implicated in the neuroendocrine regulatory processes. Stress induces several alterations in the kynurenine metabolism and this process may contribute to the development of stress-related pathological processes. Irritable bowel disease and gastric ulcer are well-known disorders which are related to psychiatric comorbidity and stress. In experimental conditions kynurenic acid proved to be beneficial by reducing inflammatory processes and normalizing microcirculation in the bowel. Further investigations are needed to better understand the relations of stress and the kynurenines, with the aim of developing novel therapeutic tools for stress-related pathologies. PMID:26299831

  16. Reaction pathways of propene pyrolysis.

    Science.gov (United States)

    Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2010-05-01

    The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. PMID:20082392

  17. Pathway-Based Functional Analysis of Metagenomes

    Science.gov (United States)

    Bercovici, Sivan; Sharon, Itai; Pinter, Ron Y.; Shlomi, Tomer

    Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.

  18. Stochasticity in the yeast mating pathway

    International Nuclear Information System (INIS)

    We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence

  19. Coherent band pathways between knots and links

    CERN Document Server

    Buck, Dorothy

    2014-01-01

    We categorise coherent band (aka nullification) pathways between knots and 2-component links. Additionally, we characterise the minimal coherent band pathways (with intermediates) between any two knots or 2-component links with small crossing number. We demonstrate these band surgeries for knots and links with small crossing number. We apply these results to place lower bounds on the minimum number of recombinant events separating DNA configurations, restrict the recombination pathways and determine chirality and/or orientation of the resulting recombinant DNA molecules.

  20. The Lectin Pathway of Complement and Biocompatibility

    DEFF Research Database (Denmark)

    Hein, Estrid; Garred, Peter

    2015-01-01

    activation, the coagulation system and the complement system. The complement system is an important part of the initial immune response and consists of fluid phase molecules in the blood stream. Three different activation pathways can initiate the complement system, the lectin, the classical and the...... been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field....

  1. Driving and dementia: a clinical decision pathway

    OpenAIRE

    Carter, Kirsty; Monaghan, Sophie; O'Brien, John; Teodorczuk, Andrew; Mosimann, Urs; Taylor, John-Paul

    2014-01-01

    Objective This study aimed to develop a pathway to bring together current UK legislation, good clinical practice and appropriate management strategies that could be applied across a range of healthcare settings. Methods The pathway was constructed by a multidisciplinary clinical team based in a busy Memory Assessment Service. A process of successive iteration was used to develop the pathway, with input and refinement provided via survey and small group meetings with individuals from a wide ra...

  2. Driving and dementia: a clinical decision pathway

    OpenAIRE

    Carter, Kirsty; Monaghan, Sophie; O'Brien, John; Teodorczuk, Andrew; Mosimann, Urs Peter; Taylor, John-Paul

    2014-01-01

    OBJECTIVE This study aimed to develop a pathway to bring together current UK legislation, good clinical practice and appropriate management strategies that could be applied across a range of healthcare settings. METHODS The pathway was constructed by a multidisciplinary clinical team based in a busy Memory Assessment Service. A process of successive iteration was used to develop the pathway, with input and refinement provided via survey and small group meetings with individuals fr...

  3. Cyclic energy pathways in ecological food webs

    OpenAIRE

    B. D. Fath; Halnes, G.

    2007-01-01

    Standard ecology textbooks typically maintain that nutrients cycle, but energy flows in unidirectional chains. However, here we use a new metric that allows for the identification and quantification of cyclic energy pathways. Some of these important pathways occur due to the contribution of dead organic matter to detrital pools and those organisms that feed on them, reintroducing some of that energy back into the food web. Recognition of these cyclic energy pathways profoundly impacts many ...

  4. The metabolic pathway collection: an update.

    OpenAIRE

    Galimova, M; Goryanin, I; Gretchkin, Y; Ivanova, N.; Komarov, Y; Maltsev, N.; Mikhailova, N.; Nenashev, V; Overbeek, R; Panyushkina, E; Pronevitch, L; Selkov, E

    1997-01-01

    The Metabolic Pathway Collection from EMP is an extraction of data from the larger Enzymes and Metabolic Pathways database (EMP). This extraction has been made publicly available in the hope that others will find it useful for a variety of purposes. The original release in October 1995 contained 1814 distinct pathways. The current collection contains 2180. Metabolic reconstructions for the first completely sequenced organisms-Haemophilus influenzae,Mycoplasma genitalium,Saccharomyces cerevisi...

  5. Designing Imprint Rolls for Fluid Pathway Fabrication

    OpenAIRE

    Vijayaraghavan, Athulan; Dornfeld, David A

    2007-01-01

    This paper discusses a novel method for designing imprint rolls for the fabrication of fluid pathways. Roller imprint processes have applications in diverse areas including fuel cell manufacturing and microfluidic device fabrication. Robust design methods are required for developing imprint rolls with optimal features. In the method discussed in this paper, the rolls are designed procedurally with the fluid pathway design given as input. The pathways are decomposed into repeating features (or...

  6. Pathway-PDT: a flexible pathway analysis tool for nuclear families

    OpenAIRE

    Park, Yo Son; Schmidt, Michael; Martin, Eden R.; Pericak-Vance, Margaret A.; Chung, Ren-Hua

    2013-01-01

    Background Pathway analysis based on Genome-Wide Association Studies (GWAS) data has become popular as a secondary analysis strategy. Although many pathway analysis tools have been developed for case–control studies, there is no tool that can use all information from raw genotypes in general nuclear families. We developed Pathway-PDT, which uses the framework of Pedigree Disequilibrium Test (PDT) for general family data, to perform pathway analysis based on raw genotypes in family-based GWAS....

  7. Inconsistent pathways of household waste

    International Nuclear Information System (INIS)

    The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

  8. Glycosyltransferase efficiently controls phenylpropanoid pathway

    Directory of Open Access Journals (Sweden)

    Kulma Anna

    2008-03-01

    Full Text Available Abstract Background In a previous study, anthocyanin levels in potato plants were increased by manipulating genes connected with the flavonoid biosynthesis pathway. However, starch content and tuber yield were dramatically reduced in the transgenic plants, which over-expressed dihydroflavonol reductase (DFR. Results Transgenic plants over-expressing dihydroflavonol reductase (DFR were subsequently transformed with the cDNA coding for the glycosyltransferase (UGT of Solanum sogarandinum in order to obtain plants with a high anthocyanin content without reducing tuber yield and quality. Based on enzyme studies, the recombinant UGT is a 7-O-glycosyltransferase whose natural substrates include both anthocyanidins and flavonols such as kaempferol and quercetin. In the super-transformed plants, tuber production was much higher than in the original transgenic plants bearing only the transgene coding for DFR, and was almost the same as in the control plants. The anthocyanin level was lower than in the initial plants, but still higher than in the control plants. Unexpectedly, the super-transformed plants also produced large amounts of kaempferol, chlorogenic acid, isochlorogenic acid, sinapic acid and proanthocyanins. Conclusion In plants over-expressing both the transgene for DFR and the transgene for UGT, the synthesis of phenolic acids was diverted away from the anthocyanin branch. This represents a novel approach to manipulating phenolic acids synthesis in plants.

  9. Nicotinic receptors in addiction pathways.

    Science.gov (United States)

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  10. Racial discrimination & health: pathways & evidence.

    Science.gov (United States)

    Ahmed, Ameena T; Mohammed, Selina A; Williams, David R

    2007-10-01

    This review provides an overview of the existing empirical research of the multiple ways by which discrimination can affect health. Institutional mechanisms of discrimination such as restricting marginalized groups to live in undesirable residential areas can have deleterious health consequences by limiting socio-economic status (SES) and creating health-damaging conditions in residential environments. Discrimination can also adversely affect health through restricting access to desirable services such as medical care and creating elevated exposure to traditional stressors such as unemployment and financial strain. Central to racism is an ideology of inferiority that can adversely affect non-dominant groups because some members of marginalized populations will accept as true the dominant society's ideology of their group's inferiority. Limited empirical research indicates that internalized racism is inversely related to health. In addition, the existence of these negative stereotypes can lead dominant group members to consciously and unconsciously discriminate against the stigmatized. An overview of the growing body of research examining the ways in which psychosocial stress generated by subjective experiences of discrimination can affect health is also provided. We review the evidence from the United States and other societies that suggest that the subjective experience of discrimination can adversely affect health and health enhancing behaviours. Advancing our understanding of the relationship between discrimination and health requires improved assessment of the phenomenon of discrimination and increased attention to identifying the psychosocial and biological pathways that may link exposure to discrimination to health status. PMID:18032807

  11. DMPD: Pathways connecting inflammation and cancer. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18325755 Pathways connecting inflammation and cancer. Allavena P, Garlanda C, Borre...llo MG, Sica A, Mantovani A. Curr Opin Genet Dev. 2008 Feb;18(1):3-10. Epub 2008 Mar 5. (.png) (.svg) (.html) (.csml) Show Pathways... connecting inflammation and cancer. PubmedID 18325755 Title Pathways connecting infl

  12. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  13. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  14. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  15. DMPD: Parallel pathways of virus recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16713969 Parallel pathways of virus recognition. Tenoever BR, Maniatis T. Immunity.... 2006 May;24(5):510-2. (.png) (.svg) (.html) (.csml) Show Parallel pathways of virus recognition. PubmedID 1...6713969 Title Parallel pathways of virus recognition. Authors Tenoever BR, Maniatis T. Publication Immunity.

  16. DMPD: All is not Toll: new pathways in DNA recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16446382 All is not Toll: new pathways in DNA recognition. Wagner H, Bauer S. J Exp... Med. 2006 Feb 20;203(2):265-8. Epub 2006 Jan 30. (.png) (.svg) (.html) (.csml) Show All is not Toll: new pa...thways in DNA recognition. PubmedID 16446382 Title All is not Toll: new pathways in DNA recognition. Authors

  17. Modeling biochemical pathways in the gene ontology.

    Science.gov (United States)

    Hill, David P; D'Eustachio, Peter; Berardini, Tanya Z; Mungall, Christopher J; Renedo, Nikolai; Blake, Judith A

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  18. Insight Projects: PATHway and Replay overview

    OpenAIRE

    Monaghan, David; Walsh, Deirdre; Ahmadi, Amin

    2015-01-01

    An overview of current projects within Insight presented during the Insight Summer Research Event, including PATHway: Technology enabled behavioural change as a pathway towards better self-management of CVD and RePLAY: Digitally Capturing Unique skills in European Traditional Sports and Games.

  19. Women's Work Pathways Across the Life Course.

    Science.gov (United States)

    Damaske, Sarah; Frech, Adrianne

    2016-04-01

    Despite numerous changes in women's employment in the latter half of the twentieth century, women's employment continues to be uneven and stalled. Drawing from data on women's weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women's labor force experiences across adulthood. We find two pathways of stable full-time work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two full-time work pathways, while fewer than 10% follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socioeconomic advantages and disadvantages on women's work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women's work careers. Work-family opportunities and constraints also were related to women's work hours, as were a woman's gendered beliefs and expectations. We conclude that women's employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, all working in concert, as key explanations for how women are "tracked" onto work pathways from an early age. PMID:27001314

  20. Fuel Pathway Integration Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  1. A brain cancer pathway in clinical practice

    DEFF Research Database (Denmark)

    Laursen, Emilie Lund; Rasmussen, Birthe Krogh

    2012-01-01

    Danish healthcare seeks to improve cancer survival through improved diagnostics, rapid treatment and increased focus on cancer prevention and early help-seeking. In neuro-oncology, this has resulted in the Integrated Brain Cancer Pathway (IBCP). The paper explores how the pathway works in the...

  2. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  3. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  4. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  5. The metabolic pathway collection: an update.

    Science.gov (United States)

    Selkov, E; Galimova, M; Goryanin, I; Gretchkin, Y; Ivanova, N; Komarov, Y; Maltsev, N; Mikhailova, N; Nenashev, V; Overbeek, R; Panyushkina, E; Pronevitch, L; Selkov, E

    1997-01-01

    The Metabolic Pathway Collection from EMP is an extraction of data from the larger Enzymes and Metabolic Pathways database (EMP). This extraction has been made publicly available in the hope that others will find it useful for a variety of purposes. The original release in October 1995 contained 1814 distinct pathways. The current collection contains 2180. Metabolic reconstructions for the first completely sequenced organisms-Haemophilus influenzae,Mycoplasma genitalium,Saccharomyces cerevisiaeandMethanococcus janaschii-are all included in the current release. All of the pathways in the collections are available as ASCII files in the form generated by the main curator, Evgeni Selkov. In addition, we are offering a more structured encoding of a subset of the collection; our initial release of this subcollection includes all of the pathways inMycoplasma genitalium, and we ultimately intend to offer the entire collection in this form as well. PMID:9016500

  6. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.

    Science.gov (United States)

    Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn's disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn's disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  7. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mizuno Satoshi

    2012-05-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/.

  8. Brain evolution by brain pathway duplication.

    Science.gov (United States)

    Chakraborty, Mukta; Jarvis, Erich D

    2015-12-19

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  9. The Wnt pathway: emerging anticancer strategies.

    Science.gov (United States)

    Gupta, Aman; Verma, Anukriti; Mishra, Ashutosh K; Wadhwa, Gulshan; Sharma, Sanjeev K; Jain, Chakresh K

    2013-05-01

    The canonical Wnt cascade has emerged as a critical regulator of cancer cells. Activation of the Wnt signaling pathway has also been associated with stem cell, thus raising the possibility of its role in embryogenesis and in the proliferation of malignant cancer cells. Wnt pathway has been reported to be involved in normal physiological processes in adult animals and integrally associated with cancer cell growth and maintenance, thus has been harnessed to devise strategies for anticancer therapy. The presence or absence of some members in this pathway, such as β-catenin, Axin or APC, has been found to involve in different types of tumors in human beings. Dysregulation of the canonical Wnt/β-catenin signaling pathway, mostly by inactivating mutations of the APC tumor suppressor, or oncogenic mutations of β-catenin, has been implicated in colorectal tumorigenesis. Further, elevated levels of β-catenin protein, a hallmark of activated canonical Wnt pathway, have been significantly observed in common forms of human malignancies, indicating that activation of the Wnt pathway may play an important role in tumor development and hence could be a crucial consideration for drug development. The paper discusses the potential therapeutic and diagnostic strategies directing on Wnt pathways on the basis of recent patents and their analysis. PMID:23432158

  10. Pathways of Cl- transport in human fibroblasts

    International Nuclear Information System (INIS)

    Three pathways of Cl- efflux were identified in normal human fibroblasts. Twenty percent of the total Cl- efflux is via an electrically conductive pathway with an efflux constant of 0.016 min-1. This pathway is insensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and bumetanide but is partially inhibited by anthracene-9-carboxylic acid. Twenty-five percent of the Cl- efflux occurs via Cl- with cation cotransport having an efflux constant of 0.020 min-1. This pathway is inhibited by bumetanide and is dependent on the simultaneous presence of Na+, K+, and Cl-. Under basal conditions, the energetics of this pathway indicate that it is operating close to equilibrium. Fifty percent of the Cl- efflux occurs via an anion exchange pathway having an efflux constant of 0.040 min-1 that is inhibited by DIDS or by removal of Cl- from the extracellular medium. Together these pathways account for 95% of the total Cl- efflux

  11. Dysregulation of the mevalonate pathway promotes transformation

    Science.gov (United States)

    Clendening, James W.; Pandyra, Aleks; Boutros, Paul C.; Ghamrasni, Samah El; Khosravi, Fereshteh; Trentin, Grace A.; Martirosyan, Anna; Hakem, Anne; Hakem, Razqallah; Jurisica, Igor; Penn, Linda Z.

    2010-01-01

    The importance of cancer metabolism has been appreciated for many years, but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis, we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway, paced by its rate-limiting enzyme, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is required for the generation of several fundamental end-products including cholesterol and isoprenoids. Despite years of extensive research from the perspective of cardiovascular disease, the contribution of a dysregulated MVA pathway to human cancer remains largely unexplored. We address this issue directly by showing that dysregulation of the MVA pathway, achieved by ectopic expression of either full-length HMGCR or its novel splice variant, promotes transformation. Ectopic HMGCR accentuates growth of transformed and nontransformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice and, importantly, cooperates with RAS to drive the transformation of primary mouse embryonic fibroblasts cells. We further explore whether the MVA pathway may play a role in the etiology of human cancers and show that high mRNA levels of HMGCR and additional MVA pathway genes correlate with poor prognosis in a meta-analysis of six microarray datasets of primary breast cancer. Taken together, our results suggest that HMGCR is a candidate metabolic oncogene and provide a molecular rationale for further exploring the statin family of HMGCR inhibitors as anticancer agents. PMID:20696928

  12. Electron Transfer Pathways in Cholesterol Synthesis.

    Science.gov (United States)

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  13. Cellular Signaling Pathways and Their Clinical Reflections

    Directory of Open Access Journals (Sweden)

    N. Ceren Sumer-Turanligil

    2010-06-01

    Full Text Available Cellular signaling pathways have important roles in cellular growth, differentiation, inflammatory response and apoptosis and in regulation of cellular responses under various chemical stimulators. Different proteins which belong to these pathways may be exposed to loss-of-function or gain-of-function mutations; this may lead to many clinical phenotypes including primarily cancer. In this review information about basic working principles of these pathways and diseases related to them are included. [Archives Medical Review Journal 2010; 19(3.000: 180-191

  14. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  15. Computing folding pathways between RNA secondary structures.

    Science.gov (United States)

    Dotu, Ivan; Lorenz, William A; Van Hentenryck, Pascal; Clote, Peter

    2010-03-01

    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder. PMID:20044352

  16. Cholangiocarcinoma: molecular pathways and therapeutic opportunities.

    Science.gov (United States)

    Rizvi, Sumera; Borad, Mitesh J; Patel, Tushar; Gores, Gregory J

    2014-11-01

    Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with limited treatment options and low survival rates. Currently, there are no curative medical therapies for CCA. Recent advances have enhanced our understanding of the genetic basis of this disease, and elucidated therapeutically relevant targets. Therapeutic efforts in development are directed at several key pathways due to genetic aberrations including receptor tyrosine kinase pathways, mutant IDH enzymes, the PI3K-AKT-mTOR pathway, and chromatin remodeling networks. A highly desmoplastic, hypovascular stroma is characteristic of CCAs and recent work has highlighted the importance of targeting this pathway via stromal myofibroblast depletion. Future efforts should concentrate on combination therapies with action against the cancer cell and the surrounding tumor stroma. As the mutational landscape of CCA is being illuminated, molecular profiling of patient tumors will enable identification of specific mutations and the opportunity to offer directed, personalized treatment options. PMID:25369307

  17. Imaging the Visual Pathway in Neuromyelitis Optica

    Directory of Open Access Journals (Sweden)

    Caspar F. Pfueller

    2011-01-01

    Full Text Available The focus of this paper is to summarize the current knowledge on visual pathway damage in neuromyelitis optica (NMO assessed by magnetic resonance imaging (MRI and optical coherence tomography (OCT.

  18. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  19. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  20. The Evolution of Fungal Metabolic Pathways

    OpenAIRE

    Wisecaver, Jennifer H.; Slot, Jason C.; Rokas, Antonis

    2014-01-01

    Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We e...

  1. Sorting pathways of mitochondrial inner membrane proteins

    OpenAIRE

    Mahlke, Kerstin; Pfanner, Nikolaus; Martin, Jörg; Horwich, Arthur; Hartl, Franz-Ulrich; Neupert, Walter

    1990-01-01

    Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neur...

  2. The Kynurenine Pathway in Stem Cell Biology

    OpenAIRE

    Jones, Simon P; Guillemin, Gilles J; Bruce J Brew

    2013-01-01

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental ar...

  3. Notch Signaling Pathway and Human Placenta

    OpenAIRE

    Wei-Xiu Zhao, Jian-Hua Lin

    2012-01-01

    Notch signaling was evolutionarily conserved and critical for cell-fate determination, differentiation and many other biological processes. Growing evidences suggested that Notch signaling pathway played an important role in the mammalian placental development. All of the mammalian Notch family proteins had been identified in human placenta except Delta-like 3, which appeared to affect the axial skeletal system. However the molecular mechanisms that regulated the Notch signaling pathway remai...

  4. A More Flexible Lipoprotein Sorting Pathway

    OpenAIRE

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate int...

  5. A shared pathway among supraventricular tachycardias

    Directory of Open Access Journals (Sweden)

    Moghaddam M

    1995-07-01

    Full Text Available AVNRT, (Atrioventricular nodal reentry tachycardia, atrial tachycardia and atrial flutter are 3 kinds of supraventricular tachycardia, which their mechanism are explained based on reentry. A 60-years-old man is presented with all of the above-mentioned arrhythmias, responsive to intravenous injection of adenosine. Radiofrequency ablation of the slow pathway territories cured all of them. Therefore, we suggest that there was a common pathway among all kinds of these arrhythmias, which were ablated with single RF lesion.

  6. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  7. Precursors of Young Women's Family Formation Pathways

    OpenAIRE

    Amato, Paul R.; Landale, Nancy S.; Havasevich, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed seven latent pathways: college-no family formation (29%), high school-no family formation (19%), cohabitation without children (15%), married mothers ...

  8. A more flexible lipoprotein sorting pathway.

    Science.gov (United States)

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  9. Advances in Targeting Signal Transduction Pathways

    OpenAIRE

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Sun, Lin; Davis, Nicole M.; Abrams, Stephen L.; Franklin, Richard A.; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.; Libra, Massimo; Candido, Saverio; Ligresti, Giovanni; Malaponte, Grazia

    2012-01-01

    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being ...

  10. Lysosome: regulator of lipid degradation pathways

    OpenAIRE

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Autophagy is a catabolic pathway that has a fundamental role in the adaptation to fasting and primarily relies on the activity of the endolysosomal system, to which the autophagosome targets substrates for degradation. Recent studies have revealed that the lysosomal–autophagic pathway plays an important part in the early steps of lipid degradation. In this review, we discuss the transcriptional mechanisms underlying co-regulation between lysosome, autophagy, and other steps of lipid catabolis...

  11. Optic pathway degeneration in Japanese black cattle

    OpenAIRE

    Chiba, Shiori; FUNATO, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; FURUOKA, Hidefumi; Kobayashi, Yoshiyasu

    2014-01-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic ...

  12. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  13. The ectodysplasin pathway: from diseases to adaptations.

    Science.gov (United States)

    Sadier, Alexa; Viriot, Laurent; Pantalacci, Sophie; Laudet, Vincent

    2014-01-01

    The ectodysplasin (EDA) pathway, which is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands, and which is crucial for fine-tuning the developmental network controlling the number, size, and density of these structures, was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor. This core pathway relies on downstream NF-κB pathway activation to regulate target genes. The pathway has recently been found to be associated with specific adaptations in natural populations: the magnitude of armor plates in sticklebacks and the hair structure in Asian human populations. Thus, despite its role in human disease, the EDA pathway is a 'hopeful pathway' that could allow adaptive changes in ectodermal appendages which, as specialized interfaces with the environment, are considered hot-spots of morphological evolution. PMID:24070496

  14. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  15. Bacterial variations on the methionine salvage pathway

    Directory of Open Access Journals (Sweden)

    Haas Dieter

    2004-03-01

    Full Text Available Abstract Background The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. Results This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase, belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate. Conclusion A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya, with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and Ru

  16. Leptin signalling pathways in hypothalamic neurons.

    Science.gov (United States)

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways. PMID:26786898

  17. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue.

    Science.gov (United States)

    Stratikopoulos, Elias E; Parsons, Ramon E

    2016-06-01

    The PI3K signaling pathway is a complex and tightly regulated network that is critical for many physiologic processes, such as cell growth, proliferation, metabolism, and survival. Aberrant activation of this pathway can occur through mutation of almost any of its major nodes and has been implicated in a number of human diseases, including cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the development of small-molecule inhibitors of PI3K, several of which are currently in clinical trials. However, several feedback mechanisms either within the PI3K pathway or in compensatory pathways can render tumor cells resistant to therapy. Recently, targeting proteins of the bromodomain and extraterminal (BET) family of epigenetic readers of histone acetylation has been shown to effectively block adaptive signaling response of cancer cells to inhibitors of the PI3K pathway, which at least in some cases can restore sensitivity. BET inhibitors also enforce blockade of the MAPK, JAK/STAT, and ER pathways, suggesting they may be a rational combinatorial partner for divergent oncogenic signals that are subject to homeostatic regulation. Here, we review the PI3K pathway as a target for cancer therapy and discuss the potential use of BET inhibition to enhance the clinical efficacy of PI3K inhibitors. Clin Cancer Res; 22(11); 2605-10. ©2016 AACR. PMID:27250929

  18. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...ages. Schroder K, Sweet MJ, Hume DA. Immunobiology. 2006;211(6-8):511-24. Epub 2006 Jul 5. (.png) (.svg) (.html) (.csml) Show Signal... integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal

  19. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signal...ling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli

  20. Exergetical Evaluation of Biobased Synthesis Pathways

    Directory of Open Access Journals (Sweden)

    Philipp Frenzel

    2014-01-01

    Full Text Available The vast majority of today’s chemical products are based on crude oil. An attractive and sustainable alternative feedstock is biomass. Since crude oil and biomass differ in various properties, new synthesis pathways and processes have to be developed. In order to prioritize limited resources for research and development (R & D, their economic potential must be estimated in the early stages of development. A suitable measure for an estimation of the economic potential is based on exergy balances. Different structures of synthesis pathways characterised by the chemical exergy of the main components are evaluated. Based on a detailed evaluation of the underlying processes, general recommendations for future bio-based synthesis pathways are derived.

  1. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data. PMID:17370261

  2. Evolutionary algorithm for metabolic pathways synthesis.

    Science.gov (United States)

    Gerard, Matias F; Stegmayer, Georgina; Milone, Diego H

    2016-06-01

    Metabolic pathway building is an active field of research, necessary to understand and manipulate the metabolism of organisms. There are different approaches, mainly based on classical search methods, to find linear sequences of reactions linking two compounds. However, an important limitation of these methods is the exponential increase of search trees when a large number of compounds and reactions is considered. Besides, such models do not take into account all substrates for each reaction during the search, leading to solutions that lack biological feasibility in many cases. This work proposes a new evolutionary algorithm that allows searching not only linear, but also branched metabolic pathways, formed by feasible reactions that relate multiple compounds simultaneously. Tests performed using several sets of reactions show that this algorithm is able to find feasible linear and branched metabolic pathways. PMID:27080162

  3. Pathways to deep decarbonization - 2015 report

    International Nuclear Information System (INIS)

    In September 2015, the Deep Decarbonization Pathways Project published the Executive Summary of the Pathways to Deep Decarbonization: 2015 Synthesis Report. The full 2015 Synthesis Report was launched in Paris on December 3, 2015, at a technical workshop with the Mitigation Action Plans and Scenarios (MAPS) program. The Deep Decarbonization Pathways Project (DDPP) is a collaborative initiative to understand and show how individual countries can transition to a low-carbon economy and how the world can meet the internationally agreed target of limiting the increase in global mean surface temperature to less than 2 degrees Celsius (deg. C). Achieving the 2 deg. C limit will require that global net emissions of greenhouse gases (GHG) approach zero by the second half of the century. In turn, this will require a profound transformation of energy systems by mid-century through steep declines in carbon intensity in all sectors of the economy, a transition we call 'deep decarbonization'

  4. Coinhibitory Pathways in Immunotherapy for Cancer.

    Science.gov (United States)

    Baumeister, Susanne H; Freeman, Gordon J; Dranoff, Glenn; Sharpe, Arlene H

    2016-05-20

    The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer. PMID:26927206

  5. Pathways to deep decarbonization - Interim 2014 Report

    International Nuclear Information System (INIS)

    The interim 2014 report by the Deep Decarbonization Pathways Project (DDPP), coordinated and published by IDDRI and the Sustainable Development Solutions Network (SDSN), presents preliminary findings of the pathways developed by the DDPP Country Research Teams with the objective of achieving emission reductions consistent with limiting global warming to less than 2 deg. C. The DDPP is a knowledge network comprising 15 Country Research Teams and several Partner Organizations who develop and share methods, assumptions, and findings related to deep decarbonization. Each DDPP Country Research Team has developed an illustrative road-map for the transition to a low-carbon economy, with the intent of taking into account national socio-economic conditions, development aspirations, infrastructure stocks, resource endowments, and other relevant factors. The interim 2014 report focuses on technically feasible pathways to deep decarbonization

  6. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  7. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan;

    2016-01-01

    Background: More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  8. Reciprocal regulation of metabolic and signaling pathways

    Directory of Open Access Journals (Sweden)

    Barth Andreas S

    2010-03-01

    Full Text Available Abstract Background By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently difficult. Results Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa. Several findings suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and metabolic pathways, respectively. Conclusions Our data suggest that in a wide range of physiological and pathophysiological conditions, gene expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects

  9. Understanding trade pathways to target biosecurity surveillance

    Directory of Open Access Journals (Sweden)

    Manuel Colunga-Garcia

    2013-09-01

    Full Text Available Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species (IS. Establishing early detection strategies thus becomes an important part of the continuum used to reduce the introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume and frequency, the number and type of pathways with a similar destination, and the number of different ecological regions that serve as the source for imports to the same destination. As these factors increase, pressure typically intensifies because of increasing a propagule pressure, b likelihood of transporting pests with higher intrinsic invasion potential, and c likelihood of transporting pests into ecosystems with higher invasibility. We used maritime containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosystems with high potential invasibility. Our results illustrated the importance of how a pathway-centred model could be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred conceptual models to a better understand the role of human-mediated pathways in pest establishment, b enhance current

  10. Interleukin 4 signals through two related pathways.

    OpenAIRE

    Pernis, A; Witthuhn, B.; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W. E.; Pierce, J H; Rothman, P.

    1995-01-01

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to...

  11. PI3K pathway in NSCLC

    Directory of Open Access Journals (Sweden)

    EnriquetaFelip

    2012-01-01

    Full Text Available The phosphatidylinositol 3-kinases (PI3Ks are members of a family of intracellular lipid kinases that phosphorylate the 3’-hydroxyl group of phosphatidylinositol and phosphoinositides. PI3K regulate signaling pathways for neoplasia, including cell proliferation, adhesion, survival and motility. Different classes of PI3K have distinct roles in cellular signal transduction. PI3K pathway is activated by several different mechanisms in cancers, including, somatic mutation and gene amplification. In this review, we examine the literature addressing PI3K mutation status and gene amplification, with an emphasis on non-small cell lung cancer (NSCLC.

  12. Intracranial pathology of the visual pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Forell, W. E-mail: mueller-forell@neuroradio.klinik.uni-mainz.de

    2004-02-01

    Intracranial pathologies involving the visual pathway are manifold. Aligning to anatomy, the most frequent and/or most important extrinsic and intrinsic intracranial lesions are presented. Clinical symptoms and imaging characteristics of lesions of the sellar region are demonstrated in different imaging modalities. The extrinsic lesions mainly consist of pituitary adenomas, meningeomas, craniopharyngeomas and chordomas. In (asymptomatic and symptomatic) aneurysms, different neurological symptoms depend on the location of aneurysms of the circle of Willis. Intrinsic tumors as astrocytoma of any grade, ependymoma and primary CNS-lymphoma require the main pathology in the course of the visual pathway. Vascular and demyelinating diseases complete this overview of intracranial lesions.

  13. Simplified analysis for liquid pathway studies

    International Nuclear Information System (INIS)

    The analysis of the potential contamination of surface water via groundwater contamination from severe nuclear accidents is routinely calculated during licensing reviews. This analysis is facilitated by the methods described in this report, which is codified into a BASIC language computer program, SCREENLP. This program performs simplified calculations for groundwater and surface water transport and calculates population doses to potential users for the contaminated water irrespective of possible mitigation methods. The results are then compared to similar analyses performed using data for the generic sites in NUREG-0440, Liquid Pathway Generic Study, to determine if the site being investigated would pose any unusual liquid pathway hazards

  14. Let's go bananas: revisiting the endocytic BAR code

    OpenAIRE

    Qualmann, Britta; Koch, Dennis; Kessels, Michael Manfred

    2011-01-01

    Vesicle formation is accompanied by dramatic changes in membrane geometry. The role of the BAR domain proteins in membrane shaping—with a focus on how their structural features are optimized for this function—is explained here.

  15. Endocytic Trafficking of CFTR in Health and Disease

    OpenAIRE

    Ameen, Nadia; Silvis, Mark; Bradbury, Neil A.

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the debilitating genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only in...

  16. Force Generation by Endocytic Actin Patches in Budding Yeast

    OpenAIRE

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The def...

  17. Novel functions of endocytic player clathrin in mitosis

    Institute of Scientific and Technical Information of China (English)

    Wenxiang Fu; Qing Jiang; Chuanmao Zhang

    2011-01-01

    Clathrin has been widely recognized as a pivotal player in endocytosis,in which several adaptors and accessory proteins are involved.Recent studies suggested that clathrin is also essential for cell division.Here this review mainly focuses on the clathrin-dependent mechanisms involved in spindle assembly and chromosome alignment.In mitosis,clathrin forms a complex with phosphorylated TACC3 to ensure spindle stability and proper chromosome alignment.The clathrin-regulated mechanism in mitosis requires the crosstalk among clathrin,spindle assembly factors (SAFs),Ran-GTP and mitotic kinases.Meanwhile,a coordinated mechanism is required for role transitions of clathrin during endocytosis and mitosis.Taken together,the findings of the multiple functions of clathrin besides endocytosis have expanded our understanding of the basic cellular activities.

  18. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation

    OpenAIRE

    1994-01-01

    Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles...

  19. Pathways to Sexual Risk Taking Among Female Adolescent Detainees

    OpenAIRE

    Lopez, Vera; Kopak, Albert; Robillard, Alyssa; Gillmore, Mary Rogers; Holliday, Rhonda C.; Braithwaite, Ronald L.

    2010-01-01

    Sexual risk taking among female delinquents represents a significant public health problem. Research is needed to understand the pathways leading to sexual risk taking among this population. This study sought to address this issue by identifying and testing two pathways from child maltreatment to non-condom use among 329 White and 484 African American female adolescent detainees: a relational pathway and a substance use coping pathway. The relational pathway indicated that child maltreatment ...

  20. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    Science.gov (United States)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  1. Pathways to Relationship Aggression between Adult Partners

    Science.gov (United States)

    Busby, Dean M.; Holman, Thomas B.; Walker, Eric

    2008-01-01

    In this study, the pathways to adult aggression beginning in the family of origin (FOO) and continuing through adult relationships were investigated. With a sample of 30,600 individuals, a comprehensive model was evaluated that included the unique influences of violent victimization in the family, witnessing parental violence, perpetrating…

  2. Pathways to deep decarbonization in India

    DEFF Research Database (Denmark)

    Shukla, P.; Dhar, Subash; Pathak, Minal;

    This report is a part of the global Deep Decarbonisation Pathways (DDP) Project. The analysis consider two development scenarios for India and assess alternate roadmaps for transiting to a low carbon economy consistent with the globally agreed 2°C stabilization target. The report does not consider...

  3. Apoptosis signaling pathways and lymphocyte homeostasis

    Institute of Scientific and Technical Information of China (English)

    Guangwu Xu; Yufang Shi

    2007-01-01

    It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways of apoptotic cell death induction: extrinsic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.

  4. Regulatory pathways in the European Union.

    Science.gov (United States)

    Kohler, Manuela

    2011-01-01

    In principle, there are three defined procedures to obtain approval for a medicinal product in the European Union. As discussed in this overview of the procedures, the decision on which regulatory pathway to use will depend on the nature of the active substance, the target indication(s), the history of product and/or the marketing strategy. PMID:21487236

  5. Precursors of Young Women's Family Formation Pathways

    Science.gov (United States)

    Amato, Paul R.; Landale, Nancy S.; Havasevich-Brooks, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed…

  6. Final report on the Pathway Analysis Task

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, F.W.; Kirchner, T.B. [Colorado State Univ., Fort Collins, CO (United States)

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  7. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  8. Using biological pathway data with paxtools.

    Directory of Open Access Journals (Sweden)

    Emek Demir

    Full Text Available A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL, which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0 can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.

  9. High salt recruits aversive taste pathways.

    Science.gov (United States)

    Oka, Yuki; Butnaru, Matthew; von Buchholtz, Lars; Ryba, Nicholas J P; Zuker, Charles S

    2013-02-28

    In the tongue, distinct classes of taste receptor cells detect the five basic tastes; sweet, sour, bitter, sodium salt and umami. Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive and generally attractive to animals. By contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one. This appetitive-aversive balance helps to maintain appropriate salt consumption, and represents an important part of fluid and electrolyte homeostasis. We have shown previously that the appetitive responses to NaCl are mediated by taste receptor cells expressing the epithelial sodium channel, ENaC, but the cellular substrate for salt aversion was unknown. Here we examine the cellular and molecular basis for the rejection of high concentrations of salts. We show that high salt recruits the two primary aversive taste pathways by activating the sour- and bitter-taste-sensing cells. We also demonstrate that genetic silencing of these pathways abolishes behavioural aversion to concentrated salt, without impairing salt attraction. Notably, mice devoid of salt-aversion pathways show unimpeded, continuous attraction even to very high concentrations of NaCl. We propose that the 'co-opting' of sour and bitter neural pathways evolved as a means to ensure that high levels of salt reliably trigger robust behavioural rejection, thus preventing its potentially detrimental effects on health. PMID:23407495

  10. Pathways from jobs to social cohesion

    OpenAIRE

    Wietzke, Frank-Borge

    2014-01-01

    There is growing recognition that access to good jobs is an important driver of social cohesion. While economic dimensions of labor market outcomes are relatively well documented, evidence on the link between social cohesion and jobs is still surprisingly scarce. This paper, based on an earlier background report for the WDR 2013, presents empirical evidence for pathways between labor marke...

  11. Air Research Program: Key Pathways research track

    Science.gov (United States)

    The pathways research track applies animal, cellular, and human studies to discern whether there is a common molecular mechanism (e.g. production of oxidative stress, phosphatase inhibition, disruption of iron homeostasis) through which air pollutants induce toxicity of air pollu...

  12. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  13. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  14. Teaching Courage: Service Learning at Pathway School.

    Science.gov (United States)

    Ioele, Michelle D.; Dolan, Anne L.

    1992-01-01

    Describes successful service club program serving adolescent boys with social, emotional, and learning problems who reside at Philadelphia's Pathway School. Considers strengths and weaknesses; power and helplessness; worthiness and worthlessness; and giving and dependency. Provides examples from programs and their participants. (NB)

  15. Dorsal and Ventral Pathways for Prosody.

    Science.gov (United States)

    Sammler, Daniela; Grosbras, Marie-Hélène; Anwander, Alfred; Bestelmeyer, Patricia E G; Belin, Pascal

    2015-12-01

    Our vocal tone--the prosody--contributes a lot to the meaning of speech beyond the actual words. Indeed, the hesitant tone of a "yes" may be more telling than its affirmative lexical meaning. The human brain contains dorsal and ventral processing streams in the left hemisphere that underlie core linguistic abilities such as phonology, syntax, and semantics. Whether or not prosody--a reportedly right-hemispheric faculty--involves analogous processing streams is a matter of debate. Functional connectivity studies on prosody leave no doubt about the existence of such streams, but opinions diverge on whether information travels along dorsal or ventral pathways. Here we show, with a novel paradigm using audio morphing combined with multimodal neuroimaging and brain stimulation, that prosody perception takes dual routes along dorsal and ventral pathways in the right hemisphere. In experiment 1, categorization of speech stimuli that gradually varied in their prosodic pitch contour (between statement and question) involved (1) an auditory ventral pathway along the superior temporal lobe and (2) auditory-motor dorsal pathways connecting posterior temporal and inferior frontal/premotor areas. In experiment 2, inhibitory stimulation of right premotor cortex as a key node of the dorsal stream decreased participants' performance in prosody categorization, arguing for a motor involvement in prosody perception. These data draw a dual-stream picture of prosodic processing that parallels the established left-hemispheric multi-stream architecture of language, but with relative rightward asymmetry. PMID:26549262

  16. Final report on the Pathway Analysis Task

    International Nuclear Information System (INIS)

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University's Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere

  17. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independen

  18. Regulatory pathways in the European Union

    OpenAIRE

    Kohler, Manuela

    2011-01-01

    In principle, there are three defined procedures to obtain approval for a medicinal product in the European Union. As discussed in this overview of the procedures, the decision on which regulatory pathway to use will depend on the nature of the active substance, the target indication(s), the history of product and/or the marketing strategy.

  19. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  20. Origin and evolution of metabolic pathways

    Science.gov (United States)

    Fani, Renato; Fondi, Marco

    2009-03-01

    The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.

  1. Evaluation of skin and ingestion exposure pathways

    International Nuclear Information System (INIS)

    After a nuclear accident when there has been a release of radionuclides into the atmosphere with consequential deposition on the ground, decisions are necessary on whether protective action guides should be implemented. In order to do this, several pathways for radiation exposure must be evaluated to determine the projected dose to individuals. The objective of this study, conducted by Pacific Northwest Laboratories for the U.S. Environmental Protection Agency, is to provide background information on exposure pathways for use in the development of Protective Action Guides. The relative importance of three exposure pathways that are usually considered to be unimportant compared to other pathways expected to control relocation decisions following a nuclear power plant accident is evaluated. The three pathways are the skin dose from contact with radionuclides transferred from the ground, the skin dose from radionuclides on the ground surface, and ingestion of radionuclides transferred directly to the mouth from the hands or other contaminated surfaces. Ingestion of contaminated food is not included in this evaluation, except for situations where the food is contaminated as a result of actions by the person who consumes the food (e.g., transfer of contamination from hands to food). Estimates of skin and ingestion doses are based on a source term with a radionuclide mix predicted for an SST2-type nuclear accident in an area where the first year reference whole-body dose equivalent from whole body external exposure to gamma radiation plus the committed effective dose equivalent from inhalation of resuspended radionuclides is 1 rem. Appendixes have been included to allow the reader to examine dose factor calculations, source-term data, and quantification of contact and ingestion parameters in more detail

  2. Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

    Science.gov (United States)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  3. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  4. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  5. Phosphoketolase Pathway Dominates in Lactobacillus reuteri ATCC 55730 Containing Dual Pathways for Glycolysis▿

    OpenAIRE

    Årsköld, Emma; Lohmeier-Vogel, Elke; Cao, Rong; Roos, Stefan; Rådström, Peter; van Niel, Ed W. J.

    2007-01-01

    Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (...

  6. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis

    OpenAIRE

    Årsköld, Emma; Lohmeier-Vogel, Elke; Cao, Rong; Roos, Stefan; Rådström, Peter; van Niel, Ed

    2008-01-01

    Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (...

  7. KeyPathwayMiner: Detecting Case-Specific Biological Pathways Using Expression Data

    OpenAIRE

    Alcaraz, Nicolas; Kücük, Hande; Weile, Jochen; Wipat, Anil; Baumbach, Jan

    2011-01-01

    Recent advances in systems biology have provided us with massive amounts of pathway data that describe the interplay of genes and their products. The resulting biological networks can be modeled as graphs. By means of "omics" technologies, such as microarrays, the activity of genes and proteins can be measured. Here, data from microarray experiments is integrated with the network data to gain deeper insights into gene expression. We introduce KeyPathwayMiner, a method that enab...

  8. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  9. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    Science.gov (United States)

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility. PMID:26743605

  10. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants

    OpenAIRE

    Yang, Shiuan; Lai, Eric C.

    2011-01-01

    Since the establishment of a canonical animal microRNA biogenesis pathway driven by the RNase III enzymes Drosha and Dicer, an unexpected variety of alternative mechanisms that generate functional microRNAs have emerged. We review here the many Drosha-independent and Dicer-independent microRNA biogenesis strategies characterized over the past few years. Beyond reflecting the flexibility of small RNA machineries, the existence of non-canonical pathways has consequences for interpreting mutants...

  11. The metabolic pathway collection from EMP: the enzymes and metabolic pathways database.

    OpenAIRE

    Basmanova, S; Gaasterland, T.; Goryanin, I; Gretchkin, Y; Maltsev, N.; Nenashev, V; Overbeek, R; Panyushkina, E; Pronevitch, L; Selkov, E; Yunus, I

    1996-01-01

    The Enzymes and Metabolic Pathways database (EMP) is an encoding of the contents of over 10 000 original publications on the topics of enzymology and metabolism. This large body of information has been transformed into a queryable database. An extraction of over 1800 pictorial representations of metabolic pathways from this collection is freely available on the World Wide Web. We believe that this collection will play an important role in the interpretation of genetic sequence data, as well a...

  12. Impact of MAPK Cascade Pathway and P53 Pathway upon Liver Transplant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The change and the role of MAPK cascade pathway and P53 pathway after liver transplantation were explored. Thirty-four punctured donor liver specimens and 10 normal liver specimens were classified as group A (no rejection, n= 10), group B (mild/moderate acute rejection, n = 10), group C (serious acute rejection, n = 8), group D (chronic rejection/fibrosis, n = 6) and group E (control, n= 10). By using tmmunohistochemistry, the expression levels of mitogen activated protein kinase (MAPK), Ras and P53 proteins, and by in situ hybridization, MAPK and ras mRNA expression levels were detected. The results showed that the expression levels of MAPK and Ras proteins were increased by turns in groups A, B and C, and decreased by turns in groups D and E. The protein expression of P53 was higher in the treated groups. The expression of Ras,HSP70 mRNA was identical as that of protein. It is suggested that the MAPK cascade pathway and P53 pathway can protect the hepatocytes by different mechanisms after liver transplantation.MAPKs cascade pathway repairs hepatocyte injury or accelerates hepatocytes into proliferation or differentiation. P53 pathway blocks cell cycle within G1 phase to make hepatocyte repair or apoptosis to reduce disorder differentiation.

  13. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  14. Lung carcinoma signaling pathways activated by smoking

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  15. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  16. Obesity-Induced Hypertension: Brain Signaling Pathways.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E P; Hall, John E

    2016-07-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  17. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.

    Science.gov (United States)

    Pappas, Charalampos G; Sasselli, Ivan R; Ulijn, Rein V

    2015-07-01

    Structural adaption in living systems is achieved by competing catalytic pathways that drive assembly and disassembly of molecular components under the influence of chemical fuels. We report on a simple mimic of such a system that displays transient, sequence-dependent formation of supramolecular nanostructures based on biocatalytic formation and hydrolysis of self-assembling tripeptides. The systems are catalyzed by α-chymotrypsin and driven by hydrolysis of dipeptide aspartyl-phenylalanine-methyl ester (the sweetener aspartame, DF-OMe). We observed switch-like pathway selection, with the kinetics and consequent lifetime of transient nanostructures controlled by the peptide sequence. In direct competition, kinetic (rather than thermodynamic) component selection is observed. PMID:26014441

  18. Stochastic Processes via the Pathway Model

    Directory of Open Access Journals (Sweden)

    Arak M. Mathai

    2015-04-01

    Full Text Available After collecting data from observations or experiments, the next step is to analyze the data to build an appropriate mathematical or stochastic model to describe the data so that further studies can be done with the help of the model. In this article, the input-output type mechanism is considered first, where reaction, diffusion, reaction-diffusion, and production-destruction type physical situations can fit in. Then techniques are described to produce thicker or thinner tails (power law behavior in stochastic models. Then the pathway idea is described where one can switch to different functional forms of the probability density function through a parameter called the pathway parameter. The paper is a continuation of related solar neutrino research published previously in this journal.

  19. Studying lipids involved in the endosomal pathway.

    Science.gov (United States)

    Bissig, Christin; Johnson, Shem; Gruenberg, Jean

    2012-01-01

    Endosomes along the degradation pathway exhibit a multivesicular appearance and differ in their lipid compositions. Association of proteins to specific membrane lipids and presumably also lipid-lipid interactions contribute to the formation of functional membrane platforms that regulate endosome biogenesis and function. This chapter provides a brief review of the functions of endosomal lipids in the degradation pathway, a discussion of techniques that allow studying lipid-based mechanisms and a selection of step-by-step protocols for in vivo and in vitro methods commonly used to study lipid roles in endocytosis. The techniques described here have been used to elucidate the function of the late endosomal lipid lysobisphosphatidic acid and allow the monitoring of lipid distribution, levels and dynamics, as well as the characterization of lipid-binding partners. PMID:22325596

  20. Finding pathways between distant local minima

    Science.gov (United States)

    Carr, Joanne M.; Trygubenko, Semen A.; Wales, David J.

    2005-06-01

    We report a new algorithm for constructing pathways between local minima that involve a large number of intervening transition states on the potential energy surface. A significant improvement in efficiency has been achieved by changing the strategy for choosing successive pairs of local minima that serve as endpoints for the next search. We employ Dijkstra's algorithm [E. W. Dijkstra, Numer. Math. 1, 269 (1959)] to identify the "shortest" path corresponding to missing connections within an evolving database of local minima and the transition states that connect them. The metric employed to determine the shortest missing connection is a function of the minimized Euclidean distance. We present applications to the formation of buckminsterfullerene and to the folding of various biomolecules: the B1 domain of protein G, tryptophan zippers, and the villin headpiece subdomain. The corresponding pathways contain up to 163 transition states and will be used in future discrete path sampling calculations.

  1. Mathematics of the NFAT signalling pathway

    OpenAIRE

    Rendall, A.

    2012-01-01

    This paper is a mathematical study of some aspects of the signalling pathway leading to the activation of the transcription factor NFAT (nuclear factor of activated T cells). Activation takes place by dephosphorylation at multiple sites. This has been modelled by Salazar and H\\"ofer using a large system of ordinary differential equations depending on many parameters. With the help of chemical reaction network theory we show that for any choice of the parameters this system has a unique statio...

  2. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    WendySmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  3. Conservation of small RNA pathways in platypus

    OpenAIRE

    Murchison, Elizabeth P.; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J.

    2008-01-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pat...

  4. Rabies Virus-Induced Membrane Fusion Pathway

    OpenAIRE

    Gaudin, Yves

    2000-01-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fus...

  5. Stroke patients’ pathways to rehabilitation in Portugal

    OpenAIRE

    Silvina Santana; Patrícia Redondo; Conceição Neves; José Rente; Marta Viana; Mariana Ribeiro; Nina Szczygiel

    2011-01-01

    Purpose To report on stroke patients’ pathways to rehabilitation in Portugal, in light of an ongoing EHSD procedure. Theory and methods The Portuguese government has created the National Network of Continuous Integrated Care (RNCCI) to reduce costly acute care and length of stay in hospitals by substituting less costly care closer to the community. The network is based on establishing protocols with existing institutions, designated according to the kind of services they provide as convalesce...

  6. Online treatment compliance checking for clinical pathways.

    Science.gov (United States)

    Huang, Zhengxing; Bao, Yurong; Dong, Wei; Lu, Xudong; Duan, Huilong

    2014-10-01

    Compliance checking for clinical pathways (CPs) is getting increasing attention in health-care organizations due to stricter requirements for cost control and treatment excellence. Many compliance measures have been proposed for treatment behavior inspection in CPs. However, most of them look at aggregated data seen from an external perspective, e.g. length of stay, cost, infection rate, etc., which may provide only a posterior impression of the overall conformance with the established CPs such that in-depth and in near real time checking on the compliance of the essential/critical treatment behaviors of CPs is limited. To provide clinicians real time insights into violations of the established CP specification and support online compliance checking, this article presents a semantic rule-based CP compliance checking system. In detail, we construct a CP ontology (CPO) model to provide a formal grounding of CP compliance checking. Using the proposed CPO, domain treatment constraints are modeled into Semantic Web Rule Language (SWRL) rules to specify the underlying treatment behaviors and their quantified temporal structure in a CP. The established SWRL rules are integrated with the CP workflow such that a series of applicable compliance checking and evaluation can be reminded and recommended during the pathway execution. The proposed approach can, therefore, provides a comprehensive compliance checking service as a paralleling activity to the patient treatment journey of a CP rather than an afterthought. The proposed approach is illustrated with a case study on the unstable angina clinical pathway implemented in the Cardiology Department of a Chinese hospital. The results demonstrate that the approach, as a feasible solution to provide near real time conformance checking of CPs, not only enables clinicians to uncover non-compliant treatment behaviors, but also empowers clinicians with the capability to make informed decisions when dealing with treatment compliance

  7. Wnt Signalling Pathway Parameters for Mammalian Cells

    OpenAIRE

    Tan, Chin Wee; Gardiner, Bruce S.; Hirokawa, Yumiko; Layton, Meredith J.; Smith, David W.; Burgess, Antony W.

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a c...

  8. Loss of vision: imaging the visual pathways

    International Nuclear Information System (INIS)

    This is an overview of diseases presenting with visual impairment, which aims to provide an understanding of the anatomy and pathology of the visual pathways. It discusses the relevant clinical background and neuroimaging findings on CT and standard and advanced MRI of diseases affecting the globe; optic nerve/sheath complex; optic chiasm, tract and radiation; and visual cortex. The overview covers common tumours, trauma, inflammatory and vascular pathology, and conditions such as benign intracranial hypertension and posterior reversible leukoencephalopathy syndrome. (orig.)

  9. Remixing as a Pathway to Computational Thinking

    OpenAIRE

    Dasgupta, Sayamindu; Hale, William; Monroy-Hernández, Andrés; Hill, Benjamin Mako

    2016-01-01

    Theorists and advocates of "remixing" have suggested that appropriation can act as a pathway for learning. We test this theory quantitatively using data from more than 2.4 million multimedia programming projects shared by more than 1 million users in the Scratch online community. First, we show that users who remix more often have larger repertoires of programming commands even after controlling for the numbers of projects and amount of code shared. Second, we show that exposure to computatio...

  10. The sensory transduction pathways in bacterial chemotaxis

    Science.gov (United States)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  11. Mathematical modeling of the Phoenix Rising pathway.

    Directory of Open Access Journals (Sweden)

    Chad Liu

    2014-02-01

    Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.

  12. Signaling Pathways Involved in Cardiac Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Tao Zewei; Li Longgui

    2006-01-01

    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  13. Isoprenoid Pathway And Neurological And Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    1999-01-01

    Full Text Available The coexistence of neuronal degeneration, psychiatric manifestation, immune activation and malignant transformation has been documented in literature, suggesting a central dysfunction in the pathophysiology of these disorders. The isoprenoid pathway may be candidate in this respect, in view of the changes in the concentration of some products of this pathway in many of these disorders, however, no detailed study has been carried out in this respect. In view of this, a study was undertaken on the isoprenoid pathway in some of these disorders - primary generalized epilepsy, Parkinson’s disease (PD, schizophrenia, manic depressive psychosis (MDP, CNS glioma, multiple sclerosis, subacute sclerosing panencephalitis (SSPEand a familial group with familial coexistence of schizophrenia, PD, primary generalized epilepsy, malignant neoplasia, rheumatoid arthritis and syndrome-X over three generations. The following parameters were studied in the patients of these disorders as compared to age and sex matched control subjects - ubiquinone dolichol, digoxin, activity of HMG CoA reductase in the plasma and erthyorcyte membrane Na -K--ATpase. Increase in the activity of HMG CoA reductase and in the concentration of plasma digoxin and dolichol was observed in most of these cases. On the other hand, there was decrease in the concentration of plasma ubiquinone. Decrease in the activity of erythrocyte membrane Na-K- ATpase activity for which digoxin is an inhibitor was also observed in all the cases studied. These results indicate an upregulation of the isoprenoid pathway in the neurological and psychiatric disorders studied. The implications of this change is discussed in details.

  14. Multiple Pathways Linking Racism to Health Outcomes

    OpenAIRE

    Harrell, Camara Jules P.; Burford, Tanisha I.; Cage, Brandi N.; Nelson, Travette McNair; Shearon, Sheronda; Thompson, Adrian; Green, Steven

    2011-01-01

    This commentary discusses advances in the conceptual understanding of racism and selected research findings in the social neurosciences. The traditional stress and coping model holds that racism constitutes a source of aversive experiences that, when perceived by the individual, eventually lead to poor health outcomes. Current evidence points to additional psychophysiological pathways linking facets of racist environments with physiological reactions that contribute to disease. The alternativ...

  15. Brain evolution by brain pathway duplication

    OpenAIRE

    Chakraborty, Mukta; Jarvis, Erich D

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel ...

  16. Targeting the Hedgehog Pathway in Pediatric Medulloblastoma

    OpenAIRE

    Sherri Y. Huang; Jer-Yen Yang

    2015-01-01

    Medulloblastoma (MB), a primitive neuroectomal tumor of the cerebellum, is the most common malignant pediatric brain tumor. The cause of MB is largely unknown, but aberrant activation of Hedgehog (Hh) pathway is responsible for ~30% of MB. Despite aggressive treatment with surgical resection, radiation and chemotherapy, 70%–80% of pediatric medulloblastoma cases can be controlled, but most treated patients suffer devastating side effects. Therefore, developing a new effective treatment strate...

  17. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  18. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  19. Nonlinear fitness landscape of a molecular pathway.

    Directory of Open Access Journals (Sweden)

    Lilia Perfeito

    2011-07-01

    Full Text Available Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic network, the lactose utilization pathway in Escherichia coli. We measure the growth of several regulatory lac operon mutants in different environments inducing expression of the lac genes. We find a strikingly nonlinear fitness landscape, which depends on the production rate and on the activity rate of the lac proteins. A simple fitness model of the lac pathway, based on elementary biophysical processes, predicts the growth rate of all observed strains. The nonlinearity of fitness is explained by a feedback loop: production and activity of the lac proteins reduce growth, but growth also affects the density of these molecules. This nonlinearity has important consequences for molecular function and evolution. It generates a cliff in the fitness landscape, beyond which populations cannot maintain growth. In viable populations, there is an expression barrier of the lac genes, which cannot be exceeded in any stationary growth process. Furthermore, the nonlinearity determines how the fitness of operon mutants depends on the inducer environment. We argue that fitness nonlinearities, expression barriers, and gene-environment interactions are generic features of fitness landscapes for metabolic pathways, and we discuss their implications for the evolution of regulation.

  20. Environmental pathways of radioactivity to man

    International Nuclear Information System (INIS)

    The report reviews and discusses the environmental pathways by which radioactive materials can lead to the irradiation of man, in a way that should be understood by non-specialists who have neither the time nor the knowledge to study all of the relevant literature on this subject. The role of these environmental pathways in the general structure of radiological protection is considered, and the various mechanisms which lead to the dispersion or re-concentration of radioactive materials are discussed at some length. Particular groups of radionuclides from the nuclear power industry are considered in some detail. Similarly the question of the corresponding pathways from naturally-occurring radioactive materials is covered. The doses to animals and plants resulting from the nuclear industry are examined, and it is concluded that there is no reason to expect that these doses will lead to significant harm. Finally a summary is presented, and it is noted that it has been possible to obtain a very extensive knowledge of the behaviour of radionuclides in the environment only because of the extreme sensitivity of the techniques available for their detection, identification and assay. As a result a fund of knowledge has been built up about the behaviour of radioactive materials in the environment which is far more extensive than our knowledge of the behaviour of many highly toxic chemicals which are also discharged into the environment. (UK)

  1. H/CNG pathway to hydrogen

    International Nuclear Information System (INIS)

    'Full text:' The addition of hydrogen to natural gas to produce a 'premium' fuel offers an ideal bridge to the hydrogen and fuel cell era. This pathway provides many of the expected benefits of hydrogen and fuel cells, reduces cost and risk, and facilitates the transition to hydrogen incrementally through existing infrastructure, technologies and channels. The H/CNG pathway is evaluated qualitatively and quantitatively in the context of: barriers to introducing hydrogen infrastructure and how they can be addressed; potential benefits (emissions, energy security) and drawbacks (range, technical compatibility) of H/CNG blended fuels; economics; and, comparative analysis to the use of ethanol in gasoline. Leveraging the NGV industry eases the transition to fuel cells by taking advantage of existing infrastructure, technologies, skills, codes and standards, and provides for incremental change that may be more acceptable to consumers, regulators and incumbent technology providers. The greatest benefits can be achieved through a two-track pathway. One would utilize small amounts of hydrogen in existing NGVs and installed power systems - much as ethanol is added to gasoline. The second introduce products designed specifically to operate on higher levels of H/CNG, like buses, in concentrations where the greatest emission benefits can be achieved. (author)

  2. Role of Hedgehog Signaling Pathway in NASH

    Directory of Open Access Journals (Sweden)

    Mariana Verdelho Machado

    2016-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease.

  3. Molecular Pathways: Targeting ATR in Cancer Therapy.

    Science.gov (United States)

    Karnitz, Larry M; Zou, Lee

    2015-11-01

    The human ATR gene encodes a kinase that is activated by DNA damage and replication stress as a central transducer of a checkpoint signaling pathway. Once activated, ATR phosphorylates multiple substrates, including the kinase Chk1, to regulate cell-cycle progression, replication fork stability, and DNA repair. These events promote cell survival during replication stress and in cells with DNA damage. Accordingly, there has been the tantalizing possibility that ATR inhibitors would be therapeutically useful, especially if they were more effective in tumor versus normal cells. Indeed, multiple studies have demonstrated that alterations that promote tumorigenesis, such as defects in the ATM-p53 pathway, constitutive oncogene activation, and acquisition of the alternative lengthening of telomeres pathway, render tumor cells sensitive to ATR inhibitor monotherapy and/or increase the synergy between ATR inhibitors and genotoxic chemotherapies. Now, nearly two decades after the discovery of ATR, two highly selective and potent ATR inhibitors, AZD6738 and VX-970, are in early-phase clinical trials either as monotherapies or paired with a variety of genotoxic chemotherapies. These trials will generate important insights into the effects of ATR inhibition in humans and the potential role of inhibiting this kinase in the treatment of human malignancies. PMID:26362996

  4. Role of Hedgehog Signaling Pathway in NASH.

    Science.gov (United States)

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual's response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  5. Pathways, Networks and Systems Medicine Conferences

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H. [Pacific Northwest Research Institute

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  6. Sonic hedgehog-Gli1 pathway in colorectal adenocarcinomas

    OpenAIRE

    Bian, Yue-Hong; Huang, Shu-Hong; Yang, Ling; Ma, Xiao-Li; Xie, Jing-Wu; Zhang, Hong-Wei

    2007-01-01

    AIM: To determine the role of Sonic hedgehog (Shh) pathway in colorectal adenocarcinomas through analysis of the expression of Shh pathway-related molecules, Shh, Ptch1, hedgehog-interacting protein (Hip), Gli1, Gli3 and PDGFRα.

  7. Evaluating pathway enumeration algorithms in metabolic engineering case studies

    OpenAIRE

    Liu, Filipe; Vilaça, Paulo; Rocha, I; Rocha, Miguel

    2014-01-01

    The design of cell factories for the production of compounds involves the search for suitable heterologous pathways. Different strategies have been proposed to infer such pathways, but most are optimization approaches with specific objective functions, not suited to enumerate multiple pathways. In this work, we analyze two pathway enumeration algorithms based on graph representations: the Solution Structure Generation and the Find Path algorithms. Both are capable of enumerating exhaustively ...

  8. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    OpenAIRE

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pa...

  9. Inherited variation in immune genes and pathways and glioblastoma risk

    OpenAIRE

    Schwartzbaum, Judith A.; Xiao, Yuanyuan; Liu, Yanhong; Tsavachidis, Spyros; Berger, Mitchel S.; Bondy, Melissa L,; Chang, Jeffrey S.; Chang, Susan M.; Decker, Paul A.; Ding, Bo; Hepworth, Sarah J; Richard S. Houlston; Hosking, Fay J; Jenkins, Robert B.; Kosel, Matthew L.

    2010-01-01

    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) an...

  10. Lethal Mutations in the Isoprenoid Pathway of Salmonella enterica

    OpenAIRE

    Cornish, Rita M.; Roth, John R.; Poulter, C. Dale

    2006-01-01

    Essential isoprenoid compounds are synthesized using the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in many gram-negative bacteria, some gram-positive bacteria, some apicomplexan parasites, and plant chloroplasts. The alternative mevalonate pathway is found in archaea and eukaryotes, including cytosolic biosynthesis in plants. The existence of orthogonal essential pathways in eukaryotes and bacteria makes the MEP pathway an attractive target for the development of antimicrobial agents....

  11. A Study of the PDGF Signaling Pathway with PRISM

    OpenAIRE

    Qixia Yuan; Jun Pang; Sjouke Mauw; Panuwat Trairatphisan; Monique Wiesinger; Thomas Sauter

    2011-01-01

    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.

  12. Roles of Pathways in Self-Access Centres.

    Science.gov (United States)

    Kell, James; Newton, Clive

    1997-01-01

    Discusses possible roles for self-access pathways to guide second-language learners, particularly in cultures that have no tradition of self-study. Suggests how pathways might influence the design and running of self-access centers and gives an illustration of how pathways were designed and employed in a center in China. Feedback is based on a…

  13. Development of Network Analysis and Visualization System for KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Dongmin Seo

    2015-07-01

    Full Text Available Big data refers to informationalization technology for extracting valuable information through the use and analysis of large-scale data and, based on that data, deriving plans for response or predicting changes. With the development of software and devices for next generation sequencing, a vast amount of bioinformatics data has been generated recently. Also, bioinformatics data based big-data technology is rising rapidly as a core technology by the bioinformatician, biologist and big-data scientist. KEGG pathway is bioinformatics data for understanding high-level functions and utilities of the biological system. However, KEGG pathway analysis requires a lot of time and effort because KEGG pathways are high volume and very diverse. In this paper, we proposed a network analysis and visualization system that crawl user interest KEGG pathways, construct a pathway network based on a hierarchy structure of pathways and visualize relations and interactions of pathways by clustering and selecting core pathways from the network. Finally, we construct a pathway network collected by starting with an Alzheimer’s disease pathway and show the results on clustering and selecting core pathways from the pathway network.

  14. Pathways to nuclear disarmament:delegitimising nuclear violence

    OpenAIRE

    Ritchie, Nicholas Edward

    2016-01-01

    This paper explores pathways for diplomatic responses to the continuing threat of nuclear violence. It differentiates between pathways focussed on the devaluing of nuclear weapons by the nuclear-armed states and pathways focussed on delegitimising nuclear weapons by a wider community of states.

  15. The carotenoid biosynthetic pathway: thinking in all dimensions.

    Science.gov (United States)

    Shumskaya, Maria; Wurtzel, Eleanore T

    2013-07-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signaling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavor of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and predictability of metabolic engineering of carotenoids rests in the ability to target carotenoids for specific physiological purposes as well as to simultaneously modify carotenoids along with other desired traits. Here, we ask whether predictive metabolic engineering of the carotenoid pathway is indeed possible. Despite a long history of research on the pathway, at this point in time we can only describe the pathway as a parts list and have almost no knowledge of the location of the complete pathway, how it is assembled, and whether there exists any trafficking of the enzymes or the carotenoids themselves. We discuss the current state of knowledge regarding the "complete" pathway and make the argument that predictive metabolic engineering of the carotenoid pathway (and other pathways) will require investigation of the three dimensional state of the pathway as it may exist in plastids of different ultrastructures. Along with this message we point out the need to develop new types of visualization tools and resources that better reflect the dynamic nature of biosynthetic pathways. PMID:23683930

  16. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis.

    Science.gov (United States)

    Arsköld, Emma; Lohmeier-Vogel, Elke; Cao, Rong; Roos, Stefan; Rådström, Peter; van Niel, Ed W J

    2008-01-01

    Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (ii) glucose alone, and (iii) sucrose alone, respectively. Analysis of the genome of L. reuteri ATCC 55730 confirmed the presence of the genes for both pathways. Further evidence for the simultaneous operation of two central carbon metabolic pathways was found through the detection of fructose-1,6-bisphosphate aldolase, phosphofructokinase, and phosphoglucoisomerase activities and the presence of phosphorylated EMP and PKP intermediates using in vitro 31P NMR. The maximum specific growth rate and biomass yield obtained on glucose were twice as low as on sucrose. This was the result of low ATP levels being present in glucose-metabolizing cells, although the ATP production flux was as high as in sucrose-metabolizing cells due to a twofold increase of enzyme activities in both glycolytic pathways. Growth performance on glucose could be improved by adding fructose as an external electron acceptor, suggesting that the observed behavior is due to a redox imbalance causing energy starvation. PMID:17965151

  17. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Science.gov (United States)

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  18. Development and Implementation of Oncology Care Pathways in an Integrated Care Network: The Via Oncology Pathways Experience

    OpenAIRE

    Ellis, Peter G.

    2013-01-01

    The Via Pathways model used at the UPMC CancerCenter, in which the oncologists developing the clinical content are ultimately those who use the pathways portal, has proven to be successful in ensuring physician participation.

  19. Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways

    OpenAIRE

    2010-01-01

    Background Pathways provide topical descriptions of cellular circuitry. Comparing analogous pathways reveals intricate insights into individual functional differences among species. While previous works in the field performed genomic comparisons and evolutionary studies that were based on specific genes or proteins, whole genomic sequence, or even single pathways, none of them described a genomic system level comparative analysis of metabolic pathways. In order to properly implement such an a...

  20. pathways to deep decarbonization - 2014 report

    International Nuclear Information System (INIS)

    The Deep Decarbonization Pathways Project (DDPP) is a collaborative initiative to understand and show how individual countries can transition to a low-carbon economy and how the world can meet the internationally agreed target of limiting the increase in global mean surface temperature to less than 2 degrees Celsius (deg. C). Achieving the 2 deg. C limit will require that global net emissions of greenhouse gases (GHG) approach zero by the second half of the century. This will require a profound transformation of energy systems by mid-century through steep declines in carbon intensity in all sectors of the economy, a transition we call 'deep decarbonization.' Successfully transition to a low-carbon economy will require unprecedented global cooperation, including a global cooperative effort to accelerate the development and diffusion of some key low carbon technologies. As underscored throughout this report, the results of the DDPP analyses remain preliminary and incomplete. The DDPP proceeds in two phases. This 2014 report describes the DDPP's approach to deep decarbonization at the country level and presents preliminary findings on technically feasible pathways to deep decarbonization, utilizing technology assumptions and timelines provided by the DDPP Secretariat. At this stage we have not yet considered the economic and social costs and benefits of deep decarbonization, which will be the topic for the next report. The DDPP is issuing this 2014 report to the UN Secretary-General Ban Ki-moon in support of the Climate Leaders' Summit at the United Nations on September 23, 2014. This 2014 report by the Deep Decarbonization Pathway Project (DDPP) summarizes preliminary findings of the technical pathways developed by the DDPP Country Research Partners with the objective of achieving emission reductions consistent with limiting global warming to less than 2 deg. C., without, at this stage, consideration of economic and social costs and benefits. The DDPP is a knowledge

  1. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    Directory of Open Access Journals (Sweden)

    Josep Roma

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.

  2. DMPD: TLR pathways and IFN-regulatory factors: to each its own. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17273997 TLR pathways and IFN-regulatory factors: to each its own. Colonna M. Eur J... Immunol. 2007 Feb;37(2):306-9. (.png) (.svg) (.html) (.csml) Show TLR pathways and IFN-regulatory factors: ...to each its own. PubmedID 17273997 Title TLR pathways and IFN-regulatory factors: to each its own. Authors C

  3. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regulatoryfactor...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of... interferon regulatoryfactor 3. Authors Servant MJ, Grandvaux N, Hiscott J. Publication Biochem Pharmacol. 2

  4. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  5. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  6. Freshwater exposure pathways in the Nordic countries

    International Nuclear Information System (INIS)

    The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. The report summarizes information available, primarily in the Nordic countries, on freshwater exposure pathways. Experimental and theoretical data concerning the deposition and run-off of the nuclides *sp90*Sr and*Sp137*Cs is presented. Internal exposure via drinking water and freshwater fish is dealt with, as well as external exposure due to swimming, boating, contact with fishing utensils and use of beach areas. In addition is exposure via irrigated agricultural products considered. (RF)

  7. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  8. Policy Pathways: Monitoring, Verification and Enforcement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA estimates that, if implemented globally without delay, the 25 IEA Energy Efficiency recommendations could save 8.2 Gt CO2 per year by 2030. Yet many governments struggle with their implementation and thus miss a great part of the energy efficiency potential. The new IEA series Policy Pathways: Showing the way to energy efficiency implementation now aims to assist countries with improving energy efficiency policies. It features practical 'how-to' guides for designing, implementing and evaluating energy efficiency policies and achieving greater improvement.

  9. A new pathway for lower limb ulceration

    OpenAIRE

    Atkin, Leanne; Tickle, Joy

    2016-01-01

    Leg ulceration is a common cause of suffering for patients, additionally it places a significant burden on the NHS. As the NHS continues to face times of austerity, services need to find other ways of working to reduce cost and release nursing time whilst maintaining standards of care. The implementation of a pathway for the treatment of leg ulceration, which aids diagnosis and uses compression hosiery kits as a first-line management for venous leg ulceration, can form part of the solution by...

  10. On the interconversion pathway of HBOBOH

    Science.gov (United States)

    Peng, Qian; Wang, Yubin; Suo, Bing; Shi, Qizhen; Wen, Zhenyi

    2004-07-01

    The potential energy surfaces have been constructed for the 1A', 3A', and 3A″ states of HBO by using the multireference perturbation theory with the basis set cc-pVTZ (6d,10f ). Two stationary points and a transition state have been characterized on all the three surfaces, which are in good agreement with available experiments and previous calculations. The interconversion pathways from metastable boron hydroxide BOH to the considerably more stable HBO are expounded based on the nature of the surfaces.

  11. Ontology modeling for generation of clinical pathways

    Directory of Open Access Journals (Sweden)

    Jasmine Tehrani

    2012-12-01

    Full Text Available Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the

  12. Exposure pathways and environmental dose assessment

    International Nuclear Information System (INIS)

    Radionuclides released into the environment from various nuclear facilities during normal operating conditions and under accident conditions eventually reach man through various pathways of exposure. It is required to assess the dose received by members of the public at various stages of nuclear facility. At the design stage of the nuclear facility such assessment is necessary for determining the adequacy of design provisions. During the operational phase, the assessment is needed to establish compliance with the standards and limits laid down for the facility and site

  13. Synthetic pathways to make nanoparticles fluorescent

    Science.gov (United States)

    Sokolova, Viktoriya; Epple, Matthias

    2011-05-01

    In biosciences, it is often necessary to follow the pathway of nanoparticles within cells or tissues. The nanoparticles can be used as labeled sensors which may, e.g., address functionalities within a cell, carry other specific agents like drugs or be magnetic for tumor thermotherapy. In the context of nanotoxicology, the fate of a given nanoparticle is of interest. As many methods in cell biology are based on fluorescence detection, there is a strong demand to make nanoparticles fluorescent. Different ways to introduce fluorescence are reviewed and exemplified with typical kinds of nanoparticles, i.e. polymers, silica and calcium phosphate.

  14. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  15. Complement pathways and meningococcal disease : diagnostic aspects

    DEFF Research Database (Denmark)

    Sjöholm, A G; Truedsson, L; Jensenius, Jens Christian

    2001-01-01

    activation on the bacterial surface (6,7). The newly discovered mannan-binding lectin (MBL) pathway of complement activation appears to be protective against many types of infection (8) and adds previously unsuspected aspects of innate immunity to complement-mediated defense. Interestingly, immune responses...... are influenced by complement (9), and it could be that acquisition of protective antibodies is impaired in some types of complement deficiency. A further aspect of interactions between Neisseria and complement is the potential role of membrane-bound complement regulators as cellular receptors for the...

  16. Small fusion reactors: problems, promise, and pathways

    International Nuclear Information System (INIS)

    The prevalent vision of magnetic fusion as a central-station power plant projects a high-technology, low-power-density nuclear boiler that may require high energy costs to be economic. Smaller, higher-power-density approaches can reduce the impact of the fusion power core and associated support equipment on the overall cost equation for fusion. In the course of attaining sizes, power capacity, and costs that are more in line with alternative energy sources, a range of problems, promise, and pathways can be identified. The issues related to these more compact systems are addressed on the basis of generic reactor models

  17. KeyPathwayMiner 4.0

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; Pauling, Josch; Batra, Richa;

    2014-01-01

    BACKGROUND: Over the last decade network enrichment analysis has become popular in computational systems biology to elucidate aberrant network modules. Traditionally, these approaches focus on combining gene expression data with protein-protein interaction (PPI) networks. Nowadays, the so...... release of KeyPathwayMiner (version 4.0) that is not limited to analyses of single omics data sets, e.g. gene expression, but is able to directly combine several different omics data types. Version 4.0 can further integrate existing knowledge by adding a search bias towards sub-networks that contain...

  18. The metabolic pathway collection from EMP: the enzymes and metabolic pathways database.

    Science.gov (United States)

    Selkov, E; Basmanova, S; Gaasterland, T; Goryanin, I; Gretchkin, Y; Maltsev, N; Nenashev, V; Overbeek, R; Panyushkina, E; Pronevitch, L; Selkov, E; Yunus, I

    1996-01-01

    The Enzymes and Metabolic Pathways database (EMP) is an encoding of the contents of over 10 000 original publications on the topics of enzymology and metabolism. This large body of information has been transformed into a queryable database. An extraction of over 1800 pictorial representations of metabolic pathways from this collection is freely available on the World Wide Web. We believe that this collection will play an important role in the interpretation of genetic sequence data, as well as offering a meaningful framework for the integration of many other forms of biological data. PMID:8594593

  19. Parental and adolescent health behaviors and pathways to adulthood.

    Science.gov (United States)

    Bauldry, Shawn; Shanahan, Michael J; Macmillan, Ross; Miech, Richard A; Boardman, Jason D; O Dean, Danielle; Cole, Veronica

    2016-07-01

    This paper examines associations among parental and adolescent health behaviors and pathways to adulthood. Using data from the National Longitudinal Study of Adolescent to Adult Health, we identify a set of latent classes describing pathways into adulthood and examine health-related predictors of these pathways. The identified pathways are consistent with prior research using other sources of data. Results also show that both adolescent and parental health behaviors differentiate pathways. Parental and adolescent smoking are associated with lowered probability of the higher education pathway and higher likelihood of the work and the work & family pathways (entry into the workforce soon after high school completion). Adolescent drinking is positively associated with the work pathway and the higher education pathway, but decreases the likelihood of the work & family pathway. Neither parental nor adolescent obesity are associated with any of the pathways to adulthood. When combined, parental/adolescent smoking and adolescent drinking are associated with displacement from the basic institutions of school, work, and family. PMID:27194662

  20. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  1. Pathway-Specific Striatal Substrates for Habitual Behavior.

    Science.gov (United States)

    O'Hare, Justin K; Ade, Kristen K; Sukharnikova, Tatyana; Van Hooser, Stephen D; Palmeri, Mark L; Yin, Henry H; Calakos, Nicole

    2016-02-01

    The dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways. Here we examine whether habit alters this input-output function. By imaging cortically evoked firing in large populations of pathway-defined striatal projection neurons (SPNs), we identify features that strongly correlate with habitual behavior on a subject-by-subject basis. Habitual behavior correlated with strengthened DLS output to both pathways as well as a tendency for action-promoting direct pathway SPNs to fire before indirect pathway SPNs. In contrast, habit suppression correlated solely with a weakened direct pathway output. Surprisingly, all effects were broadly distributed in space. Together, these findings indicate that the striatum imposes broad, pathway-specific modulations of incoming activity to render learned motor behaviors habitual. PMID:26804995

  2. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.

    Science.gov (United States)

    Kang, Aram; George, Kevin W; Wang, George; Baidoo, Edward; Keasling, Jay D; Lee, Taek Soon

    2016-03-01

    Branched C5 alcohols are promising biofuels with favorable combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C5 alcohols and initial precursor to longer chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene. PMID:26708516

  3. The immune signaling pathways of Manduca sexta.

    Science.gov (United States)

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J; Schwartz, Lawrence M; Blissard, Gary; Jiang, Haobo

    2015-07-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  4. Policy Pathways: A Tale of Renewed Cities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Transport currently accounts for half of global oil consumption and nearly 20% of world energy use, of which approximately 40% is used in urban transport alone. The IEA expects urban transport energy consumption to double by 2050, despite ongoing vehicle technology and fuel-economy improvements. While increased mobility brings many benefits, the staggering rate of this increase creates new challenges. Urgent energy-efficiency policy attention will be needed to mitigate associated negative noise, air pollution, congestion, climate and economic impacts, all of which can cost countries billions of dollars per year. This report highlights lessons learned and examples of good practice from countries with experience implementing a wide range of measures to improve energy efficiency in urban transport systems. Part of the IEA Policy Pathway series, A Tale of Renewed Cities sets out key steps in planning, implementation, monitoring and evaluation to achieve improved energy efficiency in urban transport systems. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations.

  5. Targeting Signaling Pathways in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Johannes Haybaeck

    2013-05-01

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Response to platinum-based chemotherapy is poor in some patients and, thus, current research is focusing on new therapy options. The various histological types of OC are characterized by distinctive molecular genetic alterations that are relevant for ovarian tumorigenesis. The understanding of these molecular pathways is essential for the development of novel therapeutic strategies. Purpose: We want to give an overview on the molecular genetic changes of the histopathological types of OC and their role as putative therapeutic targets. In Depth Review of Existing Data: In 2012, the vascular endothelial growth factor (VEGF inhibitor, bevacizumab, was approved for OC treatment. Bevacizumab has shown promising results as single agent and in combination with conventional chemotherapy, but its target is not distinctive when analyzed before treatment. At present, mammalian target of rapamycin (mTOR inhibitors, poly-ADP-ribose polymerase (PARP inhibitors and components of the EGFR pathway are in the focus of clinical research. Interestingly, some phytochemical substances show good synergistic effects when used in combination with chemotherapy. Conclusion: Ongoing studies of targeted agents in conjunction with chemotherapy will show whether there are alternative options to bevacizumab available for OC patients. Novel targets which can be assessed before therapy to predict efficacy are needed. The assessment of therapeutic targets is continuously improved by molecular pathological analyses on tumor tissue. A careful selection of patients for personalized treatment will help to reduce putative side effects and toxicity.

  6. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  7. Human dose pathways of radionuclides in forests

    International Nuclear Information System (INIS)

    Forest soil, understorey vegetation and trees are all sources of radionuclides and human radiation doses after contaminating atmospheric deposition. People are exposed to radiation externally from sources outside the body and internally via ingestion and inhalation of radionuclides. Understorey vegetation contributes to ingestion doses through berries, herbs, wild honey, mushrooms and game meat; also trees provide feed to terrestrial birds and big game. During stay in forests people are subject to external radiation from forest floor and overstorey, and they may inhale airborne radioactive aerosol or gaseous radionuclides in ground level air. In the early phase of contamination also resuspended radionuclides may add to the internal dose of people via inhalation. People in Nordic countries are most exposed to radiation via ingestion of radionuclides in wild foods. The distribution of radionuclides in forests is changed by environmental processes, and thereby also the significance of various dose pathways to humans will change with time. External exposure is received in living environment from contaminated stemwood used as building timber and for manufacturing of furniture and other wood products. The aim of this paper is to outline the significance of various human dose pathways of radionuclides in forests considering the public and workers in forestry and production of bioenergy. Examples on effective doses are given based on two historical events, atmospheric nuclear weapon tests (mostly in 1950's and in 1960's) and the Chernobyl nuclear power plant accident in 1986. (au)

  8. The evolution of plant virus transmission pathways.

    Science.gov (United States)

    Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J

    2016-05-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature. PMID:26908348

  9. Simulation of Fermentation Pathway Using Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Sigeru OMATU

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, we propose Bees Algorithm (BA to enhance the performance in estimating the parameters for metabolic pathway data to simulate fermentation pathway for Saccharomyces cerevisiae. However, the parameter estimation of biological processes has always been a challenging task due to the complexity and nonlinear equations. Therefore, we present this algorithm as a new approach for parameter estimation for biological interactions to obtain more accurate parameter values. The result shows that BA outperforms other estimation algorithms as it produces the most accurate kinetic parameters, which contributes to the precision of simulated kinetic model.

  10. Simulation of Fermentation Pathway Using Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Ying LEONG

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, we propose Bees Algorithm (BA to enhance the performance in estimating the parameters for metabolic pathway data to simulate fermentation pathway for Saccharomyces cerevisiae. However, the parameter estimation of biological processes has always been a challenging task due to the complexity and nonlinear equations. Therefore, we present this algorithm as a new approach for parameter estimation for biological interactions to obtain more accurate parameter values. The result shows that BA outperforms other estimation algorithms as it produces the most accurate kinetic parameters, which contributes to the precision of simulated kinetic model.

  11. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    Losiana Nayak; Rajat K De

    2007-08-01

    Signalling pathways are complex biochemical networks responsible for reg ulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks, a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens. The idea that ``a node whose function is dependant on maximum number of other nodes tends to be the center of a sub network” is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependant on the outdegree of the node(s). Here outdegree of a node refers to the number of re lations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding subnetwork have to be excluded from it. Here is a specified variable based on user preference, which is finally fixed during adjustments of created subnetworks, so that certain biological significance can be conferred on them.

  12. Pathways of birnessite formation in alkali medium

    Institute of Scientific and Technical Information of China (English)

    FENG Xionghan; TAN Wenfeng; LIU Fan; HUANG Qiaoyun; LIU Xiangwen

    2005-01-01

    Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) formation stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buserite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrystallization after dissolution of the intermediates, and the transformations of the minerals depended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of material sciences.

  13. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Matthew W Jones

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  14. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  15. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Directory of Open Access Journals (Sweden)

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  16. Discerning mechanistically rewired biological pathways by cumulative interaction heterogeneity statistics.

    Science.gov (United States)

    Cotton, Travis B; Nguyen, Hien H; Said, Joseph I; Ouyang, Zhengyu; Zhang, Jinfa; Song, Mingzhou

    2015-01-01

    Changes in response of a biological pathway could be a consequence of either pathway rewiring, changed input, or a combination of both. Most pathway analysis methods are not designed for mechanistic rewiring such as regulatory element variations. This limits our understanding of biological pathway evolution. Here we present a Q-method to discern whether changed pathway response is caused by mechanistic rewiring of pathways due to evolution. The main innovation is a cumulative pathway interaction heterogeneity statistic accounting for rewiring-specific effects on the rate of change of each molecular variable across conditions. The Q-method remarkably outperformed differential-correlation based approaches on data from diverse biological processes. Strikingly, it also worked well in differentiating rewired chaotic systems, whose dynamics are notoriously difficult to predict. Applying the Q-method on transcriptome data of four yeasts, we show that pathway interaction heterogeneity for known metabolic and signaling pathways is indeed a predictor of interspecies genetic rewiring due to unbalanced TATA box-containing genes among the yeasts. The demonstrated effectiveness of the Q-method paves the way to understanding network evolution at the resolution of functional biological pathways. PMID:25921728

  17. Signal transduction pathway profiling of individual tumor samples

    Directory of Open Access Journals (Sweden)

    Peterson Carsten

    2005-06-01

    Full Text Available Abstract Background Signal transduction pathways convey information from the outside of the cell to transcription factors, which in turn regulate gene expression. Our objective is to analyze tumor gene expression data from microarrays in the context of such pathways. Results We use pathways compiled from the TRANSPATH/TRANSFAC databases and the literature, and three publicly available cancer microarray data sets. Variation in pathway activity, across the samples, is gauged by the degree of correlation between downstream targets of a pathway. Two correlation scores are applied; one considers all pairs of downstream targets, and the other considers only pairs without common transcription factors. Several pathways are found to be differentially active in the data sets using these scores. Moreover, we devise a score for pathway activity in individual samples, based on the average expression value of the downstream targets. Statistical significance is assigned to the scores using permutation of genes as null model. Hence, for individual samples, the status of a pathway is given as a sign, + or -, and a p-value. This approach defines a projection of high-dimensional gene expression data onto low-dimensional pathway activity scores. For each dataset and many pathways we find a much larger number of significant samples than expected by chance. Finally, we find that several sample-wise pathway activities are significantly associated with clinical classifications of the samples. Conclusion This study shows that it is feasible to infer signal transduction pathway activity, in individual samples, from gene expression data. Furthermore, these pathway activities are biologically relevant in the three cancer data sets.

  18. Care pathways for dementia: current perspectives

    Directory of Open Access Journals (Sweden)

    Samsi K

    2014-11-01

    Full Text Available Kritika Samsi, Jill ManthorpeSocial Care Workforce Research Unit, King’s College London, London, UKAbstract: Uncertainty appears to typify the experience of living with dementia. With an uncertain illness trajectory and unpredictable levels of deterioration and stability in symptoms, people with a diagnosis of dementia may live with uncertainty and anxiety and find it hard to make plans or decisions for their future. People with memory problems and caregivers seeking a diagnosis of dementia may also potentially find themselves navigating a labyrinth-like maze of services, practitioners, assessments, and memory tests, with limited understanding of test scores and little information about what support is available. In this context of uncertainty, the apparent clarity and certainty of a “dementia care pathway” may be attractive. However, the term “dementia care pathway” has multiple and overlapping meanings, which can potentially give rise to further confusion if these are ill-defined or a false consensus is presumed. This review distinguishes four meanings: 1 a mechanism for the management and containment of uncertainty and confusion, useful for the professional as well as the person with dementia; 2 a manual for sequencing care activities; 3 a guide to consumers, indicating eligibility for care activities, or a guide to self-management for dementia dyads, indicating the appropriateness of care activities; and 4 a manual for “walking with” the person. Examples of these approaches are presented from UK dementia services with illustrations of existing care pathways and associated time points, specifically focusing on: 1 early symptom identification and first service encounters, 2 assessment process, 3 diagnostic disclosure, 4 postdiagnostic support, and 5 appropriate interventions. We review the evidence around these themes, as well as discuss service pathways and referral routes used by some services in England and internationally. We

  19. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  20. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard; Nielsen, Jens; Mortensen, Uffe Hasbro

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering of the...... factories does however often depend on both heterologous and host enzymes. In this case, no spatial coordination of the biosynthetic enzymes can be expected to be in place. Presumably this contributes to the low productivity regularly observed for heterologous pathways. In one test case, we investigated......, the sesquiterpene production was increased two-fold when the enzymes were fused compared to when they were expressed from the same promoters as free enzymes. Moreover, the strategy could be used in combination with other traditional metabolic engineering strategies to increase the production of a...

  1. On the dissociation pathways of nitrobenzene

    Science.gov (United States)

    Kosmidis, C.; Ledingham, K. W. D.; Clark, A.; Marshall, A.; Jennings, R.; Sander, J.; Singhal, R. P.

    1994-08-01

    The fragmentation of nitrobenzene has been studied in the wavelength range 225-275 nm using a single dye laser, frequency doubled, in conjunction with a time-of-flight (TOF) mass spectrometer. The parent (C6H5NO2+), nitrosobenzene (C6H5NO+), phenoxy (C6H5O+) and phenyl (C6H5+) ions were all observed in addition to many other lighter daughter fragments. The formation of the nitrobenzene, phenoxy and phenyl ions are all explained invoking pathways where dissociation of the parent molecule from an excited state takes place first, followed by ionization after the absorption of further photons (DI) by the fragmented neutrals. Ionization of the parent molecule to states which are dissociative (ID) can explain the increase in the production of phenyl ions at wavelengths shorter than 230 nm.

  2. Dual career pathways of transnational athletes

    DEFF Research Database (Denmark)

    Ryba, Tatiana; Stambulova, Natalia; Ronkainen, Noora;

    2015-01-01

    developmental transition from secondary to higher education was chosen as a key transition to classify the DC pathways. Additional insights into DC mobilization across international borders were gleaned by employing the typologies of sport migrants developed in the sport labor migration research. Results Three......Objectives Transnationalism, as part of the globalization processes, has transformed the lifestyle and the course of athletes' careers. This presents previously unexplored challenges encountered by student-athletes in combining athletic and academic pursuits. In this article, we propose a...... conceptual framework for the taxonomy of transnational dual careers (DC). Design and method Narrative inquiry from the life story perspective was used to elicit and analyze career narratives of six transnational athletes (3 male and 3 female), generating about five interview hours per athlete. The...

  3. Targeting the aldosterone pathway in cardiovascular disease

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Azizi, Michel; Bauersachs, Johann;

    2012-01-01

    Accumulated evidence has demonstrated that aldosterone is a key player in the pathogenesis of cardiovascular (CV) disease. Multiple clinical trials have documented that intervention in the aldosterone pathway can reduce blood pressure and lower albuminuria and improve outcome in patients with heart...... failure or myocardial infarction. Recent studies have unraveled details about the role of aldosterone at the cellular level in CV disease. The relative importance of glucocorticoids and aldosterone in terms of mineralocorticoid receptor activation is currently being debated. Also, studies are addressing...... which aldosterone modulator to use, which timing of treatment to aim for, and in which population to intervene. This review provides an overview of recent developments in the understanding of the role of aldosterone in CV disease, with particular reference to mechanisms and potential targets...

  4. LRRK2 Pathways Leading to Neurodegeneration.

    Science.gov (United States)

    Cookson, Mark R

    2015-07-01

    Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD. PMID:26008812

  5. Imaging of orbital and visual pathway pathology

    International Nuclear Information System (INIS)

    This is one of the first books to deal with imaging of pathology of the entire visual system. It is divided into two parts, general and special. In the general part, the most important basics of modern imaging methods are discussed, but with less emphasis on the physical background than in purely neuro-/radiological textbooks. Chapters are devoted to the meticulous presentation of imaging anatomy of the orbit and intracranial visual pathway. The latest knowledge on the indication, technique, and results of functional MR imaging is presented. Visual system impairment in the pediatric age group is also discussed. The special part of the book provides detailed descriptions of the symptoms and clinical and imaging findings in individual patients with orbital and intracranial pathologies. This book is specifically designed to be of value not only to neuroradiologists but also to ophthalmologists, neurosurgeons, oto-/rhino-laryngologists, and neurologists who require more detailed information on these special diseases. (orig.)

  6. Multistage reaction pathways in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  7. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N2 and H2O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions

  8. Developmental Programming, a Pathway to Disease.

    Science.gov (United States)

    Padmanabhan, Vasantha; Cardoso, Rodolfo C; Puttabyatappa, Muraly

    2016-04-01

    Accumulating evidence suggests that insults occurring during the perinatal period alter the developmental trajectory of the fetus/offspring leading to long-term detrimental outcomes that often culminate in adult pathologies. These perinatal insults include maternal/fetal disease states, nutritional deficits/excess, stress, lifestyle choices, exposure to environmental chemicals, and medical interventions. In addition to reviewing the various insults that contribute to developmental programming and the benefits of animal models in addressing underlying mechanisms, this review focuses on the commonalities in disease outcomes stemming from various insults, the convergence of mechanistic pathways via which various insults can lead to common outcomes, and identifies the knowledge gaps in the field and future directions. PMID:26859334

  9. Imaging of orbital and visual pathway pathology

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Forell, W.S. (ed.) [Medical School Univ. of Mainz (Germany). Inst. of Neuroradiology

    2006-07-01

    This is one of the first books to deal with imaging of pathology of the entire visual system. It is divided into two parts, general and special. In the general part, the most important basics of modern imaging methods are discussed, but with less emphasis on the physical background than in purely neuro-/radiological textbooks. Chapters are devoted to the meticulous presentation of imaging anatomy of the orbit and intracranial visual pathway. The latest knowledge on the indication, technique, and results of functional MR imaging is presented. Visual system impairment in the pediatric age group is also discussed. The special part of the book provides detailed descriptions of the symptoms and clinical and imaging findings in individual patients with orbital and intracranial pathologies. This book is specifically designed to be of value not only to neuroradiologists but also to ophthalmologists, neurosurgeons, oto-/rhino-laryngologists, and neurologists who require more detailed information on these special diseases. (orig.)

  10. Modelling of hydrological pathways in RODOS

    International Nuclear Information System (INIS)

    In 1992, a joint EC-CIS team of experts started to develop a hydrological module for the decision support system RODOS. A model chain was outlined covering me processes such as run-off of radionuclides from watersheds following deposition from the atmosphere, transport of radionuclides in river systems and the radionuclide behavior in lakes and reservoirs. The output from the hydrological transport chain is used to calculate the main exposure pathways such as the doses derived from the consumption of drinking water, of fish, of irrigated foodstuffs and the external irradiation. Test and validation studies of the whole chain as well as for individual models were performed on the basis of experimental data from the basins of Dnieper and Rhine. A user friendly graphical interface was developed to operate the individual models inside the hydrological module

  11. From connected pathway flow to ganglion dynamics

    Science.gov (United States)

    Rücker, M.; Berg, S.; Armstrong, R. T.; Georgiadis, A.; Ott, H.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Wolf, M.; Khan, F.; Enzmann, F.; Kersten, M.

    2015-05-01

    During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus oscillations caused by snap-off events trigger coalescence of adjacent clusters. The ganglion dynamics occurs at the length scale of oil clusters and thus represents an intermediate flow regime between pore and Darcy scale that is so far dismissed in most upscaling attempts.

  12. Policy Pathways: Q and A Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    There are two main messages for this series. First, with respect to energy efficiency, countries know what to do, but not necessarily how to do it. These Pathways try to fill this 'know-how' gap. Second, the IEA acknowledges that simply making recommendations to countries is not enough. We have made 25 energy efficiency policy recommendations, but we know that countries need assistance with how to implement them. We can reinterpret the proverb about teaching a man to fish. ''Give a country an energy efficiency recommendation, and you hold their attention for a day. Help a country to implement the recommendation, and you are more likely to launch energy savings that last for years.''

  13. Innate immunity in Drosophila: Pathogens and pathways

    Institute of Scientific and Technical Information of China (English)

    Shubha Govind

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derived from functional genomic studies using "model" pathogens, intact animals and cell lines. The D. melanogaster host has thus provided the core information that can be used to study responses to natural microbial and metazoan pathogens as they become identified, as well as to test ideas of selection and evolutionary change. These analyses are of general importance to understanding mechanisms of other insect host-pathogen interactions and determinants of variation in host resistance.

  14. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  15. Modelling of hydrological pathways in RODOS

    International Nuclear Information System (INIS)

    In 1992, a joint EC-CIS team of experts started to develop a hydrological module for the decision support system RODOS. A model chain was outlined covering the processes such as run-off of radionuclides from watersheds following deposition from the atmosphere, transport of radionuclides in river systems and the radionuclide behaviour in lakes and reservoirs. The output from the hydrological transport chain is used to calculate the main exposure pathways such as the doses derived from the consumption of drinking water, of fish, of irrigated foodstuffs and the external irradiation. Test and validation studies of the whole chain as well as for individual models were performed on the basis of experimental data from the basins of Dnieper and Rhine. A user friendly graphical interface was developed to operate the individual models inside the hydrological module. (orig.)

  16. Attentional effects in the visual pathways

    DEFF Research Database (Denmark)

    Bundesen, Claus; Larsen, Axel; Kyllingsbæk, Søren;

    2002-01-01

    nucleus. Frontal activations were found in a region that seems implicated in visual short-term memory (posterior parts of the superior sulcus and the middle gyrus). The reverse, color-shape comparison showed bilateral increases in rCBF in the anterior cingulate gyri, superior frontal gyri, and superior...... and middle temporal gyri. The attentional effects found by the shape-color comparison in the thalamus and the primary visual cortex may have been generated by feedback signals preserving visual representations of selected stimuli in short-term memory.......Attentional effects in the visual pathways were investigated by contrasting the distribution of regional cerebral blood flow (rCBF) measured by H(2)(15)O positron emission tomography (PET) during performance of a shape-matching task with the distribution of rCBF during a less demanding color...

  17. Understanding pathways of exposure using site-specific habits surveys, particularly new pathways and methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, M.; McTaggart, K.; Clyne, F. [Centre for Environment, Fisheries and Aquaculture Science, Lowestoft (United Kingdom)

    2006-07-01

    Full text of publication follows: UK policy on the control of radiation exposure via routine discharges from nuclear licensed sites has long been based on ICRP recommendations that embody the principles of justification of practices, optimisation of protection, and dose limitation. Radiological protection of the public is based on the concept of a critical group of individuals. This group is defined as those people who, as a result of the area they reside and their habits, receive the highest radiation dose due to the operations of a site. Therefore, if the dose to this critical group is acceptable in relation to relevant dose limits and constraints, then other members of the public will receive lower doses. Thus, the principle of critical groups provides overall protection for the public. Surveys to determine local habits involve an integrated methodology, whereby the potential radioactive exposure pathways from liquid and gaseous discharges and direct radiation from the site are investigated. Surveys to identify these habits must be undertaken rigorously for consistency, and have been known to reveal unexpected pathways of radiation exposure. Pathways typically include consumption of local foodstuffs and external exposure. Furthermore, a number of critical groups ma y be identified within a single survey area if the habits of one group do not adequately describe those of the other inhabitants of the area. Survey preparation involves the initial identification of high producers and consumers of local foods in a geographically defined area surrounding the nuclear facility. Pathways can be broken down into three general groups, which include exposure arising from; 1) Terrestrial (gaseous) discharges surveyed within 5 km of the site 2) Direct radiation surveyed within 1 km of the site 3) Aquatic (liquid) discharges surveyed within local areas affected by the discharges, including seas, rivers and sewage works. The survey fieldwork involves interviewing members of the

  18. Understanding pathways of exposure using site-specific habits surveys, particularly new pathways and methodologies

    International Nuclear Information System (INIS)

    Full text of publication follows: UK policy on the control of radiation exposure via routine discharges from nuclear licensed sites has long been based on ICRP recommendations that embody the principles of justification of practices, optimisation of protection, and dose limitation. Radiological protection of the public is based on the concept of a critical group of individuals. This group is defined as those people who, as a result of the area they reside and their habits, receive the highest radiation dose due to the operations of a site. Therefore, if the dose to this critical group is acceptable in relation to relevant dose limits and constraints, then other members of the public will receive lower doses. Thus, the principle of critical groups provides overall protection for the public. Surveys to determine local habits involve an integrated methodology, whereby the potential radioactive exposure pathways from liquid and gaseous discharges and direct radiation from the site are investigated. Surveys to identify these habits must be undertaken rigorously for consistency, and have been known to reveal unexpected pathways of radiation exposure. Pathways typically include consumption of local foodstuffs and external exposure. Furthermore, a number of critical groups ma y be identified within a single survey area if the habits of one group do not adequately describe those of the other inhabitants of the area. Survey preparation involves the initial identification of high producers and consumers of local foods in a geographically defined area surrounding the nuclear facility. Pathways can be broken down into three general groups, which include exposure arising from; 1) Terrestrial (gaseous) discharges surveyed within 5 km of the site 2) Direct radiation surveyed within 1 km of the site 3) Aquatic (liquid) discharges surveyed within local areas affected by the discharges, including seas, rivers and sewage works. The survey fieldwork involves interviewing members of the

  19. Elucidating the pathway for arsenic methylation

    International Nuclear Information System (INIS)

    Although biomethylation of arsenic has been studied for more than a century, unequivocal demonstration of the methylation of inorganic arsenic by humans occurred only about 30 years ago. Because methylation of inorganic arsenic activates it to more reactive and toxic forms, elucidating the pathway for the methylation of this metalloid is a topic of considerable importance. Understanding arsenic metabolism is of public health concern as millions of people chronically consume drinking water that contains high concentrations of inorganic arsenic. Hence, the focus of our research has been to elucidate the molecular basis of the steps in the pathway that leads from inorganic arsenic to methylated and dimethylated arsenicals. Here we describe a new S-adenosylmethionine (AdoMet)-dependent methyltransferase from rat liver cytosol that catalyzes the conversion of arsenite to methylated and dimethylated species. This 42-kDa protein has sequence motifs common to many non-nucleic acid methyltransferases and is closely related to methyltransferases of previously unknown function that have been identified by conceptual translations of cyt19 genes of mouse and human genomes. Hence, we designate rat liver arsenic methyltransferase as cyt19 and suggest that orthologous cyt19 genes encode an arsenic methyltransferase in the mouse and human genomes. Our studies with recombinant rat cyt19 find that, in the presence of an exogenous or a physiological reductant, this protein can catalyze the entire sequence of reactions that convert arsenite to methylated metabolites. A scheme linking cyt19 and thioredoxin-thioredoxin reductase in the methylation and reduction of arsenicals is proposed

  20. Wnt signalling pathway parameters for mammalian cells.

    Science.gov (United States)

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  1. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  2. Significance of environmental exposure pathways for technetium

    International Nuclear Information System (INIS)

    Numerical simulation techniques are used to produce a probable range of predicted values from estimates of uncertainty assigned to the parameters of radiological assessment models. This range is used to indicate the uncertainty in the model's prediction. The importance of individual parameters and exposure pathways is determined by their relative contribution to this simulated uncertainty index. The major pathways of exposure to humans resulting from the airborne emissions of 99Tc involve the consumption of vegetables, vegetable products, and poultry eggs. The most important model parameters are related to the mobility of 99Tc in soil, the incorporation of 99Tc into the edible portions of crops, its transfer from vegetation to poultry eggs, and its atmospheric deposition. Uncertainty in the dose for individuals exposed to 99Tc-contaminated liquid discharges is dominated by the bioaccumulation of this isotope in aquatic food chains and by the possibility that contaminated surface water will be used as a source of drinking water. Results suggest that future reductions in the present estimates of uncertainty will lead to the dismissal of 99Tc as an environmentally important radionuclide, provided that de minimis dose levels are eventually adopted and releases of 99Tc from individual nuclear fuel cycle facilities will not be substantially larger than 1 Ci/year to the atmosphere and 100 Ci/year to the aquatic environment. These conclusions do not account for the possibility of a large long-term accumulation and remobilization of 99Tc in aquatic sediment and/or surface soils. 32 references, 9 tables

  3. Significance of environmental exposure pathways for technetium

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F.O.; Gardner, R.H.; Bartell, S.M.

    1984-01-01

    Numerical simulation techniques are used to produce a probable range of predicted values from estimates of uncertainty assigned to the parameters of radiological assessment models. This range is used to indicate the uncertainty in the model's prediction. The importance of individual parameters and exposure pathways is determined by their relative contribution to this simulated uncertainty index. The major pathways of exposure to humans resulting from the airborne emissions of /sup 99/Tc involve the consumption of vegetables, vegetable products, and poultry eggs. The most important model parameters are related to the mobility of /sup 99/Tc in soil, the incorporation of /sup 99/Tc into the edible portions of crops, its transfer from vegetation to poultry eggs, and its atmospheric deposition. Uncertainty in the dose for individuals exposed to /sup 99/Tc-contaminated liquid discharges is dominated by the bioaccumulation of this isotope in aquatic food chains and by the possibility that contaminated surface water will be used as a source of drinking water. Results suggest that future reductions in the present estimates of uncertainty will lead to the dismissal of /sup 99/Tc as an environmentally important radionuclide, provided that de minimis dose levels are eventually adopted and releases of /sup 99/Tc from individual nuclear fuel cycle facilities will not be substantially larger than 1 Ci/year to the atmosphere and 100 Ci/year to the aquatic environment. These conclusions do not account for the possibility of a large long-term accumulation and remobilization of /sup 99/Tc in aquatic sediment and/or surface soils. 32 references, 9 tables.

  4. Desired professional development pathways for clinical pharmacists.

    Science.gov (United States)

    Shord, Stacy S; Schwinghammer, Terry L; Badowski, Melissa; Banderas, Julie; Burton, Michael E; Chapleau, Christopher A; Gallagher, Jason C; Matsuura, Gregory; Parli, Sara E; Yunker, Nancy

    2013-04-01

    The 2012 American College of Clinical Pharmacy (ACCP) Certification Affairs Committee was charged with developing guidelines for the desired professional development pathways for clinical pharmacists. This document summarizes recommendations for postgraduate education and training for graduates of U.S. schools and colleges of pharmacy and describes the preferred pathways for achieving, demonstrating, and maintaining competence as clinical pharmacists. After initial licensure within the state or jurisdiction in which the pharmacist intends to practice, completion of an accredited PGY1 pharmacy residency is recommended to further develop the knowledge and skills needed to optimize medication therapy outcomes. An accredited PGY2 pharmacy residency should be completed if a pharmacist wishes to seek employment in a specific therapeutic area or practice setting, if such a residency exists. Clinical pharmacists intending to conduct advanced research that is competitive for federal funding are encouraged to complete a fellowship or graduate education. Initial certification by the Board of Pharmacy Specialties (BPS) or other appropriate sponsoring organizations should be completed in the desired primary therapeutic area or practice setting within 2 years after accepting a position within the desired specific therapeutic area or practice setting. Clinical pharmacists subsequently will need to meet the requirements to maintain pharmacist licensure and board certification. Traineeships, practice-based activities, and certificate programs can be used to obtain additional knowledge and skills that support professional growth. Pharmacists are strongly encouraged to adopt a lifelong, systematic process for professional development and work with ACCP and other professional organizations to facilitate the development and implementation of innovative strategies to assess core practice competencies. PMID:23401084

  5. Interpreting metabolomic profiles using unbiased pathway models.

    Directory of Open Access Journals (Sweden)

    Rahul C Deo

    2010-02-01

    Full Text Available Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT in 50 individuals, 25 with normal (NGT and 25 with impaired glucose tolerance (IGT. Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for "active modules"--regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved

  6. Effects of microgravity environment on intracellular signal transduction pathways

    Directory of Open Access Journals (Sweden)

    De CHANG

    2012-09-01

    Full Text Available Microgravity environment is a stress and extracellular signal that affects cellular morphology and function through signal transduction system, thus leading to certain biological effect. At present, many signaling pathways have been reported to be involved in the regulation of cell function under microgravity environment, such as NF-κB signaling pathway, Notch signaling pathway, MAPK signaling pathway, HSP signaling pathway and so on, and these reports have laid a foundation for the molecular studies of cytolergy under outer space environment. The recent progress in the researches on intracellular signaling pathways affected by microgravity is herewith reviewed in present paper in the hope of providing references for understanding the cell activity in space environment, and to find the ways to alleviate the harmful effects caused by the microgravity environment.

  7. Role of Wnt canonical pathway in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-09-01

    Full Text Available Abstract Wnt canonical signaling pathway plays a diverse role in embryonic development and maintenance of organs and tissues in adults. It has been observed that Wnt/β-catenin signaling pathway is involved in the pathogenesis of many carcinomas. Moreover, Wnt/β-catenin pathway has been revealed to be associated with angiogenesis. Wnt canonical pathway signaling has great potential as a therapeutic target. It has been disclosed that some hematological malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, may occur partly due to the constitutive activation of Wnt canonical signaling pathway. This review will summarize the latest development in Wnt canonical signaling pathway and its roles in tumorigenesis and angiogenesis.

  8. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Jing-tao LU; Wen-di ZHAO; Wei HE; Wei WEI

    2012-01-01

    To investigate the role of Hedgehog (Hh) signaling pathway in the invasion and metastasis of human hepatocellular carcinoma (HCC).Methods:Eighty six HCC tissues samples and HCC cell line Bel-7402 were examined.The protein expression of sonic hedgehog (Shh),nuclear glioma-associated oncogene-1 (Gli1),MMP-9 and p-ERK1/2 in HCC was analyzed using immunohistochemistry and Western blot analysis.Boyden chamber assay and wound-healing assay were used to quantify the invasion and metastasis of Bel-7402 cells.Results:In 86 HCC tissue samples,the positive ratio of Shh and nucleus Gli1 was 67.44% (58/86) and 60.47% (52/86),respectively;the expression of nucleus Gli1 was correlated with the tumor pathological grade (P=0.034),and with the ability of the tumor to invade and metastasize (P=0.001); the expression of nucleus Gli1 was also correlated with p-ERK1/2 (P=0.031) and with MMP-9 (P=0.034).Neither Shh,nor nucleus Gli1 was observed in normal liver tissue.KAAD-cyclopamine (KAAD-cyc),a specific inhibitor of the Hh pathway,at the concentrations of 1 and 4 μmol/L inhibited the invasion and migration of Bel-7402 cells and decreased the expression of Gli1 in nucleus and MMP-9,p-ERK1/2 proteins in Bel-7402 cells,On the other hand,Shh,a ligand of the Hh pathway,at the concentration of 0.5 μg/mL produced opposite effects.The MAPK pathway inhibitors U0126 and PD98059 at the concentrations of 5 and 10μmol/L inhibited invasion and metastasis of Bel-7402 cells induced by Shh,and decreased the expression of p-ERK1/2 and MMP-9.However,U0126 and PD98059 had no effect on the expression of Gii1.Conclusion:Hh signaling pathway mediates invasion and metastasis of human HCC by up-regulating the protein expression of MMP-9via ERK pathway.

  9. Reactome: a database of reactions, pathways and biological processes

    OpenAIRE

    Croft, David; O’Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson

    2010-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualiz...

  10. Activation of the hedgehog pathway in advanced prostate cancer

    OpenAIRE

    McCormick Frank; Chen Kai; He Nonggao; Chi Sumin; Zhang Xiaoli; Li Chengxin; Sheng Tao; Gatalica Zoran; Xie Jingwu

    2004-01-01

    Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that ...

  11. Two pathways for cysteine biosynthesis in Leishmania major

    OpenAIRE

    Williams, Roderick A. M.; Westrop, Gareth D.; Coombs, Graham H.

    2009-01-01

    Abstract Genome mining and biochemical analyses have shown that L. major possesses two pathways for cysteine synthesis - the de novo biosynthesis pathway comprising serine acetyltransferase (SAT) and cysteine synthase (CS) and the reverse transsulfuration (RTS) pathway comprising cystathionine ?-synthase (CBS) and cystathionine gamma-lyase (CGL). The L. major CS (LmjCS) is similar to the type A CSs of bacteria and catalyses the synthesis of cysteine using O-acetyserine and sulfide...

  12. Unravelling the molecular mechanisms of the canonical Wnt signalling pathway

    OpenAIRE

    Ng, S. S.

    2010-01-01

    The Canonical Wnt signaling pathway (Wnt/beta-catenin pathway) is required during embryonic development and maintenance of adult-renewing tissue homeostasis. Deregulation of this pathway is found associated with cancer and other diseases. The main goal of this thesis is to discern the regulation mechanisms of canonical Wnt signaling and thereby identify potential drug targets. We found that, neither the dissembled of Axin1, APC or GSK3 from the destruction complex nor inactivation of GSK3 and...

  13. The Dual Pathway to Information Avoidance in Information Systems Use

    OpenAIRE

    Neben, Tillmann; Heinzl, Armin; Trenck, Aliona von der

    2013-01-01

    This article develops an explanatory model of information avoidance behavior from extant theory and examines its hypotheses using psychophysiological methods. It integrates existing but partially conflicting explanations into a coherent positivist model based on Coping Theory. The existence of two distinct but interlinked causal pathways to information avoidance will be outlined. Both pathways are cause by defects in the information quality. The first pathway is grounded on being threatened b...

  14. Modelling the structure and dynamics of biological pathways

    OpenAIRE

    O'Hara, Laura; Livigni, Alessandra; Theocharidis, Thanos; Boyer, Benjamin; Angus, Tim; Wright, Derek; Chen, Sz-Hau; Raza, Sobia; Barnett, Mark; Digard, Paul; Smith, Lee; Freeman, Thomas

    2016-01-01

    There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here we present a new, freely-available modelling framework that includes: a biologist-friendly pathway modelling language (mEPN); a simple but sophisticated method to support model parameterisation using accessible biological information, a stochastic flow algorithm that simulates the dynamics of pathway activity, and a 3D...

  15. THE CAROTENOID BIOSYNTHETIC PATHWAY: THINKING IN ALL DIMENSIONS

    OpenAIRE

    Shumskaya, Maria; Wurtzel, Eleanore T.

    2013-01-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signalling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavour of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and...

  16. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  17. Experimental nonenzymatic glycosylation of vitreous collagens occurs by two pathways.

    OpenAIRE

    Pulido, J S

    1996-01-01

    PURPOSE: To study the process of nonenzymatic glycosolation of vitreous collagen in vitro to determine the contributions of the classic Maillard pathway and the oxidative pathway, as well as to evaluate possible inhibitors of both pathways. METHODS: Bovine vitreous collagen was extracted and then incubated with hexoses in vitro. The amount of advanced glycosylation end (AGE) products was measured by fluorometry under varying conditions in the presence and absence of glycosolation inhibitors. ...

  18. Reactome: a database of reactions, pathways and biological processes.

    Science.gov (United States)

    Croft, David; O'Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson; Schmidt, Esther; Shamovsky, Veronica; Yung, Christina; Birney, Ewan; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice. PMID:21067998

  19. Associations between successful palliative cancer pathways and community nurse involvement

    DEFF Research Database (Denmark)

    Neergaard, Mette Asbjoern; Vedsted, Peter; Olesen, Frede;

    2009-01-01

    ABSTRACT: BACKGROUND: Most terminally ill cancer patients and their relatives wish that the patient dies at home. Community nurses (CNs) are often frontline workers in the patients' homes and CN involvement may be important in attaining successful palliative pathways at home.The aim of the present...... were used to obtain data on CNs' efforts, GP-questionnaires were used to obtain data on pathway characteristics and relatives answered questionnaires to evaluate the palliative pathway at home. Questionnaires addressed the palliative pathway of a total of 599 deceased cancer patients. Associations...

  20. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  1. Regulators in the apoptotic pathway during spermatogenesis: Killers or guards?

    Science.gov (United States)

    Xu, Ya-Ru; Dong, Hong-Shan; Yang, Wan-Xi

    2016-05-15

    Apoptosis occurs at any time in the ontogeny of the testis, especially during the first wave of spermatogenesis. However, the exact mechanisms by which homeostasis of apoptosis and survival in GCs and mature sperm are orchestrated remain unclear. Three pathways during the process of apoptosis in mammals are discussed extensively. The three pathways are extrinsic pathway, mitochondrial pathway and endoplasmic reticulum pathway. Based on that, many factors, such as growth factors (SCF, FGF, TGF), hormones (FSH, LH, E2, MIS), partial oxygen pressure, and testis specific genes are involved in apoptosis and survival process. The pathways of apoptosis adopted by the GCs and sperm depend on the types of stimuli they receive. Diverse pathways are initiated in heat-stress induced apoptosis of GCs and the destiny of GCs suppressed by hyperglycemia is mainly regulated by a rheostat of total oxidants and anti-oxidants which leading to intrinsic pathway. In this review, we provide an overview of three classic pathways and important factors involved in the process of germ cell apoptosis and survival, and discuss the recent advances made in understanding of the molecular mechanisms of spermatogenic cells and sperm response to stress-inducers, such as heat stress and hyperglycemia. All the findings may provide clues to the control of male fertility or treating germ cell tumors and other testis associated pathological conditions, at the same time, a novel idea may result in devising much safer contraception with high efficiency. PMID:26861610

  2. Drug-Path: a database for drug-induced pathways.

    Science.gov (United States)

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. PMID:26130661

  3. Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach.

    Science.gov (United States)

    Mooney, Michael A; McWeeney, Shannon K; Faraone, Stephen V; Hinney, Anke; Hebebrand, Johannes; Nigg, Joel T; Wilmot, Beth

    2016-09-01

    Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. © 2016 Wiley Periodicals, Inc. PMID:27004716

  4. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption.

    Science.gov (United States)

    Agné, Alisa M; Baldin, Jan-Peter; Benjamin, Audra R; Orogo-Wenn, Maria C; Wichmann, Lukas; Olson, Kenneth R; Walters, Dafydd V; Althaus, Mike

    2015-04-01

    In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance. PMID:25632025

  5. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  6. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  7. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Science.gov (United States)

    Wu, Xiaoyun; Shi, Zhen; Cui, Mingxue; Han, Min; Ruvkun, Gary

    2012-01-01

    The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. PMID:22412383

  8. Metabolism of cysteine by cyteinesulfinate-independent pathway(s) in rat hepatocytes

    International Nuclear Information System (INIS)

    The metabolism of cysteine (CYS) and that of cysteinesulfinate (CSA) were studied in freshly isolated hepatocytes from fed rats. In incubations of rat hepatocytes with either 1 or 25 mM CSA, over 90% of the 14CO2 formed from [1-14C]CSA could be accounted for by production of hypotaurine plus taurine. In similar incubations with 1 or 25 mM CYS, only 4% of 14CO2 evolution from [1-14C]CYS could be accounted for by production of hypotaurine plus taurine. Addition of unlabeled CSA inhibited recovery of label from [1-14C]CYS as 14CO2 by 33%. Metabolism of CYS and of CSA were affected differently by addition of α-ketoglutarate, a cosubstrate for transamination, or of propargylglycine, an inhibitor of cystathionase activity. These data suggest that a substantial proportion of CYS is catabolized by CSA-independent pathways in the rat hepatocyte. Although addition of α-ketoglutarate to incubations of hepatocytes with CSA resulted in a marked increase in CSA catabolism via the transamination pathway, addition of keto acids to incubation systems had little or no effect on production of any metabolite from CYS. Thus, CYS transamination does not appear to be a major pathway of CYS metabolism in the hepatocyte. Inhibition of cystathionase with propargylglycine reduced both 14CO2 production from [1-14C]CYS and ammonia plus urea nitrogen production from CYS by about 50%; CSA catabolism was not affected. Thus, cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for CYS catabolism in the liver

  9. Metabolism of cysteine by cyteinesulfinate-independent pathway(s) in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Stipanuk, M.H.; De La Rosa, J.; Drake, M.R.

    1986-05-01

    The metabolism of cysteine (CYS) and that of cysteinesulfinate (CSA) were studied in freshly isolated hepatocytes from fed rats. In incubations of rat hepatocytes with either 1 or 25 mM CSA, over 90% of the /sup 14/CO/sub 2/ formed from (1-/sup 14/C)CSA could be accounted for by production of hypotaurine plus taurine. In similar incubations with 1 or 25 mM CYS, only 4% of /sup 14/CO/sub 2/ evolution from (1-/sup 14/C)CYS could be accounted for by production of hypotaurine plus taurine. Addition of unlabeled CSA inhibited recovery of label from (1-/sup 14/C)CYS as /sup 14/CO/sub 2/ by 33%. Metabolism of CYS and of CSA were affected differently by addition of ..cap alpha..-ketoglutarate, a cosubstrate for transamination, or of propargylglycine, an inhibitor of cystathionase activity. These data suggest that a substantial proportion of CYS is catabolized by CSA-independent pathways in the rat hepatocyte. Although addition of ..cap alpha..-ketoglutarate to incubations of hepatocytes with CSA resulted in a marked increase in CSA catabolism via the transamination pathway, addition of keto acids to incubation systems had little or no effect on production of any metabolite from CYS. Thus, CYS transamination does not appear to be a major pathway of CYS metabolism in the hepatocyte. Inhibition of cystathionase with propargylglycine reduced both /sup 14/CO/sub 2/ production from (1-/sup 14/C)CYS and ammonia plus urea nitrogen production from CYS by about 50%; CSA catabolism was not affected. Thus, cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for CYS catabolism in the liver.

  10. Pathway-Based Genome-wide Association Studies Reveal That the Rac1 Pathway Is Associated with Plasma Adiponectin Levels

    OpenAIRE

    Wei-Dong Li; Hongxiao Jiao; Kai Wang; Fuhua Yang; Grant, Struan F.A.; Hakon Hakonarson; Rexford Ahima; R. Arlen Price

    2015-01-01

    Pathway-based analysis as an alternative and effective approach to identify disease-related genes or loci has been verified. To decipher the genetic background of plasma adiponectin levels, we performed genome wide pathway-based association studies in extremely obese individuals and normal-weight controls. The modified Gene Set Enrichment Algorithm (GSEA) was used to perform the pathway-based analyses (the GenGen Program) in 746 European American females, which were collected from our previou...

  11. Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future

    International Nuclear Information System (INIS)

    This paper describes initial analysis of branching points on a set of transition pathways to a UK low carbon electricity future by 2050. As described in other papers in this special issue, we are exploring and analysing a set of core transition pathways, based on alternative governance patterns in which the ‘logics’ of market actors, government actors and civil society actors, respectively dominate. This core pathway analysis is enhanced by analyses of branching points within and across the pathways, which informs how competition between different logics plays out at key decision points. Branching points are defined as key decision points at which choices made by actors, in response to internal or external stresses or triggers, determine whether and in what ways the pathway is followed. A set of initial branching points for our three core transition pathways is identified through project and stakeholder workshops, and drawing on analysis of actors’ choices and responses at past branching points in energy system transitions. The potential responses of the actors are identified at these branching points, and risk mitigation strategies are formulated for the dominant actors to reinforce that pathway, as well as opportunities for actors to move away from the pathway. - Highlights: Transition Pathways is analysing three potential pathways to a low carbon future. ► Stresses lead to branching points, where actors make choices, creating pathways. ► These choices may lead to path-dependency. ► Differences in governance logics within transition pathways are also analysed. ► Studying branching points adds theoretical understanding and policy relevance to TP.

  12. Steroid hormone synthetic pathways in prostate cancer.

    Science.gov (United States)

    Mostaghel, Elahe A

    2013-09-01

    While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa) since the seminal recognition of the disease as androgen-dependent by Huggins and Hodges in 1941, therapy is uniformly marked by progression to castration-resistant prostate cancer (CRPC) over a period of about 18 months, with an ensuing median survival of 1 to 2 years. Importantly, castration does not eliminate androgens from the prostate tumor microenvironment. Castration resistant tumors are characterized by elevated tumor androgens that are well within the range capable of activating the AR and AR-mediated gene expression, and by steroid enzyme alterations which may potentiate de novo androgen synthesis or utilization of circulating adrenal androgens. The dependence of CRPC on intratumoral androgen metabolism has been modeled in vitro and in vivo, and residual intratumoral androgens are implicated in nearly every mechanism by which AR-mediated signaling promotes castration-resistant disease. These observations suggest that tissue based alterations in steroid metabolism contribute to the development of CRPC and underscore these metabolic pathways as critical targets of therapy. Herein, we review the accumulated body of evidence which strongly supports intracrine (tumoral) androgen synthesis as an important mechanism underlying PCa progression. We first discuss the presence and significance of residual prostate tumor androgens in the progression of CRPC. We review the classical and non-classical pathways of androgen metabolism, and how dysregulated expression of these enzymes is likely to potentiate tumor androgen production in the progression to CRPC. Next we review the in vitro and in vivo data in human tumors, xenografts, and cell line models which demonstrate the capacity of prostate tumors to utilize cholesterol and adrenal androgens in the production of testosterone (T) and dihydrotestosterone (DHT), and briefly review the potential role of exogenous

  13. Scenarios Based on Shared Socioeconomic Pathway Assumptions

    Science.gov (United States)

    Edmonds, J.

    2013-12-01

    A set of new scenarios is being developed by the international scientific community as part of a larger program that was articulated in Moss, et al. (2009), published in Nature. A long series of meetings including climate researchers drawn from the climate modeling, impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities have led to the development of a set of five Shared Socioeconomic Pathways (SSPs), which define the state of human and natural societies at a macro scale over the course of the 21st century without regard to climate mitigation or change. SSPs were designed to explore a range of possible futures consistent with greater or lesser challenges to mitigation and challenges to adaptation. They include a narrative storyline and a set of quantified measures--e.g. demographic and economic profiles--that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. SSPs can be used to develop quantitative scenarios of human Earth systems using IAMs. IAMs produce information about greenhouse gas emissions, energy systems, the economy, agriculture and land use. Each set of SSPs will have a different human Earth system realization for each IAM. Five groups from the IAM community have begun to explore the implications of SSP assumptions for emissions, energy, economy, agriculture and land use. We report the quantitative results of initial experiments from those groups. A major goal of the Moss, et al. strategy was to enable the use of CMIP5 climate model ensemble products for IAV research. CMIP5 climate scenarios used four Representative Concentration Pathway (RCP) scenarios, defined in terms of radiative forcing in the year 2100: 2.6, 4.5, 6.0, and 8.5 Wm-2. There is no reason to believe that the SSPs will generate year 2100 levels of radiative forcing that correspond to the four RCP levels, though it is important that at least one SSP produce a

  14. Multistage reaction pathways in detonating high explosives

    Science.gov (United States)

    Li, Ying; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; CACS Collaboration; ALCF Team

    2015-06-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N2 and H2O within 10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct uni-molecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions. This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555 and the Basic Research Program of Defense Threat Reduction Agency (DTRA) Grant No. HDTRA1-08-1-0036. All the simulations were performed at USC and Argonne LCF.

  15. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  16. Pathways to psychiatric care in Cantabria.

    Science.gov (United States)

    Vázquez-Barquero, J L; Herrera Castanedo, S; Artal, J A; Cuesta Nuñez, J; Gaite, L; Goldberg, D; Sartorius, N

    1993-10-01

    This article delineates the pathways taken in different health areas of Cantabria (Spain) by a series of newly referred patients to the mental health services and explores the influence of sociodemographic, medical and service-related factors on the delays in referral. The work forms part of an ongoing World Health Organization multicentre research programme aimed at exploring and optimizing the quality of mental health care in different centres of the world. We found that, in a rural health area, the majority of newly referred patients establish the first contact with the general practitioner and to a lesser extent with the hospital doctor and from there directly progress to the psychiatric services; in the urban health area there is a greater tendency to contact specialized medical and psychiatric services. Delays in these health areas are remarkably short and are comparable to the ones in other European centres. Our data also show that somatic symptoms are the main presenting problem both at the primary care and at the mental health level; and that, in general, psychotropic drug prescriptions are high both in hospital and in general medical settings, and that women were more often prescribed psychotropic medication than men. PMID:8256636

  17. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  18. Risks from BSE: via environmental pathways

    Energy Technology Data Exchange (ETDEWEB)

    Spouge, J.; Comer, P.

    1997-06-01

    A series of five studies have been carried out for the UK`s Environment Agency to assess the risks from the various aspects of the disposal routes for BSE (Bovine Spongiform Encephalopathy) infected cattle in England and Wales. These studies are entitled: an overview of the risks from BSE via environmental pathways; risks from burning rendered products from the over thirty month scheme in power stations; risks from disposing of BSE infected cattle in animal carcase incinerators; assessment of risk from BSE carcases in landfills; and Thruxted Mill rendering plant: risk assessment of waste water disposal options. The second study assessed the risks of injection for humans from all emissions and waste products from coal-fired power stations burning meat and bone meal (MBM) and tallow. The societal risks (total human ingestion of infectivity) and the individual risk (ingestion of infectivity by the most exposed person) by burning MBM was extremely small (2 x 10{sup -4} human 1D{sub 50} units and 3 x 10{sup -11} human 1D{sub 50} units respectively). The largest potential risk appears to be the ingestion of infectivity through drinking water abstracted from the ground.

  19. Pathways to new drug discovery in neuropsychiatry

    Directory of Open Access Journals (Sweden)

    Berk Michael

    2012-11-01

    Full Text Available Abstract There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success. See related article http://www.biomedcentral.com/1741-7015/10/150

  20. Pathways and Challenges to Innovation in Aerospace

    Science.gov (United States)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  1. Molecular pathways of pannexin1-mediated neurotoxicity

    Directory of Open Access Journals (Sweden)

    Valery I. Shestopalov

    2014-02-01

    Full Text Available Pannexin1 (Panx1 forms nonselective membrane channels, structurally similar to gap junction hemichannels, that is permeable to ions, nucleotides and other small molecules below 900 Da. Panx1 activity is implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that Panx1 overactivation correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K+, Zn2+, fibroblast growth factors (FGFs, pro-inflammatory cytokines and elevation of intracellular Ca2+. Most of these molecules are released following mechanical, ischemic or inflammatory injury of the CNS, and rapidly activate this channel. As a result, prolonged opening of Panx1 channel induced by these danger signals trigger a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, either pharmacological or genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.

  2. Proatherogenic pathways leading to vascular calcification

    Energy Technology Data Exchange (ETDEWEB)

    Mazzini, Michael J. [Department of Cardiology, Boston University Medical Center, Boston, MA (United States); Schulze, P. Christian [Department of Medicine, Boston University Medical Center, Boston, MA (United States)]. E-mail: christian.schulze@bmc.org

    2006-03-15

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease.

  3. Electron transfer pathways in microbial oxygen biocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano, E-mail: stefano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Tsujimura, Seiya, E-mail: seiya@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Kano, Kenji, E-mail: kkano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan)

    2010-01-01

    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O{sub 2} reduction by heme compounds. Here we showed that 1 muM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O{sub 2} reduction to H{sub 2}O{sub 2} with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  4. Inflammatory and Epigenetic Pathways for Perinatal Depression.

    Science.gov (United States)

    Garfield, Lindsey; Mathews, Herbert L; Janusek, Linda Witek

    2016-05-01

    Depression during the perinatal period is common and can have adverse consequences for women and their children. Yet, the biobehavioral mechanisms underlying perinatal depression are not known. Adverse early life experiences increase the risk for adult depression. One potential mechanism by which this increased risk occurs is epigenetic embedding of inflammatory pathways. The purpose of this article is to propose a conceptual model that explicates the linkage between early life adversity and the risk for maternal depression. The model posits that early life adversity embeds a proinflammatory epigenetic signature (altered DNA methylation) that predisposes vulnerable women to depression during pregnancy and the postpartum period. As proposed, women with a history of early life adversity are more likely to exhibit higher levels of proinflammatory cytokines and lower levels of oxytocin in response to the demands of pregnancy and new motherhood, both of which are associated with the risk for perinatal depression. The model is designed to guide investigations into the biobehavioral basis for perinatal depression, with emphasis upon the impact of early life adversity. Testing this model will provide a better understanding of maternal depressive risk and improve identification of vulnerable women who would benefit from targeted interventions that can reduce the impact of perinatal depression on maternal-infant health. PMID:26574573

  5. CTLA-4 and PD-1 Pathways

    Science.gov (United States)

    Desai, Anupam

    2016-01-01

    The cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) immune checkpoints are negative regulators of T-cell immune function. Inhibition of these targets, resulting in increased activation of the immune system, has led to new immunotherapies for melanoma, non–small cell lung cancer, and other cancers. Ipilimumab, an inhibitor of CTLA-4, is approved for the treatment of advanced or unresectable melanoma. Nivolumab and pembrolizumab, both PD-1 inhibitors, are approved to treat patients with advanced or metastatic melanoma and patients with metastatic, refractory non-small cell lung cancer. In addition the combination of ipilimumab and nivolumab has been approved in patients with BRAF WT metastatic or unresectable melanoma. The roles of CTLA-4 and PD-1 in inhibiting immune responses, including antitumor responses, are largely distinct. CTLA-4 is thought to regulate T-cell proliferation early in an immune response, primarily in lymph nodes, whereas PD-1 suppresses T cells later in an immune response, primarily in peripheral tissues. The clinical profiles of immuno-oncology agents inhibiting these 2 checkpoints may vary based on their mechanistic differences. This article provides an overview of the CTLA-4 and PD-1 pathways and implications of their inhibition in cancer therapy. PMID:26558876

  6. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... (DCL1) protein complex. Mature miRNAs are loaded onto and guide an ARGONAUTE1 (AGO1) effector complex, leading to target mRNA silencing. The miRNA pathway is under tight temporal and spatial control and is regulated at multiple levels from transcription and precursor processing through miRNA mode of...... action and turnover. During my PhD period we have shown that the STA1 protein, a factor for pre-mRNA splicing and mRNA stability, is specifically involved in the splicing of pri-miRNAs and in the modulation of DCL1 transcript levels. Also, we established a novel and essential regulatory network in which...

  7. [Sphingolipid-mediated apoptotic signaling pathways].

    Science.gov (United States)

    Cuvillier, Olivier; Andrieu-Abadie, Nathalie; Ségui, Bruno; Malagarie-Cazenave, Sophie; Tardy, Claudine; Bonhoure, Elisabeth; Levade, Thierry

    2003-01-01

    Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate. PMID:14708343

  8. Environmental pathways and radiological dosimetry for biota

    International Nuclear Information System (INIS)

    Radionuclides entering the environment as a result man's activities may be transported, cycled, and/or concentrated in the biotic and abiotic compartments of the ecosystem. Organisms in an environment contaminated with radioactive waste may be irradiated externally by radionuclides in air, water, vegetation, soil or sediment and internally by radionuclides accumulated within their bodies by inhalation or by direct absorption through their skin. The purpose of this paper is to examine the pathways in which biota are exposed to radioactive releases to the environment and to review the methods used to calculate radiation doses to the biota. In general, the methodology for estimating radiation doses to biota in their natural environment is better developed for aquatic biota than for terrestrial biota. The different methodologies which have been used for calculating radiation doses to aquatic biota were reviewed. If the protection of non-human biota is an issue in addressing environmental assessments of nuclear facilities, then the methodology for estimating radiation doses to biota should be improved. It is recommended that dose calculations should be simplified and standardized by developing dose conversion factors for a number of generic aquatic and terrestrial organisms. (author)

  9. RFP tags for labeling secretory pathway proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liyang; Zhao, Yanhua [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Xi; Peng, Jianxin [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Xu, Pingyong, E-mail: pyxu@ibp.ac.cn [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Huan, Shuangyan, E-mail: shuangyanhuan@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Mingshu, E-mail: mingshu1984@gmail.com [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.

  10. Programming of stress pathways: A transgenerational perspective.

    Science.gov (United States)

    Constantinof, Andrea; Moisiadis, Vasilis G; Matthews, Stephen G

    2016-06-01

    The embryo and fetus are highly responsive to the gestational environment. Glucocorticoids (GC) represent an important class of developmental cues and are crucial for normal brain development. Levels of GC in the fetal circulation are tightly regulated. They are maintained at low levels during pregnancy, and increase rapidly at the end of gestation. This surge in GC is critical for maturation of the organs, specifically the lungs, brain and kidney. There are extensive changes in brain epigenetic profiles that accompany the GC surge, suggesting that GC may drive regulation of gene transcription through altered epigenetic pathways. The epigenetic profiles produced by the GC surge can be prematurely induced as a result of maternal or fetal stress, as well as through exposure to synthetic glucocorticoids (sGC). This is highly clinically relevant as 10% of pregnant women are at risk for preterm labour and receive treatment with sGC to promote lung development in the fetus. Fetal overexposure to GC (including sGC) has been shown to cause lasting changes in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis leading to altered stress responses, and mood and anxiety disorders in humans and animals. In animal models, GC exposure is associated with transcriptomic and epigenomic changes that influence behaviour, HPA function and growth. Importantly, programming by GC results in sex-specific effects that can be inherited over multiple generations via paternal and maternal transmission. PMID:26474822

  11. Apocarotenoids: A New Carotenoid-Derived Pathway.

    Science.gov (United States)

    Beltran, Juan Camilo Moreno; Stange, Claudia

    2016-01-01

    Carotenoids are precursors of carotenoid derived molecules termed apocarotenoids, which include isoprenoids with important functions in plant-environment interactions such as the attraction of pollinators and the defense against pathogens and herbivores. Apocarotenoids also include volatile aromatic compounds that act as repellents, chemoattractants, growth simulators and inhibitors, as well as the phytohormones abscisic acid and strigolactones. In plants, apocarotenoids can be found in several types of plastids (etioplast, leucoplast and chromoplast) and among different plant tissues such as flowers and roots. The structural similarity of some flower and spice isoprenoid volatile organic compounds (β-ionone and safranal) to carotenoids has led to the recent discovery of carotenoid-specific cleavage oxygenases, including carotenoid cleavage dioxygenases and 9-cis-epoxydioxygenases, which tailor and transform carotenoids into apocarotenoids. The great diversity of apocarotenoids is a consequence of the huge amount of carotenoid precursors, the variations in specific cleavage sites and the modifications after cleavage. Lycopene, β-carotene and zeaxanthin are the precursors of the main apocarotenoids described to date, which include bixin, crocin, picrocrocin, abscisic acid, strigolactone and mycorradicin.The current chapter will give rise to an overview of the biosynthesis and function of the most important apocarotenoids in plants, as well as the current knowledge about the carotenoid cleavage oxygenase enzymes involved in these biosynthetic pathways. PMID:27485225

  12. Hedgehog signaling pathway and ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Qi Chen; Guolan Gao; Shiwen Luo

    2013-01-01

    Epithelial ovarian carcinoma (EOC) is the most common form of ovarian malignancies and the most lethal gynecologic malignancy in the United States.To date,in spite of treatment to it with the extensive surgical debulking and chemotherapy,the prognosis of EOC remains dismal.Recently,it has become increasingly clear that in many instances,the signaling and molecular players that control development are the same,and when inappropriately regulated,drive tumorigenesis and cancer development.Here,we discuss the possible involvement of Hedgehog (Hh) pathway in the cellular regulation and development of cancer in the ovaries.Using the in vitro and in vivo assays developed has facilitated the dissection of the mechanisms behind Hh-driven ovarian cancers formation and growth.Based on recent studies,we propose that the inhibition of Hh signaling may interfere with spheroid-like structures in ovarian cancers.The components of the Hh signaling may provide novel drug targets,which could be explored as crucial combinatorial strategies for the treatment of ovarian cancers.

  13. Exenatide and feeding: possible peripheral neuronal pathways.

    Science.gov (United States)

    Hunt, Jizette V; Washington, Martha C; Sayegh, Ayman I

    2012-02-01

    Intraperitoneal (i.p.) administration of the synthetic agonist of the glucagon like peptide-1 (GLP-1) receptor exenatide reduces food intake. Here, we evaluated possible peripheral pathways for this reduction. Exenatide (0.5 μg/kg, i.p.) was given to three, overnight food-deprived, groups of rats: total subdiaphragmatic vagotomy (VGX, severs the vagus nerve), celiaco-mesenteric ganglionectomy (CMGX, severs the splanchnic nerve) and combined VGX/CMGX. Following the injection, meal sizes (MSs) and intermeal intervals (IMIs) were determined for a total of 120 min. We found that exenatide reduced the sizes of the first two meals but failed to prolong the IMI between them, that VGX attenuated the reduction of the first MS, and that VGX, CMGX and combined VGX/CMGX attenuated the reduction of the second MS by exenatide. Therefore, the vagus nerve appears necessary for the reduction of the first MS by exenatide, whereas both nerves appear necessary for the reduction of the second MS by this peptide. PMID:22222610

  14. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  15. An innate antiviral pathway acting before interferons at epithelial surfaces

    DEFF Research Database (Denmark)

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K;

    2015-01-01

    we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a...

  16. Pathways to Aggression in Urban Elementary School Youth

    Science.gov (United States)

    Ozkol, Hivren; Zucker, Marla; Spinazzola, Joseph

    2011-01-01

    This study examined the pathways from violence exposure to aggressive behaviors in urban, elementary school youth. We utilized structural equation modeling to examine putative causal pathways between children's exposure to violence, development of posttraumatic stress symptoms, permissive attitudes towards violence, and engagement in aggressive…

  17. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    DEFF Research Database (Denmark)

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red ...

  18. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  19. Pathways for School Finance in California. Technical Appendix

    Science.gov (United States)

    Rose, Heather; Sonstelie, Jon; Weston, Margaret

    2010-01-01

    This is a technical appendix for the report, "Pathways for School Finance in California" (ED515651). "Pathways for School Finance in California" simulates alternatives to California's current school finance system. This appendix provides more information about the revenues used in those simulations. The first section describes the districts and…

  20. Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development

    Science.gov (United States)

    Barsoum, Ivraym Boshra

    2009-01-01

    Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…