WorldWideScience

Sample records for amiba hexapod telescope

  1. Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope

    CERN Document Server

    Koch, Patrick M; Chang, Yu-Yen; Huang, Yau-De; Raffin, Philippe; Chen, Ke-Yung; Chereau, Guillaume; Chen, Ming-Tang; Ho, Paul T P; Huang, Chih-Wie; Ibanez-Romano, Fabiola; Jiang, Homin; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Wu, Jiun-Huei Proty; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Han, Chi-Chiang; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2009-01-01

    The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescope's azimuth, elevation and polarization position. An analytical model ...

  2. Challenges of extreme load hexapod design and modularization for large ground-based telescopes

    Science.gov (United States)

    Gloess, Rainer; Lula, Brian

    2010-07-01

    The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.

  3. BESO: a high-resolution spectrograph for the Hexapod-Telescope

    Science.gov (United States)

    Steiner, Ingo; Seifert, Walter; Stahl, Otmar; Lemke, Roland; Chini, Rolf; Appenzeller, Immo

    2006-06-01

    BESO (Bochum Echelle Spectrograph for OCA) is a high-resolution echelle spectrograph which is built by the Ruhr-Universitaet, Bochum and the Landessternwarte Heidelberg. It will be operated with the 1.5m Hexapod-Telescope at the Observatorio Cerro Armazones (OCA), Chile - the new observatory of the Ruhr-Universitaet and the Universidad Catolica del Norte in Antofagasta. The site at 2800m altitude is located 30 km east of Paranal and provides superb observing conditions. BESO is fiber-coupled to the Hexapod-Telescope, covers a spectral range of 370 to 840nm with a resolution of 48,000. Instrument controls are embedded in the ALMA Common Software environment. The spectrograph is part of a monitoring project that studies the variability of young stars and AGN.

  4. Focal plane actuation by hexapod for the development of a high-resolution suborbital telescope

    Science.gov (United States)

    Miller, Alexander D.; Scowen, Paul A.; Veach, Todd J.

    2016-07-01

    We present a prototype hexapod image stabilization system as the key instrument for a proposed suborbital balloon mission. The unique design thermally isolates an off-the-shelf non-cryogenic hexapod from a liquid nitrogen cooled focal plane, enabling its use in a cryogenic environment. Balloon gondolas currently achieve 1-2 arcsecond pointing error, but cannot correct for unavoidable jitter movements ( 20 micron amplitude at 20 Hz at the worst) caused by wind rushing over balloon surfaces, thermal variations, and vibrations from cryocoolers, and reaction wheels. The jitter causes image blur during exposures and limits the resolution of the system. Removal of this final jitter term decreases pointing error by an order of magnitude and allows for true diffraction-limited observation. Tip-tilt pointing systems have been used for these purposes in the past, but require additional optics and introduce multiple reflections. The hexapod system, rather, is compact and can be plugged into the focal point of nearly any configuration. For a 0.8m telescope the improvement in resolution by this system would provide 0.1" angular resolution at 300nm, which is comparable to Hubble for a fraction of the cost. On an actual balloon, the hexapod system would actuate the focal plane to counteract the jitter using position information supplied by guidestar cameras. However, in the lab, we instead simulate guide camera tracking, using a 1024 × 1024 e2v science-grade CCD to take long exposures of a target attached to an XY stage driven with the balloon jitter signal recorded during the STO mission. Further confirmation of the positional accuracy and agility of the hexapod is achieved using a laser and fast-sampling position-sensitive diode. High-resolution time domain multispectral imaging of the gas giants, especially in the UV range, is of particular interest to the planetary community, and a suborbital telescope with the hexapod stabilization in place would provide a wealth of new

  5. BESO: first light at the high-resolution spectrograph for the Hexapod-Telescope

    Science.gov (United States)

    Steiner, Ingo; Stahl, Otmar; Seifert, Walter; Chini, Rolf; Quirrenbach, Andreas

    2008-07-01

    BESO (Bochum Echelle Spectrograph for OCA)is a high-resolution echelle spectrograph which has been built by Ruhr-Universitaet, Bochum and Landessternwarte Heidelberg. It is fiber-coupled to the 1.5m Hexapod-Telescope at the Observatario Cerro Armazones (OCA), Chile. The first light spectra show that the resolution of 48.000 over a spectral range from 370 nm to 840 nm has been achieved. An alignment by design approach has been followed to assemble the fiber-head optics at the telescope side of fiber coupled instrument.

  6. AMiBA, XMM, and Cluster Surveys

    CERN Document Server

    Liang, H

    2001-01-01

    The Array for Microwave Background Anisotropy (AMiBA) is an interferometric array of 19 dishes co-mounted on a steerable platform and operating at 95GHz. One of the main scientific aims of AMiBA is to conduct cluster surveys using the Sunyaev-Zel'dovich (SZ) effect. Here we explore the potential of AMiBA as a tailor-made SZ instrument for the study of cluster physics and cosmology via cluster surveys out to the epoch of cluster formation. In particular, we explore the potential of combining AMiBA cluster surveys with the XMM-LSS (Large Scale Structure) survey.

  7. AMiBA: Cluster Sunyaev-Zel’dovich Effect Observations with the Expanded 13-element Array

    Science.gov (United States)

    Lin, Kai-Yang; Nishioka, Hiroaki; Wang, Fu-Cheng; Locutus Huang, Chih-Wei; Liao, Yu-Wei; Proty Wu, Jiun-Huei; Koch, Patrick M.; Umetsu, Keiichi; Chen, Ming-Tang; Chan, Shun-Hsiang; Chang, Shu-Hao; Lucky Chang, Wen-Hsuan; Cheng, Tai-An; Duy, Hoang Ngoc; Fu, Szu-Yuan; Han, Chih-Chiang; Ho, Solomon; Ho, Ming-Feng; Ho, Paul T. P.; Huang, Yau-De; Jiang, Homin; Kubo, Derek Y.; Li, Chao-Te; Lin, Yu-Chiung; Liu, Guo-Chin; Martin-Cocher, Pierre; Molnar, Sandor M.; Nunez, Emmanuel; Oshiro, Peter; Pai, Shang-Ping; Raffin, Philippe; Ridenour, Anthony; Shih, Chia-You; Stoebner, Sara; Teo, Giap-Siong; Yeh, Jia-Long Johnny; Williams, Joshua; Birkinshaw, Mark

    2016-10-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3 mm to measure the Sunyaev-Zel’dovich effect (SZE) of galaxy clusters at arcminute scales. The first phase of operation—with a compact 7-element array with 0.6 m antennas (AMiBA-7)—observed six clusters at angular scales from 5\\prime to 23\\prime . Here, we describe the expansion of AMiBA to a 13-element array with 1.2 m antennas (AMiBA-13), its subsequent commissioning, and cluster SZE observing program. The most noticeable changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4 m to 4.8 m, allowing us to sample structures between 2\\prime and 10\\prime , (2) 13 new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2 m reflectors, and (3) additional correlators and six new receivers. Since the reflectors are co-mounted on and distributed over the entire six-meter CFRP platform, a refined hexapod pointing error model and phase error correction scheme have been developed for AMiBA-13. These effects—entirely negligible for the earlier central close-packed AMiBA-7 configuration—can lead to additional geometrical delays during observations. Our correction scheme recovers at least 80 ± 5% of the point-source fluxes. We, therefore, apply an upward correcting factor of 1.25 to our visibilities to correct for phase decoherence, and a ±5% systematic uncertainty is added in quadrature with our statistical errors. We demonstrate the absence of further systematics with a noise level consistent with zero in stacked uv-visibilities. From the AMiBA-13 SZE observing program, we present here maps of a subset of 12 clusters with signal-to-noise ratios above five. We demonstrate combining AMiBA-7 with AMiBA-13 observations on Abell 1689, by jointly fitting their data to a generalized Navarro-Frenk-White model. Our cylindrically integrated Compton-y values for five radii are consistent with results from

  8. Hexapod Robot

    Science.gov (United States)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  9. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng [Department of Physics, Institute of Astrophysics, and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Liu, Guo-Chin [Department of Physics, Tamkang University, 251-37 Tamsui, New Taipei City, Taiwan (China); Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Yu-Yen, E-mail: ywliao@asiaa.sinica.edu.tw, E-mail: jhpw@phys.ntu.edu.tw [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  10. Hexapod Design For All-Sky Sidereal Tracking

    CERN Document Server

    Pál, András; Jaskó, Attila; Mező, György; Csépány, Gergely; Vida, Krisztián; Oláh, Katalin

    2016-01-01

    In this paper we describe a hexapod-based telescope mount system intended to provide sidereal tracking for the Fly's Eye Camera project -- an upcoming moderate, 21"/pixel resolution all-sky survey. By exploiting such a kind of meter-sized telescope mount, we get a device which is both capable of compensating for the apparent rotation of the celestial sphere and the same design can be used independently from the actual geographical location. Our construction is the sole currently operating hexapod telescope mount performing dedicated optical imaging survey with a sub-arcsecond tracking precision.

  11. Autonomous Hexapod Spider Robot

    DEFF Research Database (Denmark)

    Pandey, Nisha; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2017-01-01

    of a hexapod robot. It is controlled through Arduino-unoR3 based SSC servo control module. Servos of torque 2.5kg-cm are used in robot to show different working movements including back and forth movement and sitting posture. Another trending technology i.e. Bluetooth is used to control autonomous feature...

  12. AMiBA: Cluster Sunyaev-Zel'dovich Effect Observations with the Expanded 13-Element Array

    CERN Document Server

    Lin, Kai-Yang; Wang, Fu-Cheng; Huang, Chih-Wei Locutus; Liao, Yu-Wei; Wu, Jiun-Huei Proty; Koch, Patrick M; Umetsu, Keiichi; Chen, Ming-Tang; Chan, Shun-Hsiang; Chang, Shu-Hao; Chang, Wen-Hsuan Lucky; Cheng, Tai-An; Duy, Hoang Ngoc; Fu, Szu-Yuan; Han, Chih-Chiang; Ho, Solomon; Ho, Ming-Feng; Ho, Paul T P; Huang, Yau-De; Jiang, Homin; Kubo, Derek Y; Li, Chao-Te; Lin, Yu-Chiung; Liu, Guo-Chin; Martin-Cocher, Pierre; Molnar, Sandor M; Nunez, Emmanuel; Oshiro, Peter; Pai, Shang-Ping; Raffin, Philippe; Ridenour, Anthony; Shih, Chia-You; Stoebner, Sara; Teo, Giap-Siong; Yeh, Jia-Long Johnny; Williams, Joshua; Birkinshaw, Mark

    2016-01-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a co-planar interferometer array operating at a wavelength of 3mm to measure the Sunyaev-Zeldovich effect (SZE) of galaxy clusters. In the first phase of operation -- with a compact 7-element array with 0.6m antennas (AMiBA-7) -- we observed six clusters at angular scales from 5\\arcmin to 23\\arcmin. Here, we describe the expansion of AMiBA to a 13-element array with 1.2m antennas (AMiBA-13), its subsequent commissioning, and our cluster SZE observing program. The most important changes compared to AMiBA-7 are (1) array re-configuration with baselines ranging from 1.4m to 4.8m covering angular scales from 2\\arcmin to 11.5\\arcmin, (2) thirteen new lightweight carbon-fiber-reinforced plastic (CFRP) 1.2m reflectors, and (3) additional correlators and six new receivers. From the AMiBA-13 SZE observing program, we present here maps of a subset of twelve clusters. In highlights, we combine AMiBA-7 and AMiBA-13 observations of Abell 1689 and perfo...

  13. Analysis of Hexapod Robot Locomotion

    Directory of Open Access Journals (Sweden)

    Tomas Luneckas

    2011-03-01

    Full Text Available Hexapod robot locomotion is analyzed. Trajectory forming method for one leg is introduced. Servo angles are expressed using geometric inverse kinematics method. Forming of tripod gait is described and a diagram representing it is presented. Servo control parameters are defined to ensure fluent and versatile robot control. Several servo control methods are presented. After testing robot movement using different servo control methods, gait generation is corrected and control method that meets servo control parameters is chosen.Article in Lithuanian

  14. Simulation of Cosmic Microwave Background Polarization Fields for AMiBA Experiment

    CERN Document Server

    Park, C G; Park, Chan-Gyung; Park, Changbom

    2002-01-01

    We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A $\\Lambda$CDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated $Q$ and $U$ polarization maps, where $Q$ and $U$ are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

  15. Orthopedic hexapods: history, present and prospects

    Directory of Open Access Journals (Sweden)

    Виктор Александрович Виленский

    2015-03-01

    Full Text Available The article is dedicated to computer-assisted external fixation devices, so-called hexapods. The main advantage of these frames is capability to make mathematically precise correction of bone fragments in three planes and six degrees of freedom on the base of calculations made in special software application. Recently these devices are mostly applied in long bone deformity correction but the sphere of its effective useis not limited by only this direction. The article presents the history of investigation of these devices, their development, implemented comparative analysis of the basic hexapods: TSF (Taylor Spatial Frame, IHA (Ilizarov Hexapod Apparatus and Ortho-SUV Frame.

  16. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert

    2016-11-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.

  17. Design Issues for Hexapod Walking Robots

    Directory of Open Access Journals (Sweden)

    Franco Tedeschi

    2014-06-01

    Full Text Available Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure.

  18. A Novel Navigation Algorithm for Hexagonal Hexapod Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2010-01-01

    Full Text Available Problem statement: Wheeled robots are not very well suited for navigation over uneven terrains. Hexapod robots have some advantages over wheeled robots when negotiating and navigating on rugged terrain. Approach: Different gaits of hexapods can be developed for different kinds of locomotion and obstacle avoidance. Results: In this research a novel algorithm has been developed for hexapod robots navigation. Conclusion: Implementation of the developed algorithm on a hexapod prototype showed desirable performance in terms of stable navigation with simultaneous gait transition over different terrains.

  19. Orthopedic hexapods: history, present and prospects

    OpenAIRE

    Виктор Александрович Виленский; Александр Павлович Поздеев; Эдгар Валентинович Бухарев; Андрей Александрович Поздеев; Тимур Фаизович Зубаиров; Леонид Николаевич Соломин

    2015-01-01

    The article is dedicated to computer-assisted external fixation devices, so-called hexapods. The main advantage of these frames is capability to make mathematically precise correction of bone fragments in three planes and six degrees of freedom on the base of calculations made in special software application. Recently these devices are mostly applied in long bone deformity correction but the sphere of its effective useis not limited by only this direction. The article presents the history of ...

  20. Constraining Intra-cluster Gas Models with AMiBA13

    CERN Document Server

    Molnar, Sandor M; Birkinshaw, Mark; Bryan, Greg; Haiman, Zoltan; Hearn, Nathan; Ho, Paul T P; Huang, Chih-Wei L; Koch, Patrick M; Liao, Yu-Wei V; Linh, Kai-Yang; Liuh, Guo-Chin; Nishioka, Hiroaki; Wang, Fu-Cheng; Wu, Jiun-Huei P; Astronomy, Institute of; Astrophysics,; Sinica, Academia; 23-141, P O Box; 106, Taipei; Taiwan,; ROC,; Laboratory, H H Wills Physics; Bristol, University of; Ave, Tyndall; 1TL, Bristol BS8; UK,; Astronomy, Department of; University, Columbia; Street, 550 West 120th; York, New; 10027, NY; Flashes, ASC/Alliances Center for Astrophysical Thermonuclear; Chicago, University of; 60637, Chicago IL; Astrophysics, Harvard-Smithsonian Center for; Street, 60 Garden; Cambridge,; 02138, MA; Physics, Department of; Astrophysics, Institute of; University, National Taiwan; 10617, Taipei; Taiwan,; ROC,; Physics, Department of; University, Tamkang; 251-37,; Tamsui,; County, Taipei; Taiwan,; ROC,

    2010-01-01

    Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev--Zel'dovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the qua...

  1. Research on Miniature Hexapod Bio-robot

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper described the structure and control of a new kind of miniature hexapod bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design novel, unique. It can move forwards and backwards. The external dimensions of bio-robot is: length 30 mm,width 40 mm, height 20 mm, weight 6.3 g. Some tests about the model robot were made. The experimental results show that the robot has good mobility.

  2. PENGEMBANGAN ROBOT HEXAPOD UNTUK MELACAK SUMBER GAS

    Directory of Open Access Journals (Sweden)

    Hani Avrilyantama

    2015-03-01

    Full Text Available Saat ini untuk mengevaluasi kebocoran pipa gas atau minyak bahan bakar dilakukan oleh manusia. Robot dapat diimplementasikan untuk mengganti tugas manusia dalam hal pencarian lokasi kebocoran gas. Pada dasarnya tiap robot memiliki implementasi yang berbeda, seperti robot yang mampu bergerak di jalan yang licin dan ada pula robot yang mampu bergerak di jalan yang kasar. Robot beroda mampu berjalan di tempat yang licin tetapi tidak bisa berjalan di tempat yang kasar dan berlumpur. Untuk keperluan investigasi kebocoran pipa gas tersebut maka diperlukan sistem robot berkaki hexapod. Pada penelitian ini telah dirancang dan dibuat robot berkaki hexapod dilengkapi dengan sensor gas yang digunakan untuk mendeteksi adanya titik bocor gas dengan menggunakan garis hitam sebagai garis panduan dan sistem jalan robot dengan  menggunakan  metode inverse kinematics. Sensor gas yang digunakan adalah TGS 2620 dan pergerakkan  robot mengikuti garis hitam, ketika ada sumber gas maka robot akan berhenti. Dari hasil percobaan pada pencarian gas alkohol sebanyak 20 kali, robot dapat mendeteksi gas dengan  keberhasilan  90% . Kesalahan dalam  pencarian gas dipengaruhi oleh ketidakstabilan robot dalam berjalan dikarenakan torsi  motor  servo  lebih  kecil  dibandingkan  torsi  beban  pada  robot.

  3. Embodied Sensorimotor Interaction for Hexapod Locomotion

    DEFF Research Database (Denmark)

    Ambe, Yuichi; Aoi, Shinya; Nachstedt, Timo;

    2016-01-01

    is still unclear. Recent studies in biology suggest that a functional motor output during walking is formed by the interaction between central pattern generators (CPGs) and sensory feedbacks. In this paper, we investigate the dynamics of a hexapod robot model whose legs are driven by distributed...... sensory feedback the robot produces continuous stable gaits depending on the locomotion speed as a result of self-organization, one of which are similar to those of insects. These results reveal that the neuromechanical interaction induced by the local sensory feedback plays an important role...... oscillators with a local sensory feedback from neuromechanical point of view. This feedback changes the oscillation period of the oscillator depending solely on the timing of the contact between the foot and the ground. The results of dynamic simulations and real robot experiments show that due to the local...

  4. The Fly's Eye project: sidereal tracking on a hexapod mount

    CERN Document Server

    Vida, Krisztián; Mészáros, László; Csépány, Gergely; Jaskó, Attila; Mező, György; Oláh, Katalin

    2014-01-01

    The driving objective of the Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30 deg horizontal altitude with a cadence of 3 min. Imaging is intended to perform with 19 wide-field cameras mounted on a hexapod platform. The essence of the hexapod allows us to build an instrument that does not require any kind of precise alignment and, in addition, the similar mechanics can be involved independently from the geographical location of the device. Here we summarize our early results with a single camera, focusing on the sidereal tracking as it is performed with the hexapod built by our group.

  5. On the Self-Mobility of Point-Symmetric Hexapods

    Directory of Open Access Journals (Sweden)

    Georg Nawratil

    2014-11-01

    Full Text Available In this article, we study necessary and sufficient conditions for the self-mobility of point symmetric hexapods (PSHs. Specifically, we investigate orthogonal PSHs and equiform PSHs. For the latter ones, we can show that they can have non-translational self-motions only if they are architecturally singular or congruent. In the case of congruency, we are even able to classify all types of existing self-motions. Finally, we determine a new set of PSHs, which have so-called generalized Dietmaier self-motions. We close the paper with some comments on the self-mobility of hexapods with global/local symmetries.

  6. Application of Joint Error Maximal Mutual Compensation to hexapod robots

    DEFF Research Database (Denmark)

    Veryha, Yauheni; Petersen, Henrik Gordon

    2008-01-01

    A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation ...

  7. AMiBA: Sunyaev-Zel'dovich effect derived properties and scaling relations of massive galaxy clusters

    CERN Document Server

    Ho, Paul T P; Liu, Guo-Chin; Molnar, Sandor M; Nishioka, Hiroaki; Umetsu, Keiichi; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2010-01-01

    The Sunyaev-Zel'dovich Effect (SZE) has been observed toward six massive galaxy clusters, at redshifts 0.091 \\leq z \\leq 0.322 in the 86-102 GHz band with the Y. T. Lee Array for Microwave Background Anisotropy (AMiBA). We modify an iterative method, based on the isothermal \\beta-models, to derive the electron temperature T_e, total mass M_t, gas mass M_g, and integrated Compton Y within r_2500, from the AMiBA SZE data. Non-isothermal universal temperature profile (UTP) \\beta models are also considered in this paper. These results are in good agreement with those deduced from other observations. We also investigate the embedded scaling relations, due to the assumptions that have been made in the method we adopted, between these purely SZE-deduced T_e, M_t, M_g and Y. Our results suggest that cluster properties may be measurable with SZE observations alone. However, the assumptions built into the pure-SZE method bias the results of scaling relation estimations and need further study.

  8. AMiBA: scaling relations between the integrated Compton-y and X-ray derived temperature, mass, and luminosity

    CERN Document Server

    Ho, Paul T P; Liu, Guo-Chin; Molnar, Sandor M; Nishioka, Hiroaki; Umetsu, Keiichi; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2009-01-01

    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.

  9. A gait planning method applied to hexapod biomimetic robot locomotion

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Yan Jihong; Zang Xizhe; Zhao Jie

    2009-01-01

    In order to fulfill the goal of autonomous walking on rough terrain, a distributed gait planning method applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait coordination mechanism of stick insect. The mathematical relation of walking velocity and gait pattern was depicted, a set of local rules operating between adjacent legs were put forward, and a distributed network of local rules for gait control was constructed. With the interaction of adjacent legs, adaptive adjustment of phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walking speed was implemented to generate statically stable gait. In the simulation experiments, adaptive adjustment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized, and static stableness was ensured simultaneously, which provided the hexapod robot with the capability of walking on rough terrain stably and expeditiously.

  10. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  11. Life Extending Minimum-Time Path Planning for Hexapod Robot

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2011-06-01

    Full Text Available This paper presents a minimum‐time path planning scheme for life‐extending operation of legged robots, illustrated with a six‐legged walking robot (hexapod. The focus of this study is on extending the bearing fatigue life for leg joints. As a typical treatment, the minimum‐time path planning is performed through a bisecting‐plane (BP algorithm with the constraints of maximum joint angular velocity and acceleration. Based on bearing fatigue life theory, its fatigue life increases while the dynamic radial force on the bearing decreases. By imposing more rigorous constraint on the dynamic radial force, the minimum‐time path planning algorithm is thus revised by reinforcing the constraint of maximum radial force based on the expectation of life extension. A symmetric hexapod with 18 degree‐of‐freedom (DOF is adopted as the illustrative example for simulation study. The simulation results validate the effectiveness of possible life extending with moderate compromise in transient performance.

  12. Development of flexible tactile sensors for hexapod robots

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum-Petersen, Mikkel; Jouffroy, Jerome

    2013-01-01

    on the upper and lower part of the rubber. To address a wider range of tactile stimuli, namely the dynamic tactile stimuli, a piezoelectric thin film sensor based on polyvinylidene fluoride(PVDF) is embedded into the leg tip mould. Both piezoresistive array and piezoelectric types of sensors are investigated......This paper describes the development of flexible based tactile array sensors based on piezoresistive rubber for use in the leg tips of hexapod robotics. The sensors are composed of a sandwich similar structure, with a piezoresistive rubber used as the middle layer and flexPCB electrodes...

  13. Kinematic performance analysis of a parallel-chain hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Jing Song; Jong-I Mou; Calvin King

    1998-05-18

    Inverse and forward kinematic models were derived to analyze the performance of a parallel-chain hexapod machine. Analytical models were constructed for both ideal and real structures. Performance assessment and enhancement algorithms were developed to determine the strut lengths for both ideal and real structures. The strut lengths determined from both cases can be used to analyze the effect of structural imperfections on machine performance. In an open-architecture control environment, strut length errors can be fed back to the controller to compensate for the displacement errors and thus improve the machine's accuracy in production.

  14. Research on Tripod Gait of Bionic Hexapod Robot

    Directory of Open Access Journals (Sweden)

    Wei Jiang-shu

    2013-07-01

    Full Text Available Based on the bionic theory and the analyzed of movement mechanism for six-legged insect, the principle of tripod gait movement for walking robot was analyzed in this paper, and basic parameters and the principle of relative movement theory on gait research were discussed. Then the hexapod walking robot was assembled by using the component of Fischertechnik. With the characters of simple connective structure, unique design, this robot can walk forward and backward and can avoid mini-barrier. The experiment showed that this robot has good mobility and stability.  

  15. Biomimetic Experimental Research on Hexapod Robot's Locomotion Planning

    Institute of Scientific and Technical Information of China (English)

    HUANG Lin; HAN Bao-ling; LUO Qing-sheng; ZHANG Chun-lin; XU Jia

    2009-01-01

    To provide hexapod robots with strategies of locomotion planning,observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis.Through digitalization of original analog video,locomotion characters of ants were obtained,the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots,which was deduced with mathematics method.In addition,five rules were concluded,which apply to hexapod robots marching locomotion planning.The first one is the fundamental strategy of multi-legged robots' leg trajectory planning.The second one helps to enhance the static and dynamic stability of multi-legged robots.The third one can improve the validity and feasibility of legs' falling points.The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints.These five rules give a good method for marching locomotion planning of multi-legged robots,and can be expended to turning planning and any other special locomotion.

  16. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  17. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  18. Kontrol Kecepatan Robot Hexapod Pemadam Api menggunakan Metoda Logika Fuzzy

    Directory of Open Access Journals (Sweden)

    Darwison

    2015-09-01

    Full Text Available This study aims to create a hexapod robot speed control fire extinguisher using fuzzy logic method . By applying the method of fuzzy logic will make the robot move smoother and comparable to the distance . The input of the fuzzy logic method is obtained from three ultrasonic sensors as detection distance to the wall / barrier . Hexapod robot using a servomotor with torgue large enough to perform the movement . Robot speed will be faster if the purpose of the movement of the robot is still far from the wall / barrier and vice versa . Microcontroller with fuzzy logic -based program of its use as a controller movement . The results showed that more refined movement based on the distance read by the sensor , where the sensor is experiencing an error distance measurement is influenced by the material wall / barrier . For the wall material / to obstacle of the board experienced a reading error of 0.18 % , amounting to 0.5 % of books and dolls of 1.58 %.

  19. Design and manufacture of a low cost educational hexapod rover

    Science.gov (United States)

    Candini, Gian Paolo; Paolini, Emanuele; Piergentili, Fabrizio

    2009-08-01

    The paper deals with the design and realization of a hexapod rover prototype completely manufactured by students and researchers of the Space Robotics Group of the II Faculty of Engineering of the University of Bologna "ALMA MATER". The rover project has been developed for didactical purposes, with the aim of involving students in practical, hands-on education, pushing them to face real problems and to put in practice what they have learnt in theory during regular courses. The work done is described in the paper, highlighting its potential to test different solutions in autonomous navigation systems: low-cost sensors, innovative algorithms and different step procedures. Moreover, the mechanical and electronic solutions adopted for leg design, main controller, and remote control are discussed and depicted in the paper.

  20. Minimizing Hexapod Robot Foot Deviations Using Multilayer Perceptron

    Directory of Open Access Journals (Sweden)

    Vytautas Valaitis

    2015-12-01

    Full Text Available Rough-terrain traversability is one of the most valuable characteristics of walking robots. Even despite their slower speeds and more complex control algorithms, walking robots have far wider usability than wheeled or tracked robots. However, efficient movement over irregular surfaces can only be achieved by eliminating all possible difficulties, which in many cases are caused by a high number of degrees of freedom, feet slippage, frictions and inertias between different robot parts or even badly developed inverse kinematics (IK. In this paper we address the hexapod robot-foot deviation problem. We compare the foot-positioning accuracy of unconfigured inverse kinematics and Multilayer Perceptron-based (MLP methods via theory, computer modelling and experiments on a physical robot. Using MLP-based methods, we were able to significantly decrease deviations while reaching desired positions with the hexapod’s foot. Furthermore, this method is able to compensate for deviations of the robot arising from any possible reason.

  1. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired...... by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal...

  2. Analytical Study of Hexapod miRNAs using Phylogenetic Methods

    CERN Document Server

    Mishra, A K

    2012-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression. Identification of total number of miRNAs even in completely sequenced organisms is still an open problem. However, researchers have been using techniques that can predict limited number of miRNA in an organism. In this paper, we have used homology based approach for comparative analysis of miRNA of hexapoda group .We have used Apis mellifera, Bombyx mori, Anopholes gambiae and Drosophila melanogaster miRNA datasets from miRBase repository. We have done pair wise as well as multiple alignments for the available miRNAs in the repository to identify and analyse conserved regions among related species. Unfortunately, to the best of our knowledge, miRNA related literature does not provide in depth analysis of hexapods. We have made an attempt to derive the commonality among the miRNAs and to identify the conserved regions which are still not available in miRNA repositories. The results are good approximation with a small number of mis...

  3. Bio-inspired step-climbing in a hexapod robot.

    Science.gov (United States)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-09-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the 'rearing stage,' inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the 'rising stage,' maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed.

  4. Evaluation of the accuracy of the HexaPOD evo RT system using non-coplanar beams in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Se Wuk; Cho, Kang Chul; Lee, Sang Kyoo; Kim, Joo Ho; Cho, Jeong Hee [Dept. of Radiation Oncology, Yonsei Cancer Center, Seoul (Korea, Republic of)

    2015-12-15

    The aim of this study, evaluate the accuracy of HeaxPOD evo RT system using the non-coplanar beam. 13 treatment plans are used which applied non-coplanar beams and 10 treatment plans which coplanar beams are used. the correction value what adjust to 6D couch is determined by each patient's setup errors only rotation direction. The study executed followings. first, Applying the correction value, measure the point dose and calculate the γ -index(γ=3% / 3 mm , γ =2%/ 2 mm). second, acquire data as previous methods without correction by HexaPOD. For comparing the two results, we find out the more precise applying HexaPOD by point dose 0.2% in coplanar and non-coplanar. in the case of γ-index<1(γ=3% / 3 mm), more precise 2.2% in coplanar and 7% in Non-coplanar. Particularly, γ - index<1(2% / 2 mm) show the difference 9.2% in coplanar and 15.1% non-coplanar between apply HexaPOD and dose not apply HexaPOD. Using the HexaPOD is more precise than without HexaPOD. It suggests that HexaPOD evo RT system is very useful for precise and high dose delivery.

  5. Efficient and accurate stereotactic radiotherapy using flattening filter free beams and HexaPOD robotic tables

    DEFF Research Database (Denmark)

    Nielsen, Morten; Hansen, C. R.; Brink, C.

    2016-01-01

    Flattening filter free (FFF) high dose rate beam technique was introduced for brain stereotactic radiosurgery (SRS) and lung Stereotactic Body Radiotherapy (SBRT). Furthermore, a HexaPOD treatment table was introduced for the brain SRS to enable correction of rotational setup errors. 19 filter fl...

  6. Analysis of the Hexapod Work Space using integration of a CAD/CAE system and the LabVIEW software

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    The paper presents the problems related to the integration of a CAD/CAE system with the LabVIEW software. The purpose of the integration is to determine the workspace of a hexapod model basing on a mathematical model describing it motion. In the first stage of the work concerning the integration task the 3D model to simulate movements of a hexapod was elaborated. This phase of the work was done in the “Motion Simulation” module of the CAD/CAE/CAM Siemens NX system. The first step was to define the components of the 3D model in the form of “links”. Individual links were defined according to the nature of the hexapod elements action. In the model prepared for movement simulation were created links corresponding to such elements as: electric actuator, top plate, bottom plate, ball-and-socket joint, toggle joint Phillips. Then were defined the constraints of the “joint” type (e.g.: revolute joint, slider joint, spherical joint) between the created component of the “link” type, so that the computer simulation corresponds to the operation of a real hexapod. The next stage of work included implementing the mathematical model describing the functioning of a hexapod in the LabVIEW software. At this stage, particular attention was paid to determining procedures for integrating the virtual 3D hexapod model with the results of calculations performed in the LabVIEW. The results relate to specific values of the jump of electric actuators depending on the position of the car on the hexapod. The use of integration made it possible to determine the safe operating space of a stationary hexapod taking into consideration the security of a person in the driving simulator designed for the disabled.

  7. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  8. Active optics system for the 4m telescope of the Eastern Anatolia Observatory (DAG)

    Science.gov (United States)

    Lousberg, Gregory P.; Mudry, Emeric; Bastin, Christian; Schumacher, Jean-Marc; Gabriel, Eric; Pirnay, Olivier; Flebus, Carlo

    2016-07-01

    An active optics system is being developed by AMOS for the new 4m-class telescope for the Turkish Eastern Anatolia Observatory (DAG). It consists in (a) an adjustable support for the primary mirror and (b) two hexapods supporting M2 and M3. The M1 axial support consists of 66 pneumatic actuators (for mirror shape corrections) associated with 9 hydraulic actuators that are arranged in three independent circuits so as to fix the axial position of the mirror. Both M1 support and the hexapods are actively controlled during regular telescope operations, either with look-up tables (openloop control) or using optical feedback from a wavefront sensor (closed-loop control).

  9. Modeling and Simulation of Wave Gait of a Hexapod Walking Robot: A CAD/CAE Approach

    Directory of Open Access Journals (Sweden)

    Abhijit Mahapatra

    2013-03-01

    Full Text Available In the present paper, an attempt has been made to carry out dynamic analysis of a hexapod robot using the concept of multibody dynamics. A CAD (Computer Aided Design model of a realistic hexapod robot has been made for dynamic simulation of its locomotion using ADAMS (Automatic Dynamic Analysis of Mechanical Systems multibody dynamics solver. The kinematic model of each leg of three degrees of freedom has been designed using CATIA (Computer Aided Three Dimensional Interactive Application and SimDesigner package in order to develop an overall kinematic model of the robot, when it follows a straight path. Joint Torque variation as well as the variation of the aggregate center of mass of the robot was analyzed for the wave tetrapod gait. The simulation results provide the basis for developing the control algorithm as well as an intelligent decision making for the robot while in motion.

  10. An Improved Force-Angle Stability Margin for Radial Symmetrical Hexapod Robot Subject to Dynamic Effects

    Directory of Open Access Journals (Sweden)

    Shidong Long

    2015-05-01

    Full Text Available This paper presents a study on stability monitoring for a radial symmetrical hexapod robot under dynamic conditions. The force-angle stability margin (FASM measure method has been chosen as the stability criterion. This is because it is suitable for the stability analysis, in terms of external forces or manipulator loads acting on the body. Considering that a radial symmetrical hexapod robot can tumble along the contact point besides tip-over axis, this paper proposes an improved FASM measure method. Furthermore, it provides the method for calculating the stability angle of contact point and simplifies the algorithm of FASM. To verify the improved FASM measure method, three potential dynamic situations have been simulated. The simulation results confirm that, under dynamic conditions, the improved FASM is efficient, simple in terms of calculation cost and sensitive to manipulator loads and external disturbances. This means it has practical value in on-line controllers.

  11. A control structure for the autonomous locomotion on rough terrain with a hexapod robot

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Zang Xizhe; Yan Jihong; Zhao Jie

    2010-01-01

    A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration.In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence.While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions.In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.

  12. Microwave-controlled facile synthesis of well-defined PbS hexapods.

    Science.gov (United States)

    Chen, Ganchao; Fan, Junbing; Zhao, Tian; Xu, Xiaobo; Zhu, Mingqiang; Tang, Zhiyong

    2011-09-01

    Controlled synthesis of well-defined PbS nanostructures in terms of size and shape has been strongly motivated by their potential applications ranging from solar photovoltaics to near-infrared optics. Hereby, we report a facile microwave-assistant method for ultrafast fabrication of PbS nanostructures, by which uniform PbS hexapods with six arms stretching along six (100) directions of the crystal seeds have been easily synthesized within minutes. Various morphologies including rectangle plates, uniform cubes as well as nanoparticles were obtained by tuning the parameters for the formation of PbS nanocrystals. The results reveal that both concentration and feed ratio of precursors determine the growth of PbS nanocrystals significantly. And higher initial precursor concentration favors the formation of the hexapod structures. The process of crystal growth is monitored through scanning electron microscopy of PbS from different durations of the reaction. This controlled ultrafast synthesis of PbS structures at nanometer and micrometer scale with various morphologies may be promising in large scale fabrication of nanostructures. Based on the systematically study of the growth process, a possible mechanism for the formation of the hexapod-like structure is discussed.

  13. Control of a HexaPOD treatment couch for robot-assisted radiotherapy.

    Science.gov (United States)

    Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus

    2012-10-01

    Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.

  14. Many hexapod groups originated earlier and withstood extinction events better than previously realized: inferences from supertrees.

    Science.gov (United States)

    Davis, Robert B; Baldauf, Sandra L; Mayhew, Peter J

    2010-05-22

    Comprising over half of all described species, the hexapods are central to understanding the evolution of global biodiversity. Direct fossil evidence suggests that new hexapod orders continued to originate from the Jurassic onwards, and diversity is presently higher than ever. Previous studies also suggest that several shifts in net diversification rate have occurred at higher taxonomic levels. However, their inferred timing is phylogeny dependent. We re-examine these issues using the supertree approach to provide, to our knowledge, the first composite estimates of hexapod order-level phylogeny. The Purvis matrix representation with parsimony method provides the most optimal supertree, but alternative methods are considered. Inferring ghost ranges shows richness of terminal lineages in the order-level phylogeny to peak just before the end-Permian extinction, rather than the present day, indicating that at least 11 more lineages survived this extinction than implied by fossils alone. The major upshift in diversification is associated with the origin of wings/wing folding and for the first time, to our knowledge, significant downshifts are shown associated with the origin of species-poor taxa (e.g. Neuropterida, Zoraptera). Polyneopteran phylogeny, especially the position of Zoraptera, remains important resolve because this influences findings regarding shifts in diversification. Our study shows how combining fossil with phylogenetic information can improve macroevolutionary inferences.

  15. Hierarchical Kinematic Modelling and Optimal Design of a Novel Hexapod Robot with Integrated Limb Mechanism

    Directory of Open Access Journals (Sweden)

    Guiyang Xin

    2015-09-01

    Full Text Available This paper presents a novel hexapod robot, hereafter named PH-Robot, with three degrees of freedom (3-DOF parallel leg mechanisms based on the concept of an integrated limb mechanism (ILM for the integration of legged locomotion and arm manipulation. The kinematic model plays an important role in the parametric optimal design and motion planning of robots. However, models of parallel mechanisms are often difficult to obtain because of the implicit relationship between the motions of actuated joints and the motion of a moving platform. In order to derive the kinematic equations of the proposed hexapod robot, an extended hierarchical kinematic modelling method is proposed. According to the kinematic model, the geometrical parameters of the leg are optimized utilizing a comprehensive objective function that considers both dexterity and payload. PH-Robot has distinct advantages in accuracy and load ability over a robot with serial leg mechanisms through the former's comparison of performance indices. The reachable workspace of the leg verifies its ability to walk and manipulate. The results of the trajectory tracking experiment demonstrate the correctness of the kinematic model of the hexapod robot.

  16. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  17. Gait analysis of a radial symmetrical hexapod robot based on parallel mechanisms

    Science.gov (United States)

    Xu, Kun; Ding, Xilun

    2014-09-01

    Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height. This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism. Assuming the constraints between the supporting feet and the ground with hinges, the supporting legs and the hexapod body are taken as a parallel mechanism, and each swing leg is regarded as a serial manipulator. The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground. Locomotion performance can be got by analyzing these equivalent mechanisms. The kinematics of the whole robotic system is established, and the influence of foothold position on the workspace of robot body is analyzed. A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle. Referring to service region and service sphere, weight service sphere and weight service region are put forward to evaluate the dexterity of robot body. The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated. Simulation shows when the foothold offset goes up to 174 mm, the dexterity of robot body achieves its maximum value 0.1644 in mixed gait. The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot, and provide new approach to determine the stride length, body height, footholds in gait planning of multi-legged robot.

  18. Gait Analysis of a Radial Symmetrical Hexapod Robot Based on Parallel Mechanisms

    Institute of Scientific and Technical Information of China (English)

    XU Kun; DING Xilun

    2014-01-01

    Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height. This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism. Assuming the constraints between the supporting feet and the ground with hinges, the supporting legs and the hexapod body are taken as a parallel mechanism, and each swing leg is regarded as a serial manipulator. The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground. Locomotion performance can be got by analyzing these equivalent mechanisms. The kinematics of the whole robotic system is established, and the influence of foothold position on the workspace of robot body is analyzed. A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle. Referring to service region and service sphere, weight service sphere and weight service region are put forward to evaluate the dexterity of robot body. The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated. Simulation shows when the foothold offset goes up to 174 mm, the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait. The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot, and provide new approach to determine the stride length, body height, footholds in gait planning of multi-legged robot.

  19. Use of a hexapod in diffraction measurements of substrate-supported crystals of organic semiconductors.

    Science.gov (United States)

    Yang, Lin; Yang, Hoichang

    2009-11-01

    Thin films of organic semiconductor prepared on substrates generally contain crystals that have one common crystal plane parallel to the substrate but random in-plane orientations. In diffraction measurements of these structures, it is often required to anchor the X-ray beam on a fixed spot on the sample, such as an optically visible crystallite or island. Here, a hexapod is used in place of a traditional multi-circle diffractometer to perform area-detector-based diffraction measurements on an actual device that contains 6,13-bis(triisopropyl-silyethynyl)-pentacene (TIPS-pentacene) crystals. The hexapod allows for sample rotations about any user-defined rotation center. Two types of complex sample motions have been programmed to characterize the structure of the TIPS-pentacene crystal: an in-plane powder average has been performed at a fixed grazing-incident angle to determine the lattice parameters of the crystal; then the in-plane component of the scattering vector was continuously rotated in transmission geometry to determine the local crystal orientation.

  20. Improving the Navigability of a Hexapod Robot using a Fault-Tolerant Adaptive Gait

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-06-01

    Full Text Available This paper encompasses a study on the development of a walking gait for fault tolerant locomotion in unstructured environments. The fault tolerant gait for adaptive locomotion fulfills stability conditions in opposition to a fault (locked joints or sensor failure event preventing a robot to realize stable locomotion over uneven terrains. To accomplish this feat, a fault tolerant gait based on force‐position control is proposed in this paper for a hexapod robot to enable stable walking with a joint failure. Furthermore, we extend our proposed fault detection and diagnosis (FDD method to deal with the critical failure of the angular rate sensors responsible for the attitude control of the robot over uneven terrains. A performance analysis of straight‐ line walking is carried out which shows that the proposed FDD‐based gait is capable of generating an adaptive walking pattern during joint or sensor failures. The performance of the proposed control is established using dynamic simulations and real‐world experiments on a prototype hexapod robot.

  1. Leg compliance control of a hexapod robot based on improved adaptive control in different environments

    Institute of Scientific and Technical Information of China (English)

    朱雅光; 金波; 李伟

    2015-01-01

    Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.

  2. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  3. Kinematic optimization of upgrade to the Hobby-Eberly Telescope through novel use of commercially available three-dimensional CAD package

    Science.gov (United States)

    Wedeking, Gregory A.; Zierer, Joseph J.; Jackson, John R.

    2010-07-01

    The University of Texas, Center for Electromechanics (UT-CEM) is making a major upgrade to the robotic tracking system on the Hobby Eberly Telescope (HET) as part of theWide Field Upgrade (WFU). The upgrade focuses on a seven-fold increase in payload and necessitated a complete redesign of all tracker supporting structure and motion control systems, including the tracker bridge, ten drive systems, carriage frames, a hexapod, and many other subsystems. The cost and sensitivity of the scientific payload, coupled with the tracker system mass increase, necessitated major upgrades to personnel and hardware safety systems. To optimize kinematic design of the entire tracker, UT-CEM developed novel uses of constraints and drivers to interface with a commercially available CAD package (SolidWorks). For example, to optimize volume usage and minimize obscuration, the CAD software was exercised to accurately determine tracker/hexapod operational space needed to meet science requirements. To verify hexapod controller models, actuator travel requirements were graphically measured and compared to well defined equations of motion for Stewart platforms. To ensure critical hardware safety during various failure modes, UT-CEM engineers developed Visual Basic drivers to interface with the CAD software and quickly tabulate distance measurements between critical pieces of optical hardware and adjacent components for thousands of possible hexapod configurations. These advances and techniques, applicable to any challenging robotic system design, are documented and describe new ways to use commercially available software tools to more clearly define hardware requirements and help insure safe operation.

  4. Ribosomal DNA gene and phylogenetic relationships of Diplura and lower Hexapods

    Institute of Scientific and Technical Information of China (English)

    LUAN; Yunxia; (栾云霞); ZHANG; Yaping; (张亚平); YUE; Qiaoyun; (岳巧云); ANG; Junfeng; (庞峻峰); XIE; Rongdong; (谢荣栋); YIN; Wenying; (尹文英)

    2003-01-01

    The monophyly of Diplura and its phylogenetic relationship with other hexapods are important for understanding the phylogeny of Hexapoda. The complete 18SrRNA gene and partial 28SrRNA gene (D3-D5 region) from 2 dipluran species (Campodeidae and Japygidae), 2 proturan species, 3 collembolan species, and 1 locust species were sequenced. Combining related sequences in GenBank, phylogenetic trees of Hexapoda were constructed by MP method using a crustacean Artemia salina as an outgroup. The results indicated that: (i) the integrated data of 18SrDNA and 28SrDNA could provide better phylogenetic information, which well supported the monophyly of Diplura; (ii) Diplura had a close phylogenetic relationship to Protura with high bootstrap support.

  5. Hexapod Walking Robot Energy Consumption Dependence On Different Gaits And Speed While Moving On Even Terrain

    Directory of Open Access Journals (Sweden)

    Mindaugas Luneckas

    2014-05-01

    Full Text Available Evaluation of robotic energetics while moving on rough terrain becomes a difficult task without having the information about the movement on even terrain. The problem appears in selection of gaits depending on how much power robot consumes. In this paper, energy consumption of a hexapod walking robot dependence on different gaits and speed is observed. Three most common gaits were used in this experiment: tripod gait, bipod gait and wave gait. Results clearly show that while moving at slow speed, the least energy is consumed by wave gait. As the speed increases, bipod gait selection is required to lower energy consumption. Finally, tripod gait must be selected at even higher speed.

  6. Adaptive and Energy Efficient Walking in a Hexapod Robot under Neuromechanical Control and Sensorimotor Learning

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2016-01-01

    feedback and for online tuning the VAAMs' stiffness parameters. The control and learning mechanisms enable the hexapod robot advanced mobility sensor driven-walking device (AMOS) to achieve variable compliant walking that accommodates different gaits and surfaces. As a consequence, AMOS can perform more......) to generate the proper leg stiffness (i.e., compliance); and 3) to determine joint angles that give rise to particular positions at the endpoints of the legs. To tackle this problem for a robotic application, here we present a neuromechanical controller coupled with sensorimotor learning. The controller...... consists of a modular neural network for coordinating 18 joints and several virtual agonist-antagonist muscle mechanisms (VAAMs) for variable compliant joint motions. In addition, sensorimotor learning, including forward models and dual-rate learning processes, is introduced for predicting foot force...

  7. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  8. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    Directory of Open Access Journals (Sweden)

    Yaguang Zhu

    2016-08-01

    Full Text Available Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system.

  9. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  10. The Greenland Telescope (GLT): Antenna status and future plans

    CERN Document Server

    Raffin, Philippe; Asada, Keichi; Blundell, Raymond; Burgos, Roberto; Chang, Chih-Cheng; Chen, Ming-Tang; Christensen, Robert; Grimes, Paul K; Han, C C; Ho, Paul T P; Huang, Yau-De; Inoue, Makoto; Koch, Patrick M; Kubo, Derek; Leiker, Steve; Liu, Ching-Tang; Martin-Cocher, Pierre; Matsushita, Satoki; Nakamura, Masanori; Nishioka, Hiroaki; Nystrom, George; Paine, Scott N; Patel, Nimesh A; Pradel, Nicolas; Pu, Hung-Yi; Shen, H -Y; Snow, William; Sridharan, T K; Srinivasan, Ranjani; Tong, Edward; Wang, Jackie

    2014-01-01

    The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), SAO's main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna ...

  11. Selecting Your First Telescope.

    Science.gov (United States)

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  12. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.

    Science.gov (United States)

    Espinal, Andres; Rostro-Gonzalez, Horacio; Carpio, Martin; Guerra-Hernandez, Erick I; Ornelas-Rodriguez, Manuel; Sotelo-Figueroa, Marco

    2016-01-01

    This paper presents a method to design Spiking Central Pattern Generators (SCPGs) to achieve locomotion at different frequencies on legged robots. It is validated through embedding its designs into a Field-Programmable Gate Array (FPGA) and implemented on a real hexapod robot. The SCPGs are automatically designed by means of a Christiansen Grammar Evolution (CGE)-based methodology. The CGE performs a solution for the configuration (synaptic weights and connections) for each neuron in the SCPG. This is carried out through the indirect representation of candidate solutions that evolve to replicate a specific spike train according to a locomotion pattern (gait) by measuring the similarity between the spike trains and the SPIKE distance to lead the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the SPIKE distance-based fitness function, such as looking for Spiking Neural Networks (SNNs) with minimal connectivity or a Central Pattern Generator (CPG) able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 Degrees Of Freedom (DOFs) hexapod robot is presented.

  13. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution

    Directory of Open Access Journals (Sweden)

    Andrés Espinal

    2016-07-01

    Full Text Available This paper deals with the design of Spiking Central Pattern Generators (SCPGs to achieve locomotion at different frequencies in legged robots and their hardware implementation in a FPGA and validation on a real hexapod robot. Herein, the SCPGs are automatically designed by a Christiansen Grammar Evolution (CGE-based methodology. It is, the CGE performs a solution for the configurations (synaptic weights and connections of each neuron in the SCPG. This is carried out through the indirect representation of a candidate solution that evolves to replicate a specific spike train according to a locomotion pattern (gait by measuring the similarity between the spike train with the SPIKE-Distance to drive the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the fitness function to achieve the SPIKE-distance criteria, such as: looking for SNNs with minimal connectivity or a CPG able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 DOFs hexapod robot is presented.

  14. Parameter Optimization for Large displacement Flexure Joint Hexapod%大行程柔性铰链Hexapod机构参数优化设计

    Institute of Scientific and Technical Information of China (English)

    彭程; 殷跃红

    2014-01-01

    大行程柔性铰链 Hexapod机构的性能很大程度上取决于柔性铰链的性能。同样构型的柔性铰链,行程越大其离轴刚度越低,从而导致大行程全柔性铰链 Hexapod机构整体的静刚度和精度下降。讨论了 Hexapod机构运动学逆解的求解,包括每个支链的伸缩的长度以及每个铰链的转动角度的求解。在此基础上讨论了大行程全柔性铰链 Hexa-pod机构参数优化设计,使得满足动平台运动空间要求的前提下各个铰链的行程要求最小,并针对设计中的大行程柔性铰链 Hexapod 机构进行了参数优化设计。%Performance of flexure j oint hexapod depends much on performance of its flexure hin-ges.With the same structure,flexure hinges of lar-ger displacement will have lower off axis stiffness which lowers static stiffness and precision of the whole structure.In this article,inverse kinematics of hexapod is studied to get the displacement of each leg and the rotation angle of each hinge.Pa-rameter optimization of flexure j oint hexapod is then discussed to reach the required workspace with least displacement of each flexure hinge.At last,a case study is offered for better demonstra-tion of parameter optimization for large displace-ment flexure j oint hexapod.

  15. 基于Matlab的六足机器人优化设计仿真%Matlab-based Simulation of the Hexapod Robot Design

    Institute of Scientific and Technical Information of China (English)

    王伟伟; 陈锋

    2014-01-01

    The hexapod robots are highly integrated electromechanical bionic systems, whose dynamic performance is determined by the structure system and the control system. In order to improve the overall dynamic performance of the hexapod robots, the integration of optimized design of the hexapod robot is needed. Design variables, constraints and objective functions involved in the optimization process are discussed based on the geometric characteristics; the integrated optimization model of hexapod robot systems is built. With examples, comparative analysis of simulation results is done. Simulation results illustrate that integrated design can get better dynamic performance for the hexapod robot system.%六足机器人是机电高度集成的仿生系统,它的动态性能由其结构系统与控制系统一起决定。为了提高六足机器人整体的动态性能,对六足机器人进行集成优化设计。描述六足机器人系统的结构;根据六足机器人机构的几何特征,讨论在优化过程中涉及到的设计变量、约束方程以及目标函数;对六足机器人系统进行集成优化建模。结合实例,分析比较六足机器人系统的数值仿真结果,结果表明,集成设计方法能够使系统获得更好的动态性能。

  16. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  17. Floating sphere telescope: a new design for a 40-m Extremely Large Telescope

    Science.gov (United States)

    Marchiori, Gianpietro; Rampini, Francesco

    2006-06-01

    This paper work reports the results of the Preliminary Design Phase of the Floating Sphere Telescope that has been presented during the AOMATT in Xi'an, China, November 2005. The FST represents a new design for the realization of an ELT with a 40-metre primary mirror. The innovative concept of the structure and the sub-systems that constitute it as well as the use of new materials and technologies allow to obtain an instrument able to comply with very extreme specifications for structure such as ELTs. The structure allows to improve the stiffness to weight ratio of the structure, to introduce higher damping while maintaining under control the construction and maintenance costs. In comparison with the previous study, the following steps have been implemented: • Refining and optimizing the structural design and the FEA model, in particular we have included a realistic model of the constraint provided by the fluid used for flotation by characterization of its viscous and elastic properties in order to estimate the additional modal damping introduced by the flotation as function of fluid properties and geometry. • Designed (and introduced in the FEA model) various types of drives such as friction drives, tensioned ropes in "hexapod" configuration, "gravity" drives (moving ballast) and combinations of them to evaluate potential tracking performances • Designed the necessary connections for various types of utilities (power, data, cooling) • Included in the structural design a more elaborate optical design to satisfy specific science requirements (e.g. multiconjugate AO)

  18. Study on a novel panel support concept for radio telescopes with active surface

    Science.gov (United States)

    Yang, Dehua; Zhou, Guohua; Okoh, Daniel; Li, Guoping; Cheng, Jingquan

    2010-07-01

    Generally, panels of radio telescopes are mainly shaped in trapezoid and each is supported/positioned by four adjustors beneath its vertexes. Such configuration of panel supporting system is essentially hyper-static, and the panel is overconstrained from a kinematic point of view. When the panel is to be adjusted and/or actuated, it will suffer stress from its adjusters and hence its shape is to be distorted. This situation is not desirable for high precision panels, such as glass based panels especially used for sub-millimeter and shorter wavelength telescopes with active optics/active panel technology. This paper began with a general overview of panel patterns and panel supports of existing radio telescopes. Thereby, we proposed a preferable master-slave active surface concept for triangular and/or hexagonal panel pattern. In addition, we carry out panel error sensitivity analysis for all the 6 degrees of freedom (DOF) of a panel to identify what DOFs are most sensitive for an active surface. And afterwards, based on the error sensitivity analysis, we suggested an innovative parallel-series concept hexapod well fitted for an active panel to correct for all of its 6 rigid errors. A demonstration active surface using the master-slave concept and the hexapod manifested a great save in cost, where only 486 precision actuators are needed for 438 panels, which is 37% of those actuators needed by classic segmented mirror active optics. Further, we put forward a swaying-arm based design concept for the related connecting joints between panels, which ensures that all the panels attached on to it free from over-constraints when they are positioned and/or actuated. Principle and performance of the swaying-arm connecting mechanism are elaborated before a practical cablemesh based prototype active surface is presented with comprehensive finite element analysis and simulation.

  19. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  20. Optical designs for the Maunakea Spectroscopic Explorer Telescope

    CERN Document Server

    Saunders, Will

    2016-01-01

    Optical designs are presented for the Maunakea Spectroscopic Explorer (MSE) telescope. The adopted baseline design is a prime focus telescope with a segmented primary of 11.25m aperture, with speed f/1.93 and 1.52deg field-of-view, optimized for wavelengths 360-1800nm. The Wide-Field Corrector (WFC) has five aspheric lenses, mostly of fused silica, with largest element 1.33m diameter and total glass mass 788kg. The Atmospheric Dispersion Corrector (ADC) is of the compensating lateral type, combining a motion of the entire WFC via the hexapod, with a restoring motion for a single lens. There is a modest amount of vignetting (average 5% over the hexagonal field); this greatly improves image quality, and allows the design to be effectively pupil-centric. The polychromatic image quality is d80<0.225"/0.445" at ZD 0/60deg over more than 95% of the hexagonal field-of-view. The ADC action allows adjustment of the plate-scale with zenith distance, which is used to halve the image motions caused by differential ref...

  1. Optical designs for the Maunakea Spectroscopic Explorer Telescope

    Science.gov (United States)

    Saunders, Will; Gillingham, Peter R.

    2016-08-01

    Optical designs are presented for the Maunakea Spectroscopic Explorer (MSE) telescope. The adopted baseline design is a prime focus telescope with a segmented primary of 11.25m aperture, with speed f/1.93 and 1.52° field-of-view, optimized for wavelengths 360-1800nm. The Wide-Field Corrector (WFC) has five aspheric lenses, mostly of fused silica, with largest element 1.33m diameter and total glass mass 788kg. The Atmospheric Dispersion Corrector (ADC) is of the compensating lateral type, combining a motion of the entire WFC via the hexapod, with a restoring motion for a single lens. There is a modest amount of vignetting (average 5% over the hexagonal field); this greatly improves image quality, and allows the design to be effectively pupil-centric. The polychromatic image quality is d80pupil-centric, with modest vignetting (5.9% average). The image quality is virtually identical to the prime focus design.

  2. The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    CERN Document Server

    Ho, Paul T P; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Chung-Cheng; Chen, Ke-Jung; Chen, Ming-Tang; Han, Chih-Chiang; Ho, West M; Huang, Yau-De; Hwang, Yuh-Jing; Ibanez-Romano, Fabiola; Jiang, Homin; Koch, Patrick M; Kubo, Derek Y; Li, Chao-Te; Lim, Jeremy; Lin, Kai-Yang; Liu, Guo-Chin; Lo, Kwok-Yung; Ma, Cheng-Jiun; Martin, Robert N; Martin-Cocher, Pierre; Molnar, Sandor M; Ng, Kin-Wang; Nishioka, Hiroaki; O'Connell, Kevin E; Oshiro, Peter; Patt, Ferdinand; Raffin, Philippe; Umetsu, Keiichi; Wei, Tashun; Wu, Jiun-Huei Proty; Chiueh, Tzi-Dar; Chiueh, Tzihong; Chu, Tah-Hsiung; Huang, Chih-Wei Locutus; Hwang, W Y Pauchy; Liao, Yu-Wei; Lien, Chun-Hsien; Wang, Fu-Cheng; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Kesteven, Michael; Kingsley, Jeff; Sinclair, Malcolm M; Wilson, Warwick; Birkinshaw, Mark; Liang, Haida; Lancaster, Katy; Park, Chan-Gyung; Pen, Ue-Li; Peterson, Jeffrey B

    2008-01-01

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm is to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform, was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.

  3. The SOFIA Telescope

    CERN Document Server

    Krabbe, A

    2000-01-01

    The SOFIA telescope as the heart of the observatory is a major technological challenge. I present an overview on the astro-nomical and scientific requirements for such a big airborne observatory and demonstrate the impact of these requirements on the layout of SOFIA, in particular on the telescope design as it is now. Selected components of the telescope will be de-scribed in their context and functionality. The current status of the telescope is presented.

  4. Auto Adjusting Astronomical Telescope

    Directory of Open Access Journals (Sweden)

    Rohit R. Ghalsasi

    2014-04-01

    Full Text Available Astronomical telescope is powerful and basic tool for star or celestial observation. Here we proposed integrated system using Raspberry Pi for auto adjusting astronomical telescope. This integrated circuit helps to control stellar monitoring, stellar targeting, and tracking functions of telescope. Astro compass gives the direction of the celestial objects.

  5. High-Flying Telescope

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Scientists at the Space Telescope Science Institute,which operates the Hubble Space Telescope,have proposed a new telescope that would have twice the resolution of Hubble at about one-tenth the cost. It would hover seven miles above Earth,dangling below a football-field-size helium balloon

  6. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  7. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  8. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  9. JWST Pathfinder Telescope Integration

    Science.gov (United States)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  10. The Solar Telescope GREGOR

    Science.gov (United States)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  11. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  12. Pointing a solar telescope

    Science.gov (United States)

    Wallace, Patrick

    2016-07-01

    As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.

  13. The First VERITAS Telescope

    CERN Document Server

    Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A

    2006-01-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  14. LUTE telescope structural design

    Science.gov (United States)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  15. Calibration Test and Precision Analysis of Small-Sized Hexapod Parallel Manipulator with High Accuracy%精密小型Hexapod并联机器人标定实验及精度分析

    Institute of Scientific and Technical Information of China (English)

    张国庆; 杜建军

    2013-01-01

    为了提高精密小型Hexapod并联机器人的运行精度,对机器人进行了标定实验及精度分析.推导了Hexapod机器人结构参数的误差模型、设计了标定步骤和算法,并在三坐标测量机上对机器人进行标定实验;从机构角度对Hexapod机器人的间隙误差来源进行了分析,并推导了间隙误差对机器人位姿误差的映射关系数学模型;推导并分析了计算过程中最小二乘误差、牛顿-拉普森迭代误差的数学模型,分析了机器人结构参数的辨识精度.标定实验结果表明:经过误差补偿,机器人位姿坐标的最大位移误差由0.2676 mm降为0.0105 mm;最大转角误差由0.0068 rad降为0.0011 rad.Hexapod机器人标定及精度分析方法对于开发精密型并联机器人具有参考价值.%To improve the accuracy of small-sized Hexapod parallel manipulator, calibration test and precision analysis were conducted in this paper. An error model of Hexapod was derived, and calibration procedure was designed and calibration test was conducted on 3-coordinate measuring machine (CMM). An analysis regarding the error sources of Hexapod was also conducted from the mechanical angle, and a mapping model from the gap error to the pose error of Hexapod was derived. Then the error models of least square method and Newton-Raphson iteration method in the calculation were derived and analyzed, and the identification accuracy for geometric parameters of Hexapod was analyzed. The calibration results show that after calibration, the maximum translation error of Hexapod manipulator declined from 0.267 6 mm to 0.010 5 mm, and the maximum rotation error declined from 0.006 8 rad to 0.001 1 rad. The calibration method and precision analysis method of Hexapod have a reference value for developing high precision parallel manipulators.

  16. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o

  17. AMiBA Wideband Analog Correlator

    CERN Document Server

    Li, Chao-Te; Wilson, Warwick; Lin, Kai-Yang; Chen, Ming-Tang; Ho, P T P; Chen, Chung-Cheng; Han, Chih-Chiang; Oshiro, Peter; Martin-Cocher, Pierre; Chang, Chia-Hao; Chang, Shu-Hao; Altamirano, Pablo; Jiang, Homin; Chiueh, Tzi-Dar; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Peterson, Jeffrey B; Chang, Su-Wei; Huang, Yau-De; Hwang, Yuh-Jing; Kesteven, Michael; Koch, Patrick; Liu, Guo-Chin; Nishioka, Hiroaki; Umetsu, Keiichi; Wei, Tashun; Wu, Jiun-Huei Proty

    2010-01-01

    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.

  18. Two Easily Made Astronomical Telescopes.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  19. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  20. Panel positioning error and support mechanism for a 30-m THz radio telescope

    Institute of Scientific and Technical Information of China (English)

    De-Hua Yang; Daniel Okoh; Guo-Hua Zhou; Ai-Hua Li; Guo-Ping Li; Jing-Quan Cheng

    2011-01-01

    A 30-m TeraHertz (THz) radio telescope is proposed to operate at 200 μm with an active primary surface. This paper presents sensitivity analysis of active surface panel positioning errors with optical performance in terms of the Strehl ratio.Based on Ruze's surface error theory and using a Monte Carlo simulation, the effects of six rigid panel positioning errors, such as piston, tip, tilt, radial, azimuthal and twist displacements, were directly derived. The optical performance of the telescope was then evaluated using the standard Strehl ratio. We graphically illustrated the various panel error effects by presenting simulations of complete ensembles of full reflector surface errors for the six different rigid panel positioning errors. Study of the panel error sensitivity analysis revealed that the piston error and tilt/tip errors are dominant while the other rigid errors are much less important. Furthermore, as indicated by the results, we conceived of an alternative Master-Slave Concept-based (MSC-based) active surface by implementating a special Series-Parallel Concept-based (SPC-based) hexapod as the active panel support mechanism. A new 30-m active reflector based on the two concepts was demonstrated to achieve correction for all the six rigid panel positioning errors in an economically feasible way.

  1. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  2. Parabolic Strip Telescope

    CERN Document Server

    Chadzitaskos, Goce

    2013-01-01

    We present a proposal of a new type of telescopes using a rotating parabolic strip as the primary mirror. It is the most principal modification of the design of telescopes from the times of Galileo and Newton. In order to demonstrate the basic idea, the image of an artificial constellation observed by this kind of telescope was reconstructed using the techniques described in this article. As a working model of this new telescope, we have used an assembly of the primary mirror---a strip of acrylic glass parabolic mirror 40 cm long and 10 cm wid shaped as a parabolic cylinder of focal length 1 m---and an artificial constellation, a set of 5 apertures in a distance of 5 m illuminated from behind. In order to reconstruct the image, we made a series of snaps, each after a rotation of the constellation by 15 degrees. Using Matlab we reconstructed the image of the artificial constellation.

  3. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  4. Large Binocular Telescope Project

    Science.gov (United States)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  5. A segmented subreflector with electroformed nickel laminated panels for the Large Millimeter Telescope

    Science.gov (United States)

    Valsecchi, G.; Banham, R.; Bianucci, G.; Eder, J.; Ghislanzoni, R.; Ritucci, A.; Terraneo, M.; Zocchi, F. E.; Smith, D.; Gale, D.; Hughes, D.

    2016-07-01

    The Large Millimeter Telescope (LMT) Alfonso Serrano is a 50 m diameter single-dish radio telescope optimized for astronomical observations at wavelengths of about a millimeter. Built and operated by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in collaboration with the University of Massachusetts (UMASS), the telescope is located at the 4600 m summit of volcano Sierra Negra, Mexico. Anticipating the completion of the main reflector, currently operating over a 32 m subaperture, INAOE has contracted Media Lario for the design and manufacturing of a new 2.63 m subreflector that will enable higher efficiency astronomical observations with the entire main reflector surface. The new subreflector manufactured by Media Lario is segmented in 9 smaller panels, one central dome and eight identical petals, assembled and precisely aligned on a steel truss structure that will be connected to the hexapod mounted on the tetrapod head. Each panel was fabricated with Media Lario's unique laminated technology consisting of front and rear Nickel skins, electroformed from precise molds and bonded to a lightweight Aluminum honeycomb core. The reflecting surface of each panel was given a thin galvanic Rhodium coating that ensures that the reflector survives the harsh environmental conditions at the summit of Sierra Negra during the 30 year lifetime of the telescope. Finally, the 2.63 m subreflector produced by Media Lario was qualified for typical cold night through hot day observation conditions with a maximum RMS error of 24.8 μm, which meets INAOE's requirements.

  6. The Multiple-Mirror Telescope

    Science.gov (United States)

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  7. The South Pole Telescope

    CERN Document Server

    Ruhl, J E; Carlstrom, J E; Cho, H M; Crawford, T; Dobbs, M; Greer, C H; Halverson, W; Holzapfel, W L; Lanting, T M; Lee, A T; Leong, J; Leitch, E M; Lu, W; Lueker, M; Mehl, J; Meyer, S S; Mohr, J J; Padin, S; Plagge, T; Pryke, C L; Schwan, D; Sharp, M K; Runyan, M C; Spieler, H; Staniszewski, Z; Stark, A A

    2004-01-01

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency...

  8. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  9. The Travelling Telescope

    Science.gov (United States)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  10. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  11. LSST telescope modeling overview

    Science.gov (United States)

    Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael

    2016-08-01

    During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.

  12. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  13. Reflecting telescope optics

    CERN Document Server

    Wilson, Raymond N

    2004-01-01

    R.N. Wilson's two-volume treatise on reflecting telescope optics has become a classic in its own right. It is intended to give a complete treatment of the subject, addressing professionals in research and industry as well as students of astronomy and amateur astronomers. This first volume, Basic Design Theory and its Historical Development, is devoted to the theory of reflecting telescope optics and systematically recounts the historical progress. The author's approach is morphological, with strong emphasis on the historical development. The book is richly illustrated including spot-diagrams a

  14. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  15. Pointing the SOFIA Telescope

    CERN Document Server

    Gross, Michael A K; Moore, Elizabeth M

    2010-01-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  16. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    Science.gov (United States)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  17. A Simple "Tubeless" Telescope

    Science.gov (United States)

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  18. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  19. THE LARGE MILLIMETER TELESCOPE

    Directory of Open Access Journals (Sweden)

    D. H. Hughes

    2009-01-01

    Full Text Available This paper, presented on behalf of the Large Millimeter Telescope (LMT project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between M xico and the USA, led by the Instituto Nacional de Astrof sica, ptica y Electr nica (INAOE and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeterwave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain rst-light at millimeter wavelengths in 2008. Installation of the remainder of the re ector will continue during the next year and be completed in 2009 for nal commissioning of the antenna. The full LMT antenna, out ted with its initial complement of scienti c instruments, will be a world-leading scienti c research facility for millimeter-wave astronomy.

  20. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  1. NRAO Green Bank Telescope (GBT)

    Data.gov (United States)

    Federal Laboratory Consortium — The largest fully steerable telescope in the world - the Robert C. Byrd Green Bank Telescope, began observations in Green Bank, West Virginia in 2000and is a wonder...

  2. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  3. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  4. The ANTARES Neutrino Telescope

    CERN Document Server

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  5. Telescopic limiting magnitudes

    Science.gov (United States)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  6. Telescopes of galileo.

    Science.gov (United States)

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  7. Comparing NEO Search Telescopes

    CERN Document Server

    Myhrvold, Nathan

    2015-01-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross- comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments - Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of earth impacting NEO. The results of the comparis...

  8. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  9. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  10. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  11. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  12. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  13. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  14. SOAR Telescope Progress Report

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  15. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  16. Magellan Telescopes operations 2008

    Science.gov (United States)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  17. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  18. Large Size Telescope Report

    CERN Document Server

    Mazin, D; Teshima, M

    2016-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to f...

  19. Upgrade of the MAGIC telescopes

    CERN Document Server

    Mazin, Daniel; Garczarczyk, Markus; Giavitto, Gianluca; Sitarek, Julian

    2014-01-01

    The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. With 17m diameter mirror dishes and ultra-fast electronics, they provide an energy threshold as low as 50 GeV for observations at low zenith angles. The first MAGIC telescope was taken in operation in 2004 whereas the second one joined in 2009. In 2011 we started a major upgrade program to improve and to unify the stereoscopic system of the two similar but at that time different telescopes. Here we report on the upgrade of the readout electronics and digital trigger of the two telescopes, the upgrade of the camera of the MAGIC I telescope as well as the commissioning of the system after this major upgrade.

  20. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  1. Near Earth Object Survey Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Near Earth Object Survey Telescope (NEOST), located at the Xuyi station of the Purple Mountain Observatory, is a telescope with the most powerful detection capacity, the highest efficiency and the best performance in the fields of near Earth object survey and optical imaging in China. NEOST is an 171.8 Schmidt type telescope with a 1.20 meter primary mirror and a 1.04 meter corrector,

  2. 基于运动相对性的六足机器人机体运动规划%Body Motion Planning for a Hexapod Robot Based on Relative Motion

    Institute of Scientific and Technical Information of China (English)

    李满宏; 张明路; 张建华; 张小俊

    2015-01-01

    将处于支撑相的六足机器人视为时变的并联机构进行运动学分析,给出了姿态给定情况下机体工作空间的确定方法及边界方程。在此基础上基于运动相对性原理,提出将机体的运动规划转化为足端轨迹规划的方法,从而简化机体运动规划中逆解的求取问题,并通过仿真与实验进行了验证。结果表明:六足机器人在支撑相内机体的工作空间为至多是支撑腿条数个空心球体的交集,利用运动相对性原理对支撑相内机体的运动规划问题进行转化简便、可行。%A hexapod robot in support phase was regarded as a time-varying parallel mechanism to make the kinematics analysis.The determination methods and boundary equations of the workspace were described herein for the hexapod robot whose body posture was given.Based on the relative mo-tion theory,a method to transform body motion planning into foot trajectory planning was presented to simplify the issue of body motion planning.Simulation and experimental results show that the workspace for the hexapod robot in support phase is the intersection of the hollow spheres whose number is up to the number of the support legs and using the principles of relative motion to trans-form the issue of body motion planning in support phase it is simple and feasible.

  3. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  4. Building Medium Size Telescope Structures for the Cherenkov Telescope Array

    CERN Document Server

    Schulz, A; Oakes, L; Schlenstedt, S; Schwanke, U

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the future instrument in ground-based gamma-ray astronomy in the energy range from 20 GeV to 300 TeV. Its sensitivity will surpass that of current generation experiments by a factor $\\sim$10, facilitated by telescopes of three sizes. The performance in the core energy regime will be dominated by Medium Size Telescopes (MST) with a reflector of 12 m diameter. A full-size mechanical prototype of the telescope structure has been constructed in Berlin. The performance of the prototype is being evaluated and optimisations, among others, facilitating the assembly procedure and mass production possibilities are being implemented. We present the current status of the developments from prototyping towards pre-production telescopes, which will be deployed at the final site.

  5. The neutrino telescope ANTARES

    Directory of Open Access Journals (Sweden)

    Gleixner Andreas

    2014-04-01

    Full Text Available The ANTARES neutrino telescope is currently the largest neutrino detector in the Northern Hemisphere. The detector consists of a three-dimensional array of 885 photomultiplier tubes, distributed along 12 lines, located at a depth of 2500 m in the Mediterranean Sea. The purpose of the experiment is the detection of high-energy cosmic neutrinos. The detection principle is based on the observation of Cherenkov-Light emitted by muons resulting from charged-current interactions of muon neutrinos in the vicinity of the detection volume. The main scientific targets of ANTARES include the search for astrophysical neutrino point sources, the measurement of the diffuse neutrino flux and the indirect search for dark matter.

  6. Spectroradiometry with Space Telescopes

    CERN Document Server

    Pauluhn, Anuschka; Smith, Peter L; Colina, Luis

    2015-01-01

    Radiometry has been of fundamental importance in astronomy from the early beginnings. Initially, astronomers had their own radiometric system, based on extraterrestrial standards, namely the irradiance of stars expressed in visual magnitudes. Observing and comparing magnitudes in specific spectral bands then led to the astronomical spectrophotometry. The advent of astronomical high-resolution spectroscopy offered the possibility to interpret observations through physical models of stellar atmospheres. Such models had to be constructed based on physics-related units, and such units, rather than magnitudes, were then used for observational tests of the models. In this review, we provide an overview of how to achieve a valid laboratory calibration, and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. Recently, the quest for independent calibrations traceable to laboratory standards has become a well-supported aim, and has led to plans for now also launching ...

  7. The ANTARES neutrino telescope

    CERN Document Server

    Zornoza, Juan de Dios

    2012-01-01

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  8. Composite telescope technology

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  9. Design of Hexapod Bionic Robot Based on STC Microcontroller%基于STC单片机的仿生六足机器人设计

    Institute of Scientific and Technical Information of China (English)

    吴宏岐; 郭梦宇

    2013-01-01

    To satisfy the requests of special conditions for the robot, a hexapod robot is designed by using bionics principle which can mimic the motion of some animal. The STC microcontroller is used as the core of control circuit. The AET168P1 steering gear control panel is used to drive the sports joints through the YZW-Y 09G type steering gear. It can achieve each function of application requirements under software control. The robot has a strong adaptability to all sorts of the ground condition, such as it is not easy to fall into the soft ground. The system has shown its high value such as low cost,strong anti-interference capacity,high sensitivity and reliability.%为满足特殊环境对于机器人的提出的要求,应用仿生学原理,设计一六足机器人,可模仿生物的运动形式;它以STC12C5A60S2型单片机为控制核心,通过YZW-Y09G型舵机来驱动的运动关节,选用AET168P1舵机控制板,在系统软件控制下来实现其各项功能.这种仿生六足机器人对各种地面有很强的适应能力,不易陷入松软地面里,且制作成本低,抗干扰能力强、灵敏度高、安全可靠,具有较高的使用价值.

  10. European Solar Telescope: Progress status

    NARCIS (Netherlands)

    Collados, M.; Bettonvil, F.C.M.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.

    2010-01-01

    In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi-c

  11. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  12. Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe{sub 3}O{sub 4} core/shell composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junhao, E-mail: jhzhang6@mail.ustc.edu.cn [School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang 212003 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Du Jin; Qian Yitai [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yin Qinghuan; Zhang Dongjing [School of Material Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang 212003 (China)

    2010-06-15

    A shape-controlled synthesis of carbon-encapsulated Fe{sub 3}O{sub 4} core/shell (Fe{sub 3}O{sub 4}-C) composites is reported in this paper. By tuning the reaction temperature from 500 deg. C to 700 deg. C and the amount of ammonium acid carbonate (1.0 g, 0.5 g and 2.0 g) in a sealed reaction system, Fe{sub 3}O{sub 4}-C composites with hexapod-like, flake-like, and chain-like morphologies have been successfully obtained using ferrocene as the precursor. Corresponding hollow carbon structures can be obtained by acid treatments. The three kinds of Fe{sub 3}O{sub 4}-C composites show ferromagnetic properties at room temperature, while their saturation magnetizations and coercivities are obviously different from each other, due to the various shapes and structures. Possible formation processes of these Fe{sub 3}O{sub 4}-C composites and corresponding hollow carbon materials are discussed. The experimental results indicate that the reaction temperature and the amount of ammonium acid carbonate play key roles in the shape-controlled synthesis of hexapod-like, flake-like and chain-like Fe{sub 3}O{sub 4}-C composites.

  13. Operating a heterogeneous telescope network

    Science.gov (United States)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  14. Why systems engineering on telescopes?

    Science.gov (United States)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  15. The Automatic Telescope Network (ATN)

    CERN Document Server

    Mattox, J R

    1999-01-01

    Because of the scheduled GLAST mission by NASA, there is strong scientific justification for preparation for very extensive blazar monitoring in the optical bands to exploit the opportunity to learn about blazars through the correlation of variability of the gamma-ray flux with flux at lower frequencies. Current optical facilities do not provide the required capability.Developments in technology have enabled astronomers to readily deploy automatic telescopes. The effort to create an Automatic Telescope Network (ATN) for blazar monitoring in the GLAST era is described. Other scientific applications of the networks of automatic telescopes are discussed. The potential of the ATN for science education is also discussed.

  16. Formation flight astronomical survey telescope

    Science.gov (United States)

    Tsunemi, Hiroshi

    2012-03-01

    Formation Flight Astronomical Survey Telescope (FFAST) is a project for hard X-ray observation. It consists of two small satellites; one (telescope satellite) has a super mirror covering the energy range up to 80 keV while the other (detector satellite) has an scintillator deposited CCD (SDCCD) having good spatial resolution and high efficiency up to 100 keV. Two satellites will be put into individual Kepler orbits forming an X-ray telescope with a focal length of 20 m. They will be not in pointing mode but in survey mode to cover a large sky region.

  17. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... at the plane of the external image) which is denominated D2 and wherein D1 is larger than a second diameter D2 and wherein the telescope further comprises a third optical component (103) and a fourth optical component (104); arranged for re-imaging the first image into a second image of the back-focal plane...

  18. Bhavnagar Telescope: the most widely travelled telescope in the country

    CERN Document Server

    Rao, N Kameswara; Vagiswari, A

    2014-01-01

    In the last decade of the 19th century Maharaja Takhtasingji Observatory was built at Poona (1888-1912) under the supervision of K.D.Naegamavala, with the grant from Maharaja of Bhavnagar (from where the name Bhavnagar Telescope must have originated. The story of this telescope from its inception to the current status is traced. IIA Archives has been extensively used to resource information for this note.

  19. Ice Middleware in the New Solar Telescope's Telescope Control System

    Science.gov (United States)

    Shumko, S.

    2009-09-01

    The Big Bear Solar Observatory (BBSO) is now in the process of assembling and aligning its 1.6 m New Solar Telescope (NST). There are many challenges controlling NST and one of them is establishing reliable and robust communications between different parts of the Telescope Control System (TCS). For our TCS we selected Ice (Internet communication engine) from ZeroC, Inc. In this paper we discuss advantages of the Ice middleware, details of implementation and problems we face implementing it.

  20. The small size telescope projects for the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    The small size telescopes (SSTs), spread over an area of several square km, dominate the CTA sensitivity in the photon energy range from a few TeV to over 100 TeV, enabling for the detailed exploration of the very high energy gamma-ray sky. The proposed telescopes are innovative designs providing a wide field of view. Two of them, the ASTRI (Astrophysics con Specchi a Tecnologia Replicante Italiana) and the GCT (Gamma-ray Cherenkov Telescope) telescopes, are based on dual mirror Schwarzschild-Couder optics, with primary mirror diameters of 4 m. The third, SST-1M, is a Davies-Cotton design with a 4 m diameter mirror. Progress with the construction and testing of prototypes of these telescopes is presented. The SST cameras use silicon photomultipliers, with preamplifier and readout/trigger electronics designed to optimize the performance of these sensors for (atmospheric) Cherenkov light. The status of the camera developments is discussed. The SST sub-array will consist of about 70 telescopes at the CTA souther...

  1. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  2. Hubble Space Telescope-Illustration

    Science.gov (United States)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. The Large Binocular Telescope Project

    Science.gov (United States)

    Hill, J. M.

    1995-05-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in spring of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximicrons flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximicrons stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia

  4. BCK Network of Optical Telescopes

    Science.gov (United States)

    McGruder, Charles H.; Antoniuk, Krill; Carini, Michael T.; Gelderman, Richard; Hammond, Benjamin; Hicks, Stacy; Laney, David; Shakhovskoy, David; Strolger, Louis-Gregory; Williams, Joshua

    2015-01-01

    The BCK network consists of three research grade telescopes: 0.6m (B) at the Bell Observatory near Western Kentucky University (WKU), 1.3m (C) at the Crimean Astrophysical Observatory and a 1.3m (K) at Kitt Peak National Observatory. The Bell Telescope is operated remotely from WKU while the Robotically Controlled Telescope (RCT) at Kitt Peak possesses an autonomous scheduler. The BCK telescopes are distributed longitudinally over 145º and can be used to observe continuously up to 21.2 hours/day. The network will be chiefly employed to observe variable stars, blazars and unpredictable celestial events.Because celestial objects with ground-based telescopes cannot be observed optically during the daytime, continuous ground-based astronomical observations are only possible via a network of longitudinally distributed telescopes. When the sun rises in Crimea after it sets at Bell, continuous observations are possible. This occurs for about six and ½ months per year - mid September to early April. A network is highly desirable for events that are not predictable for instance the appearance of supernovae, gamma-ray bursts, or undiscovered exoplanetsVariable stars are really only known in significant numbers to about 14 mag. But, as the magnitude increases the number of stars in any field increases very sharply, so there are many variable stars to discover at faint magnitude (m > 14). Discovering new variables makes great undergraduate student projects, a major component of astronomical research at WKU. In addition, pinning down the periods of variable stars is greatly facilitated with a network of telescopes.The BCK telescope network will also be used for monitoring the optical variability of blazars. The network provides increased coverage on daily variability timescales by minimizing interruptions due to weather and or mechanical problems at any one observatory and is used for obtaining continuous (12+ hours) of observations of rapid variability in blazars which would

  5. SLAS Library Telescope Program (Abstract)

    Science.gov (United States)

    Small, J. S.

    2016-12-01

    (Abstract only) In the fall of 2014, I submitted to the members of the St. Louis Astronomical Society to take the $1,000 profit we had from a convention we had hosted and use it to purchase three telescopes to modify for a Library Telescope program that was invented by Mark Stowbridge and promoted by the New Hampshire Astronomical Society. I had met Mark at NEAF in 2012 when he was walking the floor demonstrating the telescope. We held meetings with three libraries, the St. Louis County Library system, the St. Louis Public Library system and an independent library in Kirkwood, Missouri. The response was overwhelming! SLCL responded with a request for ten telescopes and SLPL asked for five. We did our first build in October, 2014 and placed a total of eighteen telescopes. Since that time, SLAS has placed a total of eighty-eight telescopes in library systems around the St. Louis Metro area, expanding into neighboring counties and across the river in Illinois. In this talk, I will discuss how to approach this project and put it in place in your libraries!

  6. Concept Design for SOAR Telescope

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.; Moretto, G.

    1998-12-01

    The Southern Astrophysical Research (SOAR) telescope is a \\$28M collaboration between Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill. NOAO will operate the telescope for 20 years in exchange for 30 astronomers.) The project is now fully funded. This f/16 telescope is optimized for high-quality images across the isokinetic field (0."17 FWHM degradation from the telescope+facility over a field of 7.5' diameter.) It is being designed to take up to 2 Gemini-class (2100 kg) instruments, or a combination of lighter instruments at 7 Nasmyth and bent Cassegrain foci. The facility is now under construction atop Cerro Pachon, 400m from Gemini-S. First light is currently scheduled for early 2002. Corning Inc. is preparing to fabricate the 4.2m-diameter, 7.5-10 cm thick primary mirror from ULE glass. In early 1999 contacts will be awarded for 2 major subsystems: active optics (which includes optics polishing), and the alt.-az. telescope mount. We will outline the novel strategies that are being used to control project costs while optimizing telescope performance. Instrumentation plans will also be summarized.

  7. The upgraded MAGIC Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Tescaro, D., E-mail: dtescaro@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Universidad de La Laguna (ULL), Dept. Astrofísica, E-38206 La Laguna, Tenerife (Spain)

    2014-12-01

    The MAGIC Cherenkov telescopes underwent a major upgrade in 2011 and 2012. A new 1039-pixel camera and a larger area digital trigger system were installed in MAGIC-I, making it essentially identical to the newer MAGIC-II telescope. The readout systems of both telescopes were also upgraded, with fully programmable receiver boards and DRS4-chip-based digitization systems. The upgrade eased the operation and maintenance of the telescopes and also improved significantly their performance. The system has now an integral sensitivity as good as 0.6% of the Crab Nebula flux (for E>400GeV), with an effective analysis threshold at 70 GeV. This allows MAGIC to secure one of the leading roles among the current major ground-based Imaging Atmospheric Cherenkov telescopes for the next 5–10 years. - Highlights: • In 2011 and 2012 the MAGIC telescopes underwent a two-stage major upgrade. • The new camera of MAGIC-I allows us to exploit a 1.4 larger trigger area. • The novel DRS4-based readout systems allow a cost-effective ultra-fast digitization. • The upgrade greatly improved the maintainability of the system. • MAGIC has now an optimal integral sensitivity of 0.6% of the Crab Nebula flux.

  8. Demonstration Telescopes Using "Dollar Optics"

    Science.gov (United States)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  9. The Research Productivity of Small Telescopes and Space Telescopes

    CERN Document Server

    Ringwald, F A; Lovell, R L; Kays, S A; Torres, Y V A

    2003-01-01

    We present statistics on the research productivity of astronomical telescopes. These were compiled by finding papers in which new data were presented, noting which telescopes were used, and then counting the number of papers, number of pages, and other statistics. The journals used were the Astronomical Journal, the Astrophysical Journal (including the Letters and Supplements), and the Publications of the Astronomical Society of the Pacific. We also compiled citations from the Science Citation Index. This work was designed to be similar to that of Trimble (1995), except that more recent journals (from 1995) and citations (from 1998) were used. We also did not restrict our sample to large telescopes only: we included all telescopes from which new data were presented, the smallest of which was a 0.1-m. The data were gathered by first-year work-study undergraduates, who were instructed to include data for all telescopes for which they found new data were included in the journals. A by-product of this research wa...

  10. Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Meagher, Kevin J

    2014-01-01

    The Cherenkov Telescope Array (CTA) is the next major ground-based observatory for gamma-ray astronomy. With CTA gamma-ray sources will be studied in the very-high energy gamma-ray range of a few tens of GeV to 100 TeV with up to ten times better sensitivity than available with current generation instruments. We discuss the proposed US contribution to CTA that comprises imaging atmospheric Cherenkov telescope with Schwarzschild-Couder (SC) optics. Key features of the SC telescope are a wide field of view of eight degrees, a finely pixelated camera with silicon photomultipliers as photon detectors, and a compact and power efficient 1 GS/s readout. The progress in both the optical system and camera development are discussed in this paper.

  11. FAMOUS. The fluorescence telescope prototype

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Lauscher, Markus; Middendorf, Lukas; Niggemann, Tim; Peters, Christine; Sommer, Dominik; Stephan, Maurice [III. Physikalisches Institut A, RWTH Aachen University (Germany); Auffenberg, Jan; Schaufel, Merlin [III. Physikalisches Institut B, RWTH Aachen University (Germany)

    2015-07-01

    One of the most successful techniques for the detection of air showers produced by ultra-high-energy cosmic rays are fluorescence telescopes. The light produced by de-exciting nitrogen in the atmosphere is typically detected by photomultiplier tubes (PMTs). This technique has been successfully used by the Pierre Auger Observatory in Argentina for many years. Silicon photomultipliers (SiPMs) promise higher photon detection efficiencies than PMTs. This and other advantages motivate the construction of the fluorescence telescope prototype FAMOUS (First Auger Multi-pixel photon counter camera for the Observation of Ultra-high-energy air Showers) which makes use of SiPMs. In this talk we discuss the FAMOUS telescope with a new 64-pixel camera including power supply and DAQ.

  12. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  13. Feature-based telescope scheduler

    Science.gov (United States)

    Naghib, Elahesadat; Vanderbei, Robert J.; Stubbs, Christopher

    2016-07-01

    Feature-based Scheduler offers a sequencing strategy for ground-based telescopes. This scheduler is designed in the framework of Markovian Decision Process (MDP), and consists of a sub-linear online controller, and an offline supervisory control-optimizer. Online control law is computed at the moment of decision for the next visit, and the supervisory optimizer trains the controller by simulation data. Choice of the Differential Evolution (DE) optimizer, and introducing a reduced state space of the telescope system, offer an efficient and parallelizable optimization algorithm. In this study, we applied the proposed scheduler to the problem of Large Synoptic Survey Telescope (LSST). Preliminary results for a simplified model of LSST is promising in terms of both optimality, and computational cost.

  14. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  15. Autonomous Dome for Robotic Telescope

    CERN Document Server

    Kumar, Akash; Ganesh, Shashikiran

    2016-01-01

    Physical Research Laboratory operates a 50cm robotic observatory at Mount Abu. This Automated Telescope for Variability Studies (ATVS) makes use of Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  16. Telescoping phenomenon in pathological gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Mooney, Marc E

    2012-01-01

    The course of pathological gambling (PG) in women has been described as having a later age of initiation but a shorter time to problematic gambling ("telescoped"). This study examined evidence for telescoping and its relationship with comorbidities. Seventy-one treatment-seeking individuals with PG...... underwent a diagnostic interview to examine gambling behaviors, age at initiation of gambling, and time from initiation to meeting criteria for PG. The women had a higher mean age at gambling initiation compared with that of the men (mean [SD] age, 31.3 [13.0] years, compared with 22.4 [7.9] years; p = 0...

  17. Highlights from the Telescope Array

    Science.gov (United States)

    Matthews, J. N.

    2016-11-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  18. Wide field of view telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  19. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  20. The network of INTA telescopes

    Science.gov (United States)

    Cuesta, L.

    2008-06-01

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located at some of the best places for astronomy in mainland Spain. The first is at the Observatorio de Calar Alto in Almeria, at an altitude of more than 2100 m. The second is near Calatayud in Zaragoza, at the summit of a 1400-m high mountain. The last is on the campus of the Instituto Nacional de Técnica Aerospatial (INTA), in Madrid. The three telescopes are either 40 or 50 cm in diameter and will be available for communications and educational projects.

  1. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  2. Push-To Telescope Mathematics

    Science.gov (United States)

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  3. NESTOR Neutrino Telescope Status Report

    Science.gov (United States)

    Grieder, P. K. F.; NESTOR Collaboration; Aloupis, A.; Anassontzis, E. G.; Arvanitis, N.; Babalis, A.; Ball, A.; Bourlis, G.; Butkevich, A. V.; Chinowsky, W.; Christopoulos, P. E.; Darsaklis, A.; Dedenko, L. G.; Elistrup, D.; Fahrun, E.; Gialis, J.; Goudis, Ch.; Grammatikakis, G.; Green, C.; Karaevsky, S. K.; Katrivanos, P.; Keussen, U.; Kiskiras, J.; Knutz, Th.; Kolostelov, D.; Komlev, K.; Kontaxis, J.; Koske, P.; Learned, J. G.; Ledenev, V. V.; Leisos, A.; Limberopoulos, G.; Ludvig, J.; Makris, J.; Manousakis-Katsikakis, A.; Markopoulos, E.; Matsuno, S.; Mielke, J.; Mihos, Th.; Minkowski, P.; Mironovich, A. A.; Mitiguy, R.; Nounos, S.; Nygren, D. R.; Papageorgiou, K.; Passera, M.; Politis, C.; Preve, P.; Przybylski, G. T.; Rathlev, J.; Resvanis, L. K.; Rosen, M.; Schmidt, N.; Schmidt, Th.; Siotis, I.; Sopher, J.; Staveris, T.; Stavrakakis, G.; Stokstad, R.; Surin, N. M.; Tsagli, V.; Tsirigotis, A.; Tsirmpas, J.; Tzamarias, S.; Vasiliev, O.; Vaskine, O.; Voigt, W.; Vougioukas, A.; Voulgaris, G.; Zacharov, L. M.; Zheleznykh, I. M.; Zhukov, A.

    2003-07-01

    The first so-called flo or with 12 detector modules of the NESTOR deep sea high energy muon and neutrino telescope had been deployed successfully this March (2003) together with its electronics system. Since that data the system and the associated environmental monitoring units are operating properly and data

  4. Results from the AMANDA telescope

    CERN Document Server

    Bouhali, O

    2003-01-01

    We present results from the AMANDA high energy neutrino telescope located at the South Pole. They include measurements of the atmospheric neutrino flux, search for UHE point sources, and diffuse sources producing electromagnetic/hadronic showers at the detector or close to it. (4 refs).

  5. Cern Axion Solar Telescope (CAST)

    CERN Multimedia

    2002-01-01

    The CERN Solar Axion Telescope, CAST, aims to shed light on a 30-year-old riddle of particle physics by detecting axions originating from the 15 million degree plasma in the Sun 's core. Axions were proposed as an extension to the Standard Model of particle physics to explain why CP violation is observed in weak but not strong interactions.

  6. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  7. The automated Palomar 60 inch telescope

    OpenAIRE

    Cenko, S Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S.R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t

  8. Origins Space Telescope: Telescope Design and Instrument Specifications

    Science.gov (United States)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  9. Alignment of the James Webb Space Telescope optical telescope element

    Science.gov (United States)

    Glassman, Tiffany; Levi, Joshua; Liepmann, Till; Hahn, Walter; Bisson, Gary; Porpora, Dan; Hadjimichael, Theo

    2016-07-01

    The optical telescope element (OTE) of the James Webb Space Telescope has now been integrated and aligned. The OTE comprises the flight mirrors and the structure that supports them - 18 primary mirror segments, the secondary mirror, and the tertiary and fine steering mirrors (both housed in the aft optics subsystem). The primary mirror segments and the secondary mirror have actuators to actively control their positions during operations. This allows the requirements for aligning the OTE subsystems to be in the range of microns rather than nanometers. During OTE integration, the alignment of the major subsystems of the OTE structure and optics were controlled to ensure that, when the telescope is on orbit and at cryogenic temperatures, the active mirrors will be within the adjustment range of the actuators. Though the alignment of this flagship mission was complex and intricate, the key to a successful integration process turned out to be very basic: a clear, concise series of steps employing advanced planning, backup measurements, and cross checks that this multi-organizational team executed with a careful and methodical approach. This approach was not only critical to our own success but has implications for future space observatories.

  10. The Medium Size Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, covering a photon energy range of ~20 GeV to above 100 TeV. CTA will consist of the order of 100 telescopes of three sizes, installed at two sites in the Northern and Southern Hemisphere. This contribution deals with the 12 meter Medium Size Telescopes (MST) having a single mirror (modified Davies-Cotton, DC) design. In the baseline design of the CTA arrays, 25 MSTs in the South and 15 MSTs in the North provide the necessary sensitivity for CTA in the core energy range of 100 GeV to 10 TeV. DC-MSTs will be equipped with photomultiplier (PMT)-based cameras. Two options are available for these focal plane instruments, that will be provided by the FlashCam and the NectarCAM sub-consortia. In this contribution, a short introduction to the projects and their status is given.

  11. The Hubble Space Telescope: Problems and Solutions.

    Science.gov (United States)

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  12. CFRP lightweight structures for extremely large telescopes

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J.

    2008-01-01

    Telescope structures are traditionally built out of steel. To improve the possibility of realizing the ambitious extremely large telescopes, materials with a higher specific stiffness and a lower coefficient of thermal expansion are needed. An important possibility is Carbon Fibre Reinforced...... Plastic (CFRP). The advantages of using CFRP for the secondary mirror support structure of the European overwhelmingly large telescope are discussed....

  13. The Principles of Astronomical Telescope Design

    CERN Document Server

    Cheng, Jingquan

    2009-01-01

    Presents a summary of the author's twenty five years of experience in telescope design. This work provides a general introduction to various aspects of telescope design. It discusses the theory behind telescope design. It covers Radio, Infrared, Optical, X-Ray and Gamma-Ray wavelengths

  14. Highlights from the Telescope Array

    Directory of Open Access Journals (Sweden)

    Matthews J.N.

    2016-01-01

    Full Text Available The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth’s surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  15. Focusing X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  16. Cherenkov Telescope Array Data Management

    CERN Document Server

    Lamanna, G; Contreras, J L; Knödlseder, J; Kosack, K; Neyroud, N; Aboudan, A; Arrabito, L; Barbier, C; Bastieri, D; Boisson, C; Brau-Nogué, S; Bregeon, J; Bulgarelli, A; Carosi, A; Costa, A; De Cesare, G; Reyes, R de los; Fioretti, V; Gallozzi, S; Jacquemier, J; Khelifi, B; Kocot, J; Lombardi, S; Lucarelli, F; Lyard, E; Maier, G; Massimino, P; Osborne, J P; Perri, M; Rico, J; Sanchez, D A; Satalecka, K; Siejkowski, H; Stolarczyk, T; Szepieniec, T; Testa, V; Walter, R; Ward, J E; Zoli, A

    2015-01-01

    Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientific products are some of the challenges in designing the CTA Data Management. The participation of scientists from within CTA Consortium and from the greater worldwide scientific community necessitates a sophisticated scientific analysis system capable of providing unified and efficient user access to data, software and computing resources. Data Management is designed to respond to three main issues: (i) the treatment and flow of data from remote telescopes; (ii) "big-data" archiving and processing; (iii) and open data access. In this communication the overall technical design of the CTA Data Management, current major developments and prototypes are presented.

  17. The Ortega Telescope Andor CCD

    Science.gov (United States)

    Tucker, M.; Batcheldor, D.

    2012-07-01

    We present a preliminary instrument report for an Andor iKon-L 936 charge-couple device (CCD) being operated at Florida Tech's 0.8 m Ortega Telescope. This camera will replace the current Finger Lakes Instrumentation (FLI) Proline CCD. Details of the custom mount produced for this camera are presented, as is a quantitative and qualitative comparison of the new and old cameras. We find that the Andor camera has 50 times less noise than the FLI, has no significant dark current over 30 seconds, and has a smooth, regular flat field. The Andor camera will provide significantly better sensitivity for direct imaging programs and, once it can be satisfactorily tested on-sky, will become the standard imaging device on the Ortega Telescope.

  18. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  19. The James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  20. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  1. QUIJOTE telescope design and fabrication

    Science.gov (United States)

    Gomez, Alberto; Murga, Gaizka; Etxeita, Borja; Sanquirce, Rubén; Rebolo, Rafael; Rubiño-Martin, Jose Alberto; Herreros, José-Miguel; Hoyland, Roger; Gomez, Francisca; Génova-Santos, Ricardo T.; Piccirillo, Lucio; Maffei, Bruno; Watson, Robert

    2010-07-01

    The QUIJOTE CMB experiment aims to characterize the polarization of the CMB in the frequency range 10-30 GHz and large angular scales. It will be installed in the Teide Observatory, following the projects that the Anisotropy of the Cosmic Microwave Background group has developed in the past (Tenerife experiment, IAC-Bartol experiment...) and is running at the present time (VSA, Cosmosomas). The QUIJOTE CMB experiment will consist of two telescopes which will be installed inside a unique enclosure, which is already constructed. The layout of both telescopes is based on an altazimuth mount supporting a primary and a secondary mirror disposed in a offset Gregorian Dragon scheme. The use of industrial-like fabrication techniques, such as sand-mould casting, CNC machining, and laser tracker measuring for alignment, provided the required performances for microwave observation. A fast-track construction scheme, altogether with the use of these fabrication techniques allowed designing and manufacturing the opto-mechanics of the telescope in 14 months prior to delivery for final start-up in December 2008.

  2. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  3. Building the Green Bank Telescope

    Science.gov (United States)

    Kellermann, Kenneth I.

    2017-01-01

    In a previous presentation, I reported on how the freak collapse of the NRAO 300-ft transit radio telescope led to the inclusion of $75 million for a new radio telescope in the 1989 Congressional Emergency Supplemental Appropriations Act. But, this was only the beginning. NRAO was faced with challenging specifications and an unworkable schedule, but there was no design and no project team. Only one bid was even close to the Congressional appropriation. In an attempt to meet the unrealistic antenna delivery date, the contractor started construction of the foundation and fabrication of antenna members before the design was finished, leading to retrofits, redesign, and multiple delays. The antenna contractor was twice sold to other companies leading to further delays and cost escalation. In order to recoup their mounting losses, the new owners sued NRAO for $29 million for claimed design changes, and NRAO countersued demanding to be reimbursed for added project management costs and lost scientific data resulting from the seven-year delay in the completion of the telescope. Legal fees and a small net award in favor of the contractor left NRAO and the NSF with a nine million dollar bill which NSF handled by an innovative accounting adjustment.

  4. Educational activities with the Faulkes Telescopes

    Science.gov (United States)

    Roberts, S.; Roche, P.; Ross, R.

    2008-06-01

    Las Cumbres Observatory Global Telescope Network (LCOGTN) will eventually provide access to a global network of robotic telescopes for research-based science education. Here we present the educational projects that have been undertaken using the 2-m Faulkes Telescopes in Hawaii and Australia in both the UK and Europe. These include themed observing days in which schools collaborate in their telescope sessions, the development of science portals where schools can upload and share their telescope data, and other innovative projects. Public access to these facilities will increase as IYA2009 approaches.

  5. Hard X-ray Modulation Telescope

    Institute of Scientific and Technical Information of China (English)

    LU Fangjun

    2011-01-01

    The Hard X-ray Modulation Telescope (HXMT) will be China's first astronomical satellite. On board HXMT there are three kinds of slat-collimated telescopes, the High Energy X-ray Telescope (HE, 20-250 keV, 5000 cm^2), the Medium Energy X-ray Telescope (ME, 5-30 keV, 952 cm^2), and the Low Energy X-ray Telescope (LE, 1-15 keV, 384 cm^2).

  6. Aligning Astronomical Telescopes via Identification of Stars

    Science.gov (United States)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  7. Herschel SPIRE FTS telescope model correction

    CERN Document Server

    Hopwood, Rosalind; Polehampton, Edward T; Valtchanov, Ivan; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Pearson, Chris P; Swinyard, Bruce M

    2014-01-01

    Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling and removal of the telescope contribution is, therefore, an important and challenging aspect of FTS calibration and data reduction pipeline. A dust-contaminated telescope model with time invariant mirror emissivity was adopted before the Herschel launch. However, measured FTS spectra show a clear evolution of the telescope contribution over the mission and strong need for a correction to the standard telescope model in order to reduce residual background (of up to 7 Jy) in the final data products. Systematic changes in observations of dark sky, taken over the course of the mission, provide a measure of the evolution between observed telescope emission and the telescope model. These dark sky observations have been used to derive a time dependent correction to the tel...

  8. Free Gait Generation Algorithm for a Hexapod Robot Based on Discretization%基于离散化的六足机器人自由步态生成算法

    Institute of Scientific and Technical Information of China (English)

    李满宏; 张明路; 张建华; 张小俊

    2016-01-01

    为精细模仿生物步态,充分发挥六足机器人运动潜能,在离散化机器人单足工作空间的基础上,融合中枢模式发生器(Central pattern generators, CPG)模型与反射模型的核心思想,建立离散化步态模型,基于稳定性分析,构建机器人稳定的位置状态空间,将步态规划问题转化为稳定的位置状态空间中位置状态间的排序问题,在此基础上,提出一种新的自由步态生成算法,并结合试验样机开展步态试验。试验结果表明,自由步态生成算法可根据给定的速度要求生成符合生物运动特点的稳定步态以实现机器人的灵活运动。%In order to imitate biological gait subtly and develop the movement potential of the hexapod robot comprehensively, a discrete model of stepping is built based on the discretization of foot workspaces and the fusion of central pattern generators (CPG) model and reflect model. Based on the stability analysis, the stable state space is constructed and the issue of gait planning is transformed into the reordering problem of states in the stable state space. Then a new free gait generation algorithm is proposed and different gait experiments tailored for a hexapod robot are conducted to verify the effectiveness of the algorithm. The results show the free gait generation algorithm can generate stable gait which accords with motion characteristics of creatures according to the given speed to achieve movements flexibly.

  9. Status of the Cherenkov Telescope Array's Large Size Telescopes

    CERN Document Server

    Cortina, J

    2015-01-01

    The Cherenkov Telescope Array (CTA) observatory, will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 PMTs and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is well underway. In 2016 the first LST will be installed at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain). In this talk we will outline the technical solutions adopted to fulfill the design requirem...

  10. Cosmography with the Einstein Telescope

    CERN Document Server

    Sathyaprakash, B S; Broeck, Chris Van Den

    2009-01-01

    Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure both the luminosity distance and red-shift to the source. By fitting these measured values to a cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.

  11. The Advanced Compton Telescope Mission

    CERN Document Server

    Boggs, S E; Ryan, J; Aprile, E; Gehrels, N; Kippen, M; Leising, M; Oberlack, U; Wunderer, C; Zych, A; Bloser, P; Harris, M; Hoover, A; Klimenk, A; Kocevski, D; McConnell, M; Milne, P; Novikova, E I; Phlips, B; Polsen, M; Sturner, S; Tournear, D; Weidenspointner, G; Wulf, E; Zoglauer, A; Baring, M; Beacom, J; Bildsten, L; Dermer, C; Hartmann, D; Hernanz, M; Smith, D; Starrfield, S; Boggs, Steven E.; Kurfess, James; Ryan, James; Aprile, Elena; Gehrels, Neil; Kippen, Marc; Leising, Mark; Oberlack, Uwe; Wunderer, Cornelia; Zych, Allen; Bloser, Peter; Harris, Michael; Hoover, Andrew; Klimenk, Alexei; Kocevski, Dan; Connell, Mark Mc; Milne, Peter; Novikova, Elena I.; Phlips, Bernard; Polsen, Mark; Sturner, Steven; Tournear, Derek; Weidenspointner, Georg; Wulf, Eric; Zoglauer, Andreas; Baring, Matthew; Beacom, John; Bildsten, Lars; Dermer, Charles; Hartmann, Dieter; Hernanz, Margarita; Smith, David; Starrfield, Sumner

    2006-01-01

    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations.

  12. Scientific Potential of Einstein Telescope

    CERN Document Server

    Sathyaprakash, B; Acernese, F; Andersson, P Amaro-Seoane N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beveridge, M Beker N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; Salvo, R De; Dent, T; Rosa, R De; Fiore, L Di; Virgilio, A Di; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hild, S; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller--Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Racz, I; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Rezzolla, L; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Schnabe, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; Veggel, M van; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K

    2011-01-01

    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.

  13. Origins Space Telescope: Community Participation

    Science.gov (United States)

    Carey, Sean J.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. This poster will outline the ways in which the astronomical community can participate in the STDT activities and a summary of tools that are currently available or are planned for the community during the study. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.

  14. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  15. Far Ultraviolot Space Telescope (FAUST)

    Science.gov (United States)

    Bowyer, S.

    1988-01-01

    The Far Ultraviolet Space Telescope is a compact, wide field-of-view, far ultraviolet instrument designed for observations of extended and point sources of astronomical interest. It was originally used in sounding rocket work by both French and American investigators. The instrument was modified for flight on the space shuttle and flew on the Spacelab 1 mission as a joint effort between the Laboratoire d'Astronomie Spatiale and the University of California, Berkeley. The prime experiment objective of this telescope on the Atmospheric Laboratory Applications and Science (ATLAS 1) NASA mission is to observe faint astronomical sources in the far ultraviolet with sensitivities far higher than previously available. The experiment will cover the 1300 to 1800 A band, which is inaccessible to observers on earth. The observing program during the mission consists of obtaining deep sky images during spacecraft nighttime. The targets will include hot stars and nebulae in our own galaxy, faint diffuse galactic features similar to the cirrus clouds seen by the Infrared Astronomical Satellite (IRAS), large nearby galaxies, nearby clusters of galaxies, and objects of cosmological interest such as quasars and the diffuse far ultraviolet background.

  16. ALMA telescope reaches new heights

    Science.gov (United States)

    2009-09-01

    of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in

  17. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  18. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  19. Parameterized Telescoping Proves Algebraic Independence of Sums

    CERN Document Server

    Schneider, Carsten

    2008-01-01

    Usually creative telescoping is used to derive recurrences for sums. In this article we show that the non-existence of a creative telescoping solution, and more generally, of a parameterized telescoping solution, proves algebraic independence of certain types of sums. Combining this fact with summation-theory shows transcendence of whole classes of sums. Moreover, this result throws new light on the question why, e.g., Zeilberger's algorithm fails to find a recurrence with minimal order.

  20. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  1. Resolution studies with the DATURA beam telescope

    CERN Document Server

    Jansen, Hendrik

    2016-01-01

    We present resolution studies carried out with the DATURA beam telescope, which belongs to the family of EUDET-type beam telescopes. The EUDET-type beam telescopes make use of CMOS MIMOSA 26 pixel detectors for particle tracking allowing for precise characterisation of particle sensing devices. A profound understanding of the performance of the beam telescope as a whole is obtained by a detailed characterisation of the sensors themselves. We extract the differential intrinsic resolution as measured in a MIMOSA 26 sensor using an iterative pull method and show various clustersize dependent quantities as the residual distribution, the intra-pixel residual width distribution and the intra-pixel frequency distribution.

  2. Recent Results from Telescope Array

    CERN Document Server

    Fukushima, M

    2015-01-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum Xmax are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20 degrees radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 sigma. The measured Xmax is consistent with the primary being proton or light nuclei for energies 10^18.2 eV - 10^19.2 eV.

  3. NESTOR Deep Sea Neutrino Telescope

    Science.gov (United States)

    NESTOR Collaboration; Aggouras, G.; Anassontzis, E. G.; Ball, A. E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L. K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V. A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons.

  4. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  5. Diffractive X-ray Telescopes

    CERN Document Server

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super-massive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  6. Adaptive Optics for Large Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  7. COSMOS Hubble Space Telescope Observations

    CERN Document Server

    Scoville, N Z; Blain, A W; Calzetti, D; Comastri, A; Capak, P; Carilli, C; Carlstrom, J E; Carollo, C M; Colbert, J; Daddi, E; Ellis, Richard S; Elvis, M; Ewald, S P; Fall, M; Franceschini, A; Giavalisco, M; Green, W; Griffiths, R E; Guzzo, L; Hasinger, G; Impey, C; Kneib, J P; Koda, J; Koekemoer, A; Lefèvre, O; Lilly, S; Liu, C T; McCracken, H J; Massey, R; Mellier, Y; Miyazaki, S; Mobasher, B; Mould, J; Norman, C; Réfrégier, A; Renzini, A; Rhodes, J; Rich, M; Sanders, D B; Schiminovich, D; Schinnerer, E; Scodeggio, M; Sheth, K; Shopbell, P L; Taniguchi, Y; Tyson, N; Urry, C M; Van Waerbeke, L; Vettolani, P; White, S D M; Yan, L

    2006-01-01

    The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8$\\sq$\\deg) has been imaged with single-orbit ACS I-F814W exposures with 50% completeness for sources 0.5\\arcsec in diameter at I$_{AB} $ = 26.0 mag. The ACS imaging is a key part of the COSMOS survey, providing very high sensitivity and high resolution (0.09\\arcsec FWHM, 0.05\\arcsec pixels) imaging and detecting a million objects. These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak lensing investigations of the dark matter distribution.

  8. The ANTARES underwater neutrino telescope

    CERN Document Server

    Montaruli, Teresa

    2015-01-01

    ANTARES is the first undersea neutrino telescope. It is in its complete configuration since May 2008 at about 2.5 km below the sea surface close to Marseille. Data from 12 lines are being analyzed and are producing first results. Here we discuss first analysis results for 5 lines and 10 lines, and we also comment on the performance of the full detector. We show that the detector has capabilities for discriminating upgoing neutrino events from the much larger amount of downgoing atmospheric muons and that data and simulation are in good agreement. We then discuss the physics reach of the detector for what concerns point-like source and dark matter searches.

  9. Mechanical design of ELMER instrument for GTC telescope

    Science.gov (United States)

    Ronquillo, Bernardo; Vega, Miguel A.; Garcia, Rafael; Garcillan, Rocio; Cavaller-Marques, Luis

    2003-03-01

    ELMER is an optical instrument for the GTC designed to observe between 370 and 1000 nm. The observing modes for the instrument at Day One shall be: imaging, long slit spectroscopy, slit-less multi-object spectroscopy, fast photometry, fast short-slit spectroscopy and mask multi-object spectroscopy. It will be installed at the Nasmyth-B focal station at Day One, but it has also been designed to operate at the Folded Cassegrain focal station. The physical configuration of the instrument consists of a front section where the focal plane components are mounted (cover masks and slits) and a rear section with the rest of the components (field lens, folder mirrors, collimator, shutter, filters, prisms, grisms, camera and cryostat). Both sections are connected through a hexapod type structure. An accurate behavior model of the instrument has been developed to optimize the design of the structural parts. The geometry of the hexapod configuration has been adjusted to reduce the ratio between the lateral deflection of the rear section and its rotation in order to minimize the image motion due to the deflections of the instrument. Special effort has been devoted to the design of the drives of the four wheels, each one driven by a preloaded worm gear.

  10. A Mechanical Analogue of the Refracting Telescope

    Science.gov (United States)

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  11. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design

  12. Lijiang 2.4m Optical Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 2.4m optical telescope of Yunnan Observatory was installed at Lijiang Observatory in the northwest of the Yunnan Province in 2007, which became operational since May 2008. At present, it is the largest general-use optical telescope in East Asia.

  13. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  14. Solar Magnetometry with the dutch open telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.; Zalm, E.B.J. van der

    2001-01-01

    The Dutch Open Telescope (DOT) has become op- erational at the Roque de los Muchachos Observa- tory on La Palma. The rst image sequences taken with this innovative telescope demonstrate its capa- bility for tomographic high-resolution imaging of the magnetic topology of the solar atmosphere up to th

  15. ANTARES: The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; van Haren, H.; ANTARES Collaboration

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design

  16. IR Spectrometer Project for the BTA Telescope

    OpenAIRE

    Afanasiev, V. L.; Emelianov, E. V.; Murzin, V. A.; Vdovin, V. F.

    2013-01-01

    We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).

  17. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst

  18. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  19. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  20. Optical design of a rotating eyepiece telescope

    Science.gov (United States)

    Siddique, M.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Flexible eyepiece telescope has been designed and verified. The rotating eyepiece of telescope will facilitate viewing of objects in a remote or out of sight target. Eyepiece arm of telescope can be rotated upto 360o keeping objective and reticule unchanged and ensuring zero deviation in reticule inclination. Main application of this scope is off axis viewing of objects. Image inversion has been carried out by using pair of mirrors and length of telescope is controlled by using relay lenses. The optical design, simulation and image analysis has been carried out by using ZEMAX®. Magnification of telescope is between 10∼⃒12 times with FOV of 60. Experiment has been carried out using uncoated Edmund Optics and optical tool box of Micro Series Kit, NEWPORT.

  1. LUNASKA simultaneous neutrino searches with multiple telescopes

    CERN Document Server

    Bray, J D; James, C W; Roberts, P; Brown, A; Phillips, C J; Protheroe, R J; Reynolds, J E; McFadden, R A; Aartsen, M

    2011-01-01

    The most sensitive method for detecting neutrinos at the very highest energies is the lunar Cherenkov technique, which employs the Moon as a target volume, using conventional radio telescopes to monitor it for nanosecond-scale pulses of Cherenkov radiation from particle cascades in its regolith. Multiple-antenna radio telescopes are difficult to effectively combine into a single detector for this purpose, while single antennas are more susceptible to false events from radio interference, which must be reliably excluded for a credible detection to be made. We describe our progress in excluding such interference in our observations with the single-antenna Parkes radio telescope, and our most recent experiment (taking place the week before the ICRC) using it in conjunction with the Australia Telescope Compact Array, exploiting the advantages of both types of telescope.

  2. Performance of the SST-1M telescope for the Cherenkov Telescope Array observatory

    CERN Document Server

    Moderski, R; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2015-01-01

    The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being constructed at the Institute of Nuclear Physics in Cracow, Poland, while the camera will be assembled at the University of Geneva, Switzerland. This prototype enables measurements of parameters having a decisive influence on the telescope performance. We present results of numerical simulations of the SST-1M performance based on such measurements. The telescope effective area, the expected trigger rates and the optical point spread function are calculated.

  3. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  4. Monte Carlo Studies of medium-size telescope designs for the Cherenkov Telescope Array

    CERN Document Server

    Wood, M; Dumm, J; Funk, S

    2015-01-01

    We present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parameters including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters repre...

  5. Beyond the Hubble Space Telescope: Early Development of the Next Generation Space Telescope

    Science.gov (United States)

    Smith, Robert W.; Patrick McCray, W.

    In this paper we investigate the early history of what was at first called the Next Generation Space Telescope, later to be renamed the James Webb Space Telescope. We argue that the initial ideas for such a Next Generation Space Telescope were developed in the context of the planning for a successor to the Hubble Space Telescope. Much the most important group of astronomers and engineers examining such a successor was based at the Space Telescope Science Institute in Baltimore. By the late 1980s, they had fashioned concepts for a successor that would work in optical, ultraviolet and infrared wavelengths, concepts that would later be regarded as politically unrealistic given the costs associated with them. We also explore how the fortunes of the planned Next Generation Space Telescope were intimately linked to that of its "parent," the Hubble Space Telescope.

  6. The Large Millimeter Telescope (LMT)

    Science.gov (United States)

    Young, J. S.; Carrasco, L.; Schloerb, F. P.

    2002-05-01

    The Large Millimeter Telescope (LMT) project is a collaboration between the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave antenna which will operate with good efficiency at wavelengths as short as 1 mm. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. At 18 degrees 59' N latitude, the site offers an excellent view of the Galactic Center and good sky coverage of both hemispheres. Construction of the telescope is now well underway, and it is expected to be completed in late 2004. The LMT specifications call for an overall effective surface accuracy of 75 microns rms and a pointing accuracy of 1" rms. The strategy for meeting these performance goals supplements conventional antenna designs with various "active" systems to bring the final performance within the requirements. For surface accuracy, the LMT will rely on an open loop active surface which includes 180 moveable surface segments. For pointing accuracy, we will use traditional approaches supplemented by measurements to characterize the behavior of the structure, including inclinometers and temperature sensors which may be used with finite element models to determine structural deformations and predict pointing behavior. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies; and a 4 element receiver for the 1mm band. With its excellent sensitivity and angular resolution, the LMT will enable unique studies of the early universe and galaxy evolution, the interstellar medium and star formation in galaxies, and planetary science. In particular, with nearly 2000 m2 of collecting

  7. Proposed National Large Solar Telescope

    Indian Academy of Sciences (India)

    Jagdev Singh

    2008-03-01

    Sun’s atmosphere is an ideal place to study and test many magnetohydrodynamic (MHD) processes controlling turbulent plasma. We wish to resolve some of the finest solar features (which remain unresolved presently) and study their dynamics. Indian Institute of Astrophysics has proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to resolve features on the Sun of the size of about 0.1 arcsec. The focal plane instruments will include a high resolution polarimeteric package to measure polarization with an accuracy of 0.01 per cent; a high spectral resolution spectrograph to obtain spectra in 5 widely separated absorption lines simultaneously and high spatial resolution narrow band imagers in various lines. The Himalayan region appears to be a good choice keeping in view the prevailing dry and clear weather conditions. We have started detailed analysis of the weather conditions in the area and at some other locations in India. The site characterization will be done using the Sun-photometer, S-DIMM and SHABAR techniques to determine the seeing conditions.

  8. The James Webb Space Telescope

    CERN Document Server

    Gardner, J P; Clampin, M; Doyon, R; Greenhouse, M A; Hammel, H B; Hutchings, J B; Jakobsen, P; Lilly, S J; Long, K S; Lunine, J I; McCaughrean, M J; Mountain, M; Nella, J; Rieke, G H; Rieke, M J; Rix, H W; Smith, E P; Sonneborn, G; Stiavelli, M; Stockman, H S; Windhorst, R A; Wright, G S; Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Long, Knox S.; Lunine, Jonathan I.; Caughrean, Mark J. Mc; Mountain, Matt; Nella, John; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Smith, Eric P.; Sonneborn, George; Stiavelli, Massimo; Windhorst, Rogier A.; Wright, Gillian S.

    2006-01-01

    The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-e...

  9. Telescopes for the 1980s

    Science.gov (United States)

    Neugebauer, G.

    In the last decades, astronomy has been changed in a number of significant ways. The number of large optical telescopes with diameters on the order of or larger than 2.3 m has increased from 3 shortly after World War II to about 20 at the present time. Whereas prewar astronomy was largely devoted to the visual wavelengths (0.3-0.8 μm), astronomical observations currently span the range from γ ray wavelengths to the longest radio wavelengths. Most significantly, astronomy outside conventional optical astronomy has developed into sophisticated disciplines rather than experimental explorations. Many of the observational advances at the forefront of astronomy now come from other than visual observations. Along with these changes have come fundamental changes in visual astronomy itself. Observations with photographic plates are the exception rather than the rule at most large observatories. Instead, electronic cameras are in common use. A second change, especially in the United States, is that the funding has gone from largely private funding (e.g., the Carnegie Institution of Washington) to funding with the government providing a main share of the support. Indeed, the government has provided the total funding for those disciplines, like X ray astronomy, which use space-borne platforms. These changes have also affected the character of doing astronomy, and astronomers have become much more politically active on the national science scene.

  10. Spitzer Space Telescope proposal process

    Science.gov (United States)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  11. Very large Arecibo-type telescopes

    Science.gov (United States)

    Drake, Frank D.

    1988-03-01

    The Arecibo-type radio telescope, based on a fixed spherical reflector, is a very effective design for a large radio telescope on the Moon. In such telescopes, major structural members are provided by the ground on which they are built, and thus are provided at no cost in materials or transportation. The strong compression members, the tall towers which support the suspended platform, are an expensive part of the Arecibo telescope. The need for such towers can be eliminated if a suitable valley or crater can be found wherein the rim of the depression can be used as the support point for the cables which support the suspended platform. With an Arecibo-type radio telescope on the Moon, there are no changing gravity loads because of the design and no changing wind loads because of the location; therefore, the only source of time variation in the telescope geometry is thermal changes. Calculations show that with conventional materials, such as steel, it should be possible to construct an Arecibo-type telescope with a reflector diameter of some 30 km on the Moon, and with a reflector diameter of some 60 to 90 km if materials of high specific strength are used.

  12. Calvin-Rehoboth Robotic Twin Telescopes

    Science.gov (United States)

    Haarsma, D. B.; Molnar, L. A.; VanBaak, D. A.

    2004-12-01

    The astronomy program at Calvin College, like many small colleges, is limited by poor weather and light pollution at its midwestern campus and by limited free time on the part of its astronomy faculty. Nonetheless we believe direct access to the physical universe is key to the science education both of science majors and nonmajors. Recent advances in hardware and software for modest robotic telescopes have made it possible for colleges like ours to incorporate the use of a remote bservatory into our curriculum within typical financial and time constraints. In this poster we make our first report on the installation of two robotic telescopes (one on campus and one at a remote site in New Mexico) using largely off-the-shelf components. Students learn first with the local telescope in order to understand the equipment and procedures, but obtain the majority of their data with the remote telescope. Equipment development is done first with the local telescope, and then implemented on the remote telescope (where time spent in development is difficult). We received an NSF CCLI grant and matching college funds in the summer of 2002. The local telescope was installed in the spring of 2003, and the New Mexico telescope was ready for remote operation in January 2004. Our poster will describe our equipment choices, including a few components (such as an equipment rack for the back end of the telescope) which we designed ourselves. It will also detail classroom use of the equipment in its first two semesters by students at a range of levels. A copy of the poster and many additional details of the project are available on the Calvin observatory website, http://www.calvin.edu/observatory/.

  13. Control System Design of Hexapod Robot Based on STM32F103VET6%基于STM32的六足机器人控制系统设计

    Institute of Scientific and Technical Information of China (English)

    伍立春; 王茂森; 黄顺斌

    2014-01-01

    基于仿生原理,以STM32F103VET6为核心的控制芯片构建硬件控制系统。利用无线遥控器使芯片的通用定时器产生18路PWM波控制机器人各个关节的运动,同时通过串口能在上位机实时显示GPS、超声波测距传感器、加速度计、陀螺仪的输出数据,该机器人能严格按三角步态行走,实现诸如直线、转弯、躲避障碍物等行走功能。实验结果表明,六足机器人的18个关节运动平稳,对复杂运动步态的控制精确,实现了在地面的稳定运动。%this paper describes the fabrication of a hexapod bionic robot which is control ed by STM32F103VET6 microprocessor and walks based on bionic principle. In its control system based on wireless remoter, 18-channel PWM wave generated by the timers STM32F103VE76, is used to control robot’ s legs, and the USART of STM32F103VET6 is used to display the output data of GPS, ul-trasonic sensor, accelerometer, gyroscope.This robot is provided with some abilities, such as linear walking, turning, avoiding barri-ers walking etc. The experiments show that free motion control of 18 joints is smooth, the smarter and smal er control system can be used to control complex walking movement precisely and its ground walking objective is atlained..

  14. Three-dimensional Space Mechanics Analysis of Hexapod Robot with Electro-hydraulic Driven%电液驱动六足机器人三维空间力学分析

    Institute of Scientific and Technical Information of China (English)

    程乾; 蒋刚

    2015-01-01

    A 3D model of hexapod robot leg mechanism is built,and the optimization problems of hydraulic design are discussed.Then its mechanics model is established.The output torque characteristics of robot each joint at steady state are obtained through the statics analysis,and the output torque characteristics of robot each joint in the process of movement are obtained by Lagrange method as an approach for the dynamics analysis.Finally,based on the dynamics analysis results,the foot trajectory and leg posture simulations of single leg mechanism are carried out by using ADAMS,and through the results,the smooth movement of the leg mechanism is verified and the theoretical support for the follow-up research is provided.%建立了六足机器人的腿部机构三维空间模型,对其关节液压缸设计优化问题进行了讨论.接着进一步建立了腿部机构力学模型,通过对静力学分析得到了机器人稳定状态时各关节的输出力矩特性,同时采用拉格朗日方法对机器人单腿机构进行了动力学分析,得到了单腿结构在运动过程中各关节的输出力矩特性.最后根据动力学分析结果用ADAMS软件对单腿机构进行了足端轨迹和腿部位姿仿真,仿真结果验证了腿部结构的运动平稳性,为后续研究工作提供了理论支撑.

  15. Pose Adjustment Strategy Based on the Selected Footholds for Hexapod Robot Walking Under Natural Terrain%自然地形下六足步行机器人基于落足点的位姿调整策略

    Institute of Scientific and Technical Information of China (English)

    赵龙海; 刘玉斌; 赵杰; 尹旭悦; 许文韬; 张赫

    2013-01-01

    This paper concentrates on the hexapod walking robot HITCR-Ⅱ equipped with smart-eye stereo vision facility and proposes a pose adjustment strategy based on the selected footholds for natural terrain to realize its autonomous moving on natural ground which aims at solving the confliction between the efficiency and stability of the motion of the robot.According to the selected footholds,a pose adjustment strategy is proposed.The motion trajectory of each joint of the robot is obtained from the toes trajectory planning and inverse kinematic method.Finally,a simulation experiment of the walking process of the robot on natural terrain under Adams is conducted by using the joint trajectories.The experimental results showed that the pose adjustment strategy proposed in this paper can realize the omnidirectional automatic walking on natural terrain and satisfy the requirements of both efficiency and stability.%以搭载双目视觉系统的六足步行机器人HITCR-Ⅱ为研究对象,根据选取的落足点,设计了机器人兼顾运动效率和稳定性的位姿调整策略.通过足端轨迹规划和机器人逆运动学算法求得各个关节的运动轨迹,在Adams中对机器人在自然地形中行走过程进行了运动学仿真实验.实验结果表明,使用该位姿调整策略,能够使六足步行机器人HITCR-Ⅱ实现在自然地形下的高效稳定地运动.

  16. The Thirty Meter Telescope (TMT) Project

    Science.gov (United States)

    Sanders, G.; TMT Project

    2004-12-01

    The Thirty Meter Telescope (TMT) Project is engaged in a design and development phase. TMT is proposed as a private-public partnership of the California Institute of Technology and the University of California (partners in the earlier CELT design study), AURA (designers of the earlier GSMT concept), and the Canadian ACURA consortium (designers of the VLOT concept). The partners are developing a 30 meter diameter, finely segmented filled aperture telescope with seeing-limited and diffraction-limited capabilities to address the broad range of GSMT science goals. The paper will present the status of the project development and telescope and instrument design.

  17. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  18. The GREGOR solar telescope on Tenerife

    CERN Document Server

    Schmidt, Wolfgang; Volkmer, Reiner; Denker, Carsten; Solanki, Sami; Balthasar, Horst; Gonzalez, Nazaret Bello; Berkefeld, Thomas; Collados, Manuel; Hofmann, Axel; Kneer, Franz; Lagg, Andreas; Puschmann, Klaus; Schmidt, Dirk; Sobotka, Michal; Soltau, Dirk; Strassmeier, Klaus

    2012-01-01

    2011 was a successful year for the GREGOR project. The telescope was finally completed in May with the installation of the 1.5-meter primary mirror. The installation of the first-light focal plane instruments was completed by the end of the year. At the same time, the preparations for the installation of the high-order adaptive optics were finished, its integration to the telescope is scheduled for early 2012. This paper describes the telescope and its instrumentation in their present first light configuration, and provides a brief overview of the science goals of GREGOR.

  19. California Extremely Large Telescope : conceptual design for a thirty-meter telescope

    Science.gov (United States)

    Following great success in the creation of the Keck Observatory, scientists at the California Institute of Technology and the University of California have begun to explore the scientific and technical prospects for a much larger telescope. The Keck telescopes will remain the largest telescopes in the world for a number of years, with many decades of forefront research ahead after that. Though these telescopes have produced dramatic discoveries, it is already clear that even larger telescopes must be built if we are to address some of the most profound questions about our universe. The time required to build a larger telescope is approximately ten years, and the California community is presently well-positioned to begin its design and construction. The same scientists who conceived, led the design, and guided the construction of the Keck Observatory have been intensely engaged in a study of the prospects for an extremely large telescope. Building on our experience with the Keck Observatory, we have concluded that the large telescope is feasible and is within the bounds set by present-day technology. Our reference telescope has a diameter of 30 meters, the largest size we believe can be built with acceptable risk. The project is currently designated the California Extremely Large Telescope (CELT).

  20. The ALMA Telescope Control System

    Science.gov (United States)

    Farris, A.; Marson, Ralph; Kern, Jeff

    2005-10-01

    The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the

  1. Lightweight composite mirrors for telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, steady and stiff mirrors are necessary to decrease cost of telescopes such as IXO and GenX used in special NASA missions. Low-density materials are...

  2. Atmospheric Monitoring for the MAGIC Telescopes

    CERN Document Server

    Gaug, M; Dorner, D; Doro, M; Font, Ll; Fruck, C; Garczarczyk, M; Garrido, D; Hrupec, D; Hose, J; López-Oramas, A; Maneva, G; Martinez, M; Mirzoyan, R; Temnikov, P; Zanin, R

    2014-01-01

    The monitoring of the atmosphere is very relevant for Imaging Atmospheric Cherenkov Telescopes. Adverse weather conditions (strong wind, high humidity, etc.) may damage the telescopes and must therefore be monitored continuously to guarantee a safe operation, and the presence of clouds and aerosols affects the transmission of the Cherenkov light and consequently the performance of the telescopes. The ATmospheric CAlibration (ATCA) technical working group of the MAGIC collaboration aims to cover all aspects related to atmosphere monitoring and calibration. In this paper we give an overview of the ATCA goals and activities, which include the set-up and maintenance of appropriate instrumentation, proper analysis of its data, the realization of MC studies, and the correction of real data taken under non-optimal atmospheric conditions. The final goal is to reduce the systematic uncertainties in the determination of the $\\gamma$-ray flux and energy, and to increase the duty cycle of the telescopes by establishing o...

  3. Goldstone Apple Valley Radio Telescope Project.

    Science.gov (United States)

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  4. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Stellar Imager, an ultraviolet, sparse-aperture telescope, was one of the fifteen Vision Missions chosen for a study completed last year. Stellar Imager will...

  5. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    Science.gov (United States)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  6. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  7. Introduction to the Solar Space Telescope

    Indian Academy of Sciences (India)

    G. Ai; S. Jin; S. Wang; B. Ye; S. Yang

    2000-09-01

    The design of the space solar telescope (SST) (phase B) has been completed. The manufacturing is under development. At the end of 2000, it will be assembled. The basic aspect will be introduced in this paper.

  8. TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    CERN Document Server

    White, R R; Davis, H; Galassi, M; Starr, D; Vestrand, W T; Wozniak, P

    2004-01-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescope...

  9. The MuPix Telescope: A Thin, high Rate Tracking Telescope

    CERN Document Server

    Augustin, H; Dittmeier, S; Grzesik, C; Hammerich, J; Huang, Q; Huth, L; Kiehn, M; Kozlinskiy, A; Meier, F; Perić, I; Perrevoort, A -K; Schöning, A; Bruch, D vom; Wauters, F; Wiedner, D

    2016-01-01

    The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles and high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send data self-triggered via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.

  10. Solar Rejection Filter for Large Telescopes

    Science.gov (United States)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  11. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  12. The Automated Palomar 60 Inch Telescope

    Science.gov (United States)

    Cenko, S. Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S. R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-10-01

    We have converted the Palomar 60 inch (1.52 m) telescope from a classic night-assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since 2004 September, is designed for moderately fast (tdesign requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  13. ESO's Telescopes In memoriam Daniel Enard

    Science.gov (United States)

    Gilmozzi, Roberto

    2009-06-01

    The contributions of ESO to the art of telescope-making have come a long way since the early years, placing it, by the turn of the millennium, among the acknowledged leaders in the field. In this article I will give a brief history of what are, in my view, the highlights among these developments, from the 3.6-metre telescope through the NTT and VLT/I to the E-ELT.

  14. A 25 m Live Optics Telescope

    DEFF Research Database (Denmark)

    Ardeberg, Arne; Andersen, Torben; Owner-Petersen, Mette

    1996-01-01

    A 25 m four mirror live optics telescope is studied. M1 is spherical with 141 segments and f/0.96. M1 is reimaged onto M4 also with 141 segments. Image FWHM is 20 arc min. A horseshoe solution with a simple azimuth platform is applied. M1 segments are supported by a fine.......Key words: Very large telescopes - live optics - image quality - wind buffeting - end-to-end simulation model....

  15. Indirect Dark Matter Searches with MAGIC Telescopes

    OpenAIRE

    Satalecka, Konstancja; MAGIC Collaboration

    2015-01-01

    In the last few years the indirect dark matter (DM) searches became a hot topic, with several experimental results showing hints of DM signal. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are two $17$\\,m diameter Cherenkov telescopes, located on the Canary island La Palma (Spain). MAGIC carries out a broad DM search program, including observations of dwarf galaxies, galaxy clusters and other DM dominated objects. In these proceedings recent MAGIC results from this field ar...

  16. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  17. A Pointing Solution for the Medium Size Telescopes for the Cherenkov Telescope Array

    CERN Document Server

    Tiziani, D; Oakes, L; Schwanke, U

    2016-01-01

    An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vice versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.

  18. The Mercator telescope: relevance, status, and future

    Science.gov (United States)

    Raskin, Gert; Pessemier, Wim; Merges, Florian; Pérez Padilla, Jesus; Prins, Saskia; Van Winckel, Hans

    2014-07-01

    In todays era of ever growing telescope apertures, there remains a specific niche for meter-class telescopes, provided they are equipped with efficient and dedicated instruments. In case these telescopes have permanent and long-term availability, they turn out very useful for intensive monitoring campaigns over a large range of time-scales. Flexible scheduling and time allocation allow small telescopes to rapidly seize new opportunities or provide immediate follow-up observations to complement data from large ground-based or space-borne facilities. The Mercator telescope, a 1.2-m telescope, installed at the Roque de Los Muchachos Observatory on La Palma (Canary Islands, Spain), successfully targets this niche of intensive monitoring and flexible scheduling. Mercator is already in operation since 2001 and has seen several upgrades in the mean time. In this contribution we give an update about the actual telescope status and its performance. We also present the Mercator instrument suite that currently consists of two instruments. The workhorse instrument is HERMES, a very efficient and stable fibre-fed high-resolution spectrograph. Recently, the MAIA imager was commissioned. This is a three- channel photometric instrument that observes a large field simultaneously in the different color bands. The MAIA detectors are unique 6k x 2k frame transfer devices which also allow for fast and continuous monitoring of variable phenomena.We discuss two important upcoming upgrades: a long-awaited automatic mirror cover and, more importantly, an entirely new telescope control system (TCS). This TCS is based on modern PLC technology, and relies on OPC UA and EtherCAT communication. Only commercially off-the-shelve hardware will be used for controlling the telescope. As a test case and as a precursor of the full TCS, such PLC systems are already deployed at Mercator to steer the Nasmyth mirror mechanism and to control the MAIA instrument. Finally, we also give an overview of the

  19. Hobby-Eberly Telescope: commissioning experience and observing plans

    Science.gov (United States)

    Glaspey, John W.; Adams, M. T.; Booth, John A.; Cornell, Mark E.; Fowler, James R.; Krabbendam, Victor L.; Ramsey, Lawrence W.; Ray, Frank B.; Ricklefs, Randall L.; Spiesman, W. J.

    1998-07-01

    Experience in bringing into operation the 91-segment primary mirror alignment and control system, the focal plane tracker system, and other critical subsystems of the HET will be described. Particular attention is given to the tracker, which utilizes three linear and three rotational degrees of freedom to follow sidereal targets. Coarse time-dependent functions for each axis are downloaded to autonomous PMAC controllers that provide the precise motion drives to the two linear stages and the hexapod system. Experience gained in aligning the sperate mirrors and then maintaining image quality in a variable thermal environments will also be described. Because of the fixed elevation of the primary optical axis, only a limited amount of time is available for observing objects in the 12 degrees wide observing band. With a small core HET team working with McDonald Observatory staff, efficient, reliable, uncomplicated methodologies are required in all aspects of the observing operations.

  20. Hosting the Student Telescope Network First Site

    Science.gov (United States)

    Rice, M.; Bisque, S. T. M. D.; Stencel, R. E.

    2002-05-01

    The demonstration site for the Student Telescope Network, and for the first practical public-use Internet observatory, as powered by iBisque software, is at New Mexico Skies in southern New Mexico (www.nmskies.com). The observatory site, located approximately 14 miles northeast of the Apache Point Observatory and the Sunspot National Solar Observatory, is at 2,225 meters elevation in the southern Sacramento Mountains of New Mexico. It has very dark transparent skies, excellent weather conditions, good seeing and a high proportion of clear photometric nights. The Internet observatory pod concept includes placing multiple telescopes (as many as twelve), in each of several 32-foot roll-off roof observatories. The 14 to 16 inch aperture telescopes, mounted on accurately pointing and tracking Bisque "Paramounts" (www.bisque.com), plus KAF-1001E CCD cameras, are controlled with a browser-based sky-map GUI (patent pending) control system also developed by Software Bisque. We provide detail on the concept and its implementation. As of mid-March, 2002, the first demonstration telescope has been operating nightly for about 60 days. Over 420 users have registered on the telescope server, more than 2,000 images have been taken and their FITS files downloaded to users' computers all over the world. In this and the companion poster, we report our experiences over the period of the February-May (2002) trial period, including technical challenges and performance measures on the Internet observatory's operations. We further detail lessons learned for future development of browser-based Internet observatories for high school/college level instructional use, and lessons applicable to the use of Internet-based telescopes for serious astronomical research as well. We thank the Institute for Connecting Science Research to the Classroom for a grant to the University of Denver in support of this Internet telescope services pilot project.

  1. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  2. Introduction to the Chinese Giant Solar Telescope

    Science.gov (United States)

    Liu, Z.; Deng, Y.; Ji, H.

    2012-12-01

    In order to detect the fine structures of solar magnetic field and dynamic field, an 8 meter solar telescope has been proposed by Chinese solar community. Due to the advantages of ring structure in polarization detection and thermal control, the current design of CGST (Chinese Giant Solar Telescope) is an 8 meter ring solar telescope. The spatial resolution of CGST is equivalent to an 8 meter diameter telescope, and the light-gathering power equivalent to a 5 meter full aperture telescope. The integrated simulation of optical system and imaging ability such as optical design, MCAO, active maintenance of primary mirror were carried out in this paper. Mechanical system was analyzed by finite element method too. The results of simulation and analysis showed that the current design could meet the demand of most science cases not only in infrared band but also in near infrared band and even in visible band. CGST was proposed by all solar observatories in Chinese Academy of Sciences and several overseas scientists. It is supported by CAS (Chinese Academy of Sciences) and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  3. Control challenges for extremely large telescopes

    Science.gov (United States)

    MacMartin, Douglas G.

    2003-08-01

    The next generation of large ground-based optical telescopes are likely to involve a highly segmented primary mirror that must be controlled in the presence of wind and other disturbances, resulting in a new set of challenges for control. The current design concept for the California Extremely Large Telescope (CELT) includes 1080 segments in the primary mirror, with the out-of-plane degrees of freedom actively controlled. In addition to the 3240 primary mirror actuators, the secondary mirror of the telescope will also require at least 5 degree of freedom control. The bandwidth of both control systems will be limited by coupling to structural modes. I discuss three control issues for extremely large telescopes in the context of the CELT design, describing both the status and remaining challenges. First, with many actuators and sensors, the cost and reliability of the control hardware is critical; the hardware requirements and current actuator design are discussed. Second, wind buffeting due to turbulence inside the telescope enclosure is likely to drive the control bandwidth higher, and hence limitations resulting from control-structure-interaction must be understood. Finally, the impact on the control architecture is briefly discussed.

  4. Undergraduate Research with a Small Radio Telescope

    Science.gov (United States)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  5. 带有自锁式关节的农业六足机器人能耗优化模型及验证%Energy consumption optimization model of agricultural hexapod robot with self-locking joints

    Institute of Scientific and Technical Information of China (English)

    张春; 杨明金; 陈建; 蒋猛; 马永昌; 冀杰

    2016-01-01

    Hexapod robot has the potential to be an important agricultural equipment in hilly areas in the future, but its feature of high energy consumption has become a technical bottleneck in practical application. Energy self-sufficiency may be within our reach if the robot is driven by electric motors and can be charged by solar energy, but this type of robot often has no self-locking joints, which leads to certain energy consumption against gravity even when they stand still; although the joint brake mechanism may be helpful, but shortcomings like energy penalty and lack of compact in mechanism that come with it will appear. If the joints are self-locking to ensure no energy consumption when the robot stands still, then the energy consumption when moving will increase dramatically. Based on the above problems, to minimize overall energy consumption of the robot when it’s moving or long-time standing still, a hexapod robot design with optimal disposition of self-locking joints was given, the energy consumption optimization model was also built only considering that the robot had a specific motion which avoided a non-deterministic polynomial hard problem, and thus the model just needed to optimize the energy consumption instantaneously. A defect of such an existing optimization model based on the torque distribution algorithm was corrected by introducing the difference of torque transmission efficiencies of robot joints in forward and reverse drive;in order to adapt the compacted soil ground in hilly areas, the constraints of the existing model which were suitable for the rigid environment were modified based on terrain mechanics. For different self-locking joints configurations, there would be different energy consumption optimization models, and their corresponding objective functions were given separately; this allowed energy consumption comparison of different configurations being conducted based on the minimum values of objective functions from different

  6. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    CERN Document Server

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  7. Single-Mirror Small-Size Telescope structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, Jacek; Dyrda, Michał; Kochański, Wojciech; Ludwin, Jaromir; Stodulski, Marek; Ziółkowski, Paweł

    2013-01-01

    A single-mirror small-size (1M-SST) Davies-Cotton telescope has been proposed for the southern observatory of the Cherenkov Telescope Array (CTA) by a consortium of scientific institutions from Poland, Switzerland, and Germany. The telescope has a 4 m diameter reflector and will be equipped with a fully digital camera based on Geiger avalanche photodiodes (APDs). Such a design is particularly interesting for CTA because it represents a very simple, reliable, and cheap solution for a SST. Here we present the design and the characteristics of the mechanical structure of the 1M-SST telescope and its drive system. We also discuss the results of a finite element method analysis in order to demonstrate the conformance of the design with the CTA specifications and scientific objectives. In addition, we report on the current status of the construction of a prototype telescope structure at the Institute of Nuclear Physics PAS in Krakow.

  8. Status of the Schwarzchild-Couder Medium-Sized Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Benbow, W

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next-generation very-high-energy (VHE; E > 100 GeV) gamma-ray observatory. It is anticipated that CTA will improve upon the sensitivity of the current generation of VHE experiments, such as VERITAS, HESS and MAGIC, by an order of magnitude. CTA is planned to consist of two graded arrays of Cherenkov telescopes with three primary-mirror sizes. A proof-of-concept telescope, based on the dual-mirror Schwarzchild-Couder design, is being constructed on the VERITAS site at the F.L. Whipple Observatory in southern Arizona, USA, and is a candidate design for the medium-sized telescopes. The construction of the telescope will be completed in early 2017, and the status of this project is presented here.

  9. 具有半球形足端的六足机器人步态修正算法%Gait correction algorithm of hexapod walking robot with semi-round rigid feet

    Institute of Scientific and Technical Information of China (English)

    金波; 陈诚; 李伟

    2013-01-01

    Considered the body misplaced problem caused by the rolling effect of semi-round rigid feet during hexapod robot's walking period,a gait correction algorithm was established.The main benefits of the large radius semi-round structure were proposed,while the rolling effect during the supporting phase was illustrated.The concept of ideal foothold was put forward,with the 3D deviation between the ideal foothold and real foothold deduced by correcting the single leg kinematic model.The forward/inverse kinematic solutions between the ideal foothold and the joints' angular vectors were formulated.The root joint trajectory of single leg generated in simulation environment verifies the effectiveness of the algorithm.A series of walking experiments results show that the correction algorithm could improve the walking orientation deviation problem and the energetic cost obviously by avoiding foot slippage phenomenon as much as possible.%针对六足机器人步行时由于半球形足端滚动影响造成的机器人躯体轨迹偏差问题,提出一种步态修正算法.指出大半径半球形结构作为六足机器人的足端设计方案所具备的优势及其在支撑相中存在的足端滚动问题.通过提出理想立足点的概念,对三维空间内机器人单腿运动学模型进行修正,对理想立足点与实际立足点之间的偏差量进行分析,建立全方位步行时理想立足点与单腿各关节转角之间的运动学正/逆解关系.通过仿真对比分析修正前后单腿根关节运动轨迹,验证修正算法的有效性.实验结果表明,修正算法既能够更好地避免足端与地面产生相对滑动从而显著改善机器人步行时的方向偏离问题,又能够在一定程度上降低系统能耗.

  10. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  11. Adaptive Real Time Imaging Synthesis Telescopes

    CERN Document Server

    Wright, Melvyn

    2012-01-01

    The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...

  12. LOBSTER - New Space X-Ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Pina, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Simon, V. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic); Sveda, L. [Faculty of Nuclear Science, Czech Technical University, Prague (Czech Republic); Inneman, A.; Semencova, V. [Center for Advanced X-ray Technologies, Reflex, Prague (Czech Republic); Skulinova, M. [Astronomical Institute, Academy of Sciences of the Czech Republic, CZ-251 65 Ondrejov (Czech Republic)

    2007-04-15

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  13. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  14. GREGOR: the New German Solar Telescope

    CERN Document Server

    Balthasar, H; Kneer, F; Staude, J; Volkmer, R; Berkefeld, T; Caligari, P; Collados, M; Halbgewachs, C; Heidecke, F; Hofmann, A; Klvana, M; Nicklas, H; Popow, E; Puschmann, K; Schmidt, W; Sobotka, M; Soltau, D; Strassmeier, K; Wittmann, A

    2007-01-01

    GREGOR is a new open solar telescope with an aperture of 1.5m. It replaces the former 45-cm Gregory Coude telescope on the Canary island Tenerife. The optical concept is that of a double Gregory system. The main and the elliptical mirrors are made from a silicon-carbide material with high thermal conductivity. This is important to keep the mirrors on the ambient temperature avoiding local turbulence. GREGOR will be equipped with an adaptive optics system. The new telescope will be ready for operation in 2008. Post-focus instruments in the first stage will be a spectrograph for polarimetry in the near infrared and a 2-dimensional spectrometer based on Fabry-Perot interferometers for the visible.

  15. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  16. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  17. Daniel K. Inouye Solar Telescope Science Operations

    Science.gov (United States)

    Tritschler, Alexandra; Rimmele, Thomas R.; Berukoff, Steven

    2016-05-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a versatile high resolution ground-based solar telescope designed to explore the dynamic Sun and its magnetism throughout the solar atmosphere from the photosphere to the faint corona. The DKIST is currently under construction on Haleakala, Maui, Hawai'i, and expected to commence with science operations in 2019. In this contribution we provide an overview of the high-level science operations concepts from proposal preparation and submission to the flexible and dynamic planning and execution of observations.

  18. Weizmann Fast Astronomical Survey Telescope (WFAST)

    Science.gov (United States)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael

    2017-01-01

    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  19. SOAR Telescope seismic performance II: seismic mitigation

    Science.gov (United States)

    Elias, Jonathan H.; Muñoz, Freddy; Warner, Michael; Rivera, Rossano; Martínez, Manuel

    2016-07-01

    We describe design modifications to the SOAR telescope intended to reduce the impact of future major earthquakes, based on the facility's experience during recent events, most notably the September 2015 Illapel earthquake. Specific modifications include a redesign of the encoder systems for both azimuth and elevation, seismic trigger for the emergency stop system, and additional protections for the telescope secondary mirror system. The secondary mirror protection may combine measures to reduce amplification of seismic vibration and "fail-safe" components within the assembly. The status of these upgrades is presented.

  20. The ANTARES telescope neutrino alert system

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-03-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  1. The ANTARES Telescope Neutrino Alert System

    CERN Document Server

    Ageron, M; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gòmez-González, J; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamar, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Shanidze, R; Simeone, F; Spies, A; Spuriol, M; Steijger, J J M; Stolarczyk, Th; Sànchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zùñiga, J

    2011-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  2. The 10 Meter South Pole Telescope

    OpenAIRE

    Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Busetti, S.; Chang, C. L.; Chauvin, E; Cho, H. -M.; Crawford, T. M.; Crites, A. T.; Dobbs, M. A.; Halverson, N. W.; Heimsath, S.; Holzapfel, W. L.

    2009-01-01

    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldov...

  3. Lunar Ultraviolet Telescope Experiment (LUTE) overview

    Science.gov (United States)

    McBrayer, R. O.; Frazier, J.; Nein, M.

    1993-09-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture telescope for imaging the stellar ultraviolet spectrum from the lunar surface. The aspects of Lute's educational value and the information it can provide on designing for the long-term exposure to the lunar environment are important considerations. This paper briefly summarizes the status of the phase A study by the Marshall Space Flight Center's (MSFC) LUTE Task Team. The primary focus will be a discussion of the merits of LUTE as a small and relatively inexpensive project that benefits a wide spectrum of interests and could be operating on the lunar surface by the turn of the century.

  4. Telescope Bernard Lyot: operation, instrumentation, perspectives

    Science.gov (United States)

    Cabanac, R.

    2016-12-01

    This talk is the TBL director report at the 3rd French national telescopes Users Meeting of 2016. Telescope Bernard Lyot, the 2-m at Pic du midi (2870m), is dedicated to spectro-polarimetric studies since 2007 with the instrument Narval. This paper presents TBL operation, science highlights and statistics of the past 10 years of operation. It also opens perspectives for the coming 10 years with the funding of Neo-Narval (Narval stabilized to v_r Pic du midi (aka SPIP) for the study of the young exoplanetary systems.

  5. 4 m Davies-Cotton telescope for the Cherenkov Telescope Array

    CERN Document Server

    Moderski, R; Barnacka, A; Basili, A; Boccone, V; Bogacz, L; Cadoux, F; Christov, A; Della Volpe, M; Dyrda, M; Frankowski, A; Grudzińska, M; Janiak, M; Karczewski, M; Kasperek, J; Kochański, W; Korohoda, P; Kozioł, J; Lubiński, P; Ludwin, J; Lyard, E; Marszałek, A; Michałowski, J; Montaruli, T; Nicolau-Kukliński, J; Niemiec, J; Ostrowski, M; Płatos, Ł; Rajda, P J; Rameez, M; Romaszkan, W; Rupiński, M; Seweryn, K; Stodulska, M; Stodulski, M; Walter, R; Winiarski, K; Wiśniewski, Ł; Zagdański, A; Zietara, K; Ziółkowski, P; Żychowski, P

    2013-01-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. It will consist of three classes of telescopes, of large, medium and small sizes. The small telescopes, of 4 m diameter, will be dedicated to the observations of the highest energy gamma-rays, above several TeV. We present the technical characteristics of a single mirror, 4 m diameter, Davies-Cotton telescope for the CTA and the performance of the sub-array consisting of the telescopes of this type. The telescope will be equipped with a fully digital camera based on custom made, hexagonal Geiger-mode avalanche photodiodes. The development of cameras based on such devices is an RnD since traditionally photomultipliers are used. The photodiodes are now being characterized at various institutions of the CTA Consortium. Glass mirrors will be used, although an alternative is being considered: composite mirrors that could be adopted if they meet the project requirements. We present a design of the telescope structure,...

  6. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available To create large-size optical telescopes, various design concepts have been used. Each concept inevitably faced the challenge to optimize technical characteristics and parameters of the telescope. There was always a question: what concept to choose, how to estimate efficiency of such telescopes and by what criteria and how to estimate expediency of this or that project of the large-size telescope. It is, obviously, insufficient to make a resolution-based estimation. An estimate by the angular field size is inappropriate too. Well, it may be also an estimate by the stellar magnitude. All these criteria are related to each other. Improvement of one of these parameters inevitably leads to deterioration of the others. Obviously, the certain generalized criterion considering all parameters and features of the design concept of the large-size telescope is necessary here. As such can serve the criterion of informational content of the telescope.The article offers a complex criterion allowing not only to estimate efficiency of large-size optical telescopes, but also to compare their conceptual and technological level among themselves in terms of obtaining information.The article suggests a new term, i.e. the informational content invariant to characterize informative capacities of the chosen concept and of the realizing technology. It will allow us to avoid unjustified complications of technical solutions, wrong accents in designing and excess material inputs when developing the project.The informational content criterion-based analysis of the existing projects of large-size telescopes has been convincingly shown that, conceptually, there are three best telescopes, namely: GSMT, CELT, and ACT-25. And, in terms of informational content, the АCТ-25 is 10 times more than GSMT and CELT, and the existing Keck-telescope exceeds by 30 times. Hence, it is hard to escape a conclusion that it is more favourable to implement one ACT-25, than to do 10 GSMT or CELT

  7. Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    CERN Document Server

    Niemiec, J; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Montaruli, T; Neronov, A; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Rameez, M; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K

    2015-01-01

    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.

  8. The Mathematics of Go to Telescopes

    Science.gov (United States)

    Teets, Donald

    2007-01-01

    This article presents the mathematics involved in finding and tracking celestial objects with an electronically controlled telescope. The essential idea in solving this problem is to choose several different coordinate systems that simplify the various motions of the earth and other celestial objects. These coordinate systems are then related by…

  9. Roughness tolerances for Cherenkov telescope mirrors

    CERN Document Server

    Tayabaly, K; Canestrari, R; Bonnoli, G; Lavagna, M; Pareschi, G

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming international ground-based observatory for very high-energy gamma rays. Its goal is to reach sensitivity five to ten times better than existing Cherenkov telescopes such as VERITAS, H.E.S.S. or MAGIC and extend the range of observation to energies down to few tens of GeV and beyond 100 TeV. To achieve this goal, an array of about 100 telescopes is required, meaning a total reflective surface of several thousands of square meters. Thence, the optimal technology used for CTA mirrors manufacture should be both low-cost (~1000 euros/m2) and allow high optical performances over the 300-550 nm wavelength range. More exactly, a reflectivity higher than 85% and a PSF (Point Spread Function) diameter smaller than 1 mrad. Surface roughness can significantly contribute to PSF broadening and limit telescope performances. Fortunately, manufacturing techniques for mirrors are now available to keep the optical scattering well below the geometrically-predictable effect of ...

  10. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  11. So You Want a Meade LX Telescope!

    Science.gov (United States)

    Harris, Lawrence

    Perhaps every generation of astronomers believes that their telescopes are the best that have ever been. They are surely all correct! The great leap of our time is that computer-designed and machined parts have led to more accurately made components that give the astronomer ever better views. The manual skills of the craftsman mirror grinder have been transformed into the new-age skills of the programmer and the machine maker. (The new products did not end the work of craftsman telescope makers, though. Many highly skilled amateur/professional opticians continued to produce good-quality mirrors that are still seen today.) Amateur-priced telescopes are now capable of highly accurate tracking and computer control that were once only the province of professionals. This has greatly increased the possibilities of serious astronomy projects for which tailor-made software has been developed. Add a CCD camera to these improved telescopes (see Chap. 3), and you bring a whole new dimension to your astronomy (see Fig. 1.1).

  12. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  13. TeraHertz Space Telescope (TST)

    Science.gov (United States)

    Dunn, Marina Madeline; Lesser, David; O'Dougherty, Stephan; Swift, Brandon; Pat, Terrance; Cortez, German; Smith, Steve; Goldsmith, Paul; Walker, Christopher K.

    2017-01-01

    The Terahertz Space Telescope (TST) utilizes breakthrough inflatable technology to create a ~25 m far-infrared observing system at a fraction of the cost of previous space telescopes. As a follow-on to JWST and Herschel, TST will probe the FIR/THz regime with unprecedented sensitivity and angular resolution, answering fundamental questions concerning the origin and destiny of the cosmos. Prior and planned space telescopes have barely scratched the surface of what can be learned in this wavelength region. TST will pick up where JWST and Herschel leave off. At ~30µm TST will have ~10x the sensitivity and ~3x the angular resolution of JWST. At longer wavelengths it will have ~1000x the sensitivity of Herschel and ~7 times the angular resolution. TST can achieve this at low cost through the innovative use of inflatable technology. A recently-completed NIAC Phase II study (Large Balloon Reflector) validated, both analytically and experimentally, the concept of a large inflatable spherical reflector and demonstrated critical telescope functions. In our poster we will introduce the TST concept and compare its performance to past, present, and proposed far-infrared observatories.

  14. Taming the 1.2 m Telescope

    Science.gov (United States)

    Griffin, S.; Edwards, M.; Greenwald, D.; Kono, D.; Liang, D.; Lohnes, K.; Wright, V.; Spillar, E.

    2013-09-01

    Achievable residual jitter on the 1.2 m telescope at MSSS shown in Figure 1 has historically been limited to 10-20 arc-sec. peak in moderate wind conditions due to the combination of the dynamics associated with the twin telescopes on the common declination axis shaft, and the related control system behavior. Figure 1 1.2 m Telescope The lightly damped, low frequency fundamental vibration mode shape of the telescopes rotating out of phase on the common declination axis shaft severely degraded the performance of the prior controllers. This vibration mode is easily excited by external forces such as wind loading and internal torque commands from the mount control system. The relatively poor historic performance was due to a combination of the low error rejection of external disturbances, and the controller exciting the mode. A radical new approach has been implemented that has resulted in a decrease of jitter to less than 1 arcsec under most conditions. The new approach includes minor hardware modifications to provide active damping with accelerometers as feedback sensors. This architecture has allowed a bandwidth increase of almost an order of magnitude and eliminated the large amplitude motions at the mode natural frequency, resulting in much improved pointing and jitter performance. A representative comparison of historical versus new architecture performance is shown in Figure 2 for the declination axis.

  15. The cern axion solar telescope (CAST)

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C. E.; Arik, E.; Autiero, D.; Avignone, F. T.; Barth, K.; Bowyer, S. M.; Brauninger, H.; Brodzinski, R. L.; Carmona, J. M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J. I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H. A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T. A.; Gninenko, S. N.; Golubev, N. A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I. G.; Jacoby, J.; Jeanneau, F.; Knopf, M. A.; Kovzelev, A. V.; Kotthaus, R.; Krčmar, M.; Krečak, Z.; Lakić, B.; Liolios, A.; Ljubičić, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V. A.; Miley, H. S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W. K.; Placci, A.; Postoev, V. E.; Raffelt, G. G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipčević, M.; Thomas, C. W.; Thompson, R. C.; Valco, P.; Villar, J. A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-07-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over plus or minus 8 to the sixth power vertically and plus or minus 45 to the sixth power, horizontally.

  16. XSPECT telescopes on the SRG: optical performance

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Polny, Josef; Christensen, Finn Erland

    1994-01-01

    The XSPECT, thin foil, multiply nested telescope on SRG has been designed to achieve a large effective area at energies between 6 and 15 keV. The design goal for the angular resolution is 2 arcmin (HPD). Results of foil figure error measurements are presented. A ray tracing analysis was performed...

  17. Imaging capabilities of the SODART telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Pedersen, Kristian

    1998-01-01

    The on- and off-axis imaging properties and effective area of the two SODART flight telescopes have been measured using the expanded beam X-ray facility at the Daresbury synchrotron. Following measurements have been done for both Flight Model 1 & 2, at three energies: 6.627 keV, 8.837 keV and 11...

  18. The Student Telescope Network (STN) experiment

    Science.gov (United States)

    Hannahoe, Ryan M.; Stencel, Robert E.; Bisque, Steve; Rice, Mike

    2003-02-01

    Several factors make observational astronomy difficult for pre-college students and teachers. (1) not many schools have teachers trained to use and maintain astronomy equipment; (2) school usually happens during the day and observing normally is a night-time activity; (3) the scourge of light pollution has hidden the stars from many students living in or near cities; (4) there is a general lack of access to expertise when needed. In addition, physically disabled students cannot climb ladders, to access the telescope eyepiece. Internet access to computer-controlled telescopes equipped with digital cameras can solve many of these difficulties. This enables students and their teachers to access well-maintained, robust Internet-controllable telescopes in dark-site locations and to consult more readily with experts. We present the results of technical solutions to Internet-control of telescopes, by Software Bisque, the New Mexico Skies Guest Observatory and the Youth Activities Committee of the Astronomical League in collaboration with Denver University Astronomy. We jointly submitted a funding proposal to the Institute for Connecting Science Research to the Classroom, and conducted a pilot program allowing high school students to access a CCD-equipped, accurately-pointing and tracking telescope, controllable over the Web, with a user-friendly skymap browser tool. With suitably placed telescopes worldwide, observing from the classroom in daylight will become feasible, as we have demonstrated with Australian and Eurasian student users of the New Mexico Skies Internet telescope. We report here on a three-month pilot project exploring this solution, conducted Feb-May 2002. User interest proved phenomenal, while user statistics proved diverse and there were distinct lessons learned about how to enhance student participation in the research process. We thank the Institute for Connecting Science Research to the Classroom for a grant to the University of Denver in partial

  19. The Configurable Aperture Space Telescope (CAST)

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  20. National Large Solar Telescope of Russia

    Science.gov (United States)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  1. Camera Development for the Cherenkov Telescope Array

    Science.gov (United States)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  2. The Large Millimeter Telescope- Gran Telescopio Milimetrico

    Science.gov (United States)

    Irvine, W. M.; Schloerb, F. P.; Carramiñana, A.; Carrasco, L.

    2004-11-01

    The Large Millimeter Telescope/Gran Telescopio Milimetrico (LMT) project is a collaboration between the University of Massachusetts and the Instituto Nacional de Astrofisica, Óptica y Electrónica to build a 50 m diameter telescope that will have good efficiency at wavelengths as short as 1 mm. The LMT will have an overall effective surface accuracy of 70 micrometers and an ultimate pointing accuracy of better than 1 arcsec, and will thus be the largest millimeter-wavelength telescope in the world. The LMT site is Sierra Negra in the state of Puebla, at 4,640 meters above sea level in Central Mexico. At 18° 59' N latitude, it offers good sky coverage of both hemispheres. The normally low humidity will allow operation of the radio telescope at frequencies as high as 345 GHz. The LMT will make use of recent advances in structural design and active control of surface elements to achieve the required surface and pointing accuracy. At the site the alidade has been erected and the back structure for the main reflector has been assembled, while the monitor and control system has been successfully tested on another telescope. The schedule calls for acceptance tests in 2006. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies, and a 4 element receiver for the 1mm band. With its excellent sensitivity and mapping speed, the LMT/GTM will be a powerful facility for planetary science. In particular, it will enable key observations of comets, planetary atmospheres, asteroids and KBOs.

  3. The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Tibaldo, L; Allan, D; Amans, J -P; Armstrong, T P; Balzer, A; Berge, D; Boisson, C; Bousquet, J -J; Brown, A M; Bryan, M; Buchholtz, G; Chadwick, P M; Costantini, H; Cotter, G; Daniel, M K; De Franco, A; De Frondat, F; Dournaux, J -L; Dumas, D; Ernenwein, J -P; Fasola, G; Funk, S; Gironnet, J; Graham, J A; Greenshaw, T; Hervet, O; Hidaka, N; Hinton, J A; Huet, J -M; Jankowsky, D; Jegouzo, I; Jogler, T; Kraus, M; Lapington, J S; Laporte, P; Lefaucheur, J; Markoff, S; Melse, T; Mohrmann, L; Molyneux, P; Nolan, S J; Okumura, A; Osborne, J P; Parsons, R D; Rosen, S; Ross, D; Rowell, G; Rulten, C B; Sato, Y; Sayede, F; Schmoll, J; Schoorlemmer, H; Servillat, M; Sol, H; Stamatescu, V; Stephan, M; Stuik, R; Sykes, J; Tajima, H; Thornhill, J; Trichard, C; Vink, J; Watson, J J; White, R; Yamane, N; Zech, A; Zink, A; Zorn, J

    2016-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $\\gtrsim 8^\\circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cher...

  4. Pointing Calibration for the Cherenkov Telescope Array Medium Size Telescope Prototype

    CERN Document Server

    Oakes, Louise; Baehr, Juergen; Gruenewald, Sandra; Raeck, Tobias; Schlenstedt, Stefan; Schubert, Anja; Schwanke, Ullrich

    2013-01-01

    Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended sources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The "Lid CCD" is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the "Sky CCD" is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source ...

  5. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  6. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  7. VST telescope dynamic analisys and position control algorithms

    CERN Document Server

    Schipani, P

    2001-01-01

    The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed on Cerro Paranal in the Atacama desert, Northern Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. So far no telescope has been dedicated entirely to surveys; the VST will be the first survey telescope to start the operation, as a powerful survey facility for the VLT observatory. This paper will focus on the axes motion control system. The dynamic model of the telescope will be analyzed, as well as the effect of the wind disturbance on the telescope performance. Some algorithms for the telescope position control will be briefly discussed.

  8. Construction Milestone Announced on Green Bank Telescope

    Science.gov (United States)

    2000-04-01

    The National Radio Astronomy Observatory announces completion of a major construction milestone on the world's largest fully steerable radio telescope - the National Science Foundation's Green Bank Telescope (GBT). The last of 2,004 aluminum surface panels was recently installed on the GBT's two-acre (100 m x 110 m) collecting dish. The telescope is located at NRAO's Green Bank site, in rural Pocahontas County, West Virginia. The GBT will be used to study everything from the formation of galaxies in the early universe, to the chemical make-up of the dust and gas inside galaxies and in the voids that separate them, to the birth processes of stars. In conjunction with other instruments, it will help make highly accurate radar maps of some familiar objects in our own solar system. The GBT is an engineering marvel. At 485 feet tall, it is comparable in height to the Washington Monument. It weighs 16 million pounds, yet by swiveling the dish in both azimuth and elevation, it can be pointed to any point in the sky with exquisite accuracy. Additionally, the telescope's two-acre collecting dish has many novel features. Most radio telescopes in use today use receivers suspended above the dish by four struts. These struts block some of the surface of the dish, scattering some of the incoming radio waves from celestial objects under study. The GBT's offset feedarm has no struts to block incoming radio waves. The GBT also boasts an active surface. The surface of the dish is composed of 2,004 panels. On the underside of the dish, actuators are located at each corner (i.e., intersection of four panels). These actuators are motors that move the surface panels up and down, keeping the (paraboloid) shape of the dish precisely adjusted, no matter what the tilt of the telescope. The combination of its unblocked aperture and active surface promise that the GBT will display extremely high sensitivity to faint radio signals. The GBT itself is not the only precious national resource in

  9. Design concepts for the California Extremely Large Telescope (CELT)

    Science.gov (United States)

    Nelson, Jerry E.

    2000-08-01

    The California Extremely Large Telescope is a study currently underway by the University of California and the California Institute of Technology, to assess the feasibility of building a 30-m ground based telescope that will push the frontiers to observational astronomy. The telescope will be fully steerable, with a large field of view, and be able to work in both a seeing-limited arena and as a diffraction-limited telescope, with adaptive optics.

  10. South African Student Constructed Indlebe Radio Telescope

    Science.gov (United States)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable

  11. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  12. 21 CFR 886.5870 - Low-vision telescope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended...

  13. The ROTSE-III Robotic Telescope System

    CERN Document Server

    Akerlof, Carl W; Casperson, D E; Epps, H W; Kehoe, R; Marshall, S L; McGowan, K E; McKay, T A; Phillips, M A; Rykoff, E S; Schier, J A; Smith, D A; Vestrand, W T; Wozniak, P R; Wren, J A

    2002-01-01

    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.

  14. Thirty Meter Telescope Detailed Science Case: 2015

    CERN Document Server

    Skidmore, Warren; Fukugawa, Misato; Goswami, Aruna; Hao, Lei; Jewitt, David; Laughlin, Greg; Steidel, Charles; Hickson, Paul; Simard, Luc; Schöck, Matthias; Treu, Tommaso; Cohen, Judith; Anupama, G C; Dickinson, Mark; Harrison, Fiona; Kodama, Tadayuki; Lu, Jessica R; Macintosh, Bruce; Malkan, Matt; Mao, Shude; Narita, Norio; Sekiguchi, Tomohiko; Subramaniam, Annapurni; Tanaka, Masaomi; Tian, Feng; A'Hearn, Michael; Akiyama, Masayuki; Ali, Babar; Aoki, Wako; Bagchi, Manjari; Barth, Aaron; Bhalerao, Varun; Bradac, Marusa; Bullock, James; Burgasser, Adam J; Chapman, Scott; Chary, Ranga-Ram; Chiba, Masashi; Cooray, Asantha; Crossfield, Ian; Currie, Thayne; Das, Mousumi; Dewangan, G C; de Grijs, Richard; Do, Tuan; Dong, Subo; Evslin, Jarah; Fang, Taotao; Fang, Xuan; Fassnacht, Christopher; Fletcher, Leigh; Gaidos, Eric; Gal, Roy; Ghez, Andrea; Giavalisco, Mauro; Grady, Carol A; Greathouse, Thomas; Gogoi, Rupjyoti; Guhathakurta, Puragra; Ho, Luis; Hasan, Priya; Herczeg, Gregory J; Honda, Mitsuhiko; Imanishi, Masa; Inanmi, Hanae; Iye, Masanori; Kamath, U S; Kane, Stephen; Kashikawa, Nobunari; Kasliwal, Mansi; Kirby, Vishal KasliwalEvan; Konopacky, Quinn M; Lepine, Sebastien; Li, Di; Li, Jianyang; Liu, Junjun; Liu, Michael C; Lopez-Rodriguez, Enrigue; Lotz, Jennifer; Lubin, Philip; Macri, Lucas; Maeda, Keiichi; Marchis, Franck; Marois, Christian; Marscher, Alan; Martin, Crystal; Matsuo, Taro; Max, Claire; McConnachie, Alan; McGough, Stacy; Melis, Carl; Meyer, Leo; Mumma, Michael; Muto, Takayuki; Nagao, Tohru; Najita, Joan R; Navarro, Julio; Pierce, Michael; Prochaska, Jason X; Oguri, Masamune; Ojha, Devendra K; Okamoto, Yoshiko K; Orton, Glenn; Otarola, Angel; Ouchi, Masami; Packham, Chris; Padgett, Deborah L; Pandey, Shashi Bhushan; Pilachowsky, Catherine; Pontoppidan, Klaus M; Primack, Joel; Puthiyaveettil, Shalima; Ramirez-Ruiz, Enrico; Reddy, Naveen; Rich, Michael; Richter, Matthew J; Schombert, James; Sen, Anjan Ananda; Shi, Jianrong; Sheth, Kartik; Srianand, R; Tan, Jonathan C; Tanaka, Masayuki; Tanner, Angelle; Tominaga, Nozomu; Tytler, David; U, Vivian; Wang, Lingzhi; Wang, Xiaofeng; Wang, Yiping; Wilson, Gillian; Wright, Shelley; Wu, Chao; Wu, Xufeng; Xu, Renxin; Yamada, Toru; Yang, Bin; Zhao, Gongbo; Zhao, Hongsheng

    2015-01-01

    The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ),...

  15. Vibration damping for the Segmented Mirror Telescope

    Science.gov (United States)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  16. Computerization of a telescope at secondary education

    Science.gov (United States)

    García Santiago, A.; Martos Jumillas, J.

    2017-03-01

    The work we are presenting in this paper is the computerization of a refractor telescope on an EQ3 type equatorial mount through Arduino. The control of the mount is done via three different interfaces: Stellarium, an Android interface for mobile phones and a second interface for PC made with Processing. The aforementioned work was done by the authors with a double purpose: presenting the interest in astronomy in the Mathematics department, and the development of applications within the subject of Technology in 4th ESO. So, it is a collaborative project between both departments. Except for the telescope and the mount, all the resources we have used can be found in any high school: free software (Guadalinex v9), App Inventor and Processing.The project was carried out under the principle of reducing all possible costs given the economic possibilities of the institution.

  17. A new telescope concept for space communication

    Science.gov (United States)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  18. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  19. The Automated Palomar 60-Inch Telescope

    CERN Document Server

    Cenko, S B; Moon, D S; Harrison, F A; Kulkarni, S R; Henning, J R; Guzman, C D; Bonati, M; Smith, R M; Thicksten, R P; Doyle, M W; Petrie, H L; Gal-Yam, A; Soderberg, A M; Anagnostou, N L; Laity, A C; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Henning, John R.; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t <~ 3 minutes) and sustained (R <~ 23 mag) observations of gamma-ray burst afterglows and other transient events. Routine queue-scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real-time, which is then stored on a searchable web-based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  20. The Timepix telescope for charged particle tracking

    Science.gov (United States)

    Hynds, Daniel

    2013-12-01

    The Timepix telescope has been developed as a general purpose tool for studying the performance of position sensitive charged particle detectors. Initiated as part of the infrastructure for the development of a new vertex detector for the LHCb experiment, the system was extended under the FP7 project AIDA to allow its use as an external facility by several groups within both the high energy and medical physics communities. Based at the CERN SPS, high track rates (up to 18 kHz), precise spatial resolution at the device under test (down to 1.6 μm), and a flexible integration method have all been demonstrated. The telescope is constructed using the Timepix ASIC, a hybrid pixel chip with an active area of 14×14 mm2.

  1. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    Science.gov (United States)

    McBrayer, Robert O.

    1994-04-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  2. Exploring the Universe with the Worldwide Telescope

    Science.gov (United States)

    Fay, J. E.

    2014-12-01

    Microsoft Research WorldWide Telescope is a software platform for exploring the universe. Whether you are a researcher, student or just a casual explorer WorldWide Telescope uses cutting edge technology to take you anywhere in the universe and visualize data collected by science programs from across the globe, including NASA great observatories and planetary probes. WWT leverages technologies such as Virtual reality headsets, multi-channel full dome projection and HTML5/WebGL to bring the WWT experience to any device and any scale. We will discuss how to use WWT to browse previously curated data, as well as how to process and visualize your own data, using examples from NASA Mars missions.

  3. Hubble Space Telescope: A cosmic time machine

    Science.gov (United States)

    Westphal, J. A.; Harms, R. J.; Brandt, J. C.; Bless, R. C.; Macchetto, F. D.; Jefferys, W. H.

    1991-01-01

    The mission of the Hubble Space Telescope (HST) is to explore the expanding and evolving universe. During the 3,000 operating hours every year for the next 15 years or more, the HST will be used to study: galaxies; pulsars; globular clusters; neighboring stars where planets may be forming; binary star systems; condensing gas clouds and their chemical composition; and the rings of Saturn and the swirling ultraviolet clouds of Venus. The major technical achievements - its nearly perfect mirrors, its precise guidance system of rate gyroscopes, reaction wheels, star trackers, and fine guidance sensors are briefly discussed. The scientific instruments on board HST are briefly described. The integration of the equipment and instruments is outlined. The Space Telescope Science Institute (STScI) has approved time for 162 observations from among 556 proposals. The mission operation and data flow are explained.

  4. The Design of Diamond Compton Telescope

    CERN Document Server

    Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji

    2007-01-01

    We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.

  5. The Zadko Telescope: Exploring the transient Universe

    CERN Document Server

    Coward, D M; Tanga, P; Turpin, D; Zadko, J; Dodson, R; Devogéle, M; Howell, E J; Kennewell, J A; Boër, M; Klotz, A; Dornic, D; Moore, J A; Heary, A

    2016-01-01

    The Zadko Telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80 km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Secondly, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino obs...

  6. Fate of James Webb Space Telescope murky

    Science.gov (United States)

    Showstack, Randy

    2011-07-01

    The James Webb Space Telescope (JWST), the next-generation successor to the Hubble Space Telescope, was put on the chopping block by the U.S. House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies. The subcommittee approved a measure on 7 July that “terminates funding for [JWST], which is billions of dollars over budget and plagued by poor management.” Then, on 13 July, Rep. Adam Schiff (D-Calif.), whose district includes NASA's Jet Propulsion Laboratory, tried to insert a funding amendment—transferring $200 million from NASA's Cross-Agency Support budget to JWST—when the full House Committee on Appropriations voted. That amendment failed in a voice vote.

  7. The 10 Meter South Pole Telescope

    CERN Document Server

    Carlstrom, J E; Aird, K A; Benson, B A; Bleem, L E; Busetti, S; Chang, C L; Chauvin, E; Cho, H -M; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Holzapfel, W L; Hrubes, J D; Joy, M; Keisler, R; Lanting, T M; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Mehl, J; Meyer, S S; Mohr, J J; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vieira, K Vanderlinde J D

    2009-01-01

    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldovich (SZ) effect and to measure the high-l angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy.

  8. Astronomical telescope with holographic primary objective

    Science.gov (United States)

    Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.

    2011-09-01

    A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.

  9. Telescope and instrument robotization at Dome C

    Science.gov (United States)

    Strassmeier, K. G.; Agabi, K.; Agnoletto, L.; Allan, A.; Andersen, M. I.; Ansorge, W.; Bortoletto, F.; Briguglio, R.; Buey, J.-T.; Castellini, S.; Coudé du Foresto, V.; Damé, L.; Deeg, H. J.; Eiroa, C.; Durand, G.; Fappani, D.; Frezzotti, M.; Granzer, T.; Gröschke, A.; Kärcher, H. J.; Lenzen, R.; Mancini, A.; Montanari, C.; Mora, A.; Pierre, A.; Pirnay, O.; Roncella, F.; Schmider, F.-X.; Steele, I.; Storey, J. W. V.; Tothill, N. F. H.; Travouillon, T.; Vittuari, L.

    2007-07-01

    This article reviews the situation for robotization of telescopes and instruments at the Antarctic station Concordia on Dome C. A brain-storming meeting was held in Tenerife in March 2007 from which this review emerged. We describe and summarize the challenges for night-time operations of various astronomical experiments at conditions ``between Earth and Space'' and conclude that robotization is likely a prerequisite for continuous astronomical data taking during the 2000-hour night at Dome C.

  10. Supernova Science with an Advanced Compton Telescope

    Science.gov (United States)

    2000-12-04

    advanced Compton telescope would be a powerful astrophysical tool. KEYWORDS: gamma rays:observations - Galaxy: center - supernoae: genearl - ISM: general 1...Radionuclei produced in SNe decay to stable nuclei on various time-scales, generating gamma- and x-ray photons, electrons and positrons. These decay products...Older SNRs must be galactic, but the emission can be detected on decadal- millenial time-scales. SNR studies thus concentrate upon 57Co(122 keV), 22Na

  11. A Fast Approach to Creative Telescoping

    CERN Document Server

    Koutschan, Christoph

    2010-01-01

    In this note we reinvestigate the task of computing creative telescoping relations in differential-difference operator algebras. Our approach is based on an ansatz that explicitly includes the denominators of the delta parts. We contribute several ideas of how to make an implementation of this approach reasonably fast and provide such an implementation. A selection of examples shows that it can be superior to existing methods by a large factor.

  12. Sensivity studies for the Cherenkov Telescope Array

    Science.gov (United States)

    Collado, Tarek Hassan

    2015-06-01

    Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.

  13. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  14. High Speed Telescopic Imaging of Sprites

    Science.gov (United States)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  15. Large Telescope Segmented Primary Mirror Alignment

    Science.gov (United States)

    Rud, Mayer

    2010-01-01

    A document discusses a broadband (white light) point source, located at the telescope Cassegrain focus, which generates a cone of light limited by the hole in the secondary mirror (SM). It propagates to the aspheric null-mirror, which is optimized to make all the reflected rays to be normal to the primary mirror (PM) upon reflection. PM retro-reflects the rays back through the system for wavefront analysis. The point source and the wavefront analysis subsystems are all located behind the PM. The PM phasing is absolute (white light) and does not involve the SM. A relatively small, aspheric null-mirror located near the PM center of curvature has been designed to deliver the high level of optical wavefront correction. The phasing of the segments is absolute due to the use of a broadband source. The segmented PM is optically aligned independently and separately from the SM alignment. The separation of the PM segments alignment from the PM to the SM, and other telescope optics alignments, may be a significant advantage, eliminating the errors coupling. The point source of this concept is fully cooperative, unlike a star or laser-generated guide-star, providing the necessary brightness for the optimal S/N ratio, the spectral content, and the stable on-axis position. This concept can be implemented in the lab for the PM initial alignment, or made to be a permanent feature of the space-based or groundbased telescope.

  16. The CAST X-ray telescope

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Madalin M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    CAST (CERN Axion Solar Telescope) is a project at the European Organization for Nuclear Research CERN in Geneva, which searches for Axions coming from the Sun. The most sensitive detector system used at CAST is the X-ray Wolter type I telescope. Its two constituents, the X-ray mirror optics and the fully depleted EPIC pn-CCD detector, were originally built for ABRIXAS and XMM-Newton space missions. Their combined use provides the X-ray telescope with the highest axion discovery potential of all CAST detectors, excellent imaging capability and almost 100% data tacking reliability in conditions of low background which is suppressed by a factor of 155 by focusing the photons from the aperture of the magnet of 14.5 cm{sup 2} to a spot of roughly 9.3 mm{sup 2} on the CCD chip. For achieving a high sensitivity the CCD chip is operated at -130 C in a vacuum vessel made of aluminum and a passive shield of copper and led to reduce the external {gamma}-ray. All these combined with a extremely thin and homogeneous entrance window of 20 nm located on the back side of the chip result in a quantum efficiency of >95% in the photon energy range of 1 to 7 keV, which is the interesting region for the axion search with the CAST experiment.

  17. MINERVA: Small Planets from Small Telescopes

    Science.gov (United States)

    Wittenmyer, Robert A.; Johnson, John Asher; Wright, Jason; McCrady, Nate; Swift, Jonathan; Bottom, Michael; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; Vera, Jon De; Szentgyorgyi, Andrew

    2015-09-01

    The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect new low-mass planets.

  18. Initial Results from the XUV Doppler Telescope

    Science.gov (United States)

    Kano, R.; Hara, H.; Kobayashi, K.; Kumagai, K.; Nagata, S.; Sakao, T.; Shimizu, T.; Tsuneta, S.; Yoshida, T.

    We developed a unique telescope to obtain simultaneous XUV images and the velocity maps by measuring the line-of-sight Doppler shifts of the Fe XIV 211A&ring line (T = 1.8 MK): the Solar XUV Doppler Telescope (hereafter XDT). The telescope was launched by the Institute of Space and Astronautical Science with the 22nd S520 rocket on January 31, 1998, and took 14 XUV whole sun images during 5 minutes. Simultaneous observations of XDT with Yohkoh (SXT), SOHO (EIT, CDS, LASCO and MDI) were successfully carried out. The images taken with EIT, XDT and SXT are able to cover the wide temperature ranging from 1 to 10 MK, and clearly show the multi-temperature nature of the solar corona. Indeed, we notice that both the cool (1-2 MK) loops observed with EIT and XDT, and the hot (>3 MK) loops observed with SXT exist in the same active regions but in a spatially exclusive way. The XDT red-blue ratio between longer- and shorter-wavelength bands of Fe XIV 211A&ring line indicates a possible down-flow of 1.8 MK plasma near the footpoints of multiple cool loops

  19. Abu Simbel Radio Telescope Project in the upper Egypt.

    Science.gov (United States)

    Shaltout, M.

    1999-03-01

    This paper shows the importance of building a radio telescope at Abu Simbel in the south of Egypt as part of the European VLBI Network (EVN) to cover the gap between the radio telescopes in Western Europe and the radio telescope at Hartebeesthoek in South Africa. The telescope can be used for solar and stellar observations at wavelengths ranging between centimetres and millimetres, and for geodetic VLBI studies. The suggested diameter is 32 meters for the telescope and it is expected to work in the frequency range from 1.4 to 43 GHz. Abu Simbel is characterised by excellent atmospheric transparency, dry climate, and low population without any artificial interference.

  20. Solar Magnetism and the Activity Telescope at HSOS

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang; Ya-Nan Wang; Qi-Qian Hu; Jun-Sun Xue; Hai-Tian Lu; Hou-Kun Ni; Han-Liang Chen; Xiao-Jun Zhou; Qing-Sheng Zhu; Lü-Jun Yuan; Yong Zhu; Dong-Guang Wang; Yuan-Yong Deng; Ke-Liang Hu; Jiang-Tao Su; Jia-Ben Lin; Gang-Hua Lin; Shi-Mo Yang; Wei-Jun Mao

    2007-01-01

    A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1(A) bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.

  1. Measuring Visual Double Stars with Robotic Telescopes

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to

  2. Calibration and testing of a prototype of the JEM-EUSO telescope on Telescope Array site

    Directory of Open Access Journals (Sweden)

    Tsunesada Y.

    2013-06-01

    Full Text Available Aim of the TA-EUSO project is to install a prototype of the JEM-EUSO telescope on the Telescope Array site in Black Rock Mesa, Utah and perform observation of natural and artificial ultraviolet light. The detector consists of one Photo Detector Module (PDM, identical to the 137 present on the JEM-EUSO focal surface. Each PDM is composed by 36 Hamamatsu multi-anode photomultipliers (64 channels per tube, for a total of 2304 channels. Front-End readout is performed by 36 ASICS, with trigger and readout tasks performed by two FPGA boards that send the data to a CPU and storage system. Two, 1 meter side square Fresnel lenses provide a field-of-view of 8 degrees. The telescope will be housed in a container located in front of the fluorescence detector of the Telescope Array collaboration, looking in the direction of the ELF (Electron Light Source and CLF (Central Laser Facility. Aim of the project is to calibrate the response function of the EUSO telescope with the TA fluorescence detector in presence of a shower of known intensity and distribution. An initial run of about six months starting from end 2012 is foreseen, during which we expect to observe, triggered by TA electronics, a few cosmic ray events which will be used to further refine the calibration of the EUSO-Ground with TA. Medium term plans include the increase of the number of PDM and therefore the field of view.

  3. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  4. Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude

    CERN Document Server

    Sebring, T A; Radford, S; Zmuidzinas, J; Sebring, Thomas A.; Giovanelli, Riccardo; Radford, Simon; Zmuidzinas, Jonas

    2006-01-01

    Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 micron. The telescope is designed to deliver high efficiency images at that wavelength with a total 1/2 wavefront error of about 10 microns. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec. resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of pr...

  5. The Single Mirror Small Sized Telescope For The Cherenkov Telescope Array

    CERN Document Server

    Heller, M; Porcelli, A; Pujadas, I Troyano; Zietara, K; della Volpe, D; Montaruli, T; Cadoux, F; Favre, Y; Aguilar, J A; Christov, A; Prandini, E; Rajda, P; Rameez, M; Bilnik, W; Blocki, J; Bogacz, L; Borkowski, J; Bulik, T; Frankowski, A; Grudzinska, M; Idzkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszalek, A; Miranda, L D Medina; Michalowski, J; Moderski, R; Neronov, A; Niemiec, J; Ostrowski, M; Pasko, P; Pech, M; Schovanek, P; Seweryn, K; Sliusar, V; Skowron, K; Stawarz, L; Stodulska, M; Stodulski, M; Walter, R; Wiecek, M; Zagdanski, A

    2016-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9 degrees. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of...

  6. The dual-mirror Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Pareschi, G; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; MistÒ, A; Morello, C; Morlino, G; Panzera, M R; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V; Amans, J P; Boisson, C; Costille, C; Dournaux, J L; Dumas, D; Fasola, G; Hervet, O; Huet, J M; Laporte, P; Rulten, C; Sol, H; Zech, A; White, R; Hinton, J; Ross, D; Sykes, J; Ohm, S; Schmoll, J; Chadwick, P; Greenshaw, T; Daniel, M; Cotter, G; Varner, G S; Funk, S; Vandenbroucke, J; Sapozhnikov, L; Buckley, J; Moore, P; Williams, D; Markoff, S; Vink, J; Berge, D; Hidaka, N; Okumura, A; Tajima, H

    2013-01-01

    In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Repl...

  7. Classic Telescopes A Guide to Collecting, Restoring, and Using Telescopes of Yesteryear

    CERN Document Server

    English, Neil

    2013-01-01

    Classic Telescopes explores the exciting world of telescopes past, as well as the possibilities involved in acquiring these instruments. What are classic telescopes? First, the book takes a look at the more traditional telescopes built by the great instrument makers of the eighteenth and nineteenth centuries and the dynastic houses founded by the likes of John Dollond, Alvan Clark, Thomas Cooke & Sons and Carl Zeiss, plus some lesser-known luminaries, including John Brashear, John Calver, and Henry Fitz. Instruments constructed from the 1950s until as recently as the early 1990s are now also considered 'classic.' There is thus a very active market for buying and selling these 'modern' classics. The author examines some of the most talked about instruments on the amateur Internet forums, including the Unitron refractors, the Questar 90, a classic 6-inch reflector, the RV-6; a 3-inch F/15 achromat by Fullerscopes; the time-honored AstroScan Richfield reflector; and many, many more. Classic telescopes are of...

  8. Finite Element Analysis of the 2 m Telescope Assemble

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fu; WANG Ping; ZHAO Yue-jin; ZHANG Li; XIN Hong-bing

    2007-01-01

    To improve the performance of the 2 m telescope,the optimum design is applied to the telescope assemble.Referring to the telescope assemble with the dimetric truss,a group of reasonable sizes of the telescope assemble are found by optimization methods and modal analysis,which will raise the resonant frequency by 4.21%.As a result,the telescope assemble is less likely to resonate.Besides,the dynamic response module in ANSYS is utilized to analyze the modal type,harmonic vibration response and random vibration response of the telescope assemble.By the calculation of ANSYS,finite element analysis (FEA) method proves that the performance of the telescope assemble is mildly enhanced by means of optimum design.

  9. VISTA: Pioneering New Survey Telescope Starts Work

    Science.gov (United States)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and

  10. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  11. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  12. An early lunar-based telescope - The Lunar Transit Telescope (LTT)

    Science.gov (United States)

    Mcgraw, John T.

    1990-01-01

    The first telescope accompanying return to the moon, a simple but elegant two meter class instrument capable of producing an extraordinary survey of the universe is proposed. This telescope produces a deep image of the sky obtained simultaneously in several broad bandpasses in the wavelength range from about 0.1 to 2 microns, with diffraction limited imaging in the infrared and approximately 0.1 arcsec resolution at shorter wavelengths. In an 18.6 year mission, the survey would include approximately 2 percent of the sky with multiple observations of all the surveyed area. This survey is accomplished with a telescope which has no moving parts and requires no continuing support beyond initial deployment.

  13. Actuator Development at IAAT for the Cherenkov Telescope Array Medium Size Telescopes

    CERN Document Server

    Diebold, S; Pühlhofer, G; Renner, S; Santangelo, A; Schanz, T; Tenzer, C

    2016-01-01

    The Cherenkov Telescope Array (CTA) will be the future observatory for TeV gamma-ray astronomy. In order to increase the sensitivity and to extend the energy coverage beyond the capabilities of current facilities, its design concept features telescopes of three different size classes. Based on the experience from H.E.S.S. phase II, the Institute for Astronomy and Astrophysics T\\"ubingen (IAAT) develops actuators for the mirror control system of the CTA Medium Size Telescopes (MSTs). The goals of this effort are durability, high precision, and mechanical stability under all environmental conditions. Up to now, several revisions were developed and the corresponding prototypes were extensively tested. In this contribution our latest design revision proposed for the CTA MSTs are presented.

  14. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  15. Asteroid observations with the Hubble Space Telescope and the Space Infrared Telescope Facility

    Science.gov (United States)

    Zellner, B.; Wells, Eddie N.; Chapman, Clark R.; Cruikshank, D. P.

    1989-01-01

    The ways that the asteroids can be studied with the Hubble Space Telescope (HST) and the Space Infrared Telescope Facility (SIRTF) are examined. Spectrophotometry of asteroids and the study of asteroid surfaces, shape, spins, configuration, normal reflectance, and limb darkening of asteroids using the HST are addressed along with the detection of asteroid satellites and the discovery of small asteroids using the HST. The relation of the HST to its ground system is described, as are the spectrophotometric instruments of the HST. Imaging with the HST using the Faint Object Camera and the Wide Field and Planetary Camera is examined. Finally, the SIRTF observatory, instrumentation, and capabilities for solar system science are discussed.

  16. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  17. Evolution of operations for the Survey Telescope at Paranal

    Science.gov (United States)

    Romero, Cristian M.; Mieske, Steffen; Brillant, Stéphane; Pino, Andres; Cerda, Susana; Reyes, Claudia; La Fuente, Carlos

    2016-07-01

    Since 2009, operations began at the Survey Telescopes at Paranal Observatory. The surveys aimed to observe using a large field of view targeting much fainter sources and covering wide areas of sky quickly. The first to enter operations was VISTA (Visible and Infrared Survey Telescope for Astronomy) and then the VST Telescope (VLT Survey Telescope). The survey telescopes introduced a change into the operational model of the time. The observations were wholly conducted by the telescope and instrument operator without the aid of a support astronomer. This prompted the gradual and steady improvement of tools for the operation of the observatory both generally and in particular for the Survey Telescopes. Examples of these enhancements include control systems for image quality, selection of OBs, logging of evening activities, among others. However, the new generation instruments at the Very Large Telescope (VLT) posed a new challenge to the observatory from a scientific and operational point of view. As these new systems were more demanding and complex, they would be more complicated to operate and require additional support. Hence, the focus of this study is to explore the possible development and optimization of the operations of the Survey telescopes, which would give greater operational flexibility in regards to the new generation instruments. Moreover, we aim to evaluate the feasibility of redistributing of telescope operators during periods of increased demand from other VLT systems.

  18. The X-ray Telescope of CAST

    OpenAIRE

    Kuster, M.; Bräuninger, H.; Cébrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; R. Hartmann; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J. N.; Kang, D.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and...

  19. Telescopic Partial Dentures-Concealed Technology

    Science.gov (United States)

    Bhagat, Tushar Vitthalrao; Walke, Ashwini Nareshchandra

    2015-01-01

    The ideal goal of good dentist is to restore the missing part of oral structure, phonetics, his look and the most important is restored the normal health of the patient, which is hampered due to less or insufficient intake of food. Removable partial denture (RPD) treatment option is considered as a notion, which precludes the inevitability of “floating plastic” in edentulous mouth, that many times fail to fulfill the above essential of the patients. In modern dentistry, though the dental implants or fixed partial denture is the better options, but they have certain limitations. However, overdentures and particularly telescopic denture is the overlooked technology in dentistry that would be a boon for such needy patients. Telescopic denture is especially indicated in the distal edentulous area with minimum two teeth bilaterally present with a good amount of periodontal support. This treatment modality is sort of preventive prosthodontics remedy, which in a conservative manner preserve the remaining teeth and helps in conservation of alveolar bone ultimately. There are two tenets related to this option, one is constant conservation edentulous ridge around the retained tooth and the most important is the endless existence of periodontal sensory action that directs and monitor gnathodynamic task. In this option the primary coping or inner coping are cemented on the prepared tooth, and a similar removable outer or inner telescopic crown placed tightly by using a mechanism of tenso-friction, this is firmly attached to a removable RPD in place without moving or rocking of the prosthesis, which is the common compliant of almost all patients of RPD. Copings are also protecting the abutment from tooth decay and also offers stabilization and maintaining of the outer crown. The outer crown engages the inner coping and gives as an anchor for the remainder of the dentition. This work is the review of telescopic prosthesis which is well supported by the case discussion, and

  20. QUIJOTE Experiment: status of telescopes and instrumentation

    Science.gov (United States)

    Pérez-de-Taoro, M. R.; Aguiar-González, M.; Cózar-Castellano, J.; Génova-Santos, R.; Gómez-Reñasco, F.; Hoyland, R.; Peláez-Santos, A.; Poidevin, F.; Tramonte, D.; Rebolo-López, R.; Rubiño-Martín, J. A.; Sánchez-de-la-Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.; Vignaga, R.; Casas, F. J.; Martinez-Gonzalez, E.; Ortiz, D.; Aja, B.; Artal, E.; Cano-de-Diego, J. L.; de-la-Fuente, L.; Mediavilla, A.; Terán, J. V.; Villa, E.; Harper, S.; McCulloch, M.; Melhuish, S.; Piccirillo, L.; Lasenby, A.

    2016-07-01

    The QUIJOTE Experiment (Q-U-I JOint TEnerife) is a combined operation of two telescopes and three instruments working in the microwave band to measure the polarization of the Cosmic Microwave Background (CMB) from the northern hemisphere, at medium and large angular scales. The experiment is located at the Teide Observatory in Tenerife, one of the seven Canary Islands (Spain). The project is a consortium maintained by several institutions: the Instituto de Astrofísica de Canarias (IAC), the Instituto de Física de Cantabria (IFCA), the Communications Engineering Department (DICOM) at Universidad de Cantabria, and the Universities of Manchester and Cambridge. The consortium is led by the IAC.

  1. LOFAR, a new low frequency radio telescope

    CERN Document Server

    Röttgering, H J A

    2003-01-01

    LOFAR, the Low Frequency Array, is a large radio telescope consisting of approximately 100 soccer-field sized antenna stations spread over a region of 400 km in diameter. It will operate at frequencies from ~10 to 240 MHz, with a resolution at 240 MHz of better than an arcsecond. Its superb sensitivity will allow for studies of a broad range of astrophysical topics, including reionisation, transient radio sources and cosmic rays, distant galaxies and AGNs. In this contribution a status rapport of the LOFAR project and an overview of the science case is presented.

  2. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  3. Deployable and retractable telescoping tubular structure development

    Science.gov (United States)

    Thomson, M. W.

    1994-01-01

    A new deployable and retractable telescoping boom capable of high deployed stiffness and strength is described. Deployment and retraction functions are controlled by simple, reliable, and fail-safe latches between the tubular segments. The latch and a BI-STEM (Storable Tubular Extendible Member) actuator work together to eliminate the need for the segments to overlap when deployed. This yields an unusually lightweight boom and compact launch configuration. An aluminum space-flight prototype with three joints displays zero structural deadband, low hysteresis, and high damping. The development approach and difficulties are discussed. Test results provide a joint model for sizing flight booms of any diameter and length.

  4. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  5. Instrumentation for the California Extremely Large Telescope

    Science.gov (United States)

    Taylor, Keith; McLean, Ian S.

    2003-03-01

    The Phase A study for the California Extremely Large Telescope (CELT) Project has recently been completed. As part of this exercise a working group was set-up to evolve instrumentation strategies matched to the scientific case for the CELT facility. We report here on the proposed initial instrument suite which includes not only massively multiplexed seeing-limited multi-object spectroscopy but also on plans for wide-field adaptive optics fed integral-field spectroscopy and imaging at, or approaching, CELT's diffraction limit.

  6. A new large area monolithic silicon telescope

    CERN Document Server

    Tudisco, S; Cabibbo, M; Cardella, G; De Geronimo, G; Di Pietro, A; Fallica, G; Figuera, P; Musumarra, A; Papa, M; Pappalardo, G S; Rizzo, F; Valvo, G

    1999-01-01

    A new prototype of large area (20x20 mm sup 2) monolithic silicon telescope with an ultrathin DELTA E stage (1 mu m) has been built and tested. A particular mask for the ground electrode has been developed to improve the charge collection reducing the induction between the E and DELTA E stages. A special designed preamplifier has been used for the readout of the signal from the DELTA E stage to overcome the problem of the large input capacitance (40 nF). A rather low energy threshold charge discrimination has been obtained. Small side effects due to the electric field deformation near the ground electrode were observed and quantified.

  7. Observations of microquasars with the MAGIC telescope

    CERN Document Server

    Rico, J; Bordas, P; Bosch-Ramon, V; Cortina, J; Paredes, J M; Ribó, M; Torres, D F; Zanin, R

    2007-01-01

    We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.

  8. Latest technique makes a sharper telescope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The integration testing of 4K×4K Charge Coupled Device (CCD) detection system developed by researchers from the CAS Purple Mountain Observatory in cooperation with overseas coworkers was successfully carried out for the Schmidt telescope at the Xuyi station in east China's Jiangsu Province recently.Preliminary observations have led to exciting results. From the CCD image with an exposure time of 1 sec, 18th magnitude stars are clearly detectable while in the CCD image with an exposure time of 20sec, 21.2th magnitude stars are recognizable.

  9. Telescope stray light: early experience with SOFIA

    Science.gov (United States)

    Waddell, Patrick; Becklin, Eric E.; Hamilton, Ryan T.; Vacca, William D.; Lachenmann, Michael

    2016-09-01

    Effective stray light control is a key requirement for wide dynamic range performance of scientific optical and infrared systems. SOFIA now has over 325 mission flights including extended southern hemisphere deployments; science campaigns using 7 different instrument configurations have been completed. The research observations accomplished on these missions indicate that the telescope and cavity designs are effective at suppressing stray light. Stray light performance impacts, such as optical surface contamination, from cavity environment conditions during mission flight cycles and while on-ground, have proved to be particularly benign. When compared with earlier estimates, far fewer large optics re-coatings are now anticipated, providing greater facility efficiency.

  10. Extendable retractable telescopic mast for deployable structures

    Science.gov (United States)

    Schmid, M.; Aguirre, M.

    1986-01-01

    The Extendable and Retractable Mast (ERM) which is presently developed by Dornier in the frame of an ESA-contract, will be used to deploy and retract large foldable structures. The design is based on a telescopic carbon-fiber structure with high stiffness, strength and pointing accuracy. To verify the chosen design, a breadboard model of an ERM was built and tested under thermal vacuum (TV)-conditions. It is planned as a follow-on development to manufacture and test an Engineering Model Mast. The Engineering Model will be used to establish the basis for an ERM-family covering a wide range of requirements.

  11. Time Calibration of the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J L; Galata, S; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2010-01-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.

  12. Time calibration of the ANTARES neutrino telescope

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J. P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fritsch, U.; Fuda, J. L.; Galata, S.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienzap, P.; Schöck, F.; Schuller, J. P.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2011-02-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ˜1 ns. The methods developed to attain this level of precision are described.

  13. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  14. Astrobiology with Robotic Telescopes at CAB

    Directory of Open Access Journals (Sweden)

    Luis Cuesta

    2010-01-01

    Full Text Available The key objectives of RTRCAB are the identification of new exoplanets and especially the characterization of the known exoplanets by observing photometric and systematic monitoring of their transits. These telescopes, equipped with advanced technology, optimized control programs, and optical and technical characteristics adequate for this purpose, are ideal to make the observations that are required to carry out these programs. The achievement of these goals is ensured by the existence of three separated geographical stations. In this sense, there are several planned missions that have the same objectives among their scientific goals, like Kepler, CoRoT, GAIA, and PLATO.

  15. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    CERN Document Server

    Atwood, W B

    2009-01-01

    (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration wit...

  16. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    Science.gov (United States)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  17. Thirty Meter Telescope Detailed Science Case: 2015

    Science.gov (United States)

    Skidmore, Warren; TMT International Science Development Teams; Science Advisory Committee, TMT

    2015-12-01

    The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA). Cover image: artist's rendition of the TMT International Observatory on Mauna Kea opening in the late evening before beginning operations.

  18. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M; Cebrián, S; Davenport, M; Elefteriadis, C; Englhauser, J; Fischer, H; Franz, J; Friedrich, P; Hartmann, R; Heinsius, F H; Hoffmann, Dieter H H; Hoffmeister, G; Joux, J N; Königsmann, K C; Kang, D; Kotthaus, R; Lasseur, C; Lippitsch, A; Lutz, G; Morales, J; Papaevangelou, T; Rodríguez, A; Strüder, L; Vogel, J; Zioutas, K

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  19. The x-ray telescope of CAST

    Science.gov (United States)

    Kuster, M.; Bräuninger, H.; Cebrián, S.; Davenport, M.; Eleftheriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D. H. H.; Hoffmeister, G.; Joux, J. N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodríguez, A.; Strüder, L.; Vogel, J.; Zioutas

    2007-06-01

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant gaγγ can be probed beyond the best astrophysical constraints gaγγ < 1 × 10-10 GeV-1.

  20. Very Large Aperture Diffractive Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  1. The Swift Mission and the REM Telescope

    Science.gov (United States)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelemy, S. D.; Burrow, D. N.; Hurley, K. C.

    2003-01-01

    Following a description of the science drive which originated the Swift Mission, this is US NASA MIDEX Mission with the collaboration of Italy and the UK, we will describe the status of the hardware and the observing strategy. The telemetry is carried out via the TDRSS satellite for those communications that need immediate response. The data transfer and the scheduled uploading of routine commands will be done through the ASI Malindi station in Kenia. Both in the US and in Europe a large effort will be done to follow the bursts with the maximum of efficiency and as soon as possible after the alert. We will describe how the ESO VLT telescopes are able to respond to the alert. To address the problematic of the dark bursts and to immediately follow up all of the bursts also in the Near Infrared we designed and built a 60 cm NIR Robotic telescope, REM, to be located on the ESO ground at Cerro La Silla. The instrumentation includes also a low dispersion spectrograph with the capability of multi wavelength optical photometry.

  2. Virtualizing observation computing infrastructure at Subaru Telescope

    Science.gov (United States)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell; Schubert, Kiaina; Tait, Philip

    2016-08-01

    Subaru Telescope, an 8-meter class optical telescope located in Hawaii, has been using a high-availability commodity cluster as a platform for our Observation Control System (OCS). Until recently, we have followed a tried-and-tested practice of running the system under a native (Linux) OS installation with dedicated attached RAID systems and following a strict cluster deployment model to facilitate failover handling of hardware problems,1.2 Following the apparent benefits of virtualizing (i.e. running in Virtual Machines (VMs)) many of the non- observation critical systems at the base facility, we recently began to explore the idea of migrating other parts of the observatory's computing infrastructure to virtualized systems, including the summit OCS, data analysis systems and even the front ends of various Instrument Control Systems. In this paper we describe our experience with the initial migration of the Observation Control System to virtual machines running on the cluster and using a new generation tool - ansible - to automate installation and deployment. This change has significant impacts for ease of cluster maintenance, upgrades, snapshots/backups, risk-management, availability, performance, cost-savings and energy use. In this paper we discuss some of the trade-offs involved in this virtualization and some of the impacts for the above-mentioned areas, as well as the specific techniques we are using to accomplish the changeover, simplify installation and reduce management complexity.

  3. The Zadko Telescope: Exploring the Transient Universe

    Science.gov (United States)

    Coward, D. M.; Gendre, B.; Tanga, P.; Turpin, D.; Zadko, J.; Dodson, R.; Devogéle, M.; Howell, E. J.; Kennewell, J. A.; Boër, M.; Klotz, A.; Dornic, D.; Moore, J. A.; Heary, A.

    2017-01-01

    The Zadko telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80-km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore, the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012-2014) that has resulted in significantly improved robotic operations. Second, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave (GW) candidates from the United States and European GW observatory network and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino, and GW bands.

  4. Optical design of the Discovery Channel Telescope

    Science.gov (United States)

    MacFarlane, Malcolm J.; Dunham, Edward W.

    2004-10-01

    The Discovery Channel Telescope (DCT) is a joint venture between Discovery Communications and Lowell Observatory. The telescope will have a 4.2-meter clear aperture, active primary mirror working at F/1.9. Two observing stations are presently planned; a Ritchey-Chretien focus some two meters behind the vertex of the primary mirror and a prime focus featuring a wide-field optical corrector (WFOC) with a two-degree field of view. The Ritchey-Chretien focus will be used for a variety of optical and near infrared imaging and spectroscopic instrumentation while the prime focus will be largely used as a survey tool to search for near-earth and Kuiper belt objects, for example. In order to take advantage of sub-arc second seeing at the DCT site, a stringent set of requirements has been placed on the two foci. The requirements are for the full-width, half-maximum (FWHM) image of a point source to be less than 0.20 arc second at the Ritchey-Chretien focus over a 21 arc minute field and less than 0.27 arc second at prime focus in each of six filter bands including a very broad band for survey purposes. This paper describes the optical design of the field correctors at the two foci. Particular attention is paid to the WFOC. This state of the art device poses a number of optical challenges which are discussed here, as well as mechanical challenges which are discussed elsewhere.

  5. Optical synoptic telescopes: new science frontiers

    Science.gov (United States)

    Tyson, J. Anthony

    2010-07-01

    Over the past decade, sky surveys such as the Sloan Digital Sky Survey (SDSS) have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient étendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.

  6. DESTINY, the Dark Energy Space Telescope

    Science.gov (United States)

    Lauer, T. R.; Morse, J. A.; Destiny Science Team

    2003-12-01

    We describe a mission concept for a 1.8-meter near-infrared (NIR) grism-mode space telescope optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SNe) over the redshift range 0.5 the Universe as a function of time, and characterizing the nature of dark energy. The central concept for our proposed Dark Energy Space Telescope (DESTINY) is an all-grism NIR survey camera. SNe will be discovered by repeated imaging of an area located at the north ecliptic pole. Grism spectra with resolving power l/Dl = R * 100 will provide broad-band spectrophotometry, redshifts, SNe classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Our approach features only a single mode of operation, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of observing a large field-of-view over a full octave in wavelength simultaneously makes this approach highly competitive.

  7. Fermi Large Area Telescope Second Source Catalog

    CERN Document Server

    ,

    2011-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we att...

  8. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Antolini, E.; Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Atwood, W. B.; Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bignami, G. F., E-mail: digel@stanford.edu, E-mail: Gino.Tosti@pg.infn.it, E-mail: jean.ballet@cea.fr, E-mail: tburnett@u.washington.edu [Istituto Universitario di Studi Superiori (IUSS), I-27100 Pavia (Italy); and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  9. Giant Magellan Telescope Site Testing Summary

    CERN Document Server

    Thomas-Osip, Joanna E; Prieto, Gabriel; Phillips, Mark M; Johns, Matt

    2011-01-01

    Cerro Las Campanas located at Las Campanas Observatory (LCO) in Chile has been selected as the site for the Giant Magellan Telescope. We report results obtained since the commencement, in 2005, of a systematic site testing survey of potential GMT sites at LCO. Meteorological (cloud cover, temperature, pressure, wind, and humidity) and DIMM seeing data have been obtained at three potential sites, and are compared with identical data taken at the site of the twin Magellan 6.5m telescopes. In addition, measurements of the turbulence profile of the free-atmosphere above LCO have been collected with a MASS/DIMM. Furthermore, we consider photometric quality, light pollution, and precipitable water vapor (PWV). LCO, and Co. Las Campanas in particular, have dark skies, little or no risk of future light pollution, excellent seeing, moderate winds, PWV adequate for mid-IR astronomy during a reasonable fraction of the nights, and a high fraction of clear nights overall. Finally, Co. Las Campanas meets or exceeds all the...

  10. Beam Calibration of Radio Telescopes with Drones

    Science.gov (United States)

    Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-11-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  11. Simulators, Remote Labs and Robotic Telescopes

    Science.gov (United States)

    Folhas, Alvaro

    2015-04-01

    There is an increasing gap between students of the twenty-first century and the teaching methodology still stuck in the past century. The myriad stimuli that involve our students, immediate consumption of information, and the availability of resources, should cast the teacher in search methodologies that encourage the student to learn. The simulators, virtual laboratories and remote controlled robotic equipment are examples of high didactic potential resources, created by scientific organizations and universities, to be used in education, providing a direct interaction with science and motivating our students to a future career in science. It is up to us to take advantage of that work, and those resources, to light the sparkle in the eyes of our students. In Astronomy Club I've developed with high school students some practical projects in science, using, over the web, the robotic telescopes through which the students are studying and photographing deep sky objects; or the European network of radio telescope, measuring the speed of the arms of our galaxy in our galactic dance, their temperatures showing where it is more likely to form new stars. Students use these tools, engaging in their own knowledge construction, and forego their Friday afternoons without a hurry to go home for the weekend. That's the spirit we want for the school.

  12. Bokeh mirror alignment for Cherenkov telescopes

    Science.gov (United States)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  13. Ground calibrations of Nuclear Compton Telescope

    Science.gov (United States)

    Chiu, Jeng-Lun; Liu, Zhong-Kai; Bandstra, Mark S.; Bellm, Eric C.; Liang, Jau-Shian; Perez-Becker, Daniel; Zoglauer, Andreas; Boggs, Steven E.; Chang, Hsiang-Kuang; Chang, Yuan-Hann; Huang, Minghuey A.; Amman, Mark; Chiang, Shiuan-Juang; Hung, Wei-Che; Lin, Chih-Hsun; Luke, Paul N.; Run, Ray-Shine; Wunderer, Cornelia B.

    2010-07-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma ray (0.2-10 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of 12 cross-strip germanium detectors, designed to provide 3D positions for each photon interaction with full 3D position resolution to imaging, effectively reduces background, and enables the measurement of polarization. The keys to Compton imaging with NCT's detectors are determining the energy deposited in the detector at each strip and tracking the gamma-ray photon interaction within the detector. The 3D positions are provided by the orthogonal X and Y strips, and by determining the interaction depth using the charge collection time difference (CTD) between the anode and cathode. Calibrations of the energy as well as the 3D position of interactions have been completed, and extensive calibration campaigns for the whole system were also conducted using radioactive sources prior to our flights from Ft. Sumner, New Mexico, USA in Spring 2009, and from Alice Springs, Australia in Spring 2010. Here we will present the techniques and results of our ground calibrations so far, and then compare the calibration results of the effective area throughout NCT's field of view with Monte Carlo simulations using a detailed mass model.

  14. Status of the Cherenkov Telescope Array Project

    CERN Document Server

    de Almeida, Ulisses Barres

    2016-01-01

    Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has n...

  15. Beam calibration of radio telescopes with drones

    CERN Document Server

    Chang, Chihway; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah

    2015-01-01

    We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.

  16. Results from the ANTARES Neutrino Telescope

    CERN Document Server

    Spurio, M

    2016-01-01

    A primary goal of a deep-sea neutrino telescopes as ANTARES is the search for astrophysical neutrinos in the TeV-PeV range. ANTARES is today the largest neutrino telescope in the Northern hemisphere. After the discovery of a cosmic neutrino diffuse flux by the IceCube, the understanding of its origin has become a key mission in high-energy astrophysics. ANTARES makes a valuable contribution for sources located in the Southern sky thanks to its excellent angular resolution in both the muon channel and the cascade channel (induced by all neutrino flavors). Assuming various spectral indexes for the energy spectrum of neutrino emitters, the Southern sky and in particular central regions of our Galaxy are studied searching for point-like objects and for extended regions of emission. In parallel, by adopting a multimessenger approach, based on time and/or space coincidences with other cosmic probes, the sensitivity of such searches can be considerably augmented. ANTARES has participated to a high-energy neutrino fo...

  17. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  18. Mirror seeing of the Antarctic survey telescope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kaiyuan; LI Zhengyang; YUAN Xiangyan; PEI Chong

    2014-01-01

    Site testing results indicate that Antarctic Dome A is an excellent ground-based astronomical site suitable for observations ranging from visible to infrared wavelengths. However, the harsh environment in Antarctica, especially the very low temperature and atmospheric pressure, always produces frost on the telescopes’ mirrors, which are exposed to the air. Since the Dome A site is still unattended, the Antarctic telescope tubes are always designed to be filled with dry nitrogen, and the outer surfaces of the optical system are heated by an indium-tin oxide thin film. These precautions can prevent the optical surfaces from frosting over, but they degrade the image quality by introducing additional mirror seeing. Based on testing observations of the second Antarctic Survey Telescope (AST3-2) in the Mohe site in China, mirror seeing resulting from the heated aspheric plate has been measured using micro-thermal sensors. Results comparing the real-time atmospheric seeing monitored by the Differential Image Motion Monitor and real-time examinations of image quality agree well.

  19. The Hopkins Ultraviolet Telescope: The Final Archive

    CERN Document Server

    Dixon, William V; Kruk, Jeffrey W; Romelfanger, Mary L

    2013-01-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (~3 A) far-ultraviolet (820-1850 A) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a non-standard format that lacked important descriptive metadata. To increase their utility, we have modified the original data-reduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the {\\it Far Ultraviolet Spectroscopic Explorer} calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully complia...

  20. Data Analysis Challenges for the Einstein Telescope

    CERN Document Server

    Bosi, Leone

    2009-01-01

    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.

  1. Telescoping Sample Canister Capture Mechanism (TSCCM)

    Science.gov (United States)

    Kong, Kin Yuen; Gorevan, Stephen; Mukherjee, Suparna; Wilson, Jack

    2003-11-01

    Sample return from solar system bodies including planets, moons, comets and asteroids is of high importance within the space science community. A returned sample will allow much more elaborate and detailed analysis not feasible through remote robotic analysis. For this reason, Honeybee Robotics has developed a low-cost reusable, automated on-orbit sample canister capture mechanism. The purpose of the mechanism is to capture a full sample canister and transfer it to a storage cache, sample return spacecraft, or on-orbit laboratory for further scientific study. The current design allows for reliable misalignment-compensated capture for various sample container geometries in any initial orientation. After capture, the sample canister is aligned and presented for transfer. Honeybee has demonstrated the concept through tests of two- and three-dimensional telescopic capture mechanism breadboards. The telescopic capture mechanism design is scalable, minimizes volume and can be made of lightweight material to minmize mass, all of which are critical aspects of spacecraft design.

  2. Security of remotely operated robotic telescopes

    Science.gov (United States)

    Surrey, Peter J.; Muecke-Herzberg, Dorothea

    2000-06-01

    A robotic telescope is both a complex system with many potential modes of failure, and an attractive target for computer criminals. The paper describes a systematic approach to security designed to optimize the operational continuity of such a system. This includes the development of policy guidelines, techniques for identifying the prioritizing the assets to be protected, and for assessing the threats against these assets. Commonly encountered threats are discussed, and specific security mechanisms to counter these threats described, including fault-tolerant hardware configurations, cryptographic techniques for authentication and confidentiality, and leveraging the properties of point-to-point wide-area networking links. A typical remote telescope offers multiple points of attack through its interfaces for engineering control, observation scheduling, data retrieval and routine management. A case study is presented highlighting the engineering trade-offs required to protect these interfaces, and discussing the implementation of specific countermeasures described earlier. Finally some recommendations are made for managing the human aspects of security implementations.

  3. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  4. The Solar Electron And Proton Telescope (sept)

    Science.gov (United States)

    Falkner, P.; Johlander, B.; Mueller-Mellin, R.; Sanderson, T.; Habinc, S.

    The Solar Electron and Proton Telescope consists of two dual double-ended mag- net/foil particle telescopes which cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The instrument utilizes an ASIC-PDFE (Particle Detection Front End), which provides low noise charge sensi- tive pre-amplifier, filters, pulse shaper, 8-bit ADC and anti-coincidence electronics for a single solid-state detector. The counts are accumulated in 256 linear bins on a radia- tion hardened SRAM under control of an FPGA and read out once every minute by the supervising DPU. The FPGA provides the possibility of quasi-logarithmic binning be- fore transferring the data to the main DPU. A simple ramp pulser provides electronic in-flight instrument calibration and testing. The complete instrument with 4 complete channels has a mass of 500 g and consumes 500 mW of power. The maximum count rate is 250 ksamples per second per channel. The instrument is to be flown on the Solar Terrestrial Relations Observatory (STEREO) mission with intended launch in 2005. The talk describes the technical implementation of the instrument.

  5. Neutral Buoyancy Simulator- NB38 -Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  6. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E; Perkins, J. S.; Racusin, J. L; Scargle, J. D.; Stephens, T. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  7. Origins Space Telescope: Solar System Science

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  8. The Telescope Array's Low Energy Extension: TALE

    Science.gov (United States)

    Matthews, John

    2009-05-01

    A great deal of information about the sources of ultra high energy cosmic rays exists encoded in the energy spectrum. There are three spectral features in the ultra high energy regime (the second knee, the ankle, and the GZK cut-off). An important composition change also occurs in this energy range. The Telescope Array (TA) is a large area ultra high energy cosmic ray observatory built and operated by groups from the US, Japan, Korea, and Russia. The existing part of the Telescope Array already has good efficiency above the ankle (˜10^18.5 eV). These detectors are already in the field collecting data. The TA Low Energy Extension (TALE) refers to the detectors devoted to the ``low energy'' portion of the spectrum - 10^16.5 - 10^19 eV. The aim of TA/TALE is to understand the origin of cosmic rays and to study their composition over a broad energy range. We will introduce the detector components and discuss the opportunities.

  9. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  10. A Trigger and Readout Scheme for future Cherenkov Telescope Arrays

    CERN Document Server

    Hermann, G; Foehr, C; Hofmann, W; Kihm, T; Köck, F

    2008-01-01

    The next generation of ground-based gamma-ray observatories, such as e.g. CTA, will consist of about 50-100 telescopes, and cameras with in total ~100000 to ~200000 channels. The telescopes of the core array will cover and effective area of ~ 1 km2 and will be possibly accompanied by a large halo of smaller telescopes spread over about 10 km2 . In order to make maximum use of the stereoscopic approach, a very flexible inter-telescope trigger scheme is needed which allows to couple telescopes that located up to ~1 km apart. The development of a cost effective readout scheme for the camera signals exhibits a major technological challenge. Here we present ideas on a new asynchronous inter-telescope trigger scheme, and a very cost-effective, high-bandwidth frontend to backend data transfer system, both based on standard Ethernet components and an Ethernet front-end interface based on mass production standard FPGAs.

  11. Japanese sounding rocket experiment with the solar XUV Doppler telescope

    Science.gov (United States)

    Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo

    1996-11-01

    We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described.

  12. The ASTRI prototype and mini-array: precursor telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Pareschi, Giovanni

    2016-07-01

    In the framework of the Cherenkov Telescope Array (CTA) Observatory, the Italian National Institute of Astrophysics (INAF) has recently inaugurated in Sicily (Italy), at the Serra La Nave astronomical site on the slopes of Mount Etna, a large field of view (9.6 degrees) dual-mirror prototype (ASTRI SST-2M) of the CTA small size class of telescopes. CTA plans to install about 70 small size telescopes in the southern site to allow the study of the gamma rays from a few TeV up to hundreds of TeV. The ASTRI SST-2M telescope prototype has been developed following an end-to-end approach, since it includes the entire system of structure, mirror's optics (primary and secondary mirrors), camera, and control/acquisition software. Although it is a technological prototype, the ASTRI SST-2M prototype will be able to perform systematic monitoring of bright TeV sources. A remarkable improvement in terms of performance could come from the operation of the ASTRI mini-array, led by INAF in synergy with the Universidade de Sao Paulo (Brazil) and the North-West University (South Africa) and with also a contribution by INFN. The ASTRI mini-array will be composed of at least nine ASTRI SST-2M units. It is proposed as one of the CTA mini-array of telescope precursors and initial seeds of CTA, to be installed at the final CTA southern site. Apart from the assessment of a number of technological aspects related to CTA, the ASTRI mini-array will extend and improve the sensitivity, similar to the H.E.S.S. one in the 1-10 TeV energy range, up to about 100 TeV.

  13. VLT Unit Telescopes Named at Paranal Inauguration

    Science.gov (United States)

    1999-03-01

    This has been a busy, but also a very successful and rewarding week for the European Southern Observatory and its staff. While "First Light" was achieved at the second 8.2-m VLT Unit Telescope (UT2) ahead of schedule, UT1 produced its sharpest image so far. This happened at a moment of exceptional observing conditions in the night between March 4 and 5, 1999. During a 6-min exposure of the majestic spiral galaxy, NGC 2997 , stellar images of only 0.25 arcsec FWHM (full-width half-maximum) were recorded. This and two other frames of nearly the same quality have provided the base for the beautiful colour-composite shown above. At this excellent angular resolution, individual star forming regions are well visible along the spiral arms. Of particular interest is the peculiar, twisted shape of the long spiral arm to the right. The Paranal Inauguration The official inauguration of the Paranal Observatory took place in the afternoon of March 5, 1999, in the presence of His Excellency, the President of the Republic of Chile, Don Eduardo Frei Ruiz-Tagle, and ministers of his cabinet, as well the Ambassadors to Chile of the ESO member states and many other distinguished guests. The President of the ESO Council, Mr. Henrik Grage, and the ESO Director General, Professor Riccardo Giacconi, were the foremost representatives of the ESO organisation; most members of the ESO Council and ESO staff also participated. A substantial number of media representatives from Europe and Chile were present and reported - often live - from Paranal during the afternoon and evening. The guests were shown the impressive installations at the new observatory, including the first and second 8.2-m VLT Unit Telescopes; the latter having achieved "First Light" just four days before. A festive ceremony took place in the dome of UT2, under the large telescope structure that had been tilted towards the horizon to make place for the numerous participants. After an introductory address by the ESO Director

  14. VLT telescope control software: status, development, and lessons learned

    Science.gov (United States)

    Wirenstrand, Krister

    2003-02-01

    The four 8m VLT telescopes on Paranal are now in full science operation, and they all deliver good results with very small technical downtimes. Of course, many factors are contributing to these results, and also the telescope control software has its share. It has demonstrated to be robust and reliable and also flexible and expandable. In the four years since First Light of the first VLT telescope, this software has been continuously maintained and developed, for improvements on the 8m telescopes but also for use on other telescopes. In addition to the 8m ones, another three telescopes, using applicable parts of the same software, are in operation on Paranal: the 350- mm seeing monitor and two 400-mm siderostats. And the process continues: in the beginning of 2003 the first of three 1.8m Auxiliary Telescopes for the VLT Interferometer will be installed; the control software to 80% being the same as for the 8m telescopes, but with additional devices and control functionality. Another three ESO telescopes on La Silla are also using the same software, as well as two wide field telescopes for Paranal that are now in the design and manufacturing phase. In this development process, and in particular after first installation, we have learned lessons in many areas of software project work. System design and engineering, standardization, tools, testing: these are example areas where there is always room for improvement. Another lesson learned is the importance of the concept of Commissioning, i.e. the work to take the telescope from "integrated" to "working"! What the future of telescope control software will be, that we don't know, but we are working on it! And we try to keep an evolutionary approach, taking advantage of the lessons learned.

  15. The Robotic Super-LOTIS Telescope: Results & Future Plans

    OpenAIRE

    Williams, G. G.; Milne, P. A.; Park, H.S.; Barthelmy, S. D.; Hartmann, D. H.; Updike, A.; Hurley, K.

    2008-01-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates ...

  16. The new robotic telescope developed at the Perugia University Observatory

    CERN Document Server

    Tosti, G; Falchetti-Frescura, A

    1999-01-01

    In the next few years a turning-point in blazar study will be represented by the development of automatic monitoring. This will need the diffusion of the robotic telescope concept all over the world. In this paper we present the main characteristics of a 0.80 m robotic telescope which could be useful prototype instrument for a world-wide network of robotic telescopes devoted to intensive monitoring of variable sources. (0 refs).

  17. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  18. Light Sensor Candidates for the Cherenkov Telescope Array

    CERN Document Server

    Knoetig, M L; Kurz, M; Hose, J; Lorenz, E; Schweizer, T; Teshima, M; Buzhan, P; Popova, E; Bolmont, J; Tavernet, J -P; Vincent, P; Shayduk, M

    2011-01-01

    We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.

  19. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    Science.gov (United States)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  20. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  1. Gas-silicon detector telescope for charged particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Honkanen, A.; Oinonen, M.; Aeystoe, J. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Eskola, K. [Helsinki Univ. (Finland). Dept. of Phys.; Jokinen, A. [PPE Division, CERN, CH-1211 Geneva 23 (Switzerland); ISOLDE Collaboration

    1997-08-11

    A gas-silicon detector telescope for charged particle spectroscopy has been constructed and tested. The lower detection limits were determined to be 155 keV for protons, 180 keV for deuterons and 350 keV for alpha particles. Typical energy resolution of the telescope measured for beta-delayed protons is 20 keV. Time resolution for the signals of the telescope was measured to be less than 10 ns. Examples of using the detector telescope in detection of beta-delayed proton activities are presented. (orig.).

  2. SKA Telescope Manager (TM): status and architecture overview

    Science.gov (United States)

    Natarajan, Swaminathan; Barbosa, Domingos; Barraca, Joao P.; Bridger, Alan; Choudhury, Subhrojyoti R.; Di Carlo, Matteo; Dolci, Mauro; Gupta, Yashwant; Guzman, Juan; Van den Heever, Lize; Le Roux, Gerhard; Nicol, Mark; Patil, Mangesh; Smareglia, Riccardo; Swart, Paul; Thompson, Roger; Vrcic, Sonja; Williams, Stewart

    2016-07-01

    The SKA radio telescope project is building two telescopes, SKA-Low in Australia and SKA-Mid in South Africa respectively. The Telescope Manager is responsible for the observations lifecycle and for monitoring and control of each instrument, and is being developed by an international consortium. The project is currently in the design phase, with the Preliminary Design Review having been successfully completed, along with re-baselining to match project scope to available budget. This report presents the status of the Telescope Manager work, key architectural challenges and our approach to addressing them.

  3. Characterization of Solar Telescope Polarization Properties Across the Visible and Near-Infrared Spectrum. Case Study: The Dunn Solar Telescope

    CERN Document Server

    Socas-Navarro, Hector; Ramos, Andres Asensio

    2010-01-01

    Accurate astrophysical polarimetry requires a proper characterization of the polarization properties of the telescope and instrumentation employed to obtain the observations. Determining the telescope and instrument Muller matrix is becoming increasingly difficult with the increase in aperture size of the new and upcoming solar telescopes. We have carried out a detailed multi-wavelength characterization of the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak as a case study and explore various possibilites for the determination of its polarimetric properties. We show that the telescope model proposed in this paper is more suitable than that in previous work in that it describes better the wavelength dependence of aluminum-coated mirrors. We explore the adequacy of the degrees of freedom allowed by the model using a novel mathematical formalism. Finally, we investigate the use of polarimeter calibration data taken at different times of the day to characterize the telescope and find ...

  4. Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Amans, J. P.; Dangeon, L.; Fasola, G.; Gironnet, J.; Huet, J. M.; Laporte, P.; Abchiche, A.; Barkaoui, S.; Bousquet, J. J.; Buchholtz, G.; Dumas, D.; Gaudemard, J.; Jégouzo, I.; Poinsignon, P.; Vergne, L.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design

  5. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  6. Variable stars with the Kepler space telescope

    CERN Document Server

    Molnár, László; Plachy, Emese

    2016-01-01

    The Kepler space telescope has revolutionised our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.

  7. Recent results from the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Eberl, Thomas [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Collaboration: ANTARES Collaboration

    2014-11-18

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles.

  8. The servo control system of KDUST telescope

    Science.gov (United States)

    Jian, Zhang; Du, Fujia

    2014-07-01

    The KDUST telescope would be installed in Antarctic Dome A, where is extremely cold, high, dry, but have a very stable, calm atmosphere for astronomical observation. According to project requirement, the position following error should be less than 1''. To achieve project target, a direct drive method is used in the project. Normal PID control algorithm is used in controller. It can meet the target in the room temperature. But the following error increased too significantly in the cryogenic environment. In this paper, the expert PID algorithm is applied to control system. The control parameter can be adjusted by amplitude and variation of following error. Experiment proved that expert PID has an obvious advantage in both start-up and tracking process under different temperature. Moreover expert PID also can improve the stability of whole system.

  9. Thirty Meter Telescope Site Testing I: Overview

    CERN Document Server

    Schoeck, M; Riddle, R; Skidmore, W; Travouillon, T; Blum, R; Bustos, E; Chanan, G; Djorgovski, S G; Gillett, P; Gregory, B; Nelson, J; Otarola, A; Seguel, J; Vasquez, J; Walker, A; Walker, D; Wang, L

    2009-01-01

    As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site testing period was preceded by several years of analyses selecting the five candidates, Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in Baja California, Mexico and the 13 North (13N) site on Mauna Kea, Hawaii. Site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N. It showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties. This is the first article in a series discussing the TMT site testing project.

  10. The Allen Telescope Array Commensal Observing System

    CERN Document Server

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  11. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  12. Cepheid investigations using the Kepler space telescope

    CERN Document Server

    Szabó, R; Ngeow, C -C; Smolec, R; Derekas, A; Moskalik, P; Nuspl, J; Lehmann, H; Fűrész, G; Molenda-Zakowicz, J; Bryson, S T; Henden, A A; Kurtz, D W; Stello, D; Nemec, J M; Benkő, J M; Berdnikov, L; Bruntt, H; Evans, N R; Gorynya, N A; Pastukhova, E N; Simcoe, R J; Grindlay, J E; Los, E J; Doane, A; Laycock, S G; Mink, D J; Champine, G; Sliski, A; Handler, G; Kiss, L L; Kolláth, Z; Kovács, J; Christensen-Dalsgaard, J; Kjeldsen, H; Allen, C; Thompson, S E; Van Cleve, J

    2011-01-01

    We report results of initial work done on selected candidate Cepheids to be observed with the Kepler space telescope. Prior to the launch 40 candidates were selected from previous surveys and databases. The analysis of the first 322 days of Kepler photometry, and recent ground-based follow-up multicolour photometry and spectroscopy allowed us to confirm that one of these stars, V1154 Cyg (KIC 7548061), is indeed a 4.9-d Cepheid. Using the phase lag method we show that this star pulsates in the fundamental mode. New radial velocity data are consistent with previous measurements, suggesting that a long-period binary component is unlikely. No evidence is seen in the ultra-precise, nearly uninterrupted Kepler photometry for nonradial or stochastically excited modes at the micromagnitude level. The other candidates are not Cepheids but an interesting mix of possible spotted stars, eclipsing systems and flare stars.

  13. The CERN axion solar telescope (CAST)

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K

    2002-07-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over {+-}8 deg. vertically and {+-}45 deg. , horizontally. A sensitivity in axion-photon coupling g{alpha}{gamma}{gamma} < 5 x 10{sup -11}GeV{sup -1} can be reached for m{sub {alpha}} {<=} 10{sup -2}eV, and with a gas filled tube-can reach g{alpha}{gamma}{gamma} {<=} 10{sup -10}GeV{sup -1} for axion masses m{sub {alpha}} < 2eV.

  14. Bokeh Mirror Alignment for Cherenkov Telescopes

    CERN Document Server

    Ahnen, M L; Balbo, M; Bergmann, M; Biland, A; Blank, M; Bretz, T; Bruegge, K A; Buss, J; Domke, M; Dorner, D; Einecke, S; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Mueller, S A; Neise, D; Neronov, A; Noethe, M; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Shukla, A; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2016-01-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment ...

  15. On Probing theta_{23} in Neutrino Telescopes

    CERN Document Server

    Choubey, Sandhya; Rodejohann, Werner

    2008-01-01

    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle theta_{23} introduces the strongest variation on the flux ratios of ultra high energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain theta_{23}. We consider astrophysical neutrinos originating from pion, muon-damped and neutron sources and make a comparative study of their sensitivity reach to theta_{23}. It is found that neutron sources are most favorable for testing deviations from maximal theta_{23}. Using a chi^2 analysis, we show in particular the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis ``impure'' sources, i.e., deviations from the usually assumed initial (1 : 2 : 0), (0 : 1 : 0) or (1 : 0 : 0) flux compositions.

  16. Wavelet Analysis of Space Solar Telescope Images

    Institute of Scientific and Technical Information of China (English)

    Xi-An Zhu; Sheng-Zhen Jin; Jing-Yu Wang; Shu-Nian Ning

    2003-01-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day,SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume.Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application.We start with a brief introduction to the essential principles of wavelet analysis,and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  17. A proton recoil telescope for neutron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Donzella, A., E-mail: antonietta.donzella@ing.unibs.i [Universita di Brescia, 38 Via Branze, I-25123 Brescia (Italy); INFN Sezione di Pavia, 6 Via Bassi, I-27100 Pavia (Italy); Barbui, M. [INFN Laboratori Nazionali di Legnaro, 2 Viale dell' Universita, I-35020 Legnaro, Padova (Italy); Bocci, F. [INFN and Universita di Pavia, 6 Via Bassi, I-27100 Pavia (Italy); Bonomi, G. [Universita di Brescia, 38 Via Branze, I-25123 Brescia (Italy); INFN Sezione di Pavia, 6 Via Bassi, I-27100 Pavia (Italy); Cinausero, M. [INFN Laboratori Nazionali di Legnaro, 2 Viale dell' Universita, I-35020 Legnaro, Padova (Italy); Fabris, D. [INFN and Universita di Padova, 8 Via Marzolo, I-35131 Padova (Italy); Fontana, A. [INFN Sezione di Pavia, 6 Via Bassi, I-27100 Pavia (Italy); Giroletti, E. [INFN and Universita di Pavia, 6 Via Bassi, I-27100 Pavia (Italy); Lunardon, M.; Moretto, S.; Nebbia, G. [INFN and Universita di Padova, 8 Via Marzolo, I-35131 Padova (Italy); Necchi, M.M. [Universita di Brescia, 38 Via Branze, I-25123 Brescia (Italy); Pesente, S. [INFN and Universita di Padova, 8 Via Marzolo, I-35131 Padova (Italy); Prete, G.; Rizzi, V. [INFN Laboratori Nazionali di Legnaro, 2 Viale dell' Universita, I-35020 Legnaro, Padova (Italy); Viesti, G. [INFN and Universita di Padova, 8 Via Marzolo, I-35131 Padova (Italy); Zenoni, A. [Universita di Brescia, 38 Via Branze, I-25123 Brescia (Italy); INFN Sezione di Pavia, 6 Via Bassi, I-27100 Pavia (Italy)

    2010-01-21

    A new proton recoil telescope (PRT) detector is presented: it is composed by an active multilayer of segmented plastic scintillators as neutron to proton converter, by two silicon strip detectors and by a final thick CsI(Tl) scintillator. The PRT can be used to measure neutron spectra in the range 2-160 MeV. The detector characteristics have been studied in detail with the help of Monte Carlo simulations. The overall energy resolution of the system ranges from about 20% at the lowest neutron energy to about 2% at 160 MeV. The global efficiency is about 3x10{sup -5}. Experimental tests have been performed by using the reaction {sup 13}C(d,n) at 40 MeV deuteron energy.

  18. Recent results of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rey, Juan José [IFIC - Instituto de Física Corpuscular, Universitat de València–CSIC, E-46100 Valencia (Spain)

    2015-07-15

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles.

  19. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  20. Stability studies of Solar Optical Telescope dynamics

    Science.gov (United States)

    Gullapalli, Sarma N.; Pal, Parimal K.; Ruthven, Gregory P.

    1987-01-01

    The Solar Optical Telescope (SOT) is designed to operate as an attached payload mounted on the Instrument Pointing System (IPS) in the cargo bay of the Shuttle Orbiter. Pointing and control of SOT is accomplished by an active Articulated Primary Mirror (APM), an active Tertiary Mirror (TM), an elaborate set of optical sensors, electromechanical actuators and programmable controllers. The structural interactions of this complex control system are significant factors in the stability of the SOT. The preliminary stability study results of the SOT dynamical system are presented. Structural transfer functions obtained from the NASTRAN model of the structure were used. These studies apply to a single degree of freedom (elevation). Fully integrated model studies will be conducted in the future.

  1. Observer Access to the Cherenkov Telescope Array

    CERN Document Server

    Knödlseder, Jürgen; Boisson, Catherine; Brau-Nogué, Sylvie; Deil, Christoph; Khélifi, Bruno; Mayer, Michael; Walter, Roland

    2015-01-01

    The Cherenkov Telescope Array (CTA), a ground-based facility for very-high-energy (VHE) gamma-ray astronomy, will operate as an open observatory, serving a wide scientific community to explore and to study the non-thermal universe. Open community access is a novelty in this domain, putting a challenge on the implementation of services that make VHE gamma-ray astronomy as accessible as any other waveband. We present here the design of the CTA Observer Access system that comprises support of scientific users, dissemination of data and software, tools for scientific analysis, and the system to submit observing proposals. We outline the scientific user workflows and provide the status of the current developments.

  2. New life for the THEMIS solar telescope

    Science.gov (United States)

    Gelly, Bernard; Langlois, Maud; Moretto, Gil; Douet, Richard; Lopez Ariste, Arturo; Tallon, Michel; Thiébaut, Eric; Geyskens, Nicolas; Lorgeoux, Guillaume; Léger, Johnathan; Le Men, Claude

    2016-07-01

    The THEMIS solar telescope is building a classical adaptive optics (AO) system to be operating on the Sun in 2017. To make compatible its excellent dual beam spectropolarimetric features with the AO also requires a major refurbishment of the relay optics starting at the M2 and down to the spectrograph entrance. This paper presents the design parameters and expected performances of our AO system, and explains why and how we intend to control to a few percent the Mueller matrix of the whole optical path from the prime focus to the spectropolarimetric cameras. This project is co-funded by the European Union SOLARNET Project Ref.:312495, and the Centre National de la Recherche Scientifique.

  3. Maintaining the Telescope Bibliography at Gemini Observatory

    Science.gov (United States)

    Zhang, X.

    2010-10-01

    The library profession benefits tremendously from ever-changing web technologies. In maintaining a telescope bibliography, web-publishing revolutionized the way librarians track relevant publications. Thanks to the search abilities provided by the NASA Astrophysics Data System, arXiv, publishers, as well as Google Scholar, and other such resources, online searching for Gemini-based publications has replaced the tedious perusing of print journals. However, we should keep in mind that online searching is neither flawless nor simple — different content providers require different search strategies. Sometimes the retrievals are not as complete as one expects. Information providers should be constantly improving their searching abilities in order to make the task of electronic publication tracking more reliable and efficient.

  4. Integrated modeling of submillimeter radio telescopes

    Science.gov (United States)

    Moraru, Dan; Andersen, Torben

    2002-07-01

    Integrated models are inherently complex and often obscure to any but those who write them. Their usefulness can be greatly enhanced through well-structured, object-oriented design. A robust and computationally efficient Simulink/C++ library of optics, control, finite-element, and visualization routines for modeling radio telescope performance under various operating conditions is being developed and is described. The library is being developed in conjunction with an end-to-end model of the Atacama Large Millimeter Array (ALMA) antennas. The model includes the mechanical structure, optics, servos, and potential laser gyros, and can be used to investigate such issues as tracking performance, compliance with error budgets, wind sensitivity, and effectiveness of an internal metrology system. It will also be a good tool for comparison of different antenna designs.

  5. New Physics Potential with a Neutrino Telescope

    CERN Document Server

    Artéaga-Romero, N; Nicolaidis, A; Panella, O; Tsirigoti, G P

    1997-01-01

    Active Galactic Nuclei are considered as sources of neutrinos, with neutrino energies extending up to 10^{18} eV. It is expected that these highly energetic cosmic neutrinos will be detected by the neutrino telescopes, presently under construction. The detection process is very sensitive to the total muon neutrino cross-section. We examine how the total cross section changes at high energies, by the single production of excited fermions (excited muon and muon-neutrino). For parameters (masses, couplings) of the excited fermions allowed by the experimental constraints, we find that for energies of the incoming muon-neutrino above 100 TeV the cross-section for single production of (excited muon and muon-neutrino) supersedes the standard total cross-section.

  6. James Webb Space Telescope Primary Mirror Manufacturing

    Science.gov (United States)

    Lightsey, Paul; Gallagher, B.; Chaney, D.; Brown, B.

    2009-01-01

    The James Webb Space Telescope has a segmented primary mirror consisting of 18 hexagonal beryllium primary mirror segment assemblies (PMSA) that have a total collecting area greater than 25 square meters. The PMSAs are designed to operate at cryogenic temperatures (39 K) and to be actively controlled to co-phase the segments. This paper discusses the processes and testing utilized in the manufacture of these mirrors including the critical cryogenic testing performed at the XRCF facility at the NASA Marshall Space Flight Center. The manufacturing team is headed by Ball Aerospace & Technologies Corp (BATC) with support from Brush Wellman for beryllium blank fabrication, Axsys Technologies for the precision machining, L3-Tinsley for the mirror polishing, and QCI for the reflective coating application.

  7. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  8. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin D.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  9. Daniel K. Inouye Solar Telescope system safety

    Science.gov (United States)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  10. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  11. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  12. Primary mirror assemblies for large space telescopes

    Science.gov (United States)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  13. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array

    CERN Document Server

    Brown, Anthony M; Chadwick, Paula M; Daniel, Michael; White, Richard

    2015-01-01

    The GCT is a dual-mirror Small-Sized-Telescope prototype proposed for the Cherenkov Telescope Array. Calibration of the GCT's camera is primarily achieved with LED-based flasher units capable of producing $\\sim4$ ns FWHM pulses of 400 nm light across a large dynamic range, from 0.1 up to 1000 photoelectrons. The flasher units are housed in the four corners of the camera's focal plane and illuminate it via reflection from the secondary mirror. These flasher units are adaptable to allow several calibration scenarios to be accomplished: camera flat-fielding, linearity measurements (up to and past saturation), and gain estimates from both single pe measurements and from the photon statistics at various high illumination levels. In these proceedings, the performance of the GCT flashers is described, together with ongoing simulation work to quantify the efficiency of using muon rings as an end-to-end calibration for the optical throughput of the GCT.

  14. NectarCAM, a camera for the medium sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Glicenstein, J-F

    2016-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.

  15. Beyond Backyard Astronomy: Professional Telescopes Online for Schools.

    Science.gov (United States)

    Smith, David; Penston, Margaret; Roche, Paul; Murdin, Paul

    2001-01-01

    Introduces the Telescopes in Education (TIE) project, which began in 1993, in which schools have had access via telephone lines to a high quality telescope on Mount Wilson in California. Considers what can be gained from such projects to maximize their potential. (Author/ASK)

  16. Engineering and science highlights of the KAT-7 radio telescope

    NARCIS (Netherlands)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-01-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and scienti

  17. James Henry Marriott: New Zealand's first professional telescope-maker

    Science.gov (United States)

    Orchiston, Wayne; Romick, Carl; Brown, Pendreigh.

    2015-11-01

    James Henry Marriott was born in London in 1799 and trained as an optician and scientific instrument- maker. In 1842 he emigrated to New Zealand and in January 1843 settled in the newly-established town of Wellington. He was New Zealand's first professional telescope-maker, but we have only been able to locate one telescope made by him while in New Zealand, a brass 1-draw marine telescope with a 44-mm objective, which was manufactured in 1844. In 2004 this marine telescope was purchased in Hawaii by the second author of this paper. In this paper we provide biographical information about Marriott, describe his 1844 marine telescope and speculate on its provenance. We conclude that although he may have been New Zealand's first professional telescope-maker Marriot actually made very few telescopes or other scientific instruments. As such, rather than being recognised as a pioneer of telescope-making in New Zealand he should be remembered as the founder of New Zealand theatre.

  18. An Investigation of the Eighteenth-Century Achromatic Telescope

    Science.gov (United States)

    Jaecks, Duane H.

    2010-01-01

    The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…

  19. Telescopes for a Space-Based Gravitational Wave Observatory

    Science.gov (United States)

    Sankar, Shannon; Livas, Jeffrey

    2017-01-01

    Telescopes are an important part of the science measurement for a space-based gravitational wave observatory. The telescopes should not introduce excess phase noise which might lower the signal-to-noise of the gravitational wave signal. This requirement constrains both the telescope stability and the phase noise due to scattered light. The photoreceiver senses a combination of a local beam, the received beam and scattered light. If the scattered light has significant spatial overlap, and if there is displacement noise in the scatter path, the signal-to-noise of the main measurement can be impacted. We will discuss our approach to addressing this concern. We model the scattered power from the telescope under expected conditions and use these models for evaluating potential telescope designs. We also determine allowable mirror surface roughness and contamination levels from the scattered light models. We implement the best designs by fabricating a series of prototype telescopes of increasing flight readiness, using eLISA as a reference mission for design specifications. Finally, we perform laboratory tests of the fabricated prototype telescope to validate the models and inform our understanding of the eventual flight telescopes.

  20. Evaluation of particle acceptance for space particle telescope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-Long; WANG Xiao-Lian; XU Zi-Zong

    2011-01-01

    The particle acceptance instead of the G-factors has been introduced for a particle telescope. The particle acceptance of a telescope module TEST is simulated by using the GEANT4 Monte-Carlo package.The results are presented and explained.

  1. The Robotic Super-LOTIS Telescope: Results & Future Plans

    CERN Document Server

    Williams, G G; Park, H S; Barthelmy, S D; Hartmann, D H; Updike, A; Hurley, K

    2008-01-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates every clear night. The telescope is instrumented with an optical CCD camera and a four position filter wheel. It is capable of observing Swift Burst Alert Telescope (BAT) error boxes as early or earlier than the Swift UV/Optical Telescope (UVOT). Super-LOTIS complements the UVOT observations by providing early R- and I-band imaging. We also use the suite of Steward Observatory telescopes including the 1.6-m Kuiper, the 2.3-m Bok, the 6.5-m MMT, and the 8.4-m Large Binocular Telescope to perform follow-up optical and near ...

  2. Construction of largest aperture radio telescope starts in southwest China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ While observing the world around us via an optical telescope with information carried by visible light,which constitutes only a small portion of the electromagnetic spectrum,astronomers use the remainder of the spectrum to reveal extensive data about celestial objects. For instance,they use telescopes operating in the radio spectrum to explore the An artist's rendition of FAST.

  3. VERITAS The Very Energetic Radiation Imaging Telescope Array System

    CERN Document Server

    Weekes, T C; Biller, S D; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dingus, B L; Fazio, G G; Fegan, D J; Finley, J; Fishman, G; Gaidos, J A; Gillanders, G H; Gorham, P W; Grindlay, J E; Hillas, A M; Huchra, J P; Kaaret, P E; Kertzman, M P; Kieda, D B; Krennrich, F; Lamb, R C; Lang, M J; Marscher, A P; Matz, S; McKay, T; Müller, D; Ong, R; Purcell, W; Rose, J; Sembroski, G H; Seward, F D; Slane, P O; Swordy, S P; Tümer, T O; Ulmer, M P; Urban, M; Wilkes, B J

    1997-01-01

    A next generation atmospheric Cherenkov observatory is described based on the Whipple Observatory $\\gamma$-ray telescope. A total of nine such imaging telescopes will be deployed in an array that will permit the maximum versatility and give high sensitivity in the 50 GeV - 50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV).

  4. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  5. Silicon Photomultiplier Research and Development Studies for the Large Size Telescope of the Cherenkov Telescope Array

    CERN Document Server

    Rando, Riccardo; Dazzi, Francesco; De Angelis, Alessandro; Dettlaff, Antonios; Dorner, Daniela; Fink, David; Fouque, Nadia; Grundner, Felix; Haberer, Werner; Hahn, Alexander; Hermel, Richard; Korpar, Samo; Mezek, Gašper Kukec; Maier, Ronald; Manea, Christian; Mariotti, Mosè; Mazin, Daniel; Mehrez, Fatima; Mirzoyan, Razmik; Podkladkin, Sergey; Reichardt, Ignasi; Rhode, Wolfgang; Rosier, Sylvie; Schultz, Cornelia; Stella, Carlo; Teshima, Masahiro; Wetteskind, Holger; Zavrtanik, Marko

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($\\sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong pot...

  6. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    CERN Document Server

    Ocaña, Francisco; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-01-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Every night...

  7. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    CERN Document Server

    Zech, A; Blake, S; Boisson, C; Costille, C; De-Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Greenshaw, T; Hervet, O; Huet, J -M; Laporte, P; Rulten, C; Savoie, D; Sayede, F; Schmoll, J

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to all...

  8. Prototyping of Hexagonal Light Concentrators for the Large-Sized Telescopes of the Cherenkov Telescope Array

    CERN Document Server

    ,

    2015-01-01

    Reflective light concentrators with hexagonal entrance and exit apertures are frequently used at the focal plane of gamma-ray telescopes in order to reduce the size of the dead area caused by the geometries of the photodetectors, as well as to reduce the amount of stray light entering at large field angles. The focal plane of the large-sized telescopes (LSTs) of the Cherenkov Telescope Array (CTA) will also be covered by hexagonal light concentrators with an entrance diameter of 50 mm (side to side) to maximize the active area and the photon collection efficiency, enabling realization of a very low energy threshold of 20 GeV. We have developed a prototype of this LST light concentrator with an injection-molded plastic cone and a specular multilayer film. The shape of the plastic cone has been optimized with a cubic B\\'{e}zier curve and a ray-tracing simulation. We have also developed a multilayer film with very high reflectance ($\\gtrsim95$\\%) along wide wavelength and angle coverage. The current status of th...

  9. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  10. Observations of Anomalous Refraction with Co-housed Telescopes

    Science.gov (United States)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  11. Testing Potential New Sites for Optical Telescopes in Australia

    CERN Document Server

    Hotan, Claire E; Glazebrook, Karl

    2012-01-01

    In coming years, Australia may find the need to build new optical telescopes to continue local programmes, contribute to global survey projects, and form a local multi-wavelength connection for the new radio telescopes being built. In this study, we refine possible locations for a new optical telescope by studying remotely sensed meteorological infrared data to ascertain expected cloud coverage rates across Australia, and combine these data with a Digital Elevation Model using a Geographic Information System. We find that the best sites within Australia for building optical telescopes are likely to be on the highest mountains in the Hamersley Range in Northwest Western Australia, while the MacDonnell Ranges in the Northern Territory may also be appropriate. We believe that similar seeing values to Siding Spring should be obtainable and with significantly more observing time at the identified sites. We expect to find twice as many clear nights as at current telescope sites. These sites are thus prime locations...

  12. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  13. Telescope interferometers: an alternative to classical wavefront sensors

    CERN Document Server

    Henault, Francois

    2008-01-01

    Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequently reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named "Telescope-Interferometer" (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, am...

  14. TICS-24 --- an Integrated Telescope Control System Using Hypercard

    Science.gov (United States)

    Hawkins, R. L.; Ratcliff, S. J.

    1993-12-01

    Starting from scripts generously provided by Ratcliff, the author has developed an integrated telescope and instrumentation control system for Hypercard on the Macintosh. The Telescope Integrated Control System (TICS-24) uses Hypercard scripts, HyperBASIC XFCN's, and APDA serial port XFCN's to control a telescope and another instrument over the built-in serial ports on a Macintosh. Additionally, TICS-24 has the ability to act as an object database with finder charts for frequently observed targets. The system is expandable, since new functions simply become new scripts and/or ``cards''. The system is also easily adaptable to other telescopes and instrumentation, since controlling a different telescope or instrument only requires rewriting the actual serial commands to match those expected by the new instrument.

  15. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  16. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Sharples, Ray; Page, Mathew J.

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE.......The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope...

  17. An optics education program designed around experiments with small telescopes

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.; Dokter, Erin F. C.

    2010-08-01

    The National Optical Astronomy Observatory has led the development of a new telescope kit for kids as part of a strategic plan to interest young children in science. This telescope has been assembled by tens of thousands of children nationwide, who are now using this high-quality telescope to conduct optics experiments and to make astronomical observations. The Galileoscope telescope kit and its associated educational program are an outgrowth of the NSF sponsored "Hands-On Optics" (HOO) project, a collaboration of the SPIE, the Optical Society of America, and NOAO. This project developed optics kits and activities for upper elementary students and has reached over 20,000 middle school kids in afterschool programs. HOO is a highly flexible educational program and was featured as an exemplary informal science program by the National Science Teachers Association. Our new "Teaching with Telescopes" program builds on HOO, the Galileoscope and other successful optical education projects.

  18. Implementation and Operation of a Robotic Telescope on Skynet

    Science.gov (United States)

    Smith, Adam B.; Caton, Daniel B.; Hawkins, R. Lee

    2016-05-01

    We describe the implementation of a remotely operated telescope on the Skynet Robotic Telescope Network, a system developed and run by the University of North Carolina-Chapel Hill. Our telescope, operated by Appalachian State University at its Dark Sky Observatory, runs robotically on this queue-scheduled system, automatically taking calibration images and acquiring program images, and responding to Internet commands to image the afterglow of accessible Gamma-Ray Burst events. We describe the process of implementing a Skynet-run telescope from our client-side view, and offer advice for others who might consider putting telescopes on Skynet. The implementation has proven very successful, obtaining over a hundred thousand images over the past six years, of various targets for research and educational purposes, and has responded to several GRB observation requests with several afterglow detections.

  19. Design of optical systems for large space telescopes

    Science.gov (United States)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    On the basis of long-term experience of LOMO PLC in creating large optical systems for ground and space telescopes, with diameter of primary mirror from 1 to 6 meters, the following issues should be considered: principles of constructing optical systems for space telescopes and selecting their optimum design in respect of dimensions/mass and performance criteria; ensuring the fulfillment of image quality requirements in the process of manufacturing optical systems for controlling ground telescope elements in operating conditions; providing automatic adjustment of telescope secondary mirror, automatic focusing, interferometric control of image quality by means of stellar interferometer with radial shift and internal control with Gartman's test. Description of space telescope equipped with primary mirror of diameter 1.5 m, manufactured in LOMO PLC, is given.

  20. Evaluation of particle acceptance for space particle telescope%Evaluation of particle acceptance for space particle telescope

    Institute of Scientific and Technical Information of China (English)

    张云龙; 汪晓莲; 许咨宗

    2011-01-01

    The particle acceptance instead of the G-factors has been introduced for a particle telescope. The particle acceptance of a telescope module TEST is simulated by using the GEANT4 Monte-Carlo package. The results are presented and explained.